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ABSTRACT OF THE THESIS

Lateralization of Categorical and Coordinate Stimuli: A Differential Encoding Account

by

Vishaal Prasad

Master of Science in Computer Science

University of California, San Diego, 2017

Professor Garrison W. Cottrell, Chair

Categorical and coordinate stimuli were proposed by Kosslyn (1987) as a set of later-

alized visual tasks with a left hemisphere advantage for categorical and right hemisphere

advantage for coordinate. A categorical task uses relative positioning to make a judgment,

such as the statement that a glass of water is on a table; a coordinate task uses absolute

positioning to make a judgment, such as the statement that the glass of water is 3 inches

from my hand. Kosslyn hypothesized that categorical tasks depended on low spatial fre-

quencies and coordinate were preferentially processed in higher spatial frequencies (e.g.

viii



Baker et al. 1999); however, the literature in subsequent years was inconclusive on this

hypothesis (Jager and Postma 2003). Slotnick et al. (2001) directly tested Kosslyn’s hy-

pothesis and also arrived at conflicting results. By stratifying by difficulty, they showed

that Kosslyn’s hypothesis holds only when tasks are difficult enough. Our Differential En-

coding (DE) model is a three layer neural network that accounts for lateralization of visual

processing via the biologically and developmentally plausible mechanism of differences in

the connection spread of long-range lateral neural connections. We first establish certain

frequency-encoding properties of the DE model. We then show that our model accounts for

Slotnick’s psychological data and show Slotnick’s analysis does not convincingly explain

the conflicting results. Instead, we propose that Kosslyn’s initial hypothesis was incorrect:

categorical and coordinate stimuli are not differentiated solely by spatial frequencies, which

is why lateralization has been inconclusive in the past. These results therefore cannot be

captured by models such as Ivry and Robertson’s (1998) "Double Filtering by Frequency"

model, which is driven directly by lateralization in spatial frequency processing.
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Chapter 1

Introduction

In 1977, Navon published a seminal work on the "global precedence effect" – a phe-

nomenon where humans notice global, higher level-patterns in a scene or stimulus before

perceiving finer levels of discrimination (Navon, 1977). One experiment in this work fo-

cused on hierarchical letters, such as a large, "global" T composed of small, "local" F’s.

Through these stimuli, he showed that humans displayed an advantage for the global level

stimulus, i.e. the T in the above example, which he dubbed the "global precedence effect."

Five years later, Sergent (1982) noted a peculiar phenomenon: the strength of the global

precedence effect varies by hemisphere. That advantage was stronger in the right hemi-

sphere (RH) than in the left hemisphere (LH). Sergent reduced this advantage to differences

in frequency processing between the two hemispheres, and this assumption has guided

much of the psychological research on visual lateralization thereafter (e.g. Kosslyn et al.

1992; Okubo & Michimata, 2001; Hsiao et al., 2013).

Cognitive models have become an increasingly used tool to test psychological hypothe-

ses that cannot be tested directly in humans. For example, Kosslyn et al. (1992) use

cognitive models to test their supposition that categorical and coordinate stimuli are, in fact,

qualitatively distinct, as well as to explain objections raised by Sergent (1991). Further-

more, they use a neural network cognitive model to show that the categorical and coordinate

1
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distinction can be explained by lateralized frequency processing, as suggested by Sergent

(1982) (Baker, Chabris, & Kosslyn, 1999). Similarly, Ivry and Robertson (1998), lacking a

way to test their theorized explanation for the effects observed in Sergent (1982) among other

work, used cognitive models as the primary evidence for their model (Ivry & Robertson,

1998). In short, cognitive models allow researchers to test hypotheses that are impossible

or unfeasible to test on humans.

However, one must eventually be able to relate the cognitive model back to some

neurological basis in the brain – a model that accounts for the data but is biologically

implausible has limited value as an explanation. In addition, a neurologically plausible

explanation is still weak if it is developmentally implausible. There needs to be reason

to suspect that the brain actually does develop in accordance with the model. Many of

the cognitive models surrounding visual lateralization do not fulfill both of these criteria,

but our Differential Encoding model (DE) does. Cognitive modeling allows us to test

the capabilities of the DE model, even as the core mechanism proposed in the model –

differential connectivity between cortical patches in the two hemispheres – has not been

observed yet, though there is reason to suspect it exists (as outlined in Hsiao et al., 2013).

Furthermore, the increased computational power of the modern day affords modern

cognitive modelers some additional advantages. Computational models in the 1990s were

often analogous implementations of human experiments rather than exact implementations,

due to computational limitations. For example, a 2D image used in human experiments

may be represented by a similar 1D task for ease of computation. We can now directly test

on the exact same stimuli used in human data, allowing for a one-to-one comparison. In

addition, we can use more sophisticated models to better represent the proposed cognitive

phenomenon in code. As we will see, these two advantages are instrumental in establishing

baseline facts to challenge claims made by psychologists.

This thesis is organized as follows. Chapter 2 provides necessary background, both on
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the psychological experiments and the relevant cognitive models. Chapter 3 establishes the

methods used in the experiments, provides the results, and provides discussion. Chapter 4

provides a conclusion based on these results and outlines future work to be done.



Chapter 2

Background

The human brain is composed of two relatively disconnected hemispheres that com-

municate via a bridge of fibers known as the corpus callosum. The level of disconnection

and redundancy suggests that for at least some cognitive processes, it may be advantageous

for each hemisphere to specialize and reduce redundancy. This functional specialization,

called "lateralization," occurs for many diverse cognitive facilities in humans (Stephan et

al., 2003) and non-humans alike (Rogers & Andrew, 2002). Prominent examples in humans

include fine motor skills and language processing, both of which are left hemisphere domi-

nant (Knecht et al., 2000). Of particular interest to us is visual lateralization. Past studies

have shown visual lateralization in processing stimuli ranging from frequency gratings to

facial recognition (e.g. Sergent, 1985; Ivry & Robertson, 1998).

One such set of stimuli, from Navon (1977), is hierarchical letters, such as a large,

"global" T composed of small, "local" F’s, depicted in Figure 2.1A. Sergent (1982) showed

that the left hemisphere (LH) has an advantage at identifying the local level target (the letter F

in the above example), whereas the right hemisphere (RH) has an advantage at identifying the

global level target, seen in Figure 2.1B. She concluded that the LH performs better at high-

frequency information, whereas the RH does better at low-frequency information. Kitterle,

Christman, and Hellige (1990) directly tested this hypothesis with frequency gratings. First,

4
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Figure 2.1: Reproduced from Hsiao et al. (2013), itself an adaptation of figures from
Sergent (1982), this diagram depicts examples of Navon figures (Navon, 1977) (A) as well
as the lateralization results (B).

they tested subjects on whether they detected gratings at two different frequencies when

flashed in one visual field. They found no lateralization on this task of detection. They

then asked subjects to differentiate between two sets of gratings that varied on frequency,

again flashed in one visual field. Lateralization this time did present, even though the same

frequency gratings were used. They concluded that frequency lateralization was driven by

task demands, rather than purely by stimulus properties.

A year later, the authors further tested the identification task, again using frequency

gratings (Christman, Kitterle, & Hellige, 1991). Subjects were asked to distinguish between

two sets of stimuli. The first was a baseline stimulus consisting of 0.5 cycles per degree

(cpd) and 1 cpd gratings. The second was that same baseline but with a 2 cpd component

added in as well. Therefore, the 2 cpd component differentiated the two sets of stimuli.

The authors found a LH advantage on recognizing the 2 cpd gratings and a RH advantage

on the baseline, as expected. They then repeated the experiment, but this time the baseline
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consisted of a 4 cpd and 8 cpd component instead. Therefore, the 2 cpd component was

now the low-frequency component rather than the high-frequency component as before.

The authors now found a RH advantage on the 2 cpd gratings and a LH advantage on the

baseline gratings. The same frequency band lateralized differently based on the particular

task. They concluded differences between the hemispheres are not absolute, but instead

relative to the frequency band relevant for solving the current task (Christman et al., 1991).

2.1 Categorical & Coordinate Spatial Processing

Kosslyn (1987) and also Kosslyn, Koenig, Barrett, Cave, Tang, & Gabrieli (1989)

proposed a new modality of lateralized visual processing, based on the characterization

that humans process visual stimuli using two distinct types of spatial relations. Coordinate

relations rely on an absolute, metric basis; for example, the statement "the glass of water is

3 inches from my hand" defines a coordinate judgment of one’s hand and the glass of water.

In contrast, categorical relations rely on abstract, relative terms. The statement "the glass

of water is on top of the table" does not tell us exactly where the glass is, only its relative

position to a table. Kosslyn argues these are two fundamentally distinct representations. In

his 1987 paper, Kosslyn observed a LH advantage for categorical relation judgments and a

RH advantage for coordinate relation judgments. He proposed that two different subsystems

governed these two relations and that they lateralized based on a "snowball effect" deriving

from the LH’s known advantage in speech (Kosslyn, 1987). Other work (e.g. Hellige &

Michimata, 1989) provided further support for this hypothesis with more varied types of

stimuli (e.g., a bar and dot stimulus).

However, in 1991, Sergent found that this lateralization effect presented only when

stimuli were degraded, and several analyses have noted that the lateralization only appears

in right-handed people (Slotnick, Moo, Tesoro, & Hart, 2001). Other researchers likewise

found weak or inconclusive evidence for lateralization of categorical and coordinate stimuli.
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Okubo and Michimata (2002) note that the LH advantage on categorical processing is not

always present. Furthermore, the results of Slotnick et al. (2001), detailed below, reveal

that the RH advantage on coordinate processing does not necessarily present. Nevertheless,

researchers generally agree that a distinction exists, even if it is weaker than originally

thought (see Jager & Postma, 2003 for a review).

Noting the inconclusive evidence of whether categorical and coordinate is a meaningful

distinction, Slotnick et al. (2001) sought to test Kosslyn’s hypothesis directly, using the same

class of stimuli used in Kosslyn et al. (1989). These stimuli, shown in Figure 2.2, include

coordinate and categorical judgments on blob/dot and plus/minus stimuli. In addition, they

added a new stimulus type, paired squares, which was designed to resist "categorization" of

coordinate tasks, whereby a subject on later trials during an experiment learns a coordinate

task (e.g., is the plus far away from the minus) and turns it into a categorical task (Slotnick et

al., 2001). This effect had been proposed to weaken the RH advantage on coordinate stimuli,

and so Slotnick et al. (2001) added the paired squares coordinate stimulus, which forces

the subject to make a direct metric comparison between the two halves of the stimulus.

They conducted a series of five experiments on 134 subjects, each with one hemi-

sphere temporarily deactivated by an intracarotid injection of sodium amobarbital. This

deactivation process removes any interhemispheric interference.

The results were generally in line with Kosslyn’s hypothesis. The two categorical

experiments showed LH dominance, and coordinate paired squares showed RH dominance.

Coordinate plus/minus didn’t lateralize, but it also did not show LH dominance. However,

the coordinate blob/dot experiment did not show the expected RH dominance, instead

showing the opposite lateralization compared to the original paper. The authors noted that

distances between components of their figures, such as the plus and minus, were larger in

their experiments than in Kosslyn et al. (1989). They suspected this made the task too easy

to show proper lateralization.
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Figure 2.2: This figure was taken directly from Slotnick et al. (2001). Note that paired
squares only had a coordinate task, whereas blob/dot and plus/minus have both categorical
and coordinate.
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Consequently, they ran a post-hoc analysis that stratified the tasks based on difficulty,

and suggested that only when a task is made more difficult does lateralization arise on

coordinate experiments. Difficulty has been reported to modulate lateralization in other

experiments (e.g. Sergent, 1985), so they reasonably concluded that task difficulty is an

important factor in the lateralized processing of categorical and coordinate stimuli.

In light of these conflicting data, Kosslyn and colleagues have refined their hypothesis

and now argue that lateralization in categorical and coordinate stimuli exists due to a

difference in frequency processing, potentially based on hemispheric differences in neuronal

receptive fields (see Kosslyn, Chabris, Marsolek, & Koenig, 1992; Baker, Chabris, &

Kosslyn, 1998; Chapter 9 of Hugdahl & Davidson, 2003). Cowin and Hellige (1994) tested

this hypothesis via low-pass filtered stimuli via blurring, and they failed to find a visual

field difference. Okubo and Michimata (2002) note that the LH categorical advantage,

ostensibly based on high spatial frequencies, is tenuous to begin with. Instead, they sought

to remove low spatial frequency information via a process called contrast balancing. In

support of Kosslyn’s hypothesis, they showed that the RH coordinate advantage, but not the

LH categorical advantage, was eliminated by contrast balancing. Nevertheless, scarce data,

beyond Okubo and Michimata’s (2002) results, tie together spatial frequency processing

and categorical and coordinate lateralization.

2.2 Double Filtering by Frequency Theory

Based on Sergent’s (1982) theory, Ivry and Robertson (1998) proposed their Double

Filtering byFrequency (DFF) theory to explain the asymmetric spatial frequency processing.

The DFF theory is built on the assumption that visual lateralization is driven directly by

lateralized spatial frequency processing. In their theory, there are two filtering processes

that occur in vision. The first filter, which is identical in both hemispheres, determines

the task-specific frequencies of a visual stimulus. The second filtering process leads each
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Figure 2.3: Taken directly from Figure 7.3 of Ivry & Robertson (1998), this diagram
depicts the computational model of the DFF theory. The frequency modules are the same
in both hemispheres, but the attention weights are lateralized such that the LH prioritizes
information from higher frequency modules and the RH prioritizes information from lower
frequency modules.

hemisphere to "emphasize different aspects of the internal representation of the stimulus"

(Ivry & Robertson, 1998).

Figure 2.3, lifted directly from a figure in Ivry & Robertson (1998), is the computational
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representation of their theory. The first filter is implemented via a set of six frequency

modules, where each neuron encodes information across a large spread of input pixels or

across a low spread of input pixels. It is theorized that neurons with large receptive fields

encode low-frequency information better (Kosslyn, Chabris, Marsolek, & Koenig, 1992;

Ivry & Robertson, 1998) due to the coarse coding effect (Ballard, Hinton, Sejnowski, et

al., 1983). Therefore, each of these frequency modules can be seen as capturing specific

frequency-based information. Each module then consolidates its output to a single neuron

in the next layer. Finally, these six neurons are connected to the decision neurons at the end

of the network.

In this way, the DFF theory directly encodes frequency processing lateralization as

outlined in Sergent (1982), but it does so in a manner consistent with Kitterle et al.’s (1990)

results. The first filter, which can be thought of as a representation of stimulus properties,

is where detection of frequency gratings would first occur. In accordance with Kitterle et

al. (1990), this filter is the same in both hemispheres. The lateralized second filter, where

the system chooses which frequencies to emphasize based on the task, would differentiate

between wide and narrow frequency gratings. Therefore, results in this identification task

would be lateralized, once again in accordance with Kitterle et al. (1990).

Ivry and Robertson (1998) replicated the results in Sergent (1982) using 1D hierarchical

stimuli modeled after the Navon (1977) figures used in Sergent (1982). These 1D stimuli

are shown below, in Figure 2.4. Furthermore, the DFF theory accounts for data from

Christman, Kitterle, and Hellige (1991). The authors showed that frequency processing

differences between the hemispheres are not absolute, but instead relative to the frequency

band relevant for solving the current task. The DFF theory hypothesizes that the visual

system first chooses the most relevant frequencies, before having different preferences on

those frequencies. This allows the model flexibility in capturing the relative frequency

effect. Finally, their model accounts for the categorical and coordinate spatial relations.
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Figure 2.4: Taken from Ivry & Robertson (1998), this diagram shows 1D hierarchical
stimuli. Due to comptuational constraints, the authors used these stimuli in lieu of Navon
figures as were used in Sergent (1982).

They showed their computational model (illustrated in Figure 2.3) could account for the bar

and dot experiment from Kosslyn et al. (1989), though it is worth noting they encoded this

task in 1D rather than encoding the exact psychological task.

The main weakness of the DFF theory is that there is no neurological basis for the core

mechanisms of the DFF theory, nor is there a developmental explanation of how or why
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this phenomenon would emerge (see Cipollini, 2014 for an in-depth discussion). The DFF

theory may account for much of the data, but there is not a reason to believe it actually

occurs in the brain.

Competing with the DFF theory is our Differential Encoding (DE) model (Hsiao, Shah-

bazi, & Cottrell, 2008; Hsiao, Cipollini, & Cottrell, 2013). This model has accounted for

many of the same data, but via specific biological mechanisms and a plausible neurodevel-

opmental cause. We go into more detail below.

2.3 The Differential Encoding Model

Figure 2.5: Taken from Hsiao et al. (2013), this diagram shows the autoencoder models
with varying connection spreads and symmetric connectionsn.

The Differential Encoding (DE) model is another explanation for human visual lateral-

ization (Hsiao et al., 2008; Hsiao et al., 2013). It is inspired by an anatomical difference in

the auditory system’s long range lateral connections (LRLCs). Similar to that in the visual

system, lateralization in the auditory system results in an RH advantage on low-frequency

information (prosody) and LH advantage on high-frequency information (content) (Ley &

Bryden, 1982; Ivry & Robertson, 1998). On average, a LH neuron connects to neighbors

generally farther from itself than the RH neurons do (Galuske, Schlote, Bratzke, & Singer,

2000). This effect occurs in the language-specific processing of auditory signals, rather
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than in the primary auditory areas (Galuske et al., 2000), consistent with the task-level, but

not stimulus-level, lateralization noted in Kitterle et al. (1990).

The DE model hypothesizes these LRLCs as the driving factor behind visual lateraliza-

tion as well. Lateralization of LRLCs has not yet been observed in the visual system, but

there is reason to believe it exists (as detailed in Hsiao et al, 2013). Compared to the DFF

theory, the DEmodel has the advantage of having neurodevelopmental and neuroanatomical

plausibility (Cipollini, 2014).

Computationally, the Differential Encoding model is a standard 3-layer neural network

which can be thought of as a recurrent neural network unrolled one step in time. The first

set of connections is a sparse autoencoder, trained on natural images, to represent how a

stimulus might be represented in the early stages of the brain using low level processing

such as Gabor filters. Each neuron in the autoencoder corresponds to a spatial location,

and it connects to 5 other neurons generated randomly from a Gaussian centered around the

neuron itself. The LH and RH networks vary merely by the standard deviation, or sigma

parameter, of the Gaussian, to mimic the lateralized connection spread of the LRLCs, shown

in Figure 2.5. Note that this differs from a Gaussian receptive field. The Gaussian controls

the location of connections, not their value.

The hidden units are trained to reproduce natural image patches via backpropagation

(Williams & Hinton, 1986). Once trained, the hidden units are then connected to separate

task-specific output units that are trained by the delta rule to perform some task. In this

way, the information represented by the hidden layer is tested as to what tasks it is best at.

2.3.1 Results from Hsiao et al. (2013)

Hsiao et al. (2013) established key properties of the Differental Encoding model. They

showed that the model accounts for the same simplified 1D stimuli used in Ivry &Robertson

(1998) as well as the full, 2D hierarchical letters used in Sergent (1982). The authors also
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compared natural image reconstruction of the RH autoencoder to that of the LH autoencoder.

They found that the RH preserves the low spatial frequency information better, whereas the

LH preserves high spatial frequency information better. The RH network also reconstructs

high-pass filtered stimuli with better performance, whereas the LH network reconstructs

low-pass filtered stimuli with better performance. They conclude that the LH autoencoders

are biased to reproduce high spatial frequency information; likewise for RH autoencoders

and low spatial frequency information. This is consistent with Sergent’s (1982) theory that

frequency differences underlie this lateralization, though this property arises naturally in

the DE model (in contrast, the DFF theory directly incorporates it).

As Kosslyn and colleagues have suggested (e.g. Baker et al., 1999), the distinction

between categorical and coordinate stimuli may stem from a difference in frequency in-

formation. Therefore, we test the network on Slotnick et al. (2001)’s stimuli to further

establish the relationship between our model and frequency lateralization, as well attempt

to reach parity with the DFF theory on these stimuli.

Chapter 2, in part, is a reprint of the material as it appears in Vision Sciences Society

2017. Prasad, Vishaal; Cipollini, Ben; Cottrell, GarrisonW., St. Pete Beach, FL. The thesis

author was the primary investigator and author of this paper.

Chapter 2, in part, has been submitted for publication of the material as it may appear in

Proceedings of Cognitive Science Society, 2017, Prasad, Vishaal; Cipollini, Ben; Cottrell,

Garrison W., London, UK, 2017. The thesis author was the primary investigator and author

of this paper.



Chapter 3

Experimental Methods and Results

The goal of this work was originally to implement the Slotnick et al. (2001) results

into the Differential Encoding framework. In the process, we found it necessary to test

further frequency encoding properties of the DE, to anchor certain lines of analysis about

the Slotnick results. This chapter therefore includes methods, results, and discussion for the

Slotnick analysis as well as these ancillary analyses.

3.1 Establishing Crossover Points for the Differential

Encoding Model

Hsiao et al. (2013) noted that the RHmodel encodes more information at lower frequen-

cies, whereas the LH model encodes more at higher frequencies. We empirically tested this

by looking at the reproductions of natural images from the autoencoder corresponding to

each hemisphere. The natural images were 68 pixels high by 50 pixels wide patches taken

from the van Hateren natural images dataset (van Hateren & van der Schaaf, 1998). We

would expect that if the RH model encodes more information at lower frequencies, then its

noisy reconstruction of the image would lose less information at lower frequencies relative

16
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Figure 3.1: In reconstructing the stimulus image, the RH network encodes more information
at lower spatial frequencies, whereas the LH encodes more at higher spatial frequencies.
This figure is similar to Figure 7b from Hsiao et al. (2013).

to the LH model, and vice-versa at higher frequencies.

Figure 3.1 shows this to be exactly the case, for a network trained on natural images. On

the x-axis is the spatial frequency; on the y-axis is the increase in information encoded by

the RH versus the LH, in terms of log (power+1). At about 10 cycles per image (CPI), the

RH encodes about 1% more log power. In Figure 3.1, the solid blue line indicates the mean

difference. The dashed red line indicates the standard deviation at each point, but we are

simply interested in the trend line as a motivation for this section. Therefore, the standard

deviation was Gaussian smoothed with a sigma parameter of 0.50 to keep the figure clean.

From Figure 3.1, we observe the RH model’s reconstruction preserves more lower

frequency information, based on the positive y-axis value. Similarly, the LH model’s

reconstruction preserves more higher frequency information. There is a crossover point at

about 12-13 CPI where the two models encode about the same data. However, this graph is
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for a particular set of sigma values (RH: 4 pixels, LH: 15 pixels) with a particular number of

connections (5), for a particular stimulus size (68x50). We might be interested in assessing

how these three factors interact.

3.1.1 Procedure

To that end, we tested how the crossover point varies across three factors. Specifically,

using an autoencoder trained on image patches of van Hateren natural images, we tested

its neurons’ responsiveness to a set of frequency gratings of 8 orientations, 8 phases, and

24 frequencies (van Hateren & van der Schaaf, 1998). If a neuron is responsive to a

specific frequency, then we should observe different output activity for different phases and

orientations at a given frequency. In contrast, suppose it provides the same output, strong

or weak, to all phases and orientations at a particular frequency. Then, that neuron does not

discriminate at that frequency range.

Therefore, we took the standard deviation of each neuron’s activations across all 64

gratings of a frequency, as a measure of its responsiveness to that frequency. We then took

the mean of all neurons’ responsiveness, to represent that network’s (i.e. for a particular

sigma value) overall responsiveness to a frequency. In this way, we are able to judge how

discerning a given model configuration – based on image size, number of connections, and

sigma – is at different spatial frequencies.

3.1.2 Results and Discussion

Figure 3.2 provides the results of our experiment. The upper and lower rows correspond

to 34x25 and 68x50 image sizes, respectively; the left and right columns correspond to

networks with 5 and 20 connections respectively. For a given plot, the x-axis is the spatial

frequency in cycles per image (CPI), and the y-axis is the output activity (as described in

Chapter 3), scaled so that the highest value is 1. Lighter/ redder lines correspond to smaller
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(a) 34x25 image size, 5 connections (b) 34x25 image size, 20 connections

(c) 68x50 image size, 5 connections (d) 68x50 image size, 20 connections

Figure 3.2: There are four plots shown here, each corresponding to a different number of
connections and image size. Within a plot, there are a number of sigma values chosen. Each
curve represents the network’s scaled output activity on gratings at that spatial frequency.

sigma networks (i.e. RH networks), and blacker lines correspond to larger sigma networks

(i.e. LH networks).

We can see a few trends across the four plots. As expected, the larger sigma networks

(LH) encode more information at higher spatial frequencies. Interestingly, however, as the

number of connections increases, the RH advantage at lower frequencies decreases (and

even reverses for very low frequencies) – for this reason, we chose 5 connections in our

results for the Slotnick et al. (2001) replication experiments.

Notably, the crossover point location shifts from about 9 CPI on 34x25 images to about
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15 CPI on 68x50 images. This result is interesting, because it in effect encodes the relative

frequency effect as outlined in Christman, Kitterle, and Hellige (1991) and coded into the

DFF theory (Ivry & Robertson, 1998). Stimulus size can, in effect, be thought of as visual

acuity. Higher visual acuity means that more information in a scene can be represented.

This is analogous to a larger stimulus size, which provides more space to encode images.

Higher levels of the visual processing system decrease in visual acuity, which suggests that

the relative frequency effect may reduce to the location wherein the visual processing is

occurring (Sergent, 1983; Hopf et al., 2006).

3.2 Replicating Slotnick et al. (2001)

3.2.1 Stimuli

The stimuli used in the 2001 study are reproduced in Figure 3.3 for convenience. To

recap, there are three types of stimuli: blob/dot, plus/minus, and paired squares. All three

stimulus types involve coordinate tasks. Blob/dot requires an evaluation of how far apart the

blob and dot are, and plus/minus likewise requires an evaluation of how far apart the plus

and minus are. The paired squares task, in contrast, requires judging whether the two sets of

paired squares are equidistant or not. The former two stimulus types also have categorical

tasks. The blob/dot categorical task requires evaluating whether the dot is on the blob or

off of it, and the plus/minus categorical task requires evaluating whether the plus is on the

right or the left. There is no categorical task for paired squares.

Our implementation of the stimuli is shown in Figure 3.4. They were implemented as

bitmaps, following the images published in the original paper as best possible. In accordance

with the methods laid out in Hsiao et al. (2013), the stimuli were implemented as 34 pixels

high by 25 pixels wide. However, an issue emerged. A 34x25 pixel image simply did not

afford us enough space to accurately recreate the irregular surface of the blob. Therefore,
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Figure 3.3: This figure was taken directly from Slotnick et al. (2001). Note that paired
squares only had a coordinate task, whereas blob/dot and plus/minus have both categorical
and coordinate.

Figure 3.4: This figure illustrates our implementation of the Slotnick et al. (2001) stimuli.

we simply implemented this stimulus to be twice as large in each dimension – 68 pixels

high by 50 wide.
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The paired squares stimulus had a similar problem: the squares of interest were simply

too small. Not only was performance very poor, in later experiments involving bandpass

filtering on the stimuli (detailed below), the squares would disappear. It became apparent

that they needed to be of larger size. Consequently, we modified the stimulus such that

the bar was horizontal, and the squares varied on the y-axis rather than the x-axis. This

ameliorated the issue of stimulus degradation without fundamentally altering the task.

The simulation was implemented in MATLAB. All code is open source1.

3.2.2 The Computational Model

The DE computational model consists of two parts, as detailed in Chapter 2. In the

first part, a sparse autoencoder learns to create noisy reconstructions of van Hateren natural

images (van Hateren & van der Schaaf, 1998). This step transforms the stimulus in a

manner similar to how higher levels of visual processing may represent a stimulus. In the

second part, a perceptron is trained to distinguish a task – for example, whether the dot is

on the blob or off of it. The stimulus, e.g. of a blob and dot, is noisily reconstructed by the

autoencoder before being fed into the perceptron.

The train set and the test set for the perceptron were both the same. Consequently, high

levels of regularization are used, as detailed in the next subsection. Error was given by the

sum-squared error (SSE) between the perceptron output (real-valued between 0 and 1) and

the true label (0 or 1). As in past experiments (e.g. Dailey, Cottrell, Padgett, & Adolphs,

2002; Hsiao et al., 2013), this error can be thought of as the uncertainty of the network and

compared to human reaction time.
1https://github.com/guruucsd/DifferentialEncoding/releases/tag/slotnick
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3.2.3 Model Parameters

Due to the varying resolutions, the experiment sizes had different hyper-parameters.

Of particular interest, the 34x25 images had a RH and LH standard deviation (sigma) of

4 and 10 pixels respectively; the 68x50 had 4 and 15. Results were stable across the

choice of sigma, provided a large enough difference in the two sigma values. For both

image sizes, each neuron had five connections per hidden unit, with one hidden unit per

pixel of the image. We used dropout of 0.7 (Srivastava, Hinton, Krizhevsky, Sutskever, &

Salakhutdinov, 2014) and introduced Gaussian noise, with sigma = 0.5 and mean = 0, on

the input, to avoid overfitting on these smaller datasets. A relatively high dropout was used

as the model otherwise performed exceedingly well on the plus/minus tasks. Results were

stable among reasonable configurations of all of these parameters, so we believe our results

are general to the task and not specific to our setup.

The human experiment used 100 LH subjects and 124 RH subjects; however, 54 hemi-

spheres of patients deemed abnormal or otherwise compromised (e.g. those with parietal

lobe tumors) were excluded (Slotnick et al., 2001). We followed the same analyses done in

the human experiment, and in an attempt to roughly match statistical power, we instantiated

each hemisphere in our computational model 100 times.

3.2.4 A Key Methodological Difference from Hsiao et al. (2013)

There is one noteworthy methodological difference between the analyses carried out in

Hsiao et al. (2013) and the analyses done here. In the former, the authors used an early

stopping criterion based on objective error to avoid overfitting on the data. In this work,

the DE model incorporates regularization in the form of dropout and in noise (see Bishop,

1995, for an exploration of noise as a regularizer). Consequently, instead of using training

loss as the stopping criterion, we train both networks for the same amount of iterations. The

autoencoder ran for 50 iterations to minimize the difference between the original image and
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its reconstruction. The perceptron ran for 100 iterations, minimizing the error between the

true label (e.g. a 1 indicating that the plus is on the right of the minus) and its prediction, a

real-valued number in [0, 1].

3.2.5 Results and Discussion

Figure 3.5: Differential Encoding results follow the overall Slotnick et al. (2001) results
for task x hemisphere interactions. Note that the left/right labels refer to the hemisphere
deactivated, and lower is better. Hence, for example, the first graph in the first row shows
that the left hemisphere is better at the Categorical blob/dot task. Also note that hemispheric
performance, not absolute performance, was relevant, so y-axes were re-scaled to emphasize
slope.

We now look to compare the performance of the Differential Encoding model to the

human results on the stimuli presented in Slotnick et al. (2001). Figure 3.5 compares the

performance of the Differential Encoding model to the human data. Error is given by the

sum-squared error (SSE) between the perceptron output (real-valued between 0 and 1) and

the true label (0 or 1). The DE results in Figure 3.5 are scaled so each figure has a y-axis of
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range 0.01. This allows for slope – the measure of lateralization and the result of interest –

to be compared visually.

It may appear that the DE results do not follow the human data perfectly, but the key

concepts are hit. Categorical blob/dot, coordinate blob/dot, and categorical plus/minus all

showed the LH advantage as in the original paper. Note that categorical blob/dot shows

weak lateralization, yet among every configuration and in every instance tested, the LH

lateralization remains. Figure 3.6 shows categorical blob/dot run with 200 (instead of

100) instantiations; we see that with enough statistical power, the LH advantage on this

stimulus from the Slotnick paper is, in fact, replicated. Crucially, the anomalous result

in the original paper is maintained: categorical blob/dot is not more LH-dominant than

coordinate blob/dot. Running a repeated-measures ANOVA gives an F-score of 1.200

(p>0.25). This is the result that contradicts Kosslyn’s hypothesis.

Figure 3.6: With more statistical power via 200 runs, we see from the standard error bars
that the LH advantage on categorical blob/dot is in fact significant across both easy and
hard configurations.

Coordinate plus/minus shows no lateralization, as in the original paper. Further-
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more, categorical plus/minus has a stronger LH lateralization than coordinate plus/minus

(F=12.96, p<0.001). These results all follow the human data laid out in Slotnick et al.

(2001).

Paired squares on first glance appears to have reverse lateralization as in the human

data. However, paired squares was extremely volatile across small changes of parameters,

showing large error bars, and that advantage disappears or reverses spontaneously. This is

made clear by the large standard error bars in the plots. Slotnick et al. (2001) reported

RH lateralization on this stimulus had only marginal statistical significance (p<0.1) in their

results as well. Therefore, while we will look to investigate this stimulus further, that it did

not show LH dominance suffices for now.

The middle and bottom rows in Figure 3.5 show the results of the human data and the

DE model for easy and hard subsets respectively. Our model replicates the results fairly

well. But before further analyzing the results, we take a closer look into Slotnick et al.’s

(2001) difficulty stratification, in order to understand which relationships across difficulty

are crucial to replicate.

3.2.6 Revisiting Slotnick’s Stratification

Slotnick et al. (2001) directly measured lateralization in a subject by having them

perform the task after one hemisphere had been temporarily deactivated as part of a routine

presurgical evaluation for treatment of intractable epilepsy. This meant the authors could

only run their experiments once. When their data did not align with Kosslyn’s hypothesis,

they conducted a post-hoc analysis of the data to explain the results. The crucial conclusion

of this analysis is that lateralization follows prevailing wisdom only if the task is difficult

enough.

We find reasons to doubt Slotnick et al.’s conclusions. First, there are critical inconsis-

tencies in their figures. If the easy and hard instances of a task both lateralize in the same
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direction, then combining all trials together should as well. Yet, as shown in Figure 3.5,

coordinate plus/minus overall does not lateralize, though its easy and difficult subsets did.

In particular, for the left hemisphere injected results, both the easy and the hard results are

greater than the overall result.

In addition, most of the stratifications between easy and hardwere not built in a principled

manner and therefore lack validity. Slotnick et al. (2001) state that the stratification of the

paired squares task was simply an empirical heuristic, as there was no fundamental way of

differentiating easy and hard stimuli. They instead chose "easy" to be the stimuli where the

distances between the two pairs of squares are different. Likewise, they chose "hard" to be

the stimuli that had the equal distances. As these were the two categories the subjects were

differentiating between (i.e., "different" vs. "same"), this stratification is ill-conceived.

Similarly, they note that no analogous concept of difficulty really exists for categorical

stimuli, so they simply used the same division as their coordinate counterparts.

The coordinate blob/dot methodology is well-principled and the results are internally

consistent. Yet the other tasks are not, and if we are to take difficulty stratification as the

explanation for coordinate blob/dot results, we expect that effect to carry over to all stimuli.

This was not convincingly shown. Consequently, we search for an alternate explanation for

these results.

We suggest the original assumption from Kosslyn et al. (1992) is incorrect. If the

general RH-dominance of coordinate stems from known spatial frequency patterns, then

the anomalous coordinate blob/dot result is perplexing. Spatial frequency lateralization

is well-established, and the coordinate and categorical judgments are certainly task-based.

But if coordinate and categorical judgments are not beholden to specific spatial frequencies

profiles, then it is can simply be that something else drives lateralization in coordinate and

categorical stimuli, and that factor is absent in coordinate blob/dot. Therefore, we look to

empirically test the connection between spatial frequencies and categorical and coordinate
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relations.

3.3 Bandpass Filtering the Slotnick Stimuli

Kosslyn et al. (1992) argued that lateralization in categorical and coordinate processing

can be reduced to lateralization in spatial frequency processing, via neuronal receptive

fields. However, scarce data directly supports the assertion that spatial frequencies drive

performance on categorical and coordinate stimuli. With the DE model, we can test this

assertion directly. We have shown that the DE model accounts for several spatial frequency

properties. Therefore, if spatial frequencies truly drive performance, we expect for this fact

to be reflected in the performance of the DE model.

For example, consider the claim that a categorical task contains more task-relevant

information at high spatial frequencies than a coordinate task does. We run a stimulus

(e.g. blob/dot) through a bandpass filter at lower spatial frequencies (e.g. [0 CPI, 8 CPI]).

According to Kosslyn et al. (1992), the categorical version of this task ("Is the dot on or off

of the blob?") lost more-task relevant information than the coordinate version ("Is the dot

more than 3 pixels away from the blob?"). Therefore, we also expect performance of the

perceptron on categorical to suffer more on this particular bandpass window. The opposite

should be true at a window centered at a higher frequency: coordinate should suffer more

if the bandpass filter is at higher spatial frequencies.

It is important to contrast this procedure to the work done in Cowin and Hellige (1994)

and Okubo and Michimata (2002). In those works, the authors manipulated spatial fre-

quencies to test how lateralization on coordinate and categorical processing is affected.

In contrast, this procedure tests the interaction between spatial frequencies and network

performance on coordinate/categorical stimuli in general. While the choice of hemisphere

may change the absolute performance on a given task, we expect that the task-specific

frequencies remain constant. Our goal, therefore, is to assess whether there are patterns of
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network performance degradation across categorical and coordinate stimuli consistent with

Kosslyn et al.’s (1992) hypothesis. Specifically, we look for a greater drop in performance on

categorical stimuli with bandpass windows centered at lower frequencies, compared to the

drop in performance on coordinate stimuli. We expect the opposite at higher frequencies.

3.3.1 Procedure

We test Kosslyn et al.’s (1992) hypothesis by bandpass filtering the Slotnick et al.

(2001) stimuli and seeing how performance varies based on frequency window. We train

the autoencoder on the full broadband van Hateren natural images as usual (van Hateren

& van der Schaaf, 1998). However, we do not train the perceptron on the full broadband

Slotnick et al. (2001) stimuli. Instead, we use a bandpass filter on the stimuli and feed

the filtered stimuli into the autoencoder. The perceptron is the same as always: it learns

to distinguish, for example, between the dot being on the blob or off of it. However, the

autoencoder’s reconstruction of the blob/dot image will be different due to the bandpass

filter. After a particular configuration finishes running, we run slide the window over into

a new frequency window and re-run the same process.

We chose a bandpass width of 4 CPI for 34x25 stimuli and 8 CPI for 68x50 stimuli

and used bandpass step of 1 CPI and 2 CPI respectively. Therefore, the 34x25 experiments

(paired squares, plus/minus) had windows of [0 CPI, 4 CPI], [1, 5], etc. all the way to [13,

17]. The 68x50 experiments (blob/dot) had windows [0, 8], [2, 10], etc. all the way to [26,

34]. For each experiment, we measured the average network performance for each bandpass

window and plotted the results. Therefore, each experiment had a graph where an (x, y)

pair corresponds to the center of the bandpass filter and the SSE of the model respectively.

Results were agnostic to a host of parameter choices, including bandpass width (within

reason) and dropout. As mentioned earlier, we used a bandpass width of 4 CPI and 8

CPI for 34x25 and 68x50 images respectively. We let dropout = 0.7, as with the previous
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experiments. As hypothesized, results were also agnostic to our choice of sigma. We chose

sigma = 4 for these experiments.

3.3.2 Results and Discussion

Our results in Figure 3.7 contradict Kosslyn et al.’s (1992) hypothesis. Each graph

in Figure 3.7 corresponds to a specific stimulus and task. The x-axis corresponds to the

center of the bandpass window – 2 CPI corresponds to a [0 CPI, 4 CPI] window for a

34x25 image, and 4 CPI corresponds to a [0 CPI, 8 CPI] window for a 68x50 image. The

y-axis corresponds to the performance (in SSE) of the DE model at that particular bandpass

window. The data points are linearly interpolated.

Coordinate paired squares is almost parabolic with a minimum around 10 CPI. Coor-

dinate plus/minus is largely agnostic to frequencies, whereas categorical shows a bimodal

preference, with the stronger one at higher spatial frequencies. Categorical blob/dot per-

formed equally well at the windows centered from 10 to 18 CPIs, whereas coordinate

performed best in the window centered at 10 CPIs and was locally parabolic around that

area. Outside of these frequency ranges, critical image features are lost and both networks

perform similarly poorly.

From Figure 3.7, it is clear that there is no unifying trend in these results. We expected

to see that categorical stimuli, compared to coordinate stimuli, would see a greater drop in

performance at bandpass windows centered around lower frequencies. Coordinate stimuli,

compared to categorical stimuli, should see a greater drop in performance at higher frequen-

cies. Neither of these is the case. In fact, it is not clear that there is any clear trend among

the two categorical experiments or the three coordinate experiments. For example, both

coordinate plus/minus and categorical blob/dot (in relevant ranges) show no little difference

in performance in all frequency ranges where image features are retained. These results

dispute the notion that categorical stimuli and coordinate stimuli are differentiated by their
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Figure 3.7: A comparison of the Differential Encoding network’s frequency preferences,
based on network accuracy on a task using bandpasses centered around a certain frequency.
We would expect, if categorical and coordinate processing were based on spatial frequency
profiles, for there to be a consistent pattern between increased performance on categorical
in HSFs and increased performance on coordinate in LSFs. We do not see this pattern.

task-relevant frequencies.

An image consists of more than simply spatial frequencies. From these results, we

cannot rule out that Kosslyn and his colleagues were correct about spatial frequencies
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partly driving lateralization in coordinate and categorical processing. However, our results

lead us to question spatial frequencies as the sole explanation for this dichotomy. If they

were, then retaining the hypothesized task-relevant frequencies should lead to a smaller drop

in performance in the DE model than retaining the frequencies that are not task-relevant.

This is not the case.

As stated in Okubo and Michimata (2002), the LH categorical advantage is tenuous. As

shown in Slotnick et al. (2001) and replicated in this work, the RH coordinate advantage

does not always present either. We also have shown that the proposed mechanism driving

lateralization in categorical and coordinate processes does not fit with the DE model.

Consequently, we argue that a re-examination of categorical and coordinate processing is

warranted.

Chapter 3, in part, has been submitted for publication of the material as it may appear in

Proceedings of Cognitive Science Society, 2017, Prasad, Vishaal; Cipollini, Ben; Cottrell,

Garrison W., London, UK, 2017. The thesis author was the primary investigator and author

of this paper.



Chapter 4

Conclusion and Future Steps

We show in this paper that the DE model replicates human data on the categorical

and coordinate dichotomy, and we call into question the analysis of Slotnick et al. (2001)

in explaining their coordinate blob/dot results. Our results follow theirs, which suggests

the anomalous result is not merely a methodological flaw as the authors presupposed.

Their analysis that difficulty mediates lateralization on coordinate/categorical is flawed.

As such, we suggest instead that the RH advantage on coordinate processing is simply

absent on this stimulus. This simpler explanation dovetails with the observation that the

LH advantage on categorical processing is tenuous (Okubo &Michimata, 2002). This calls

for a reexamination into or reinterpretation of the dichotomy of coordinate and categorical

processing.

We also show that, despite replicating experiments on spatial frequencies well, the DE

model doesn’t behave strictly in accordance with them on the stimuli from Slotnick et al.

(2001). If indeed there exists a fundamental difference between coordinate and categorical

spatial relations, our results also call into question Kosslyn’s hypothesis about coordinate

and categorical processing reducing to frequency processing. Spatial frequencies certainly

play a large role in lateralized frequency processing, but they are not necessarily the only

factor at play. If that is the case, then the DFF theory will not sufficiently account for

33



visual lateralization. In contrast, the DE model has the flexibility to account for frequency

processing results while simultaneously not being beholden to them.

Okubo & Michmata (2002) provide some support to Kosslyn’s hypothesis about fre-

quency processing differences driving the categorical and coordinate split by contrast-

balancing their stimuli. In light of the DE model’s spatial frequency-agnostic results on

the Slotnick et al. (2001) stimuli, we look to test the model on the same contrast-balanced

stimuli and investigate if the model accounts for that data.

In addition, we have shown that DEmodels of a larger sigma encodemore information at

higher spatial frequencies, and vice-versa for smaller sigmas. Furthermore, this relationship

is mediated by stimulus size; as image size increases, so too does the spatial frequency at

which the LH networks (with a larger sigma) outperform the RH networks. This provides

us with the neurologically plausible explanation that the relative frequency effect results

from lateralization in different cortical areas. Accordingly, we plan to investigate whether

or not image size can convincingly account for the relative frequency effects in our model.

If we can account for the relative frequency effect and contrast balancing, we have

superseded the DFF theory with a model that is biologically grounded and is informative

about experiments to run in the biology and psychology.

Chapter 4, in part, has been submitted for publication of the material as it may appear in

Proceedings of Cognitive Science Society, 2017, Prasad, Vishaal; Cipollini, Ben; Cottrell,

Garrison W., London, UK, 2017. The thesis author was the primary investigator and author

of this paper.
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