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This paper introduces a hybrid non-linear Muskingum model for flood routing. The proposed hybrid model has more
degrees of freedom for fitting observed data than other non-linear Muskingum models. The main goal of this work is
to develop a comprehensive model for outflow routing. The proposed hybrid model’s predictive skill is evaluated with
experimental, real and multimodal hydrograph-routing problems. The results confirm the predictive skill of the hybrid
model based on the minimisation of the sum of the square deviation (SSD) between observed and routed outflows,
the sum of the absolute value of the deviations (SAD) between the observed outflow and the computed outflow, and
the deviations between the peak of the routed and actual outflows (DPO). Results from this study show the hybrid
model improved the SSD by 79, 15 and 5%, SAD by 50, 2 and 5%, and the DPO by 77, 4 and 34% compared with the
best alternative Muskingum model in solving the experimental, real and multimodal example problems, respectively.

Notation
I inflow to the river reach
i time steps
K travel time coefficient
O outflow from the river reach
Oi observed outflows in step i
OP

i predictive outflows in period i
S reach storage
SC
i storage corrector

SP
i storage predictor

TimeOP time of peak of the observed outflows
TimeOC

P
time of peak of the calculated outflows

wi�1 weighting coefficient of time steps for inflow values
wi0 weighting coefficient of time steps for inflow values
wo�1 weighting coefficients for outflow values
wo0 weighting coefficients for outflow values
ws�1 weighting coefficient
ws0 weighting coefficient
ws1 weighting coefficient
X weighting factor describing the importance of

inflow and outflow
α1 exponent parameter

α2 exponent parameter
β exponent parameter

1. Introduction
One of the non-structural methods to manage a river’s flood-
ing is flood forecasting, which relies on flood routing for the
prediction of hydrograph propagation along river reaches
(Tewolde and Smithers, 2006). Hydraulic and hydrologic
methods are available for flood routing (Karahan et al., 2013).
The hydraulic approach is based on the numerical solution of
either the advective-diffusion equations or the one- or two-
dimensional Saint-Venant equations of gradually varied
unsteady flow in open channels (Cunge, 1980). These
approaches require measurements of flow depth and discharge
using elaborate stream gauging. Therefore, they cannot be
applied in places that lack topographical and channel–
geometric data. Hydraulic methods are also relatively cumber-
some computationally, but yield accurate flood-routing
predictions. The hydrologic routing method, on the other
hand, relies on the principle of continuity between discharge
and water storage in river reaches. The hydrologic routing
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method is relatively simple and has good predictive accuracy
(Chow et al., 1988). The Muskingum model is the best-known
hydrologic routing method. It includes several versions. It
requires model calibration involving observed hydrographs
(Das, 2004). Versions of the non-linear Muskingum model
reviewed herein are the first (NL1), second (NL2), third (NL3)
and fourth (NL4) formulations, which were introduced,
respectively, by Chow (1959), Gill (1978), Easa (2014) and
Bozorg-Haddad et al. (2015a). These four non-linear
Muskingum model formulations differ in their number of
parameters, which for the models NL1, NL2, NL3 and NL4
are, respectively, three, three, four and seven. Bozorg-Haddad
et al. (2015a) reported that the NL4 model has better predic-
tive accuracy than other non-linear Muskingum formulations
based on the sum of the square deviations (SSD) between the
observed outflow and the computed outflow, the sum of the
absolute value of the deviations (SAD) between the observed
outflow and the computed outflow, and the deviations between
the peak of the routed and actual flows (DPO). This is so
because the NL4 non-linear Muskingum model has more
degrees of freedom than the other three models (NL1, NL2
and NL3). Hamedi et al. (2016) attempted to improve the
estimation of the predicted outflow hydrograph with various
non-linear Muskingum models. Muskingum generalised
non-linear models reported by Hamedi et al. (2016) exhibited
excellent flood-hydrography prediction capacity based on the
SSD, SAD and DPO fitting criteria.

Tung (1985) introduced a non-linear Muskingum simulation
model. Hamedi et al. (2014) and Hamedi et al. (2016)
implemented Tung’s (1985) simulation method and improved
its boundary conditions. Bozorg-Haddad et al. (2015b)
reduced the predictive error of reach storage with a non-linear
Muskingum model.

In practical applications the calibration step is of utmost
importance when applying non-linear Muskingum models
(Chow et al., 1988). Various methods for estimating the non-
linear Muskingum parameters have been reported over the last
few decades. Non-linear optimisation methods are classified
into three groups. The first group consists of mathematical
search methods such as the segmental least-squares method
(S-LSQ), non-linear least-squares method (N-LSQ), Lagrange
multiplier (LM), Broyden–Fletcher–Goldfarb–Shannon
(BFGS), Nelder Mead simplex method (NMS) and the gener-
alised reduced gradient method (GRG). These methods are
beset by convergence to local optima when the initial estimate
of the global solution is poor. The second group of non-linear
Muskingum parameter estimation methods comprises
phenomenon-mimicking algorithms, such as the pattern search
algorithm (PS), the genetic algorithm (GA), harmony search
(HS), particle swarm optimisation (PSO), parameter-setting-
free harmony search (PSF-HS), immune clonal selection (ICS)
algorithm, differential evolution (DE), coco search (CS),
shuffled frog-leaping algorithm (SFLA), cuckoo search (CS)

algorithm and honey-bee mating optimisation (HBMO). The
convergence of the latter algorithms is slow due to their
random search nature (Barati, 2012). The third group of
parameter estimation methods consists of hybrid algorithms
that combine phenomenon-mimicking algorithms and
mathematical search methods, such as the combination of the
genetic algorithm (GA) with NMS (GA-NMS), combining
GA with GRG (GA-GRG) and HS combination with BFGS
(HS-BFGS). These algorithms offer the advantages of both
types of optimisation methods (i.e. phenomenon-mimicking
algorithms and mathematical techniques), while offsetting
their disadvantages.

Gill (1978) applied the LSQ to estimate the parameters of the
NL2 model. Gavilan and Houck (1985) estimated the NL1
and NL2 models’ parameters with the standard search method
(SS). Tung (1985) employed the PS method based on the
parameters of the model NL2. Yoon and Padmanabhan (1993)
reported several methods to estimate the non-linear
Muskingum parameters. Mohan (1997) employed the GA to
estimate the parameters of the NL2 model. Kim et al. (2001)
applied the HS algorithm to estimate the NL2 model
parameters. The results of the HS algorithm estimates were
better than those calculated with the GA based on fitting
criteria such as the SSD, SAD, the DPO and deviations
between the peak of routed and actual flows times (DPOT).
Das (2004) employed the LM to estimate the NL1 and NL2
model parameters. Cheng et al. (2005) applied an adaptive
network-based fuzzy inference system (ANFIS) to forecast
long-term discharge of monthly river flow. The comparison of
ANFIS and artificial neural networks indicated the superiority
of the ANFIS model. Geem (2006) applied the BFGS method
to estimate the NL2 parameters based on the minimisation
of the SSD. Chu and Chang (2009) implemented the PSO
algorithm for estimating the NL2 model parameters. Luo and
Xie (2010) applied the immune clonal selection algorithm
(ICSA) to estimate the NL2 model parameters. Barati (2011)
applied the NMS method to calibrate the NL2 model. Geem
(2011) found the PSF-HS method superior to the HS methods
in calibrating the NL2 model. Barati (2012) reported
GA-NMS for estimating the NL3model parameters. Xu et al.
(2012) reported the DE method to estimate the parameters of
the NL2 model. Orouji et al. (2013) calibrated the NL2 model
with SA and SFLA. Karahan et al. (2013) improved the
BFGS method to estimate the parameters of the NL2 model
with the HS-BFGS hybrid method. Barati (2013) calibrated
the NL1 and NL2 models with the GRG method. Easa (2014)
calibrated the NL3 model with the GA-GRG method. Easa
(2014) stated that the use of the combined GA-GRG method
produces the best calibration of the NL3 model (see, also,
Easa (2014)). Bozorg-Haddad et al. (2015a) combined SFLA
with NMS to estimate the parameters of the model NL3. They
concluded that the SFLA-NMS was an accurate estimator of
non-linear Muskingum parameters. Fotovatikhah et al. (2018)
presented a comprehensive survey about application of
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conventional artificial intelligence and computational intelli-
gence methods in flood management systems. The results
showed the efficiency of these methods for flood prediction.

Mosavi et al. (2018) focused on state-of-the-art of machine
learning models in flood prediction to give insight into the
most suitable models. Yaseen et al. (2019) applied an enhanced
version of an extreme learning machine (EELM) model in
river flow forecasting. Then the comparison of EELM to
classical ELM and the support vector machine (SVR) indi-
cated the superiority of EELM.

In recent years, several authors have proposed new relations
and parameters for the non-linear Muskingum models with
the aim of achieving improved model calibrations and predic-
tions (Easa, 2013; Hamedi et al., 2014). These works are
among a range of publications focusing on various aspects of
water resources management (Ahmadi et al., 2015; Akbari-
Alashti et al., 2014; Beygi et al., 2014; Bozorg-Haddad et al.,
2009, 2013, 2015c, 2015d; Fallah-Mehdipour et al., 2013a,
2013b, 2014; Farhangi et al., 2012; Jahandideh-Tehrani et al.,
2015; Orouji et al., 2014a, 2014b; Sabbaghpour et al., 2012;
Soltanjalili et al., 2011). This study presents a new hybrid
non-linear Muskingum model for improved flood routing
prediction. The predictive skill of the proposed flood-routing
model is evaluated with three case studies.

2. Methods
The hybrid model and the method for estimating its
parameters are introduced in this section.

2.1 The hybrid non-linear Muskingum model
The Muskingum flood-routing model is based on the principle
of continuity between discharge and reach storage. Two linear
equations between continuity and storage define the classic
linear Muskingum model

1:
dS
dt

� ΔS
Δt

¼ I �O

2: S ¼ K XI þ 1� Xð ÞO½ �

where S is the reach storage; I is the inflow to the river reach; O
is the outflow from the river reach; t denotes time; X is a

weighting factor describing the importance of inflow and
outflow; K is a travel time coefficient that ranges between zero
and 0·5 in river reaches. Yoon and Padmanabhan (1993) showed
that a non-linear Muskingum model is more appropriate for
flood routing when reach storage streamflow is not linear.
Equation 3 was proposed by Hamedi et al. (2016) for the non-
linear (hybrid) Muskingum model herein named NL42

3: Si ¼ K X1 C1I
α1
i

� �
þ X2 C1I

α1
iþ1

� �
þ 1� X1 � X2ð Þ C2O

α2
i

� �h iβ

where i denotes the time steps and there are N time steps (i=0,
1, 2, …, N ); C1 and C2 are coefficients of inflows and out-
flows, respectively; X1 and X2 are weighting factors measuring
the degree of inflows importance in the time intervals i and
i+1, respectively; and α1; α2 and β are exponent parameters
that account for the non-linearity of the flood wave. The NL42
model improves the relation between storage and stream flow
relative to other non-linear Muskingum models. The hybrid
non-linear Muskingum model supplements the NL42 model of
Equation 3 with several other models as follows.

& Apply the NL431 and NL432 models by Hamedi et al.
(2016) to improve the Muskingum model non-linear
boundary conditions in case studies with initial
non-uniform flow. In fact, applying these two models
causes improvement of the Muskingum model non-linear
boundary conditions, not only in cases with uniform initial
flow, but also in cases with non-uniform initial flow.

& Implement the NL44 model by Hamedi et al. (2016) to
reduce the errors in calculating the reach storage.

& Employ the NL45 model to improve the calculation of
outflow.

Solving of the hybrid model using the continuity and storage
equations of the NL42 model in combination with the models
NL431, NL432, NL44 and NL45 (the features of NL431,
NL432, NL44 and NL45 are presented in Table 1) is as
follows.

& Step 1. Specify the combined model parameters.
& Step 2. Calculate the initial storage: the hybrid model

improves the Muskingum model non-linear boundary
conditions when the initial flow is non-uniform with the
models NL431 (Equation 4) and NL432. The NL431
model sets the initial outflow value equal to a percentage
of the initial inflow values Ô0 ¼ λI0), whereas the NL432

Table 1. Features of NL431, NL432, NL44 and NL45

Model designation Type Muskingum model Variant of the model Model parameters

NL431 NL4 31 (K, X, α1, α2, β, C1, C2, λ)
NL432 NL4 32 (K, X, α1, α2, β, C1, C2, λ)
NL44 NL4 4 (K, X, α1, α2, β, C1, C2, ws�1, ws0, ws1 wi�1,wi0, wo�1, wo0)
NL45 NL4 5 (K, X, α1, α2, β, C1, C2, ws�1, ws0, ws1)
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model determines the initial storage value and other
parameters values by optimisation.

4:
S0 ¼K ½X1 C1I

α1
0

� �þ X2 C1I
α1
1

� �
þ 1� X1 � X2ð Þ C2λI

α2
0

� ��β i ¼ 0

5: S0 ¼ θ

in which S0 denotes the initial reach storage.
& Step 3. Calculate the storage value in the next time step:

the NL44 model is employed to reduce the errors in
calculating the storage in time step i. Model NL44 saves
the calculated storage in time steps i=0, 1, 2, …, N, and
the storage in period i is corrected by the storage moving
average (SMA). A disadvantage of the non-linear
Muskingum model is the inaccurate calculation of storage
in some instances. In recent years, several authors have
changed the structure of storage modelling to increase the
applicability of the non-linear Muskingum model. SMA
has been added to the non-linear Muskingum model to
reduce the error in storage calculation.

The storages calculated with the NL44 and SMA are called
the storage predictor (SP

i ) and the storage corrector (SC
i ),

respectively. SC
i is calculated by the NL44 model based on the

predicted values of storage in the periods i− 1, i and i+1,
(SP

i�1, SP
i and SP

iþ1), which are calculated with the NL44
model, and SC

i is calculated with a weighted average of SP
i�1,

SP
i and SP

iþ1, whereby the weighting coefficients are calculated
by optimisation. The calculation of storage in the next time
step by the NL44 models is as follows.

Step 3-1. Calculate the rate of change storage predictor
(ΔSp

i =Δt) using Equation 6

Step 3-2. Calculate SP
i in next interval using Equation 7

7: SP
i ¼ SP

i�1 þ Δt
ΔSP

i�1

Δt

� �
i ¼ 1; . . . ;N þ 1

Step 3-3. Repeat steps 3-1 and 3-2. Compare the simulated
and predicted storage values in period N and stop the iterative
calculations when the values satisfy a convergence criterion.

Step 3-4. Calculate SC
i with Equation 8

8: SC
i ¼ ws�1SP

i�1 þ ws0SP
i þ ws1SP

iþ1 i ¼ 1; . . . ;N

where ws�1, ws0 and ws1 denote the weighting coefficients
applied to SP

i�1, S
P
i and SP

iþ1, respectively.

Step 4. Calculate the outflow at the next time step, the
hybrid model NL45 reduces the errors incurred in the calcu-
lation of the outflow in period i. Equation 9 shows how to
calculate the outflow. Notice that the outflow in period i
equals the weighted average of the inflows in the intervals i
and i+1. Equation 9 has three parameters (R1, R2 and R3)
that are calculated with optimisation

9: Ôiþ1 ¼ R1Iiþ1 þ R2Ii þ R3Ôi

This work improves the calculation of outflows with the non-
linear Muskingum model NL45. The calculation of outflow in
the next time step with the NL45 model is as follows.

Step 4-1. Calculate the predictive outflows in period i (OP
i )

with Equation 10

10: Op
i ¼ 1

C2

�
1

1� X1 � X2

	
SC
i

K

� �1=β

� X1 C1Iið Þα1 þ X2 C1Iiþ1ð Þα1½ �

�1=α2

Step 4-2. Continue the algorithm and repeat steps 3-4 to 4-1
for as long as the stopping criteria have not been reached.

Step 4-3. Calculate OC
i with Equation 11

11: OC
i ¼ wi�1Ii�1 þ wi0Ii þ wo�1OP

i�1 þ wo0O
p
i

In which wo�1 and wo0 denote the weighting coefficients for
outflow values, and wi�1 and wi0 are weighting coefficient of
time steps for inflow values.

Step 4-4. Repeat step 4-3 until step N is reached. The flow-
chart of the calculation process is presented in Figure 1.

In most of the studies related to simulation non-linear
Muskingum models the SSD has been considered as the main
objective function to evaluate the performance of the model.
Other authors have applied the SAD, DPO and DPOT as
supplemental parameters for better evaluation of non-linear
Muskingum models.

6: ΔSP
i

Δt
¼ Ii � 1

C2

1
1� X1 � X2

SP
i

K

� �1=β

� X1 C1Iið Þα1 þ X2 C1Iiþ1ð Þα1½ �
( )* +1=α2

i ¼ 0; 1; . . . ;N
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Considering the cited facts, this study employs the SSD, SAD,
DPO and DPOT as the performance criteria for evaluating the
predictive skill of the proposed individual non-linear and
hybrid non-linear Muskingum models.

12: Min: SSD ¼
XN
i¼1

Oi �OC
i

� �2
i ¼ 0; 1; 2; . . . ;N

13: SAD ¼
XN
i¼1

Oi �OC
i

�� �� i ¼ 0; 1; 2; . . . ;N

14: DPO ¼ OP �OC
P

�� ��

Start

Specify model parameters

Calculate initial storage

Calculate the rate of change

Calculate storage predictor
value (Sp

i ) in next time step

Calculate storage corrector
(Sc

i )

Calculate outflow

Calculate the predictive
outflows in period i (Op

i )

Calculate outflows corrector
(O c

i )

Oc
i values

reached to
step N?

Convergence
criteria for outflow

values satisfied?

Calculate storage predictor
value (Sp

i ) in next time step

storage predictor
ΔSp

i

Δt

Difference of
simulated and

predicted storage
values satisfies

convergence criteria?

No Yes

No

Yes

Yes

No

Stop

Figure 1. Flowchart of hybrid model calculation process
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15: DPOT ¼ TimeOP � TimeOC
P

��� ���
in which Oi and OC

i denote the observed and predicted out-
flows in step i, respectively; OP and OC

P represent the peak
outflow observation and peak outflow prediction, respectively;
and TimeOP and TimeOC

P
denote the times of peak of the

observed and calculated outflows, respectively. DPO and

DPOT are central parameters in flood-routing and flood-
damage calculation.

2.2 Optimisation procedure of the hybrid
non-linear Muskingum model

Excel solver has been successfully applied in hydraulic
and hydrologic problems. The solutions obtained by solver
are also accurate with short computational time. Excel

Table 2. Optimal results obtained with the hybrid non-linear Muskingum model for the first case study

I t: h Ii : m
3/s Oi : m

3/s SPi : m
3/s ΔSPi =Δt: m

3/s SCi : m
3/s OP

i : m
3/s OC

i : m
3/s Oi � Ôið Þ2: m3/s Oi � Ôi

��� ���: m3/s

0 0 22 22 118·13 7·50 160·71 22·00 22·00 0·00 0·00
1 6 23 21 163·11 7·25 257·70 18·86 21·01 0·00 0·01
2 12 35 21 206·63 23·55 455·89 23·64 20·98 0·00 0·02
3 18 71 26 347·93 58·55 752·82 25·96 26·05 0·00 0·05
4 24 103 34 699·23 79·04 1125·40 29·78 33·94 0·00 0·06
5 30 111 44 1173·46 69·41 1511·16 39·92 44·03 0·00 0·03
6 36 109 55 1589·93 49·63 1793·86 53·55 54·95 0·00 0·05
7 42 100 66 1887·73 23·86 1936·55 66·52 66·02 0·00 0·02
8 48 86 75 2030·91 −3·77 1936·91 77·89 75·18 0·03 0·18
9 54 71 82 2008·28 −26·13 1811·03 86·22 81·76 0·06 0·24
10 60 59 85 1851·53 −40·40 1591·38 89·19 84·87 0·02 0·13
11 66 47 84 1609·11 −48·58 1328·76 88·07 84·29 0·08 0·29
12 72 39 80 1317·63 −48·36 1052·98 82·26 80·04 0·00 0·04
13 78 32 73 1027·44 −43·67 801·83 73·47 72·96 0·00 0·04
14 84 28 64 765·41 −35·30 587·91 62·54 63·76 0·06 0·24
15 90 24 54 553·62 −27·03 427·12 51·70 53·90 0·01 0·10
16 96 22 44 391·47 −17·78 311·93 41·77 44·38 0·15 0·38
17 102 21 36 284·78 −10·55 237·27 33·31 36·12 0·01 0·12
18 108 20 30 221·45 −6·36 193·05 27·31 29·56 0·20 0·44
19 114 19 25 183·31 −3·76 167·79 23·62 25·04 0·00 0·04
20 120 19 22 160·73 −1·83 110·82 21·20 22·16 0·02 0·16
21 126 18 19 149·77 −14·01 78·59 15·36 19·02 0·00 0·02
— — — — 65·70 — — — — — —

Sum — — — — — — — — 0·65 2·66

Observed inflow and outflow data from Wilson (1974)
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Figure 2. Comparison of the observed and calculated hydrographs obtained with the hybrid model for the first case study (observed
inflow and outflow data from Wilson (1974))
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solver is applied in this study to estimate the parameters of the
hybrid model.

Parameter estimation in Excel is applied with two search
methods, namely, the GRG and evolutionary solver (EV).
Over many years GRG has been proven as one of the
most reliable approaches for solving complex non-linear
problems. The second search method is EV, which is a

hybrid of genetic and evolutionary algorithms. This paper
overcomes the shortcomings of the GRG and EV methods
by resorting to a hybrid approach (EV–GRG), which in
the first stage estimates the initial parameters with EV.
The solution vector obtained by EV is used as the initial
solution vector in the GRG approach. In the next stage the
final solutions are estimated with the GRG approach
(Barati, 2013).

Table 3. Comparison of the objective functions and parameter values obtained by several models corresponding to the first case study

Model NL4 NL42 NL431 NL432 NL44 NL45 Hybrid

K 0·48 0·79 0·55 0·49 0·61 1·33 1·17
X1 0·08 0·02 0·08 0·81 0·08 0·39 0·03
X2 — 0·01 — — — — 0·88
λð Þθ — — 0·96 24 — — 118
σ — — — — — — —

ws�1 — — — — −0·19 — 0·57
ws0 — — — — 1·28 — −0·11
ws1 — — — — −0·09 — 0·54
wi�1 — — — — — 0·25 0·15
wi0 — — — — — −0·01 0·00
wo0 — — — — — 0·60 0·32
α1 0·70 0·80 0·70 0·73 0·89 0·86 0·60
α2 0·43 0·37 0·43 0·44 0·59 0·77 0·43
β 3·82 4·37 3·80 3·73 2·86 2·18 3·76
C1 0·62 1·00 0·60 0·58 0·55 0·81 1·23
C2 0·74 1·00 0·71 0·72 0·57 0·98 0·90
SSD 5·44 4·81 5·17 3·19 4·27 4·93 0·65
SAD 6·69 6·52 6·96 5·35 6·81 6·36 2·66
DPO 0·05 0·03 0·05 0·07 0·08 0·04 0·13
DPOT 0 0 0 0 0 0 0

Table 4. Comparison of the computed outflows obtained with the several models for the first case study

i t: h Ii : m
3/s Oi : m

3/s

Ôi : m
3/s

NL4 NL42 NL431 NL432 NL44 NL45 Hybrid

0 0 22 22 22·00 22·00 21·02 22·00 22·00 22·00 22·00
1 6 23 21 22·00 22·00 21·55 20·65 21·94 21·99 21·01
2 12 35 21 22·38 22·18 22·18 21·78 21·79 22·22 20·98
3 18 71 26 26·21 25·73 26·15 26·05 25·51 25·63 26·05
4 24 103 34 34·02 33·94 34·03 34·09 34·29 33·93 33·94
5 30 111 44 43·69 43·97 43·68 43·71 43·75 44·06 44·03
6 36 109 55 55·34 55·34 55·33 55·32 55·17 55·03 54·95
7 42 100 66 65·98 65·85 65·98 65·96 65·86 65·98 66·02
8 48 86 75 75·02 74·98 75·02 75·01 75·06 75·15 75·18
9 54 71 82 81·78 81·84 81·79 81·79 81·91 81·77 81·76
10 60 59 85 85·05 85·03 85·06 85·07 85·09 84·96 84·87
11 66 47 84 84·07 84·21 84·07 84·08 84·07 84·17 84·29
12 72 39 80 80·17 80·12 80·16 80·15 79·99 80·00 80·04
13 78 32 73 72·81 72·85 72·80 72·79 72·72 72·90 72·96
14 84 28 64 63·90 63·83 63·88 63·88 63·82 63·87 63·76
15 90 24 54 53·95 54·03 53·94 53·96 54·09 54·07 53·90
16 96 22 44 44·50 44·51 44·50 44·51 44·59 44·47 44·38
17 102 21 36 35·96 35·98 35·97 35·98 36·00 35·96 36·12
18 108 20 30 29·43 29·45 29·44 29·44 29·42 29·37 29·56
19 114 19 25 24·93 24·89 24·93 24·92 24·81 24·83 25·04
20 120 19 22 21·88 21·79 21·89 21·86 21·63 21·82 22·16
21 126 18 19 20·24 20·20 20·25 20·23 20·16 20·23 19·02
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2.3 Applications and results of the hybrid non-
linear Muskingum model

Three experimental, real and multimodal hydrograph-routing
problems were chosen as case studies to evaluate the
performance proposed hybrid non-linear Muskingum model.
The non-linear relation between S and (XI+ (1−X )O) in the
experimental, real and multimodal problems was a reason for
choosing them as case studies. These three problems have been
solved in previous studies by other authors, thus providing
comparison values for this study’s results.

2.4 Case study 1: experimental problem
The example presented in this section was introduced by
Wilson (1974) and expanded by Yoon and Padmanabhan
(1993). This case study has a 6 h period (Δt=6) and the
number of steps N=21. The flow regime is steady at the

beginning of the flood. Thus, the hybrid NL432 model is
intended to improve the handling of the boundary conditions.
Table 2 lists the calculated and observed outflows, plus the
SSD, SAD and DPO, which are equal to 0·65, 2·66 and 0·13,
respectively. Figure 2 depicts the observed inflow and outflow
hydrographs and the calculated hydrograph. It is seen in
Figure 1 that the hydrograph routing achieved with the hybrid
model almost matches the observed outflow hydrograph.
Table 2 lists the model parameters, coefficients and perform-
ance criteria calculated with the non-linear Muskingum
models and the hybrid non-linear Muskingum model.
According to Table 3 the lowest (best) SSD and SAD values
correspond to the hybrid model. The SSD and SAD values for
the hybrid model are, respectively, 79 and 50% lower
(improved) than those for the NL43 model. Table 4 presents
the outflows estimated with the various non-linear Muskingum
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models and the proposed hybrid non-linear Muskingum
model. The results shown in Table 3 establish the superior
predictive accuracy of the latter model.

Figure 3 depicts a comparison of the SAD values calculated
with the several models for the first case study. Figure 3
demonstrates that the proposed hybrid model achieved a better
(lower) absolute deviation (AD) than the other routing models.

2.5 Case study 2: real flood-routing problem
The second study refers to a flood that occurred in 1960 in the
river Wye, England. The 69·75 km stretch of the River Wye

from Erwood to Belmont has no tributaries and very small
lateral inflow (O’Donnell et al., 1988). This case study has a
6 h time step (Δt=6) and N=33. Figure 4 depicts a
comparison of the observed and calculated hydrographs
obtained with the hybrid model for the second case study. The
hybrid model’s predictions match the observed outflow very
closely.

Table 5 lists the parameters, coefficients and performance cri-
teria achieved with the various non-linear Muskingum models
and the hybrid non-linear Muskingum model. It is seen in
Table 6 that the proposed hybrid non-linear Muskingum

Table 5. Comparison of the performance criteria and parameter values obtained with several routing models for the second case study

Model NL4 NL42 NL431 NL432 NL44 NL45 Hybrid

K 0·60 1·56 0·60 0·61 0·66 0·91 1·94
X1 0·609 0·66 0·64 0·61 0·64 0·44 0·55
X2 — −0·09 — — — — 0·49
λð Þθ — — 0·66 1053 — — 0·73
σ — — — — — — —

ws�1 — — — — 0·12 — 0·12
ws0 — — — — 0·78 — 0·60
ws1 — — — — 0·10 — 0·29
wi�1 — — — — — −0·04 0·04
wi0 — — — — — 0·05 −0·14
wo0 — — — — — 0·63 0·73
α1 1·05 0·99 1·04 1·05 1·04 1·13 1·03
α2 1·16 1·13 1·17 1·16 1·17 1·11 1·09
β 1·40 1·37 1·40 1·40 1·38 1·31 1·28
C1 1·00 1·04 1·00 1·02 1·12 0·98 1·13
C2 1·00 0·62 1·03 1·00 1·08 1·05 0·91
SSD 30 894 28 853 28 136 30 804 29 402 23 741 19 953
SAD 732 705 668 723 701 683 621
DPO 73 73 76 73 72 78 69
DPOT 1 1 1 1 1 0 0

Table 6. Comparison of the objective functions and parameter values obtained by several models for the third case study

Model NL4 NL42 NL431 NL432 NL44 NL45 Hybrid

K 0·007 0·47 0·08 0·08 2·70 10·00 0·58
X1 5�10−6 0·06 5�10−7 5�10−7 0·07 0·93 0·08
X2 — −0·03 — — — — 0·93
λð Þθ — — 0·71 69 — — 0·78
σ — — — — — — —

ws�1 — — — — −0·36 — 1·03
ws0 — — — — 1·28 — −0·25
ws1 — — — — 0·08 — 0·22
wi�1 — — — — — 0·82 0·62
wi0 — — — — — 0·13 0·02
wo0 — — — — — 0·03 0·21
α1 3·12 1·80 3·12 1·12 1·00 1·00 1·63
α2 1·42 1·18 1·42 1·42 1·00 1·00 1·06
β 1·00 1·004 1·00 1·00 1·10 1·05 1·02
C1 1·00 0·08 1·00 1·00 1·00 8·44 0·18
C2 1·00 0·87 1·00 1·00 1·00 0·91 1·05
SSD 69 861 52 469 67 253 69 538 50 871 33 312 28 855
SAD 934 890 940 988 930 789 721
DPO 51 10 30 30 21 21 9
DPOT 0 0 0 0 0 0 0
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model outperformed the other routing models based on the
values of the SSD, SAD and DPO.

2.6 Case study 3: multimodal problem
This flood hydrograph was reported by Viessman and Lewis
(2003). This case study has a 1 h period time step (Δt=1) and
the number of steps is N= 23. The hydrograph outflow exhibits
peaks at 10 and 17 h. Figure 5 portrays a comparison between
the observed outflow and routed hydrographs with the various
non-linear models implemented herein. It is seen in Figure 5
that the predictive skill of the hybrid model is of high quality.

Table 6 lists the values of the SSD, SAD and DPO obtained
with the various routing models. Table 6 shows that the hybrid
non-linear Muskingum models’ values of SSD, SAD and DPO
were better (smaller magnitude) than those achieved with the
other routing models.

3 Conclusions
This study introduced a hybrid non-linear Muskingum model
for flood routing that improves the calculation of outflow
hydrographs relative to other Muskingum routing models. The
proposed hybrid non-linear Muskingum model improves some
of the functions available in the NL42, NL431, NL432, NL44
and NL45 Muskingum models. The prediction of outflow
hydrographs corresponding to three case studies established the
overall superior performance of the proposed hybrid non-
linear Muskingum model compared with other non-linear
routing models judged by performance criteria embodied by
the SSD, SAD, DPO and DPOT.

The predictive skill of the hybrid model has established its
capability in flow routing. It is recommended herein that
this new hybrid model should be applied instead of other
non-linear Muskingum models in flow routing.
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