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Scheduling Nonlinear Sensors for Stochastic Process Estimation

Vasileios Tzoumas?, Nikolay A. Atanasov?, Ali Jadbabaie†, George J. Pappas?

Abstract—In this paper, we focus on activating only a few
sensors, among many available, to estimate the batch state of
a stochastic process of interest. This problem is important in
applications such as target tracking and simultaneous localization
and mapping (SLAM), and in general, in problems where
we need to have a good estimate of the trajectory taken so
far, e.g., for linearisation purposes. It is challenging since it
involves stochastic systems whose evolution is largely unknown,
sensors with nonlinear measurements, and limited operational
resources that constrain the number of active sensors at each
measurement step. We provide an algorithm applicable to gen-
eral stochastic processes and nonlinear measurements whose
time complexity is linear in the planning horizon and whose
performance is up to a multiplicative factor 1/2 away from
the optimal performance. This is notable because the algorithm
offers a significant computational advantage over the polynomial-
time algorithm that achieves the best approximation factor 1/e.
In addition, for important classes of Gaussian processes and
nonlinear measurements corrupted with Gaussian noise, our
algorithm enjoys the same time complexity as the state-of-the-
art algorithms for linear systems and measurements. We achieve
our results by proving two properties for the entropy of the
batch state vector conditioned on the measurements: a) it is
supermodular in the choice of the sensors; b) it has a sparsity
pattern (involves block tri-diagonal matrices) that facilitates its
evaluation at each sensor set.

I. INTRODUCTION

Adversarial target tracking and capturing [1], [2], robotic
navigation and autonomous construction [3], active perception
and simultaneous localization and mapping (SLAM) [4] are
only a few of the challenging information gathering problems
that benefit from the monitoring capabilities of sensor net-
works [5]. These problems are challenging because:

• they involve systems whose evolution is largely unknown,
modeled either as a stochastic process, such as a Gaussian
process [6], or as linear or nonlinear system corrupted
with process noise [1],

• they involve nonlinear sensors (e.g., cameras, radios)
corrupted with noise [7],

• they involve systems that change over time [8], and as a
result, necessitate both spatial and temporal deployment
of sensors in the environment, increasing the total number
of needed sensors, and at the same time,
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• they involve operational constraints, such as limited com-
munication bandwidth and battery life, which limit the
number of sensors that can simultaneously be active in
the information gathering process [9].

Due to these challenges, we focus on the following question:
“How do we select, at each time, only a few of the available
sensors so as to monitor effectively a system despite the above
challenges?” In particular, we focus on the following sensor
scheduling problem:

Problem 1. Consider a stochastic process, whose realization
at time t is denoted by x(t) and a set of m sensors, whose
measurements are nonlinear functions of x(t), evaluated at a
fixed set of K measurement times t1, t2, . . . , tK . In addition,
suppose that at each tk a set of at most sk ≤ m sensors
can be used. Select the sensor sets so that the error of
the corresponding minimum mean square error estimator
of (x(t1), x(t2), . . . , x(tK)) is minimal among all possible
sensor sets.

The reason we focus on estimating the batch state vector
(x(t1), x(t2), . . . , x(tK)) is that in many control problems we
need to have a good estimate of the trajectory taken so far,
e.g., for linearisation purposes.
Literature review: There are two classes of sensor scheduling
algorithms, that trade-off between the estimation accuracy
of the batch state vector and their time complexity [10]:
those used for Kalman filtering, and those for batch state
estimation. The most relevant papers on batch state estimation
are [10] and [11]. However, both of these papers focus on
linear systems and measurements. The most relevant papers
for Kalman filtering consider algorithms that use: myopic
heuristics [12], tree pruning [13], convex optimization [14]–
[17], quadratic programming [18], Monte Carlo methods [19],
or submodular function maximization [20], [21]. However,
these papers focus similarly on linear or nonlinear systems
and measurements, and do not consider unknown dynamics.

At the same time, [22] focuses on sensor selection algo-
rithms for estimating stochastic processes that are, in contrast
to the processes in the present paper, spatially correlated
and not temporally correlated. In more detail, in [22], x(ti)
represents the value of a parameter of interest at a spatial
position ti, and is constant in time. This is notable since in [22]
the proposed algorithms for sensor selection become fast when
the covariance matrix of (x(t1), x(t2), . . . , x(tK)) is sparse (or
can be approximated by a sparse matrix). Notwithstanding,
this is not necessarily the case for dynamic stochastic pro-
cesses, since x(ti) may be strongly correlated to the trajectory
(x(t1), x(t2), . . . , x(ti−1)) taken so far in the state space.



Main contributions:
1) We prove that Problem 1 is NP-hard.
2) We prove that the best approximation factor one can

achieve in polynomial time for Problem 1, in the worst
case, is 1/e.

3) We provide Algorithm 1 for Problem 1 that:
• for all stochastic processes and nonlinear measurements,

achieves a solution that is up to a multiplicative factor
1/2 from the optimal solution with time complexity
that is only linear in the planning horizon K. This is
important, since it implies that Algorithm 1 offers a
significant computational advantage with negligible loss
in performance over the polynomial-time algorithm that
achieves the best approximation factor of 1/e,

• for important classes of Gaussian processes, and non-
linear measurements corrupted with Gaussian noise, has
the same time complexity as state-of-the-art algorithms
for linear systems and measurements. For example, for
Gaussian process such as those in target tracking, or
those generated by linear or nonlinear systems cor-
rupted with Gaussian noise, Algorithm 1 has the same
time complexity as the batch state estimation algo-
rithm in [10], and lower than the relevant Kalman filter
scheduling algorithms in [14], [17].

Therefore, Algorithm 1 can enjoy both the estimation accu-
racy of the batch state scheduling algorithms (compared to
the Kalman filtering approach, that only approximates the
batch state estimation error with an upper bound [10]) and,
surprisingly, even the low time complexity of the Kalman
filtering scheduling algorithms for linear systems.

Technical contributions:
1) Supermodularity in Problem 1: We achieve the approxi-

mation performance of Algorithm 1, and the linear dependence
of its time complexity on the planning horizon, by proving
that our estimation metric is a supermodular function in the
choice of the utilized sensors. This is important, since this is
in contrast to the case of multi-step Kalman filtering for linear
systems and measurements, where the corresponding estima-
tion metric is neither supermodular nor submodular [20] [21].

2) Sparsity in Problem 1: We achieve the reduced time com-
plexity of Algorithm 1 for Gaussian processes by identifying
a sparsity pattern in our estimation metric. Specifically, for
Gaussian processes the time complexity of each evaluation
of our metric is decided by the sparsity pattern of either the
covariance of (x(t1), x(t2), . . . , x(tK)), or the inverse of this
covariance. This is important since the two matrices are not
usually sparse at the same time, even if one of them is [23].

In more detail, we identify that for Gaussian processes such
as those in target tracking, the first matrix is block tri-diagonal,
whereas for those in SLAM, or those generated by linear or
nonlinear systems corrupted with Gaussian noise, the second
matrix is block tri-diagonal.

Paper’s organization: We organize the rest of the paper as
follows: In Section II we formulate Problem 1. In Section III,
we present our two main results: first, we prove that our sensor

scheduling problem is NP-hard; second, we derive our ap-
proximation algorithm, and emphasize on its time complexity.
Section IV concludes the paper with our future work. The
proofs of our results are found in the Appendix; due to space
constraints some of the proofs are omitted, and can be found in
the full version of this paper, located in the authors’ websites.
Notation: We denote the set of natural numbers {1, 2, . . .} by
N, the set of real numbers by R, and the set {1, 2, . . . , n}
by [n] (n ∈ N). The set of real numbers between 0 and 1
is denoted by [0, 1], and the empty set by ∅. Given a set
X , |X | is its cardinality. In addition, for n ∈ N, Xn is the
n-times Cartesian product X × X × · · · × X . Matrices are
represented by capital letters and vectors by lower-case letters.
We write A ∈ Xn1×n2 (n1, n2 ∈ N) to denote a matrix of
n1 rows and n2 columns whose elements take values in X ;
A> is its transpose, and [A]ij is its element at the i-th row
and j-th column; det(A) is its determinant. Furthermore, if
A is positive definite, we write A � 0. In the latter case,
A−1 is its inverse. I is the identity matrix; its dimension
is inferred from the context. Similarly for the zero matrix
0. The ≡ denotes equivalence. Moreover, for a probability
space (Ω,F ,P), Ω is the sample space, F the σ-field, and
P : F 7→ [0, 1] the function that assigns probabilities to events
in F [24]. We write x ∼ F to denote a random variable x
with probability distribution F ; E(x) is its expected value,
and Σ(x) its covariance. x ∼ N (µ,Σ) denotes a Gaussian
random variable x with mean µ and covariance Σ; with a slight
abuse of notation, we equivalently write x ∼ N (E(x),Σ(x)).
Finally, we write x|y ∼ G to denote that x’s probability
distribution given y is G.

II. PROBLEM FORMULATION

This section introduces the system, measurement, and
scheduling models and presents the sensor scheduling problem
formally.

System Model. We consider two cases:
• Continuous time model: Consider the stochastic process

(along with a probability space (Ω,F ,P)):

xω(t) : ω ∈ Ω, t ≥ t0 7→ Rn (1)

where n ∈ N, t0 is the initial time, and xω(t) the state
vector given the sample ω.

• Discrete time model: Consider the nonlinear discrete-
time system:

xk+1 = lk(x1:k), lk ∼ Lk, k ∈ N (2)

where xk ∈ Rn is the state vector, x1:k the batch vector
(x1, x2, . . . , xk), and Lk a probability distribution over
functions lk : Rnk 7→ Rn.

Because the system models (1) and (2) assume no char-
acteristic structure, they are appropriate for modeling largely
unknown dynamics. For example, an instance of (1) is the
time-indexed Gaussian process system model:

x(t) ∼ GP(µ(t),Σ(t, t′)), t, t′ ≥ t0, (3)



where µ(t) is the mean function and Σ(t, t′) is the covariance
function. Similarly, an instance of (2) is the state-indexed
Gaussian process system model:

xk+1 = l(xk), l ∼ GP(µ(x),Σ(x, x′)), x, x′ ∈ Rn. (4)

Measurement Model. Consider m nonlinear sensors that
operate in discrete time:

zi,k = gi(xk) + vi,k, i ∈ [m], k ∈ N (5)

where for the continuous-time system in (1) we let xk := x(tk)
at a pre-specified set of measurement times t1, t2, . . . and vi,k
is the measurement noise of sensor i at time k.

Assumption 1. vi,k are independent across i and k. In
addition, gi is one-time differentiable.

Sensor Scheduling Model. The m sensors in (5) are used
at K scheduled measurement times {t1, t2, . . . , tK}. At each
k ∈ [K], only sk of the m sensors are used (sk ≤ m), resulting
in the batch measurement vector yk:

yk = Skzk, k ∈ [K], (6)

where Sk is a sensor selection matrix, composed of sub-
matrices [Sk]ij (i ∈ [sk], j ∈ [m]) such that [Sk]ij = I if
sensor j is used at time k, and [Sk]ij = 0 otherwise. We
assume that a sensor can be used at most once at each k,
and as a result, for each i there is one j such that [Sk]ij = I
while for each j there is at most one i such that [Sk]ij = I .

We now present the sensor scheduling problem formally:
Notation: For i, j ∈ N, φi:j ≡ (φi, φi+1, . . . , φj). In

addition, Sk ≡ {j : there exists i ∈ [sk], [Sk]ij = I}: Sk is
the set of indices that correspond to utilized sensors at tk.

Problem 1 (Sensor Scheduling in Stochastic Processes with
Nonlinear Observations). Select at each time k a subset of sk
sensors, out of the m sensors in (5), to use in order to minimize
the conditional entropy of x1:K given the measurements y1:K:

minimize
Sk⊆[m],k∈[K]

H(x1:K |S1:K)

subject to |Sk| ≤ sk, k ∈ [K],

where H(x1:K |S1:K) denotes the conditional entropy
H(x1:K |y1:K) of x1:K given the measurements y1:K .

The conditional entropy H(x1:K |y1:K) captures the esti-
mation accuracy of x1:K given y1:K , as we explain in the
following two propositions:

Proposition 1. H(x1:K |y1:K) is a constant factor away from
the mutual information of x1:K and y1:K . In particular:

H(x1:K |y1:K) = −I(x1:K ; y1:K) + H(x1:K),

where I(x1:K ; y1:K) is the mutual information of x1:K and
y1:K , and H(x1:K) is constant.

Proposition 2. Consider the Gaussian process (3) and sup-
pose that the measurement noise in (5) is Gaussian, vi,k ∼
N (0,Σ(vi,k)). H(x1:K |y1:K) is a constant factor away from

Algorithm 1 Approximation algorithm for Problem 1.
Input: Horizon K, scheduling constraints s1, s2, . . . , sK , er-

ror metric H(x1:K |S1:K) : Sk ⊆ [m], k ∈ [K] 7→ R
Output: Sensor sets (S1,S2, . . . ,SK) that approximate the

solution to Problem 1, as quantified in Theorem 2
k ← 1, S1:0 ← ∅
while k ≤ K do
1. Apply Algorithm 2 to

min
S⊆[m]

{H(x1:K |S1:k−1,S) : |S| ≤ sk} (7)

2. Denote by Sk the solution Algorithm 2 returns
3. S1:k ← (S1:k−1,Sk)
4. k ← k + 1
end while

log det(Σ(x?1:K)), where Σ(x?1:K) is the error covariance of
the minimum mean square estimator x?1:K of x1:K given the
measurements y1:K . In particular:1

H(x1:K |y1:K) =
log det(Σ(x?1:K))

2
+
nK log(2πe)

2
.

III. MAIN RESULTS

We first prove that Problem 1 is NP-hard, and then derive
for it a provably near-optimal approximation algorithm:

Theorem 1. The problem of sensor scheduling in stochastic
processes with nonlinear observations (Problem 1) is NP hard.

Due to Theorem 1, we need to appeal to approximation al-
gorithms to obtain a solution to Problem 1 in polynomial-time.
To this end, we propose an efficient near-optimal algorithm
(Algorithm 1 with a subroutine in Algorithm 2) and quantify
its performance and time complexity in the following theorem.

Theorem 2. The theorem has two parts:
1) Approximation performance of Algorithm 1: Algorithm 1

returns sensors sets S1,S2, . . . ,SK that:
i. satisfy all the feasibility constraints of Problem 1:
|Sk| ≤ sk, k ∈ [K]

ii. achieve an error H(x1:K |S1:K) such that:

H(x1:K |S1:K)−OPT
MAX −OPT

≤ 1

2
, (8)

where OPT is the optimal cost of Problem 1, and
MAX ≡ maxS′1:K H(x1:K |S ′1:K) is the maximum
(worst) cost in Problem 1.

2) Time complexity of Algorithm 1: Algorithm 1 has time
complexity O(

∑K
k=1 s

2
kT ), where T is the time complex-

ity of evaluating H(x1:K |S ′1:K) : S ′k ⊆ [m], k ∈ [K] 7→
R at an S ′1:K .

1We explain x?1:K and log det(Σ(x?1:K)): x?1:K is the optimal estimator
for x1:K , since it minimizes among all estimators of x1:K the mean square
error E(‖x1:K−x?1:K‖

2
2) (‖·‖2 is the euclidean norm), where the expectation

is taken with respect to y1:K [25, Appendix E]. log det(Σ(x?1:K)) is
an estimation error metric related to ‖x1:K − x?1:K‖

2
2, since when it is

minimized, the probability that the estimation error ‖x1:K−x?1:K‖
2
2 is small

is maximized [10].



In the following paragraphs, we discuss Algorithm 1’s ap-
proximation quality and time complexity and fully characterize
the latter in Theorem 3 and Corollary 1 for Gaussian processes
and Gaussian measurement noise.

Supermodularity and monotonicity of H(x1:K |y1:K):
We state two properties of H(x1:K |y1:K) that are used to
prove Theorem 2. In particular, we show that H(x1:K |y1:K)
is a non-increasing and supermodular function with respect to
the sequence of selected sensors. Then, Theorem 2 follows
by combining these two results with results on submodular
functions maximization over matroid constraints [26].

Approximation quality of Algorithm 1: Theorem 2 quan-
tifies the worst-case performance of Algorithm 1 across all
values of Problem 1’s parameters. The reason is that the
right-hand side of (8) is constant. In particular, (8) guarantees
that for any instance of Problem 1, the distance of the
approximate cost H(x1:K |S1:K) from OPT is at most 1/2 the
distance of the worst (maximum) cost MAX from OPT . This
approximation factor is close to the optimal approximation
factor 1/e ∼= .38 one can achieve in the worst-case for
Problem 1 in polynomial time [27]; the reason is twofold:
first, Problem 1 involves the minimization of a non-increasing
and supermodular function [28], and second, as we proved
in Theorem 1, Problem 1 is in the worst-case equivalent to
the minimal observability problem introduced in [29], which
cannot be approximated in polynomial time with a better factor
than the 1/e [30].

Remark 1. We can improve the 1/2 approximation fac-
tor of Algorithm 1 to 1/e by utilizing the algorithm intro-
duced in [31]. However, this algorithm has time complexity
O((nK)11T ), where T is the time complexity of evaluating
H(x1:K |S ′1:K) : S ′k ⊆ [m], k ∈ [K] 7→ R at an S ′1:K .

Time complexity of Algorithm 1: Algorithm 1’s time
complexity is broken down into two parts: a) the number of
evaluations of H(x1:K |y1:K) required by the algorithm; b) the
time complexity of each such evaluation. In more detail:

a) Number of evaluations of H(x1:K |y1:K) required by
Algorithm 1: Algorithm 1 requires at most s2k evaluations
of H(x1:K |y1:K) at each k ∈ [K]. Therefore, Algorithm 1
achieves a time complexity that is only linear in K with respect
to the number of evaluations of H(x1:K |y1:K); the reason is
that

∑K
k=1 s

2
k ≤ maxk∈[K](s

2
k)K. This is in contrast to the

algorithm in Remark 1, that obtains the best approximation
factor 1/e, whose time complexity is of the order O((nK)11)
with respect to the number of evaluations of H(x1:K |y1:K).2

b) Time complexity of each evaluation of H(x1:K |y1:K):
This time complexity depends on the properties of both the
stochastic process (1) (similarly, (2)) and the measurement
noise vi,k in (5). For the case of Gaussian stochastic processes
and measurement noises:

2We can also speed up Algorithm 1 by implementing in Algorithm 2 the
method of lazy evaluations [32]: this method avoids in Step 2 of Algorithm 2
the computation of ρi(St−1) for unnecessary choices of i.

Algorithm 2 Single step greedy algorithm (subroutine in
Algorithm 1).
Input: Current iteration k, selected sensor sets (S1,S2, . . . ,
Sk−1) up to the current iteration, constraint sk, error metric
H(x1:K |S1:K) : Sk ⊆ [m], k ∈ [K] 7→ R

Output: Sensor set Sk that approximates the solution to
Problem 1 at time k
S0 ← ∅, X 0 ← [m], and t← 1
Iteration t:
1. If X t−1 = ∅, return St−1
2. Select i(t) ∈ X t−1 for which ρi(t)(St−1) =

maxi∈X t−1 ρi(St−1), with ties settled arbitrarily, where:

ρi(St−1) ≡ H(x1:K |S1:k−1,St−1)−
H(x1:K |S1:k−1,St−1 ∪ {i})

3.a. If |St−1 ∪ {i(t)}| > sk, X t−1 ← X t−1 \ {i(t)}, and go
to Step 1

3.b. If |St−1 ∪ {i(t)}| ≤ sk, St ← St−1 ∪ {i(t)} and X t ←
X t−1 \ {i(t)}

4. t← t+ 1 and continue

Theorem 3. Consider the Gaussian process model (3) and
suppose that the measurement noise is Guassian: vi,k ∼
N (0,Σ(vi,k)) such that Σ(vi,k) � 0. The time complexity of
evaluating H(x1:K |y1:K) depends on the sparsity pattern of
Σ(x1:K) and Σ(x1:K)−1 as follows.

• Each evaluation of H(x1:K |y1:K) has time complexity
O(n2.4K), when either Σ(x1:K) or Σ(x1:K)−1 is exactly
sparse (that is, block tri-diagonal).

• Each evaluation of H(x1:K |y1:K) has time complexity
O(n2.4K2.4), when both Σ(x1:K) and Σ(x1:K)−1 are
dense.

Theorem 3 implies that when Σ(x1:K) or Σ(x1:K)−1 is
exactly sparse, the time complexity of each evaluation of
H(x1:K |y1:K) is only linear in K. This is important because
Σ(x1:K) or Σ(x1:K)−1 is exactly sparse for several appli-
cations and system models [33]. For example, in adversarial
target tracking applications, where the target wants to avoid
capture and randomizes its motion in the environment (by un-
correlating its movements), Σ(x1:K) can be considered tri-
diagonal (since this implies x(tk) and x(tk′) are uncorrelated
for |k − k′| > 2). Similarly, in SLAM, or in system models
where the Gaussian process in (3) is generated by a linear or
nonlinear system corrupted with Gaussian noise, Σ(x1:K)−1

is block tri-diagonal [23]. In particular, for linear systems,
Σ(x1:K)−1 is block tri-diagonal [23, Section 3.1], and for
nonlinear systems, Σ(x1:K)−1 is efficiently approximated by
a block tri-diagonal matrix as follows: for each k, before the
k-th iteration of Step 1 in Algorithm 1, we first compute µ̃1:K

given y1:(k−1) up to k. This step has complexity O(n2.4K)
when Σ(x1:K)−1 is sparse [23, Eq. (5)] [34, Section 3.8], and
it does not increase the total time complexity of Algorithm 1.
Then, we continue as in [23, Section 3.2].



Sparsity in H(x1:K |y1:K): We state the two properties
of H(x1:K |y1:K) that result to Theorem 3. In particular, we
prove that H(x1:K |y1:K) is expressed in closed form with
two different formulas such that the time complexity for the
evaluation of H(x1:K |y1:K) using the first formula is decided
by the sparsity pattern of Σ(x1:K), whereas using the second
formula is decided by the sparsity pattern of Σ(x1:K)−1. The
reason for this dependence is that the rest of the matrices in
these formulas are sparser than Σ(x1:K) or Σ(x1:K)−1; in
particular, they are block diagonal.

The full characterization of Algorithm 1’s time complexity
for Gaussian processes and Gaussian measurement noises
follows.

Corollary 1. Consider the Gaussian process model (3) and
suppose that the measurement noise is Gaussian: vi,k ∼
N (0,Σ(vi,k)) such that Σ(vi,k) � 0. The time complexity of
Algorithm 1 depends on the sparsity pattern of Σ(x1:K) and
Σ(x1:K)−1 as follows.
• Algorithm 1 has time complexity O(n2.4K

∑K
k=1 s

2
k),

when either Σ(x1:K) or Σ(x1:K)−1 is exactly sparse (that
is, block tri-diagonal).

• Algorithm 1 has time complexity O(n2.4K2.4
∑K

k=1 s
2
k),

when both Σ(x1:K) and Σ(x1:K)−1 are dense.

Comparison of Algorithm 1’s time complexity for Gaus-
sian processes and Gaussian measurement noises, per Corol-
lary 1, to that of existing scheduling algorithms: The most
relevant algorithm to Algorithm 1 is the one provided in [10],
where linear systems with additive process noise and measure-
ment noises with any distribution are assumed. Algorithm 1
generalizes [10] from linear systems and measurements to
Gaussian processes and nonlinear measurements. At the same
time, it achieves the same time complexity as the algorithm
in [10] when Σ(x1:K) or Σ(x1:K)−1 is exactly sparse. This
is important since the algorithm in [10] has time complexity
lower than the-state-of-the-art batch estimation sensor schedul-
ing algorithms, such as the algorithm proposed in [11], and
similar to that of the state of the art Kalman filter scheduling
algorithms, such as those proposed in [14], [17], [21] (in
particular, lower for large K).

IV. CONCLUSION

In this paper, we proposed Algorithm 1 for the NP-
hard problem of sensor scheduling for stochastic process
estimation. Exploiting the supermodularity and monotonicity
of conditional entropy, we proved that the algorithm has
an approximation factor 1/2 and linear complexity in the
scheduling horizon. It achieves both the accuracy of batch
estimation scheduling algorithms and, surprisingly, when the
information structure of the problem is sparse, the low time
complexity of Kalman filter scheduling algorithms for linear
systems. This is the case, for example, in applications such
as SLAM and target tracking, and for processes generated
by linear or nonlinear systems corrupted with Gaussian noise.
Future work will focus on an event-triggered version of the
scheduling problem, in which the measurement times are

decided online based on the available measurements, and on a
decentralized version, in which information is exchanged only
among neighboring sensors.

APPENDIX A: PROOF OF PROPOSITION 2

Proof. We first show that the conditional probability distribu-
tion of x1:K given y1:K is Gaussian with covariance Σ(x?1:K),
and then apply the following lemma:

Lemma 1 (Ref. [35]). Let x ∼ N (µ,Σ) and x ∈ Rm:

H(x) =
1

2
log[(2πe)m det(Σ)].

Specifically, due to Assumption 1, (x1:K , y1:K) are jointly
Gaussian. This has a twofold implication: first, the minimum
mean square estimator of x1:K given y1:K is linear in y1:K [25,
Proposition E.2]; second, the conditional probability distribu-
tion of x1:K given y1:K is Gaussian [36], with covariance
Σ(x?1:K). Therefore, due to [25, Proposition E.3], this is also
the covariance of the minimum mean square estimator of x1:K
given y1:K . As a result, due to Lemma 1:

H(x1:K |y1:K) = Ey1:K=y′1:K
(H(x1:K |y1:K = y′1:K))

= Ey1:K=y′1:K

(
1

2
log[(2πe)nK det(Σ(x?1:K))

)
=
nK log(2πe) + log det(Σ(x?1:K))

2
. (9)

We derive a formula for Σ(x?1:K) in the proof of Lemma 2.

APPENDIX D: PROOF OF THEOREM 3

Notations: We introduce four notations: first, S1:K is
the block diagonal matrix with diagonal elements the sen-
sor selection matrices S1, S2, . . . , SK ; second, C(x1:K) is
the block diagonal matrix with diagonal elements the ma-
trices S1C1, S2C2, . . . , SKCK , where Ck ≡ G(xk) and
G(x(t)) ≡ ∂g(x(t))/∂x(t); third, vk is the batch measure-
ment noise vector (v>1,k, v

>
2,k, . . . , v

>
m,k)>; and fourth, µ1:K ≡

(µ(t1)>, µ(t2)>, . . . , µ(tK)>)>.

Proof. We first derive the two formulas for H(x1:K |y1:K):
the first formula is expressed in terms of Σ(x1:K)−1, and the
second formula is expressed in terms of Σ(x1:K).

Lemma 2 (Formula of H(x1:K |y1:K) in terms of Σ(x1:K)−1).
Consider the start of the k-th iteration in Algorithm 1. Given
the measurements y1:(k−1) up to k, H(x1:K |y1:K) is given by
−T ′1 + nK log(2πe)/2, where:

T ′1 ≡
1

2
log det(Ξ + Σ(x1:K)−1)

Ξ ≡ C(µ̃1:K)>S1:KΣ(v1:K)−1S>1:KC(µ̃1:K)

and µ̃1:K is the maximum a posteriori (MAP) estimate of x1:K
given the measurements y1:(k−1) up to k.

Lemma 3 (Formula of H(x1:K |y1:K) in terms of Σ(x1:K)).
Consider the start of the k-th iteration in Algorithm 1. Given



the measurements y1:(k−1) up to k, H(x1:K |y1:K) is given by
H(x1:K |y1:K) = T1 − T2 + H(x1:K), where:

T1 ≡
1

2

K∑
k=1

log[(2πe)sk det(SkΣ(vk)S>k )] (10)

T2 ≡
1

2
log[(2πe)

∑K
k=1 sk det(Σ(y1:K))] (11)

Σ(y1:K) = S1:KΣ(v1:K)S>1:K + C(µ̃1:K)Σ(x1:K)C(µ̃1:K)>,

and µ̃1:K is the maximum a posteriori (MAP) estimate of x1:K
given the measurements y1:(k−1) up to k.

We complete the proof for each case of Theorem 3:

• Time complexity of each evaluation of H(x1:K |y1:K)
when either Σ(x1:K) or Σ(x1:K)−1 is exactly sparse (that
is, block tri-diagonal): We present the proof only for the
case where Σ(x1:K)−1 is exactly sparse since the proof
for the case where Σ(x1:K) is exactly sparse is similar.
In particular, consider the formula of H(x1:K |y1:K) in
Lemma 2: T ′1 involves the log determinant of a matrix
that is the sum of two nK × nK sparse matrices: the
first matrix is block diagonal, and the second one is
block tri-diagonal. The block diagonal matrix is eval-
uated in O(n2.4K) time, since the determinant of an
n × n matrix is computed in O(n2.4) time using the
Coppersmith-Winograd algorithm [37]. Then, T ′1 is eval-
uated in O(n2.4K) [38, Theorem 2].

• Time complexity of each evaluation of H(x1:K |y1:K)
when both Σ(x1:K) and Σ(x1:K)−1 are dense: In this
case, T ′1 (and similarly T2 in Lemma 3) is the log
determinant of a dense nK×nK matrix. Therefore, it is
evaluated in O((nK)2.4) time, since the determinant of
an n × n matrix is computed in O(n2.4) time using the
Coppersmith-Winograd algorithm [37].
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