
Lawrence Berkeley National Laboratory
LBL Publications

Title

Influence of Standard Image Processing of 3D X-ray Microscopy on Morphology, Topology 
and Effective Properties

Permalink

https://escholarship.org/uc/item/8cb3k931

Journal

Energies, 15(20)

ISSN

1996-1073

Authors

Guibert, Romain
Nazarova, Marfa
Voltolini, Marco
et al.

Publication Date

2023-12-14

DOI

10.3390/en15207796

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8cb3k931
https://escholarship.org/uc/item/8cb3k931#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Citation: Guibert, R.; Nazarova, M.;

Voltolini, M.; Beretta, T.; Debenest, G.;

Creux, P. Influence of Standard Image

Processing of 3D X-ray Microscopy

on Morphology, Topology and

Effective Properties. Energies 2022, 15,

7796. https://doi.org/10.3390/

en15207796

Academic Editor: Mofazzal Hossain

Received: 5 August 2022

Accepted: 17 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Influence of Standard Image Processing of 3D X-ray Microscopy
on Morphology, Topology and Effective Properties
Romain Guibert 1, Marfa Nazarova 2, Marco Voltolini 3,4, Thibaud Beretta 2, Gerald Debenest 1

and Patrice Creux 2,*

1 Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS-INPT-UPS,
31400 Toulouse, France

2 Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, TotalEnergies, LFCR, 64000 Pau, France
3 Earth and Environmental Sciences Area, Energy Geoscience Division, Lawrence Berkeley National Laboratory,

1 Cyclotron Road, Berkeley, CA 94720, USA
4 Sezione di Mineralogia, Dipartimento di Scienze della Terra “Ardito Desio”,

Università degli Studi di Milano Statale, Via Botticelli 23, 20133 Milano, Italy
* Correspondence: patrice.creux@univ-pau.fr; Tel.: +33-559-407-681

Abstract: Estimating porous media properties is a vital component of geosciences and the physics of
porous media. Until now, imaging techniques have focused on methodologies to match image-derived
flows or geomechanical parameters with experimentally identified values. Less emphasis has been
placed on the compromise between image processing techniques and the consequences on topological
and morphological characteristics and on computed properties such as permeability. The effects of
some of the most popular image processing techniques (filtering and segmentation) available in open
source on 3D X-ray Microscopy (micro-XRM) images are qualitatively and quantitatively discussed.
We observe the impacts of various filters such as erosion-dilation and compare the efficiency of Otsu’s
method of thresholding and the machine-learning-based software Ilastik for segmentation.

Keywords: porous media; pore scale; image processing; segmentation; computed micro-X-ray
microscopy; effective properties; digital rock physics

1. Introduction

The purpose of Digital Rock Physics (DRP) is to predict the effective properties of
rock by imaging a medium and running calculations to estimate those properties at the
pore scale. Moreover, to analyze in situ mechanisms at the pore scale (wettability, snap-off,
etc.), imaging techniques are used to reveal fluid distribution, the shapes of the interfaces
between fluids, and the gradients relative to sub-voxel size. Image processing is a decisive
step in resolving pore space in order to build accurate models and enhance our knowledge
of mechanisms [1–5]. In previous works, we revealed the limitations, or at least the
precautions required, in terms of mesh size [6] and spatial resolution [7] when performing
single-phase flow simulations. High-resolution images provide detailed information on
rock microstructures and fluid distribution. The researcher produces images at a selected
voxel size that is considered to be the best compromise between spatial resolution and
the Representative Elementary Volume for averaging all of the local heterogeneities, and
generates a sample volume that is representative of homogenous properties [8].

Multiphase flow characteristics are strongly dependent on image resolution and
gridding, which is why the upscaling process based on pore-scale simulations is crucial
for predicting low-resolution model properties regarding the aforementioned compromise.
Certain specific algorithms claim to represent flow at several resolutions, but are not
scalable in image-based contexts, which limits their use to multi-resolution simulations.

Please note that there is no evidence that the multi-scale approach is valid at the pore
scale, because a larger field of view is required to average the properties due to the presence
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of heterogeneities. As a consequence, the larger field of view drastically impacts image
processing and simulations owing to the huge demand of cubic law on computing power.

Kaestner et al. [9] described the effects of different image processing filters on images
obtained using synchrotron 3D X-ray microscopy. The main image-processing approaches
(image filtering and segmentation) were described by Schlüter et al. [10]. Iassonov [11]
proposed a complete review of several new and accurate segmentation algorithms for X-ray
images. Sheppard et al. [12] described the qualitative effects of filtering and segmentation.
Many innovative image enhancing methods deserve to be tested [13,14] along with more
advanced A.I. algorithms for super resolution or segmentation via semantic algorithms [15],
but the main objective here was to assess what currently exists and to qualitatively and
quantitatively estimate the impact of image processing in order to propose a complete
methodology linked to the uncertainty calculations in Digital Rock Physics.

Concerning the impacts of these methods, Andrä et al. [16,17] first proposed numeri-
cally measuring the effective properties based on several complete workflows presenting
relatively small differences in porosity (2.5%) and converging the results on other proper-
ties, irrespective of the technique used in the tests performed by any one of the three teams.
We compared the direct impacts of image processing and segmentation on the porosity
value of the sample.

This is a very limited bibliography concerning the study of the effects of image
processing from the micro to the macro scale. Saxena et al. [18] did the same for several
(Otsu vs. fuzzy c-means (FCM) algorithms) segmentation methods.

Here, we will estimate the direct impact of image processing on the morphology,
topology and effective properties of the porous media while respecting the reliability
conditions demonstrated previously [6,7], and we will attempt to corroborate local images
with these macro-computed properties in order to determine the impact of each filter
and segmentation algorithm on the porous media structures and fluid distributions, and
consequently on the degradation of image quality with a reduction in contrast.

2. Materials and Methods
2.1. Image Acquisitions

The sandstone core used in this study was collected in the Domengine formation, and
more specifically from a gallery in the Hazel-Atlas Mine at Black Diamond Mine Regional
Park (Antioch, CA, USA). For the X-ray µCT imaging, a cylindrical core plug, 9 mm in
diameter and 20 mm long, was drilled.

For the two-phase flow experiments, we used 0.1 M of potassium iodide (KI) in water
as a contrast agent. The concentration of 0.1 M KI in the water forms a brine with inter-
mediate XR attenuation values between the scCO2 and the quartz and therefore provides
the ideal gray-level contrast required to separate the different phases. The single-phase
and two-phase flow experiments were performed on Beamline 8.3.2 at the Advanced Light
Source (ALS) at the Lawrence Berkeley National Laboratory. The entire set-up and method-
ology were previously described by Voltolini et al. [19]. For the two-phase flow of scCO2,
the images were collected on the core plug, and experiments were successively performed
on the same sample in the same position. The complete dataset is a stack of 853 slices of
2650 × 2414 with a voxel size of 4.4 µm. Images were cropped to 800 × 800 × 800 voxels
and were processed using a fully assembled computer with a 12-core Intel® Core™ i7-
5820K CPU @ 3.30 GHz, with 32 Gigabytes of RAM and an NVIDIA GM204 GPU under
Ubuntu 18.04.6.

2.2. Image Processing

A numerical filter inserted into the feedback path of a control loop can reduce the
noise that often corrupts the process of gray-level recognition (identification of minerals
and morphology/topology).
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Image filtering is a standard step that is mentioned in most articles on pore-scale
imaging in the geoscience field. To avoid redundancy, we considered two groups of
common filters.

The first group associates the median filter and the mean filter. The median filter
smooths images by replacing each voxel with the median value of its neighbors, and the
mean filter replaces each voxel with the mean value of its neighbors; the central gray level
is then compared with the surrounding voxels to estimate the matching. These filters are
very efficient on salt-and-pepper noise, random noise, and Gaussian noise, without the
smoothing effects that can occur with other types of smoothing filters. By definition, these
filters are very local, because the correction is performed only from direct neighbors. In the
second group, however, filtering was performed on part of the slice.

The Anisotropic Diffusion, Bilateral and Non-Local Means filters are global filters that
analyze a large number of voxels to constrain image filtering by means of equations or
probabilities as it strongly affects histograms at phase scale.

In anisotropic diffusion, the gray level and the interfacial gradient between two phases
are constrained by the diffusion equation. The intensity of each pixel is replaced by a
weighted average of nearby pixel intensity values and the non-local means smooth images
by taking a mean of all pixels, weighted by how similar the pixels are to the target pixel.

The second group of filters has a strong impact, affecting the gray-level distribution
and the contrasts between materials. We therefore did not want to use them in combination
with Ilastik due to the severe corrections to the histograms, which modify much more than
random white noise.

The association of this second group of filters with Otsu’s method for thresholding
features in most of the published articles on image processing applied to 3D X-ray imaging
in the field of the physics of porous media.

When using these traditional image processing workflows in complex environments,
the operator is faced with compromises and, therefore, choices. The human eye combined
with analyses clearly achieve better identification than standard segmentation methods
based on histogram thresholding of gray-level images. X-ray detectors ideally (without
any artefacts) fit a Gaussian curve to the histogram centered on the attenuation value of the
material. The presence of multiple materials, as are usually found in geosciences, causes an
overlap between the characteristic peaks, with the consequence being that materials are
eroded or dilated when segmentation is performed using only a thresholding method.

In addition to the microtomographic artefacts causing refractions, beam hardening,
low contrast between two materials—when the detail observed is of the same order of mag-
nitude or smaller than the voxel size—or even uncertainties related to the non-uniqueness
of the tomographic reconstruction for a finite number of X-rays can also cause artefacts
originating in the overlap of the Gaussian peaks of different materials. The Australian
National University (ANU) proposed several histogram decomposition algorithms based
on this physical concept. The present study was based on the observation that the human
eye and brain are able to gauge an error by comparing the raw and filtered images and
segmenting them using the same process. A trained eye, however, can only employ a
qualitative approach. The method proposed here consists of identifying the workflow that
will achieve the best conformity between the raw image and the segmented image at the
pore space level using this traditional qualitative approach.

Preliminary work plainly showed a significant difference between Ilastik and the
other workflows, with a clear advantage for Ilastik in both pore space recognition and
multi-material recognition. We therefore selected Ilastik as a reference in this work and
qualitatively and quantitatively measured the differences between processing and the
impact on the properties of the porous media.

Machine learning software [20] is used to extend the number of identification criteria
in the same way as the human brain. For anyone who has processed images obtained by 3D
X-ray tomography, finding the best filter during the processing phases by playing with the
associated tuning parameters and reiterating the approach for thresholding is subjective,
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leading to human inferences in the choice of the best compromise. The possibility of
obtaining a correct segmentation of standard processing is therefore limited to some very
distinct gray levels between phases. In the sample chosen, for example, fluids are associated
with very smooth shapes and macroscopic curvatures, representing criteria additional to
contrast and gray levels during the pixel classification phase. For example, the gray levels
of doped water and smectites are almost identical, and only Ilastik or equivalent tools are
able to separate objects with peak overlapping. Automation of the entire image processing
workflow in a deep learning process is therefore not yet mature but it could be quite
interesting for reducing image processing time and controlling errors in images. Ilastik
was selected for its efficiency compared to that of the software generally used in this field.
Ilastik is open-source software, which in a preliminary phase demonstrated highly effective
image labeling without ever producing confusing results, whatever the gray levels.

Of course, there are many more advanced filtering and segmentation algorithms, and it
is impossible to list them all. There are some very promising image-quality enhancers, filters,
and segmentation algorithms, but they remain a niche technique in a field of application that
generally uses basic methods. Among them, we could mention the Hybrid no-reference
quality metric for singly and multiply distorted images, A fast reliable image quality
predictor by fusing 2 micro- and macro-structures, filtering structured artefacts using
suitable algorithms and segmentation generated using certain semantic segmentation
methods, Image Segmentation by Data-Driven Markov Chain Monte Carlo, and many
others. The methodology proposed here, however, is a selective method able to estimate the
efficiency of the entire image processing workflow. The four different filters are among those
most commonly used by scientists working on the physics of porous media and are usually
freely available using the open-source codes in the image processing program ImageJ.

2.2.1. Filtering

Mean filtering entails replacing the value of each pixel in an image with the mean
gray values of its neighbors and itself. It has the effect of eliminating pixel values that are
unrepresentative of their surroundings. Mean filtering is a convolution filter based on a
simple sliding-window spatial filter (n by n window matrix with n being an odd number).

The median filter is a sliding-window spatial filter, which replaces the value of each
pixel in the image with the median of the neighboring pixel values. The median is calculated
first by sorting all the pixel values from the surrounding neighborhood into numerical
order then replacing the given pixel with the averaged pixel value.

The bilateral filter is a weighted average filter. It weighs the central pixel and is
calculated from two contributions: spatial and range weights. Its efficiency is therefore
enhanced, because both the spatial distance between the pixels examined and their intensity
similarity are considered [21].

The non-local means filter [2] is an algorithm that takes the mean value of a group of
pixels surrounding a target pixel to smooth the image; the value is weighted by how similar
those pixels are to the target pixel. This filter appears quite interesting when the operator
exploits the image using sufficient contrast in the imaged composite rock. The result is
usually improved image clarity and a minor loss of detail compared with the traditional
local mean filter.

The anisotropic diffusion process here is based on the use of a nonlinear filter. Perona
and Malik [22] proposed a nonlinear diffusion method to avoid the blurring and localization
problems posed by linear diffusion filtering. The anisotropic diffusion filter is one of
the most commonly used denoising filters for dry rock images [12] obtained by X-ray
tomography, and there are consequently some strong gray-level gradients between the pore
space and minerals.

Several denoising filters can be applied to computed tomography images, but in this
case, we consider only those most often mentioned in the literature. The filters of group 2 act
at the phase scale, and can therefore correct the gray levels and contrasts between materials.
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For this reason, we did not want to use them in combination with Ilastik due to the severe
corrections to the histograms, which modify much more than random white noise.

2.2.2. Segmentation

In our context of Digital Rock Physics, however, our aim is not only to perform
phase identification, but also to accurately preserve the morphologies of the objects in the
different classes, including the boundaries between the pore space/fluids and the minerals
or between the grains themselves, in order to obtain the most mimetic representation of the
rock sample, saturated or not.

In an image processing workflow, the process that follows denoising is segmentation,
i.e., phase/mineral separation performed by thresholding in manual (global threshold-
ing) or semi-automatic mode (Otsu thresholding). Global thresholding is the simplest
segmentation method: the voxels with values above a certain threshold are assigned the
properties of a dense mineral, and those with values below a fixed threshold are assigned
the properties of other materials, such as those of a different mineral, or pore phases, or air
or water [23]. On the other hand, automatic thresholding involves automatically selecting
one or more optimal gray-level threshold values for separating objects, which is the premise
of Otsu’s method.

The algorithm performs thresholding slice by slice, with the main advantage being that
it considers the source drift, and the spectral and spatial characteristics of off-focal radiation.

With the large number of free libraries available, and the increase in computing
capacities, Artificial Intelligence has given rise a new generation of image processing tools
such as Weka [24] and Ilastik [25,26].

We investigated these free, open-source software programs and compared them to the
more conventional workflows involving pre-filtering and segmentation.

The Weka (Waikato Environment for Knowledge Analysis [24]) classifier for 2D and
3D images, which combines a series of machine learning algorithms with a set of selected
image features, proved quite efficient [27]. There are many common options for classifiers,
most of which are related to evaluation. The following features are available in Trainable
Weka Segmentation: edge detectors, the aim of which is to indicate the object boundaries
in an image (e.g., Laplacian and Sobel filters, difference of Gaussians, Hessian matrix
eigenvalues and Gabor filters); texture filters, to extract texture information (including
filters such as minimum, maximum, median, variance, entropy, structure tensor, etc.); and
noise reduction filters, such as Gaussian blur, bilateral, Anisotropic diffusion, Kuwahara
and Lipschitz.

Ilastik [25] includes certain improvements, and pixel classification may be reinforced
by object classification. Pixel classification features may include pixel/color intensity, if
color or brightness can be used to discern objects, or edge detectors for brightness or
color gradients, serving to discern objects and textures if the image has a special textural
appearance. In addition to pixel classification, object classification features are subdivided
into three groups: “Location”, “Shape”, and “Intensity Distribution”. Location-based
features consider the absolute coordinate positions in the image. These are useful only in
specific cases when the position of the object in the image can be used to infer the object type.
Shape-based features extract shape descriptors from the object masks. Lastly, “Intensity
Distribution” features operate on image value statistics. One can also observe features,
which can be computed in the vicinity of the object, found by distance transform, and
the features are computed for the object itself and for the surrounding area including and
excluding the object. In this work, Ilastik was selected as the reference for segmentation, in
standalone mode without any filtering.

2.2.3. Methodology

The effects of the previously described filters were compared by applying overlapping
masks on the raw image to locally identify tendencies in a specific part of the 3D dataset, and
by performing segmentation using Otsu’s method to extract the pore space. Binarization
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was necessary to numerically determine the morphological and topological properties
strongly impacting flow in porous media.

We decided to perform segmentation using multi-Otsu thresholding, which is based
on intensity histograms, and pixel intensity classification is the basic characteristic used in
image filtering.

Our goal during observation was therefore to determine whether or not certain ad-
ditional elements would significantly increase image quality. Please note that Artificial
Intelligence methods can be used on raw images, meaning that they can be used to correct
noise reduction and certain types of artifacts due to the large number of classifiers.

The ability to preserve the pore-space characteristics (morphology and topology)
affects the characteristic terms and transport properties. Several calculated topological,
morphological and transport properties were selected to be extrapolated to the entire
core plug.

We chose to label smectites as non-contributing to flow, based on the assumption that
water remains bound to this type of mineral and therefore contributes little or nothing to
the flow. Because of the very good match between the segmentations performed on dry
rock images in two-phase conditions, we will be comparing, in the next part, the impacts of
all of the filters on the Domengine sample in two-phase conditions to take advantage of the
additional attenuations and interfaces in the porous medium.

Filtering was performed by exaggerating the filter line somewhat and then softening
its effect until an image was obtained in which segmentation can play its role. Filtering
is, therefore, light. After the images had been filtered and segmented, the results were
compared, showing that the measured porosities were very close—an average value of
18.61% and a maximum difference of 0.33%. The objective here was to filter the images
without impacting the edges (the gray-level gradients) and thereby maintain the boundaries
(by finding the best compromise among the filter parameters).

The consequence of filtering is a systematic erosion/dilation and the loss of the tightest
pores).

To represent the impact of image processing and segmentation, we created a graphical
representation considering a reference image 1: R1 (for example, mean filtering and Otsu’s
method); and a reference image 2: R2 (raw image segmented using Ilastik).

The images presented were generated using the following successive logic functions:
The yellow mask was given by R1 ∩ (R1 ⊕ R2) = Y and the blue mask by

R2 ∩ (R1 ⊕ R2) = B.
The graphs shown here were obtained by superimposing the two masks over the raw

image to observe tendencies.

2.2.4. Numerical Evaluations

To assess the different image processing techniques selected, we compared both
intrinsic values (porosity and specific surface area) and numerical evaluations using specific
methods (coordination number and permeability).

The cubic computational volume considered for these post-processing measurements
consisted of 852 × 852 × 852 voxels.

To evaluate the coordination number, i.e., the number of incident paths to a pore, we
had to construct a skeleton of the binarized image. The value evaluated could depend on
the algorithm used; here, we used the CImg library [28,29].

To evaluate permeability, we used the standard finite-volume library OpenFOAM and
reproduced a permeameter configuration for each direction. We used a SIMPLE algorithm
to solve the steady-state Navier–Stokes equations with second-order discretization schemes
in space.
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3. Results
3.1. Numerical Results

In this first part of the results, we quantitatively compare the results without filtering
and segmenting them with Ilastik. In this section, we show the effect of the filters with
some images and macroscopic indicators. The complete results are presented in Table 1
and in Figure 1.

Table 1. Porosity and normalized porosity, specific surface area, coordinance and permeability for
the different filter/segmentation-tested couples with the reference, considered as Otsu thresholding
of the raw image expressed in voxels and %.

Nature of the
Filter Segmentation Porosity

%

Specific
Surface Area

(1/m)
Coordinance Kxx

(×1012 m2)
Kyy

(×1012 m2)
Kzz

(×1012 m2)

Raw image Otsu 22.08 19,615 5.60 4.86 5.18 4.21

Median Otsu 21.88
(0.87%)

16,971
(−13.48%)

4.85
(−13.33%)

5.57
(+14.60%)

5.95
(+14.85)

4.60
(+9.21%)

Mean Otsu 2
(−0.36%)

17,183
(−12.40%)

5.08
(−9.17%)

5.50
(+13.15%)

5.89
(+13.66%)

4.63
(+10.07%)

Bilateral Otsu 22.7
(+0.89%)

18,516
(−5.60%)

5.10
(−8.96%)

5.33
(+9.74%)

5.69
(+9.86%)

4.58
(+8.73%)

Non-local
means Otsu 22.54

(+2.09%)
19,317

(−1.52%)
5.38

(−3.95%)
5.35

(+10.03%)
5.72

(+10.40%)
4.64

(+10.23%)

Anisotropic
Diffusion Otsu 22.19

(+ 0.53%)
18,936

(−3.46%)
5.26

(−6.07%)
5.12

(+5.35%)
5.47

(+5.52%)
4.42

(+5.12%)

Raw image Ilastik 24.57
(+11.30%)

25,312
(29.05%)

6.57
(+17.34%)

6.04
(+24.26%)

6.27
(+21.12%)

5.50
(+30.59%)

Anisotropic
Diffusion Ilastik 24.55

(+11.18%)
25,940

(+32.25%)
6.61

(+18.14%)
6.21

(+27.66%)
6.44

(+24.36%)
5.60

(+33.34%)
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Figure 1. Impact of filtering and segmentation on effective properties. The different filtered 3D
images segmented using Otsu are normalized with the Ilastik segmentation.

3.2. Raw Otsu vs. Ilastik

Comparison of the various segmentations performed directly on the raw data using
either Otsu’s method or Ilastik revealed the first interesting differences. Indeed, Otsu’s
method allows adjustments, and therefore attains the best compromise in terms of segmen-
tation according to the rendering. Porosities differ by more than 10%. Among the different
voxels, Otsu favors erosion, mainly around wedges and edges (Figure 2), but Ilastik is
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much more efficient for identifying the different phases, and the gray-level gradient is not
the only impacting parameter. Ilastik is much more efficient for detecting the details of
small pores.
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Figure 2. Influence of the segmentation performed with Ilastik vs. Otsu’s method: (a) raw recon-
structed image, (b) description of a local zoom with an identification of phases, (c) local zoom with
cyan voxels corresponding to voxels considered to represent porosity only using Ilastik (relative to
Otsu’s thresholding), and yellow voxels corresponding to voxels considered to represent porosity
only using Otsu’s thresholding (relative to Ilastik).

Segmentation performed using Otsu’s thresholding produces a porosity 11% lower, a
coordinance number 18% lower, a surface specific area of 32% lower and a permeability up
to 30% lower in the vertical range, producing a higher error compared to Ilastik, which in
our view provides the best segmentation. On the other hand, the macroscopic indicators of
specific surfaces and connections are better preserved, but locally there are some significant
mismatches in morphology and topology. Structured defects generate non-existing pores
and small pores associated with low gray gradients in the image, which are not considered
to have a significant impact on segmentation. There are substantial differences between the
direct segmentations performed using the Otsu’s method and Ilastik algorithms, especially
in some areas where the difference in gray levels does not distinctly highlight the contrast
between phases. Here, we illustrate the main issue of the standard segmentation method,
where gray continuity in the histogram requires the user to perform a subjective cut-off of
the various phases considering a spectral continuum. The question here is whether the use
of a filter can improve Otsu segmentation to make it more efficient or even comparable to
the results provided by Ilastik.
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3.3. Pre-Filtering Ilastik vs. Ilastik

A pre-filtering step performed before the segmentation with Ilastik had a slight impact
on the different indicators—0.1% on porosity, 2.6% on the specific surface area, 7% on the
coordination number, and a maximum of 2.6% on permeability. Filtering smoothed some
independent pixels, but the impact was virtually non-existent, meaning that a filtering step
when using Ilastik is pointless, as shown on a cropped numerical sample (Figure 3).
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Figure 3. Raw image with a superposed representation of “additional” pore space voxels in cyan of
a raw image and “missing” pore space with an Ilastik segmentation compared to when prefiltered
with Anisotropic Diffusion and Ilastik segmentation.

3.4. Mean and Median Filtering vs. Ilastik

The mean and median filters associated with Otsu’s method displayed an error range
of about 10% for porosity. However, the surface area, as well as the x-, y- and z-permeability
properties ranged from 19,615 m−1 to 25,312 m−1 (a difference of about 20%) and from
4.86 × 10−12 m2 to 6.04 × 10−12 m2; 5.18 × 10−12 m2 to 6.27 × 10−12 m2 and 4.21 to
5.50 × 10−12 m2 (with a maximum difference of around 31%) compared to segmentation
using Ilastik (Table 1). A cropped sample shows the differences (Figure 4) between the two.
Despite some very similar macroscopic values, there are some substantial local differences
in the case of edges and wedges.

The median and mean filters exhibited limitations in terms of preserving edges and
corners and generated step marching. They presented the greatest differences with Ilastik
in terms of the specific surface area and permeability.

The mismatches observed when using the filters were mainly due to Otsu’s method’s
inability to accurately distinguish between two materials with similar gray levels. Since
the passage of X-rays through a homogeneous material causes a Gaussian peak for each
material on the generated image, ANU suggested using this property to deconvolute the
individual material peaks from the complete histogram. In our case, the overlap between
neighboring peaks is not managed using the erosion–dilation system. It is difficult to
distinguish clays from brine using only an Otsu algorithm. There is no intrinsic watershed,
meaning that the contrast is obtained from gradients originating from low-contrast phases.
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Figure 4. Impact and comparison at the local scale of the mean and median filtering with Otsu’s
thresholding compared to Ilastik: (a) the raw reconstructed image with the impact of (b) mean filtering
and (c) median filtering (right). Local zooms with the voxels corresponding to voxels considered to
represent porosity with Ilastik only (relative to the cited filter + Otsu’s thresholding) in cyan; and
with voxels corresponding to voxels considered to represent porosity with the cited filter associated
with Otsu’s thresholding only (relative to Ilastik) in yellow.

3.5. Bilateral, Anisotropic Diffusion and Non-Local Means vs. Ilastik

The main difference observed with these filters was an enhanced description of specific
surface area, 9% higher than with median and mean filters. However, edge and wedge
mismatches had a negative impact on the results. Some tight pores and pore-throat con-
formance are poorly represented. Some of the permeability calculations on the simulation
differ by 3 to 4% compared to the mean and median filters, despite a coordination number
5% higher. Locally, Figure 5 shows the effects of these filters on a cropped 3D image.

This study sought to quantify the impact of image processing on effective properties
using a standard filtering and segmentation process versus the use of A.I. software, making
it possible to perform multi-label segmentation and not just gray-level segmentation. The
results show that, thanks to its multi-label algorithm, Ilastik provides a stable result for
all of the indicators tested, whether or not the signal is filtered. The comparison between
Ilastik and standard image processing (filter + Otsu’s method) very clearly shows the
negative effects of the different algorithms on the edges and wedges when gray levels are
similar, and the gray-level gradients are therefore very limited. The main consequence of
this is that the sizes of both the large pores and the small pores are drastically reduced, and
some pores are even eliminated, causing a constriction of the pores that can be seen in the
coordination indicators and through the appearance of permeability anisotropy linked to
filtering and slice-by-slice segmentation.
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Figure 5. Impact and comparison at the local scale of the bilateral, Anisotropic Diffusion and Non-
Local Means filters with Otsu’s thresholding compared to Ilastik: (a) the raw reconstructed image
with (b) the bilateral filter, (c) Anisotropic Diffusion, and (d) Non-Local Means. Local zooms with the
voxels corresponding to voxels considered to represent porosity with Ilastik only (relative to the cited
filter + Otsu’s thresholding) in cyan; with the voxels corresponding to voxels considered to represent
porosity with the cited filter + Otsu’s thresholding only (relative to Ilastik) in yellow.

There were very marked differences between parameters such as specific surface, coor-
dination number, and permeability, and this consequently had an effect on the conformance
of the reconstructed pore space. This result is relatively intuitive for anyone interested in
fluid flow in porous media. However, we demonstrated here that a difference of 3% in the
porosity on the sample presented could generate differences of 10 to 15% in variables such
as the coordination number and the specific surface area, and up to 30% in permeability.

Overall, applying filters when using Otsu’s method reduced porosity by 3%. The edges
and wedges, and therefore the totality of the interfaces and details, induced a displacement
of the boundaries and the processing of details as noise.

Surprisingly, degradation of image quality when performing direct segmentation by
multi-Otsu thresholding is no greater than when the signal is filtered using a high-quality
light beam and 3D microscope. This observation is critical, because owing to the intrinsic
quality of X-ray microscopes today (multi-axis stage, scintillators, optics, and detectors),
images of excellent quality can be obtained. This result would have been different with
older-generation tools, but it is clear that synchrotrons and laboratory X-ray microscopes
now produce images that no longer require filtering, as long as the noise remains moderate
and no reconstruction defects appear (ring artifact, beam hardening in white light). We
also compared the results of segmentation performed by an experienced person and by a
trainee, and found that the differences were even greater than those obtained when using
the tools by themselves.

The 1% variations in porosity observed between the various standard filters had
a strong impact on the physical characteristics of the porous medium and flow, since
variations of 1% in porosity generate differences in specific surface area of 30 to 40% and
variations in permeability of 8 to more than 30%.
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Please note that Otsu segmentation of raw images gives rise to major unconformities
despite a relatively close physical porosity, leading to some severe divergences. Porosity
alone cannot reflect the accuracy of image processing, and we therefore conducted an
extensive comparison of the local (image sampling) and global differences (indicators of
morphology, topology and transport properties) observed for the main methods cited in
the bibliography. For a 3% difference in porosity, the surface area and the coordination
numbers were calculated to have an error range of about 10%, leading to a 30% difference in
permeability. We also observed anisotropy when using the standard 2D filtering techniques,
compared to the homogeneous permeabilities obtained when performing image processing
using Ilastik.

4. Conclusions

With the advent of A.I. in image processing, phase classification has been significantly
improved.

A filter can indeed reduce noise in an image by favoring the continuity of gray levels
or gradients in the image, and where standard image processing uses one or two labels, A.I.
techniques investigate multiple labels in order to propose optimized segmentations.

Benchmarked images clearly show that segmentation is improved, facilitated, faster (for
the operator), and less affected by human inference in the search for the best compromise.

In the case of good- or excellent-quality images, the filtering step offers no advantages,
and actually degrades the image quality by affecting the morphology of the pore space
(shape), in particular the surface roughness and topology (connectedness), by eliminating
the smallest pores. Based on these results, it appears that filtering must essentially be
used to eliminate textured defects on images or certain specific defects causing a strong
divergence of calculated or visualized results, such as very moderate ring artifacts, noisy
images. As our experiment revealed, when using an efficient synchrotron-based 3D X-ray
microscope, no preliminary filtering is required, as the segmentation step is performed by
means of an efficient Artificial Intelligence algorithm such as Ilastik.

With multi-mineral rock types, the intermediate gradients strongly affect segmentation.
The potassium iodide used as a contrast agent can be adjusted to optimize the contrast
between minerals, and between water or oil for those interested in two-phase oil and
gas systems.

However, in some complex cases, such as those described here, with multi-mineral
rock types and two fluids in the pore space, properly identifying the phases is no mean
feat. We clearly showed the impact of the segmentation method and the advantages of
using Artificial Intelligence (A.I.) software integrating multiple classifiers. Of course, image
processing is a decisive step, but all the other steps are equally important: experimental
capability, reconstruction, and image processing. Several other techniques could be used to
remove current limitations, and the solution undoubtedly resides in combining techniques,
whether this involves enhancing phase identification or addressing the multiscale challenge.

We drew four main conclusions from this study:

- A synchrotron or even a 3D X-ray microscope produces high-clarity, contrasted raw
tomographic images, in which noise is very much reduced compared to those ob-
tained by conventional X-ray microtomography. The filtering step in this case is no
longer required.

- The results obtained with Ilastik, as an A.I. multi-label segmentation software package,
appear quite robust and relatively conform to those that an experienced scientist
would obtain by performing a pixel-by-pixel classification.

- Some effective properties of the porous media are strongly affected by very small
differences in porosity. We concluded that it was essential to define these properties for
each image processing workflow in order to qualitatively and quantitatively determine
error sensitivity in Digital Rock Physics. Given the results obtained, we can have every
confidence in such a promising technique.
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Unlike other methods, Ilastik offers a relatively robust image processing workflow
and offers almost the same efficiency as an experienced scientist. The expertise and experi-
ence required for this method are less important than when using standard filters, where
achieving the best compromise requires the adjustment of many parameters.

Future works will mainly focus on extending the methodology to a real 3D recon-
struction rather than just 2D images (slice-by-slice) to exploit the continuity of the material
along the z-axis and not just along x- and y-axes. We also plan to apply the method to
other experimental set-ups comprising electron microscopes for example, and we intend to
compare other image processing and A.I. algorithms.
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