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ABSTRACT
Previous attempta to use modified propagators in fleld-theoretical calcu-
' 1ations have been frustrated by the appearance of ghost states in the propagator
when one tries to improve on conventional perturbation theozy. Recently a
method of eliminating these ghosts has been suggested. By following this

- suggested procedure it is possible to calculate the magnetic moments of

nucléons using a madiﬁed nucleon propagator which should be an improvement
on simple parturbation t}wxeory without introducing any spurious infinities. This
.calcuxatian has been pé;formed approximately and yields magnetic moments of
4+ 1.2 aa_é « 2.3 nuclear magnetons for the proton and neutren reapectively coms
‘pared with the experimental values of 1.7 and -1.9. The improvement over
perturbation theory is achieved because of a atrong damying of the nucleon
recoil term. ‘
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I. INTRODUCTION
It has been conjectured for a great many years that it should be possible
to understand the '"anomalous' magnetic moments of the neutron and proton in
terms of the strong interactions between nucleons and v mesons. Today this
conjecture must still be regarded as unproved.
Early attempts to calculate the nuclear magnetic moments made use of
the perturbation techniques that had been successfully applied to quantum

electrodynamica. 1,2

These attemptes were regarded as unsuccessful on at
least two major counts: (a) loweorder perturbation calculations are not in good
agreement with experiment, 3 and (b) the pseudoscalar coupling constant is not
of the same order of smallness as the fine-structure constant of electrodynamics.
We make bold to observe that the disagreement with experiment is not relevant
until one is certain that pion-nucleon interactions really are responsible for
the anomalous moments. And the question of the size of the coupling constant
would be much more pertinent if one had more feel for the convergence properties
of field-theoretic perturbation theory. v

More recently attempts have been made to calculate the electromagnetic
form factors by means of an axiomatic approach. 2 The method attempts to re-
late S-matrix elements to one another as a consequence of the assumptions of
unitarity, causality, and specified asymptotic conditions. Although such calcu-
lations have forsworn any knowledge of an underlying Lagrangian, a severe
penalty is paid for this freedom. It is found that the integral relations among
the S.matrix elements generally require a knowledge of nonphysical scattering
amplitudes, and one is led to the suspicion that additional postulates may be
required in order to establish a satisfactory system of relations among experi-
mental quantities.

*Now at Imperial College, lLondon.
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In this paper we once more attempt to calculate the nucleonic magnetic
moments with the idea that a l.agrangian theory does in fact lead to unique
predictions of their values and that one ought to know what these predictions
are. In trying to do something better than perturbation theory we shall {ind
ourselves repeating Feldman's ""modified propagator' calculation, 4 but this time
" we ehall exorcise the ghosts that haunted Feldman's work.

In section II we derive the integral equations that must be solved in order
to obtain the electromagnetic form factors of the w meson and the nucleon.
Section Il describes an approximate calculation of the nucleonic magnetic
moments. In Section IV we discuss some of the implications of gauge invariance.
Section V is devoted to a brief summary of our conclusions. There is an appendix
dealiﬁng with the magnitudes of the renormalization constants.

II. THE INTEGRAL EQUATIONS
| The Lagrangian is chosen to contain the usual peeudoscalar strong-
-coupling interaction. Explicitly, we writ—e5

Lix) = « 3 {T».H}amw-ﬂs.p- . tut e %’} - F,,F,,
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including the external sources 1,7, Jp.?. 6

Next we obtain the equations of motion for the three Green's functions
] . *
G"&ij * 8, Of the fermion and meson fields, respectively. These are, to

lowest order in e (with the external sources "turned off"),



<5 UCRL-8681
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In these expressions we have introduced the four-particle vertices V (photomeson
production), and U {(meson-nucleon scattering). These quantities are defined by
the eymbolic expression

4 j 4
vie gl gpd o onogat g, (.
M “ g g

and satisfy integral equations that involve five-particle vertices. The set of
Eqs. (2) and (3) may be closed by setting U and V equal to zero. This procedure
can be shown to be equivalent to setting the photormeson production and meson-
nucleon scattering mglituéea equal to their Born approximations. The equations
obtained by neglecting the contributions of U and V are referred to as the'trun-
cated equations. nt .

It is probably well to remark at this point that there is no real reason to
believe that solutions of the truncated set of equations (if they exist) bear any
resemblance to the solutions of the original field-theoretical 'equations (aghin
presupposlng existence). On the other hand it has been shown that approximate
solutions to Eqs. (2a) and (2b) may be obtainéd in this way and that such solutions
have desirable and believable properties that could never be obtained from the
usual perturbation theories. 8 In particular, one can deduce from these solutions
that they contain essential singularities in the limit of vanishing coupling constant.
It is also entertaining to observe that it is possible to estimate the magnitudes
of certain of the renormalization constants, and this is done in the appendix.

III. THE CALCULATION OF THE MAGNETIC MOMENTS

The charge and méguetic structure of the nucleon is given by the gener-
alized electromagnetic vertex function l"p. If we had previously obtained a
solution of the meson-nucleon problem it would still be necessary to solve the
coupled integral equations (3a) and (3c) in order to obtain I‘p in the truncation
approximation. Lacking such a solution, we are constrained to find a systematic
way of dealing with the five parts of Eqs. (2) and (3).

The procedure we shall use is an obvious one. The inverse meson and
nucleon propagators are calculated in lowest-order perturbation theory. The
resultant propagators, after being modified in 2 manner to be described, are
then inserted into Eqs. (3), and the new approximations to the vertex functions
obtained. This procedure may then, in principle, be iterated. _

When Feldman attempted to carry out the calculation in the manner just
suggested he discovered that he obtained infinite contributions to I‘p from poles
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of the approximate propagators G and z?{ . These poles corresponded to discrete
states of complex mase (often called ''ghoste’’). As we now know, the appear-
ance of the ghoat states was a warning that the perturbation approximation to
the inverse propagators resulted in propagators that had incorrect analyticity
properties. In order to sidestep this difficulty we use the Eqs. (2) to compute
the mass spectral functions rather than the propagators themselves. The
procedure for doing this has been described in detail by Redmond8 and need

not he repeated here.
We wfite the propagators in the spectral forms

<, 4P = 8 ff ar?p(e?) 2+ 17}, . (4a)

r :
Glp) = j’ cuz[iﬁp,(z") + MPz(la)} (p2+ 2371, (4b)

and approximate the vertices I‘“. 1"5. Cp(P' p') by the "baxjg" values Y“.

Vg pH+ p“' in the right-hand aidfa of Eq. (3a). The next higher approximation
to I"“ may then be readily obtained by use of the usual Feynman techniques.

We quote here our result for the magnetic moment part of I‘p:
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The evaluation of the expression (5a) using only the '"bubble' approxi-
mations for the various spectral functions {s a formidable computational
task. We have contented ourselves with a crude approximation that stems
from the observation that the apectral functions are all strongly peaked. We
have also observed that in our approximation the continuum contribution from
the meson spectral function (which contributes only for masses greater than
2M) is small and probably negligible. It follows that we may proceed directly
to a numerical estimate by setting

p,(t%) = 5% . MP) + 0.95 512 - smP),
(6)

p, %) = - 81% - M?) + 185 6142 - 5Py,

where the numerical constants were determined from a graphical integration.
We have also simplified the work by setting the meson mase equal to zero,
a procedure that {s probably no worse than the other approximations.

It is most convenient to quots our results ia terms of the comparable
second-order Feymman diagrams. We find, using the notation of Bethe, 9

B, = 0.2, '"'"ﬁz = 0.75,

and it will be recalled that B, and B, refer to the '""nucleon recoil" and "meson"
diagrams, respectively (each divided by gz/ 81:2). In perturbation theory B,
and B, are each equal to unity. The corresponding predictions for the anomalous
moments, which can hardly be taken seriously, are :

proton: +1.2 nuclear magnetons

neutron: -2.3 nuclear magnetons
compared with the respective experimental values of 1.7 and «~1.9. We are,
however, heartened by the very strong damping of the nucleon recocil term. It
would be:most interesting to see if this damping persists when a "better"
approximation for the I'y vertex function is used.

We are quite aware that our approximation for I‘“ is not manifestly
gauge-covariant, and we next discuss this point. It is of some intereat to note,
however, that the missing terms in I‘p {those not written down in Eq. (5a))
do not contain any parts proportional to qu.
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IV. GAUGE INVARIANCE ‘
Itis a coneequeﬁce of the principle of gauge invariance that the exact
nucleon electromagnetic vertex function and the nucleon propagator are
related. They must satisfy the generalized Ward identity,

l+73 -1 -1
F-p‘;)r'“(p.p‘)ﬂ-—g- G "tp) -G “(p')]. (7a)

Similarly, the meson vertex function is constrained to obey the identity

(p

1, ~ 1j b -1 33, k3 L -1, ,
-(p“~p“ )Cu_ (ps P') éf”h (p) ¢ +e " “‘}ij (p'). (7b)

A little algebraic manipulation shows that these identities are not consistent
with the truncation approximation that we have defined. 1
obliged to inquire into the consequences of this inconsistency.

In order to gain some insight into the consequences of the Ward identity

We are then

let us consider two different vertex functions, each of which obeys Eq. (7a).
Their difference 5PM must obey

(PM - ny ) GI‘p (pp') = 0. (8)
It is sufficient for our purposes to exhibit two vectors that satisiy Eq. (8)
identically and do not viclate any invariance requirements that may be imposed
upon PN-' These are

1 'Y olm o 2 'y . R 2__,2
ar“ (p.p') =(p~-p') (p“**p“) (Pu Py Y(p~-p'")

61";‘(1». P')=0p, (o, -p ')
One can readily see that a linear combination of &I" 1 and GI‘MZ taken between
Dirac spinors will give the most general possible form for the electromagnetic
structure of a chargeless particle. We conclude that Eq. (7a) by itself can
only restrict the nucleonic charges (and guarantee charge-current conservation

by eliminating terms proportional to pu - p“' ).
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CONCLUSIONS

It would be unforgivably impertinent of us to suggest that we have carried
out a successful calculation of the nucleon magnetic moments, and it is not our
intention to do so here. One reason for our reticence is that so little is known
of the mathematical structure of relativistic quantum field theory that one has
no practicable criterion by which to measure the "'success’ of a calculation.
By the same token we are permitted to be sanguine that the method of computation
outlined here may be in the right direction to deal with strong-coupling problems.
To date, there does not appear to be any evidence that thig is not the case.

Ideally, the problem is now one of carrying out a detailed mathematical
invegtigation of the proposed approximation procedure. Unfortunately, we have
no idea of how to go about this. It appears that all that can be suggested at this
time is just the sort of thing that was objected to in the introduction. That is,
we suggest a careful calculation of the electromagnetic form factors of the
nucleon by use of our proposed techniques, and the success of the calculation
is to be judged on the basis of comparison with experiment. This, of course,
is the spirit in which quantum electrodynamics is considered a successful
theory. In this same spirit we must consider, at present, that we have success-
fully estimated the magnitudes of the nucleonic magnetic moments despite the
remarks at the beginning of this section.

It may be thought strange that we have seen fit to pregent a calculation
that is not meticulously consistent with gauge invariance. The position taken
by us here is that gauge invariance is a principle that can be overworked. We
are reasonably certain that our lack of gauge invariance has done viclence only
to the nucleon charges, and it wae not our intention to calculate these, It seems
to us that it may be asking too much of our approximate vertex functions to
satisfy the Ward identity when they do not even satisfy the equations of motion.
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APPENDIX
Magnitudes of the Renormalization Constaats

In this appendix we calculate the magnitudes of the pion and nuclear wave-
function renormalization constants and the nucleon mase renormalizations in
the lowest order (the '"bubble approximation’). In this approximation.the meson-
mass renormalization is infinite. For the sake of illustration we do the meson
calculation in some detail, ‘ 3 ‘

To lowest order in the coupling constant the inverse meson propagator is

- given by

2
6 'o? = p*+4%) - 2, Ja%q Ty {vssthnssF(q-k)l - Al
- {2w) J
After renormalizing and dropping superfluous terms in (j/ ‘!zM)z one has

. 2 {7 . /2 [z
-1, 2 2. 2 [ 2M - 4M i -

G p%) = P+ u? - 1e) (1. Ey i(,_ -1)1(.2-2 -z)+ inli+ .--2->4
“ paTR TR T { an® [\ -pt Mt )Tt 2M

DA
o

_ . ,
-2n0(-p% - aM%) (1 - 2m/W -pz)}}. - A2
The aspectral function is obtained from the relations
2 2 |
plm”) = alm G(p~), A3
and the meson wave-function renorina.lisation constant comes from Lehman's
relation.n

Y v
23 ==l+j4Mz p(m™)dm”~, A.4

where the lower bound on the integral is obtained from the observation that
lowest-order partui’huion theory accounts only for the two-nucleon intermediate
state. _ )
The gpectral function is very strongly peaked (see Fig. 1) near the
point
pa m2/4M2 = 1.25,
and approximately 50% of the contribution to the integral in Eq. (A.4) comes

from the region
1<p<4
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The integral was evaluated graphically for the interval below p = 30 and
the contribution from the "tail'' may then be obtained by using the asymptotic
form of the spectral function in the integral. Thus, writing \ in place of
gz/4wz, we have

.1

Z3

-3

=1+.18 4 m. | %‘-’-{(x.x)% A2+ 4N(h-1)2np+ 4N% gn? } -1
30

A5

~1+4.18 + % (2tn 30+1 - 1/0)°} = 1.20

to a precision of about 10%. It will be observed that the integral just barely
converges, 5o that

/ m? p(mz)dmz.
which enters into the mass renormalization, is infinite.

A completely analogous calculation for the spincr field (somewhat
complicated by the presence of the gamma matrices) gives the result

-1
2

(for which the expression for the inverse nucleon propagator to second order

zZ = 1.9 . A.b

in the coupling constant may be found in Feldman's paper). The maas re-
normalization for the nucleon is no less convergent than 2.7.2'1 and we have, in
fact (M is the renormalized mass),

5M

_ 2 .2

(M + )2
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FOOTNOTES

1, Silvan S. Schweber, Hans A. Bethe, and Frederic de Hoffinan, Mesons
and Fields (Row Peterson and Co., Evanston, Illinois, 1955); p. 289 ff.

2, Federbush, Goldberger, and Treiman, Phys. Rev. 112, 642 (1958).

3. Part of the perturbation calculation predicts, within experimental error,
the resulte of three independent experiments measuring the electromagnetic
structure of the nucleon. For a viewpoint that regards this agreement as
fortuitous see Reference 2.

4. Feldman, Proc. Roy. Soc. _{\__2_3_32 112 (1954). A brief summary is contained
in Reference, 2, p. 295.

5. Our conventions, where applicable, are those of J. M. Jauch and ¥. Rohrlich,
Theory of Photons and Electrons {Addison-Wesley, 1955), except that we
take (ys)z = +1, All Fourier transforms are defined by

Feo =Ly [af pe P2 .

{2m)
Upper and lower indices are not distinguished from cach other, and re-

peated indices imply suamation from O to 3. Also, A = YBAM = ¥ A - Y54,
for any four-vector A, ,
6. The following derivation follows the prescriptions of Schwinger, Proc. Natl.
Acad. Sci. U.S. 37, 452 (1951).
7. A somewhat different truncation procedure was propoéed by R. Arnowitt
and 8. Gagiorowicz, Phys. Rev. 95, 538 (1954).
8. P. J. Redmond, Phys. Rev. .HZ:' 1404 (1958).
9. Bethe and de Hoffman, p. 292.
10. Y. Takahashi, Nuovo cimento 6, No. 2, 371 (1957).
11. That {8 to say, one does not recover the lowest-order approximation to
the inverse Green's functions on the right-hand side of Eq. (3). In
point of fact, after using the prescription of Reference 8 to doctor the
propagator one no longer knows the equation the propagator satisfies
and Eq. (7) becomes opaque,
12. H. Lehmann, Nuovo cimento 11, 342 (1954).
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Figure Legend

Fig. 1. Sketch of Ax(mz) = %%%— pl(mz).
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