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LINEAR MODELS BASED ON NOISY DATA
AND THE FRISCH SCHEME

LIPENG NING∗, TRYPHON T. GEORGIOU† , ALLEN TANNENBAUM‡, AND

STEPHEN P. BOYD§

Abstract. We address the problem of identifying linear relations among variables based on noisy
measurements. This is, of course, a central question in problems involving “Big Data.” Often a key
assumption is that measurement errors in each variable are independent. This precise formulation
has its roots in the work of Charles Spearman in 1904 and of Ragnar Frisch in the 1930’s. Various
topics such as errors-in-variables, factor analysis, and instrumental variables, all refer to alternative
formulations of the problem of how to account for the anticipated way that noise enters in the
data. In the present paper we begin by describing the basic theory and provide alternative modern
proofs to some key results. We then go on to consider certain generalizations of the theory as well
applying certain novel numerical techniques to the problem. A central role is played by the Frisch-
Kalman dictum which aims at a noise contribution that allows a maximal set of simultaneous linear
relations among the noise-free variables –a rank minimization problem. In the years since Frisch’s
original formulation, there have been several insights including trace minimization as a convenient
heuristic to replace rank minimization. We discuss convex relaxations and certificates guaranteeing
global optimality. A complementary point of view to the Frisch-Kalman dictum is introduced in
which models lead to a min-max quadratic estimation error for the error-free variables. Points of
contact between the two formalisms are discussed and various alternative regularization schemes are
indicated.

1. Introduction. The standard paradigm in modeling is to postulate that mea-
sured quantities contain a contribution of “accidental deviation” [41] from the other-
wise “uniformities” that characterize an underlying law. Therefore, a key issue when
identifying dependencies between variables is how to account for the contribution of
noise in the data. Various assumptions on the structure of noise and of the possible
dependencies lead to a number of corresponding methodologies.

The purpose of the present paper is to consider from a modern computational
point of view, the important situation where the noise components are assumed in-
dependent, and the consequences of this assumption –the data is typically abstracted
into a corresponding (estimated) covariance statistic. This independence assumption
underlies the errors-in-variables model [11, 26] and factor analysis [3, 29, 19, 21, 37],
and has a century-old history [16, 35, 27]; see also [22, 23, 31, 44, 17, 40, 2, 15].
Accordingly, given the large classical literature on this problem, this paper will also
have a tutorial flavor.

The precise formulation has its roots in the work of Ragnar Frisch in the 1930’s.
The central assumption is that the noise components are independent of the under-
lying variables and are also mutually independent [22, 23]. In addition, since several
alternative linear relations are typically consistent with the data, a maximal set of
simultaneous dependencies is sought as a means to limit uncertainty and to provide
canonical models [22, 23]. This particular dictum gives rise to a (non-convex) rank-
minimization problem. Thus, it is somewhat surprising that the special case where
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the maximal number of possible simultaneous linear relations is equal to 1 can be ex-
plicitly characterized –this was accomplished over half a century ago by Reiersøl [35];
see also [22, 26]. To date no other case is known that admits a precise closed-form
solution.

In recent years, emphasis has been shifting from hard, non-convex optimization
to convex regularizations, which in addition scale nicely with the size of the problem.
Following this trend we revisit the Frisch problem from several alternative angles. We
first present an overview of the literature, and present several new insights and proofs.
In the process, we also give an extension of Reiersøl’s result to complex matrices.
Our main interest is in exploring recently studied convex optimization problems that
approximate rank minimization by use of suitable surrogates. In particular, we study
iterative schemes for treating the general Frisch problem and focus on certificates that
guarantee optimality. In parallel, we consider a viewpoint that serves as an alternative
to the Frisch problem where now, instead of a maximal number of simultaneous linear
relations, we seek a uniformly optimal estimator for the unobserved data under the
independence assumption of the Frisch scheme. The optimal estimator is obtained
as a solution to a min-max optimization problem. Rank-regularized and min-max
alternatives are discussed and an example is given to highlight the potential and
limitations of the techniques.

The remainder of this paper is organized as follows. We first introduce the errors-
in-variables problem in Section 3. In Section 4, we revisit the Frisch problem, and a
related problem due to Shapiro, and provide a geometric interpretation of Reiersøl’s
result along with a generalization to complex-valued covariances. In Section 5, we
present an iterative trace-minimization scheme for solving the Frisch problem and
provide computable lower-bounds for the minimum-rank. In Section 7, we bring up
the question of estimation in the context of the Frisch scheme and motivate a suitable
a rank-regularized min-max optimization problem in Section 8.2. Some concluding
remarks are provided in Section 10.

2. Notation.

R(·), N (·) range space, null space
ΠX orthogonal projection onto X
> 0 (≥ 0) positive definite (resp., positive semi-definite)
Sn = {M |M ∈ Rn×n, M =M ′}
Sn,+ = {M |M ∈ Sn, M ≥ 0}
Hn = {M |M ∈ Cn×n, M =M∗}
Hn,+ = {M |M ∈ Hn, M ≥ 0}
[·]kℓ, ([·]k) (k, ℓ)-th entry (resp., k-th entry)
|M | determinant of M ∈ Rn×n

n+(·) number of positive eigenvalues
diag : Rn×n → Rn :M 7→ d where [d]i = [M ]ii for i = 1, . . . n
diag∗ : Rn → Rn×n : d 7→ D where D is diagonal and [D]ii = [d]i for i = 1, . . . n
M ≻

e
0 (�

e
0, ≺

e
0, �

e
0) the off-diagonal entries are > 0 (resp. ≥ 0, < 0, ≤ 0),

or can be made so by changing the signs of selected
rows and corresponding columns

3. Data and basic assumptions. Consider a Gaussian vector x taking values
in Rn×1 having zero mean and covariance Σ. We assume that it represents an additive
mixture of a Gaussian “noise-free” vector x̂ and a “noise component” x̃, thus

x = x̂+ x̃. (3.1)
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The entries of x̃ are assumed independent of one another and independent of the
entries of x̂ with both vectors having zero mean and covariances Σ̂ and Σ̃, respectively.
Thus,

E(x̃x̃′) =: Σ̃ is diagonal (3.2a)

E(x̂x̃′) = 0. (3.2b)

Throughout E(·) denotes the expectation operation and 0 denotes the zero vector/matrix
of appropriate size. The noise-free entries of x̂ are assumed to satisfy a set of q simul-
taneous linear relations. Hence, M ′x̂ = 0, with M ∈ Rn×q and n > rank(M) = q > 0.
The problem is mainly to infer these relations. Equivalently, E(x̂x̂′) =: Σ̂ has

rank(Σ̂) = n− q (3.2c)

and Σ̂M = 0. Statistics are typically estimated from observation records. To this
end, consider a sequence

xt ∈ R
n×1, t = 1, . . . , T

of independent measurements (realizations) of x and, likewise, let x̂t and x̃t represent
the corresponding values of the noise-free variable and noise components. Denote by

X =
[

x1 x2 . . . xT
]

∈ R
n×T

the matrix of observations of x and similarly denote by X̂ and X̃ the corresponding
matrices of the noise-free and noise entries, respectively. Data for identifying relations
among the noise-free variables are typically limited to the observation matrix X and,
neglecting a scaling factor of 1/T , the data is typically abstracted in the form of a
sample covariance XX ′. For the most part we will assume that sample covariances
are accurate approximations of true covariances, and hence the modeling assumptions
amount to

X̃X̃ ′ ≃ diagonal (3.3a)

X̂X̃ ′ ≃ 0 (3.3b)

rank(X̂) = n− q (3.3c)

since M ′X̂ = 0.

The number of possible linear relations among the noise free variables and the
corresponding coefficient matrix need to be determined from either X or Σ. This
motivates the Frisch and Shapiro problems discussed in Section 4. An alternative
set of problems can be motivated by the need to determine X̂ from X via suitable
decomposition

X = X̂ + X̃ (3.4)

in a way that is consistent with the existence of a set of q linear relations. We will
return to this in Section 8.

4. The problems of Frisch and Shapiro. We begin with the Frisch problem
concerning the decomposition of a covariance matrix Σ that is consistent with the
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assumptions in Section 3. The fact that, in practice, Σ is an empirical sample covari-
ance motivates relaxing (3.2a-3.2c) in various ways. In particular, relaxation of the
constraint Σ̃ ≥ 0 leads to the Shapiro problem.

Problem 1 (The Frisch problem). Given Σ ∈ Sn,+, determine

mr+(Σ) := min{rank(Σ̂) | Σ = Σ̃ + Σ̂,

Σ̃, Σ̂ ≥ 0, Σ̃ is diagonal}. (4.1)

Problem 2 (The Shapiro problem). Given Σ ∈ Sn,+, determine

mr(Σ) := min{rank(Σ̂) | Σ = Σ̃ + Σ̂,

Σ̂ ≥ 0, Σ̃ is diagonal}. (4.2)

The Frisch problem was studied by several researchers, see e.g., [23, 31, 44, 45]
and the references therein. On the other hand, Shapiro [37] introduced the above
relaxed version, removing the requirement that Σ̃ ≥ 0, in an attempt to gain under-
standing of the algebraic constraints imposed by the off-diagonal elements of Σ on
the decomposition. We refer to mr+(·) as the Frisch minimum rank and mr(·) as
the Shapiro minimum rank. The former is lower semicontinuous whereas the latter
is not, as stated next. This difference is crucial if one wants to apply this type of
methodology to real data, namely some sort of continuity is necessary.

Proposition 1. mr+(·) is lower semicontinuous whereas mr(·) is not.
Proof: Assume that for a given Σ > 0 there exists a sequence Σ1, Σ2, . . . of

positive definite matrices such that Σi → Σ while

mr+(Σi) < mr+(Σ) = r, for all i = 1, 2, . . . .

Decompose Σi = Σ̂i + Di with rank(Σ̂i) < r, Σi ≥ Di ≥ 0 and Di diagonal. Then
there exist convergent subsequences Σ̂ik → Σ̂ and Dik → D, as k → ∞. Since

Σik → Σ̂ +D = Σ, by the lower semicontinuity of the rank,

rank(Σ̂) ≤ lim
k→∞

inf rank(Σ̂ik) < r = mr+(Σ).

This is a contradiction. On the other hand, to see that mr(·) is not lower semicontin-
uous consider

Σ =





3 −1 −1
−1 3 0
−1 0 3



 and Σǫ =





3 −1 −1
−1 3 ǫ
−1 ǫ 3



 , Σ̂ǫ =





1
ǫ −1 −1
−1 ǫ ǫ
−1 ǫ ǫ





for ǫ > 0. Clearly mr(Σ) = 2. Also limǫ→0 Σǫ = Σ. Yet Σǫ = Σ̂ǫ +Dǫ while Σǫ has
rank 1 and Dǫ is diagonal (6≥ 0). Hence mr(Σǫ) = 1.

Assuming that the off-diagonal entries of Σ > 0 of size n × n are known with
absolute certainty, any “minimum rank” (mr+(·) and mr(·)) is bounded below by the
so-called Lederman bound, i.e.,

2n+ 1−
√
8n+ 1

2
≤ mr(Σ) ≤ mr+(Σ), (4.3)
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which holds on a generic set of positive definite matrices Σ, that is, on a (Zariski
open) subset of positive definite matrices. Equivalently, the set of matrices Σ for
which mr(Σ) is lower than the Lederman bound is non-generic –their entries satisfy
algebraic equations which fail under small perturbation. To see this, consider any
factorization

Σ = FF ′,

with F ∈ Rn×r. There are (n−r)r+ r(r+1)
2 independent entries in F (when accounting

for the action of a unitary transformation of F on the right), whereas the value of the

off-diagonal entries of Σ impose n(n−1)
2 constraints. Thus, the number of independent

entries in F exceeds the number of constraints when (n − r)2 ≥ n + r which then

leads to the inequality 2n+1−√
8n+1

2 ≤ r. The bound was first noted in [29] while the
independence of the constraints has been detailed in [4]. In general, the computation
of the exact value for mr+(Σ) and mr(Σ) is a non-trivial matter. Thus, it is rather
surprising that an exact analytic result is available for both, in the special case when
r = n− 1. We review this next in the form of two theorems.

Theorem 2 (Reiersøl’s theorem [35]). Let Σ ∈ Sn,+ and Σ > 0, then

mr+(Σ) = n− 1 ⇔ Σ−1 ≻
e
0.

Theorem 3 (Shapiro’s theorem [38]). Let Σ ∈ Sn,+ and irreducible,

mr(Σ) = n− 1 ⇔ Σ �
e
0.

The characterization of covariance matrices Σ for which mr+(Σ) = n−1 was first
recognized by T. C. Koopmans in 1937 [27] and proven by Reiersøl [35] who used the
Perron-Frobenius theory to improve on Koopmans’ analysis. Later on, R. E. Kalman
streamlined and completed the steps in [22] relying again on the Perron-Frobenius
theorem (see also Klepper and Leamer [26] for a detailed analysis). Our treatment
below takes a slightly different angle and provides some geometric insight by pointing
as a key reason that the maximal number of vectors at an obtuse angle from one
another can exceed the dimension of the ambient space by at most one (Corollary 4).
We provide new proofs where we also utilize a dual formulation with an analogous
decomposition of the inverse covariance.

4.1. A geometric insight. We begin with two basic lemmas for irreducible
matrices in M ∈ Sn,+. Recall that a matrix is reducible if by permutation of rows
and columns can be brought into a block diagonal form, otherwise it is irreducible.

Lemma 4.1. Let M > 0 and irreducible. Then,

M �
e
0 ⇒M−1 ≻

e
0. (4.4)

Lemma 4.2. Let M ≥ 0 and irreducible. Then,

M �
e
0 ⇒ nullity(M) ≤ 1. (4.5)

Proof: It is easy to verify that for matrices of size 2×2, (4.4) holds true. Assume
that the statement also holds true for matrices of size up to k× k, for a certain value

5



of k, and consider a matrix M of size (k + 1) × (k + 1) with M > 0 and M �
e
0.

Partition

M =

[

A b
b′ c

]

so that c is a scalar and, hence, A is of size k × k. Partitioning conformably,

M−1 =

[

F g
g′ h

]

where

F = (A− bc−1b′)−1, g = −A−1bh, and h = (c− b′A−1b)−1 > 0.

For the case where A is irreducible, because A has size k×k and A �
e
0, invoking

our hypothesis we conclude that A−1 ≻
e
0. Now, since b has only non-positive entries

and b 6= 0, g = −A−1bh has positive entries. Since −bc−1b′ �
e
0 and A �

e
0, then

A − bc−1b′ �
e
0 is also irreducible. Thus F = (A − bc−1b′)−1 has positive entries by

hypothesis.
For the case where A is reducible, permutation of columns and rows brings A

into a block-diagonal form with irreducible blocks. Thus, A−1 is also block diagonal
matrix with each block entry-wise positive. Because M is irreducible, b must have at
least one non-zero entry corresponding to the rows of each diagonal blocks of A. Then
A− bc−1b′ is irreducible and �

e
0. Also A−1b has all of its entries negative. Therefore

F = (A− bc−1b′)−1 and g = −A−1bh have positive entries. Therefore M−1 ≻
e
0.

Proof: Rearrange rows and columns and partition

M =

[

A B
B′ C

]

so that A is nonsingular and of maximal size, equal to the rank of M . Then

C = B′A−1B. (4.6)

We first show that B′A−1B �
e
0. Assume that A is irreducible. Then A−1 ≻

e
0.

At the same time B has negative entries and not all zero (since M is irreducible). In
this case, B′A−1B ≻

e
0. If on the other hand A is reducible, Lemma 4.1 applied to the

(irreducible) blocks of A implies that A−1 �
e
0. Therefore, in this case, B′A−1B �

e
0.

Returning to (4.6) and in view of the fact that C �
e
0 while B′A−1B �

e
0

we conclude that, either C is a scalar (and hence there are no off-diagonal negative
entries), or both C and B′A−1B are diagonal. The latter contradicts the assumption
that M is irreducible. Hence, the nullity of M can be at most 1.

Lemma 4.2 provides the following geometric insight, stated as a corollary.
Corollary 4. In any Euclidean space of dimension n, there can be at most n+1

vectors forming an obtuse angle with one another.
Proof: The Grammian M = [v′kvℓ]

n+q
k,ℓ=1 of a selection {vk | k = 1, . . . , n+ q} of

such vectors has off-diagonal entries which are negative. Hence, by Lemma 4.2, the
nullity of M cannot exceed 1.

The necessity part of Theorem 3 is also a direct corollary of Lemma 4.2.
Corollary 5. Let Σ ∈ Sn,+ and irreducible. Then

Σ �
e
0 ⇒ mr(Σ) = n− 1.

Proof: Let Σ = Σ̂ + Σ̃, with Σ̃ diagonal and Σ̂ ≥ 0. Σ̂ is irreducible since Σ is
irreducible. From Lemma 4.2, the nullity of Σ̂ is at most 1. Thus mr(Σ) = n− 1.

6



4.2. A dual decomposition. The matrix inversion lemma provides a corre-
spondence between an additive decomposition of a positive-definite matrix and a de-
composition of its inverse, albeit with a different sign in one of the summands. This
is stated next.

Lemma 4.3. Let

Σ = D + FF ′ (4.7)

with Σ, D ∈ Sn,+, with Σ, D > 0 and F ∈ Rn×r. Then

S := Σ−1 = E −GG′ (4.8)

for E = D−1 and G = D−1F (I + F ′D−1F )−1/2. Conversely, if (4.8) holds with
G ∈ Rn×r, then so does (4.7) for D = E−1 and F = E−1G(I −G′E−1G)−1/2.

Proof: This follows from the identity (I ±MM ′)−1 = I ∓M(I∓M ′M)−1M ′.
Application of the lemma suggests the following variation to Frisch’s problem.
Problem 3 (The dual Frisch problem). Given a positive-definite n×n symmetric

matrix S determine the dual minimum rank:

mrdual(S) := min{rank(Ŝ | S = E − Ŝ,

Ŝ, E ≥ 0, E is diagonal}.

Clearly, if S = Σ−1 = E − GG′ (as in (4.8)), then E > 0. Furthermore, a
decomposition of S always gives rise to a decomposition Σ = D + FF ′ (as in (4.7))
with the terms FF ′ and GG′ having the same rank. Thus, it is clear that

mr+(Σ) ≤ mrdual(Σ
−1), (4.9)

and that the above holds with equality when an optimal choice of D ≡ Σ̃ in (4.1) is
invertible. However, if D is allowed to be singular, the rank of the summands FF ′

and GG′ may not agree. This is can be seen using the following example. Take

Σ =





2 1 1
1 2 1
1 1 1



 .

It is clear that Σ admits a decomposition Σ = Σ̃ + Σ̂, in correspondence with (4.7),
where Σ̃ = D = diag{1, 1, 0} while Σ̂ = FF ′ as well as F ′ = [1, 1, 1] are of rank one.
On the other hand,

S = Σ−1 =





1 0 −1
0 1 −1

−1 −1 3



 .

Taking E = diag{e1, e2, e3} in (4.8), it is evident that the rank of

GG′ = E − S =





e1 − 1 0 1
0 e2 − 1 1
1 1 e3 − 3





cannot be less than 2 without violating the non-negativity assumption for the sum-
mand GG′. The minimal rank for the factor G is 2 and is attained by taking
e1 = e2 = 2 and e3 = 5.

7



On the other hand, in general, if we perturb Σ to Σ + ǫI and, accordingly, D to
D + ǫI, then

mrdual((Σ + ǫI)−1) ≤ mr+(Σ), ∀ǫ > 0. (4.10)

Equality in (4.10) holds for sufficiently small value of ǫ. Thus, mr+ and mrdual are
closely related. However, it should be noted that mrdual(·) fails to be lower semi-
continuous since a small perturbation of the off-diagonal entries can reduce mrdual(·).
Yet, interestingly, an exact characterization of the mrdual(S) = n− 1 can be obtained
which is analogous to those for mr+ and mr being equal to n − 1; the condition for
mrdual will be used to prove the Reiersøl and Shapiro theorems.

Theorem 6. For S ∈ Sn,+, with S > 0 and irreducible,

mrdual(S) = n− 1 ⇔ S �
e
0. (4.11)

Proof: If S �
e
0 and E is diagonal satisfying E ≥ S > 0, then E−S = GG′ �

e
0.

By invoking Lemma 4.2 we deduce that if E−S is singular, rank(G) = n− 1. Hence,
mrdual(S) = n− 1.

To establish that mrdual(S) = n − 1 ⇒ S �
e
0, we assume that the condition

S �
e
0 fails and show that mrdual(S) < n − 1. We first argue the case for a 3 × 3

matrix S = [sij ]
3
i,j=1. Provided S 6�

e
0 we can assume that it has strictly negative

off-diagonal entries (which can be done by reflecting the signs of rows and columns).
We now let

ei = sii −
sijski
sjk

for i ∈ {1, 2, 3} and (i, j, k) being permutations of (1, 2, 3). These are all positive. Let
S̃ = diag∗(e1, e2, e3). It can be seen that S̃ − S ≥ 0 while rank(S̃ − S) = 1. To verify
the latter observe that S̃ − S = vv′ for

v′ =
[√
e1 − s11,

√
e2 − s22,

√
e3 − s33

]

.

This establishes the reverse implication for matrices of size 3× 3.
We now assume that the statement holds true for matrices of size up to (n− 1)×

(n − 1) for some n ≥ 4 and use induction. So let S, S̃ be of size n × n with S 6�
e
0

and S̃ diagonal. We need to prove that mrdual(S) < n− 1. We partition

S =

[

A b
b′ c

]

, S̃ =

[

E 0
0 e

]

with A, E being (n− 1)× (n− 1). For any S̃ such that S̃ − S ≥ 0, e cannot be equal
to c, otherwise b = 0 and S is reducible. Further, S̃ − S ≥ 0 if and only if e > c and

M := E − (A+ b(e− c)−1b′) ≥ 0.

The nullity of S̃−S coincides with that of M . To prove our claim, it suffices to show
that Ae := A + b(e − c)−1b′ 6�

e
0, or that Ae is reducible for some e > c. (Since, in

either case, by our hypothesis, the nullity of M for a suitable E exceeds 1.)
We now consider two possible cases where S �

e
0 fails. First, we consider the

case where already A 6�
e
0. Then obviously Ae 6�

e
0 for e − c sufficiently large. The

second possibility is S 6�
e
0 while A �

e
0. But if A is (transformed into) element-wise
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nonnegative, then bb′ must have at least one pair of negative off-diagonal entries.
Then, consider Ae = A+λbb′ for λ = (e− c)−1 ∈ (0,∞). Evidently, for certain values
of λ entries of Ae change sign. If a whole row becomes zero for a particular value of
λ, then Ae is reducible. In all other cases, there are values of λ for which Ae 6�

e
0.

This completes the proof.

4.3. Proof of Reiersøl’s theorem (Theorem 2). We first show that Σ−1 ≻
e
0

implies mr+(Σ) = n − 1. From the continuity of the inverse, (Σ + ǫI)−1 ≻
e
0 for

sufficiently small ǫ > 0. Applying Theorem 6, we conclude that

mrdual((Σ + ǫI)−1) = n− 1.

Since mr+(Σ) ≥ mrdual((Σ + ǫI)−1) as in (4.10), we conclude that mr+(Σ) = n− 1.
To prove that mr+(Σ) = n−1 ⇒ Σ−1 ≻

e
0, we show that assuming Σ−1 6≻

e
0 and

mr+(Σ) = n− 1 together leads to a contradiction. From the continuity of the inverse
and the lower semicontinuity of mr+(·) (Proposition 1), there exists a symmetric
matrix ∆ and an ǫ > 0 such that

(Σ + ǫ∆)−1 6�
e
0, and mr+(Σ + ǫ∆) = n− 1.

Then, from Theorem 6, mrdual((Σ + ǫ∆)−1) < n− 1 while from (4.9)

mr+(Σ + ǫ∆) ≤ mrdual((Σ + ǫ∆)−1).

Thus, we have a contradiction and therefore Σ−1 ≻
e
0. 2

4.4. Proof of Shapiro’s theorem (Theorem 3). Given Σ ≥ 0 consider λ > 0
such that λI−Σ ≥ 0, a diagonal D, and let E := λI−D. Since Σ−D = E−(λI−Σ),

mr(Σ) = mrdual(λI − Σ). (4.12)

If Σ is irreducible and Σ �
e
0, then λI − Σ is irreducible and λI − Σ �

e
0. It follows

(Theorem 6) that mrdual(λI − Σ) = n− 1, and therefore mr(Σ) = n− 1 as well.
For the the reverse direction, if mr(Σ) = n−1 then mrdual(λI−Σ) = n−1, which

implies that λI − Σ �
e
0 and therefore that Σ �

e
0. 2

The original proof in [38] claims that for any Σ ≥ 0 of size n× n with n > 3 and
Σ 6�

e
0, there exists a (n − 1)× (n− 1) principle minor that is 6�

e
0. This statement

fails for the following sign pattern




+ 0 − −

0 + − +
− − + 0
− + 0 +



 .

This matrix can not transformed to have all nonpositive off-diagonal entries, yet all
its 3× 3 principle minors �

e
0.

4.5. Parametrization of solutions under Reiersøl’s and Shapiro’s condi-
tions. For either the Frisch or the Shapiro problem, a solution is not unique in general.
The parametrization of solutions to the Frisch problem when mr+(Σ) = n − 1 has
been known and is briefly explained below (without proof). Interestingly, an analogous
parametrization is possible for Shapiro’s problem and this is given in Proposition 8
that follows, and both are presented here for completeness of the exposition.

Proposition 7. Let Σ ∈ Sn,+ with Σ > 0 and Σ−1 ≻
e
0. The following hold:

9



i) For D ≥ 0 diagonal with Σ−D ≥ 0 and singular, there is a probability vector
ρ (ρ has entries ≥ 0 that sum up to 1) such that (Σ−D)Σ−1ρ = 0.

ii) For any probability vector ρ,

D = diag∗
([

[ρ]i
[Σ−1ρ]i

, i = 1, . . . , n

])

satisfies Σ−D ≥ 0 and Σ−D is singular.

Proof: See [22, 26].

Thus, solutions of Frisch’s problem under Reiersøl’s conditions are in bijective
correspondence with probability vectors. A very similar result holds true for Shapiro’s
problem.

Proposition 8. Let Σ ∈ Sn,+ be irreducible and have ≤ 0 off-diagonal entries.
The following hold:

i) For D diagonal with Σ−D ≥ 0 and singular, there is a strictly positive vector
v such that (Σ−D)v = 0.

ii) For any strictly positive vector v ∈ Rn×1,

D = diag∗
([

[Σv]i
[v]i

, i = 1, . . . , n

])

(4.13)

satisfies that Σ−D ≥ 0 and Σ−D is singular.

Proof: To prove (i), we note that if (Σ − D)v = 0, then v ≻
e
0. To see this

consider (Σ−D + ǫI)−1 for ǫ > 0. From Lemma 4.1,

(Σ−D + ǫI)−1 ≻
e
0

and since v is an eigenvector corresponding to its largest eigenvalue, a power iteration
argument concludes that v ≻

e
0.

To prove ii), it is easy to verify that the diagonal matrix D in (4.13) for v ≻
e
0

satisfies (Σ − D)v = 0. We only need to prove that Σ − D ≥ 0. Without loss of
generality we assume that all the entries of v are equal. (This can always be done by
scaling the entries of v and scaling accordingly rows and columns of Σ.) Since v is a
null vector of Σ−D and since M := Σ−D has ≤ 0 off-diagonal entries

[M ]ii =
∑

j 6=i

|[M ]ij |.

Gersgorin Circle Theorem (e.g., see [43]) now states that every eigenvalue of M lies

within at least one of the closed discs
{

Disk
(

[M ]ii,
∑

j 6=i |[M ]ij |
)

, i = 1, . . . , n
}

. No

disc intersects the negative real line. Therefore Σ−D ≥ 0.

4.6. Decomposition of complex-valued matrices. Complex-valued covari-
ance matrices are commonly used in radar and antenna arrays [42]. The rank of
Σ−D, for noise covariance D as in the Frisch problem, is an indication of the number
of (dominant) scatterers in the scattering field. If this is of the same order as the
number of array elements (e.g., n − 1), any conclusion about their location may be
suspect. Thus, it is natural to seek conditions for mr+(Σ) = n− 1 analogous to those
given by Reiersøl, for the case of complex covariances, as a possible warning. This we
do next.
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Consider complex-valued observation vectors xt = yt + izt, t = 1, . . . T, where
i =

√
−1 and yt, zt ∈ Rn×1, and set

X = [x1, . . . xT ] = Y + iZ

with Y = [y1, . . . yT ], Z = [z1, . . . zT ]. The (scaled) sample covariance is

Σ = XX∗ = Σr + iΣi ∈ Hn,+,

where the real part Σr := Y Y ′ + ZZ ′ is symmetric, the imaginary part Σi := ZY ′ −
Y Z ′ is anti-symmetric, and “∗” denotes complex-conjugate transpose. As before, we
consider a decomposition

Σ = Σ̂ +D

with Σ̂ ≥ 0 singular and D ≥ 0 diagonal. We refer to [1, 8] for the special case where
mr+(Σ) = 1. In this section we present a sufficient condition for a Reiersøl-case where
mr+(Σ) = n− 1.

Before we proceed we note that re-casting the problem in terms of the real-valued

R :=

[

Σr Σi

Σ′
i Σr

]

∈ S2n,+

does not allow taking advantage of earlier results. The structure of R with antisym-
metric off-diagonal blocks implies that if [a′, b′]′ is a null vector then so is [−b′, a′]′
(since, accordingly, a + ib and ia − b are both null vectors of Σ). Thus, in general,
the nullity of R is not 1 and the theorem of Reiersøl is not applicable. Further, the
corresponding noise covariance is diagonal with repeated blocks.

The following lemmas for the complex case echo Lemma 4.1 and Lemma 4.2.
Lemma 4.4. Let M ∈ Hn,+ be irreducible. If the argument of each non-zero

off-diagonal entry of −M is in
(

− π
2n ,

π
2n

)

, then each entry of M−1 has argument in
(

−π
2 + π

2n ,
π
2 − π

2n

)

.
Proof: It is easy to verify the lemma for 2 × 2 matrices. Assume that the

statement holds for sizes up to n×n and consider an (n+1)× (n+1) matrix M that
satisfies the conditions of the lemma. Partition

M =

[

A b
b∗ c

]

with A is of size n× n, and conformably,

M−1 =

[

F g
g∗ h

]

.

By assumption non-zero entries of −A and −b have their argument in
(

− π
2n+1 ,

π
2n+1

)

.
Then, by bounding the possible contribution of the respective terms, it follows that
for the argument of each of the entries of −A+ bc−1b∗ is in

(

− π
2n ,

π
2n

)

. Then, the ar-

gument of each entry of F = (A− bc−1b∗)−1 is in
(

−π
2 + π

2n ,
π
2 − π

2n

)

; this follows by

assumption since F is n×n. Clearly,
(

−π
2 + π

2n ,
π
2 − π

2n

)

⊂
(

−π
2 + π

2n+1 ,
π
2 − π

2n+1

)

.
Regarding g, by bounding the possible contribution of respective terms, we similarly
conclude that the argument of each of its non-zero entries is in

(

−π
2 + π

2n+1 ,
π
2 − π

2n+1

)

.

Lemma 4.5. Let M ∈ Hn,+ be irreducible. If the argument of each non-zero
off-diagonal entry of −M is in

(

− π
2n ,

π
2n

)

, then rank(M) ≥ n− 1.

11



Proof: First rearrange rows and columns of M , and partition as

M =

[

A B
B∗ C

]

so that A is nonsingular and of size equal to the rank of M , which we denote by r.
Then

C = B∗A−1B (4.14)

and has size equal to the nullity of M . We now compare the argument of the off-
diagonal entries of C and B∗A−1B, and show they cannot be equal unless C is a
scalar. Since the off-diagonal entries of −A have their argument in

(

− π
2n ,

π
2n

)

⊂
(

− π
2r ,

π
2r

)

, the off-diagonal entries of A−1 have their argument in
(

−π
2 + π

2r ,
π
2 − π

2r

)

from Lemma 4.4. Now, the (k, ℓ) entry of B∗A−1B is

[B∗A−1B]kℓ =
∑

i,j

[B∗]ki[A
−1]ij [B]jℓ

and the phase of each summand is

arg([B∗]ki[A
−1]ij [B]jℓ) ∈

(

−π
2
+
π

2r
− π

2n−1
,
π

2
− π

2r
+

π

2n−1

)

.

Thus, the non-zero off-diagonal entries of B∗A−1B have positive real part while

arg(−[C]kℓ) ∈
(

− π

2n
,
π

2n

)

.

Hence, either the off-diagonal entries of B∗A−1B and C are zero, in which case these
are diagonal matrices and M must be reducible, or B∗A−1B and C are both scalars.
This concludes the proof.

Theorem 9. Let Σ ∈ Hn,+ be irreducible. If the argument of each non-zero
off-diagonal entry of −Σ is in

(

− π
2n ,

π
2n

)

, then mr(Σ) = n− 1.
Proof: The matrix Σ −D is irreducible since D is diagonal. If Σ−D ≥ 0 and

singular, and since the argument of each non-zero off-diagonal entry of −(Σ −D) is
in

(

− π
2n ,

π
2n

)

, Lemma 4.5 applies and gives that rank(Σ−D) = n− 1.
Clearly, since mr+(Σ) ≥ mr(Σ), under the condition of Theorem 9, mr+(Σ) =

n − 1. It is also clear that for S ∈ Hn,+ irreducible with all non-zero off-diagonal
entries having argument in

(

− π
2n ,

π
2n

)

, we also conclude that mrdual(S) = n− 1.

5. Trace minimization heuristics. The rank of a matrix is a non-convex func-
tion of its elements and the problem to find the matrix of minimal rank within a given
set is a difficult one, in general. Therefore, certain heuristics have been developed over
the years to obtain approximate solutions. In particular, in the context of factor anal-
ysis, trace minimization has been pursued as a suitable heuristic [30, 37, 38] thereby
relaxing the Frisch problem into

min
D:Σ≥D≥0

trace(Σ−D),

for a diagonal matrix D; with a relaxation of D ≥ 0 corresponding to Shapiro’s
problem. The theoretical basis for using the trace and, more generally, the nuclear
norm for non-symmetric matrices, as a surrogate for the rank was provided by Fazel
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etal. [13] who proved that these constitute convex envelops of the rank function on
bounded sets of matrices.

The relation between minimum trace factor analysis and minimum rank factor
analysis goes back to Ledermann in [28] (see [9] and [36]). Herein we only refer to
two propositions which characterize minimizers for the two problems, Frisch’s and
Shapiro’s, respectively.

Proposition 10 ([9]). Let Σ = Σ̂1 +D1 > 0 for a diagonal D1 ≥ 0. Then,

(Σ̂1, D1) = argmin{trace(Σ̂) | Σ = Σ̂ +D > 0, Σ̂ ≥ 0, diagonal D ≥ 0} (5.1a)

⇔ ∃ Λ1 ≥ 0 : Σ̂1Λ1 = 0 and

{

[Λ1]ii = 1, if [D1]ii > 0,
[Λ1]ii ≥ 1, if [D1]ii = 0.

Proposition 11 ([36]). Let Σ = Σ̂2 +D2 > 0 for a diagonal D2. Then,

(Σ̂2, D2) = argmin{trace(Σ̂) | Σ = Σ̂ +D > 0, Σ̂ ≥ 0, diagonal D} (5.1b)

⇔ ∃ Λ2 ≥ 0 : Σ̂2Λ2 = 0 and [Λ2]ii = 1 ∀i.

Evidently, when the solutions to these two problems differ and D1 6= D2, then there
exists k ∈ {1, . . . , n} such that

[D2]kk < 0 and [D1]kk = 0.

Further, the essence of Proposition 11 is that a singular Σ̂ originates from such a
minimization problem if and only if there is a correlation matrix in its null space.
The matrices Λ1 and Λ2 appear as Lagrange multipliers in the respective problems.

Factor analysis is closely related to low-rank matrix completion as well as to sparse
and low-rank decomposition problems. Typically, low-rank matrix completion asks for
a matrix X which satisfies a linear constraint A(X) = b and has low/minimal rank
(A(·) denotes a linear map A : Rn×n → Rp). Thus, factor analysis corresponds to
the special case where A(·) maps X onto its off-diagonal entries. In a recent work
by Recht etal. [34], the nuclear norm of X was considered as a convex relaxation of
rank(X) for such problems and a sufficient condition for exact recovery was provided.
However, this sufficient condition amounts to the requirement that the null space
of A(·) contains no matrix of low-rank. Therefore, since in factor analysis diagonal
matrices are in fact contained in the null space of A(·) and include matrices of low-
rank, the condition in [34] does not apply directly. Other works on low-rank matrix
completion (see, e.g., [34, 6]) mainly focus on assessing the probability of exact re-
covery and on constructing efficient computational algorithms for large-scale low-rank
completion problems [24, 25]. On the other hand, since diagonal matrices are sparse
(most of their entries are zero), the work on matrix decomposition into sparse and
low-rank components by Chandrasekaran etal. [7] is very pertinent. In this, the ℓ1
and nuclear norms were used as surrogates for sparsity and rank, respectively, and a
sufficient condition for exact recovery was provided which captures a certain “rank-
sparsity incoherence”; an analogous but stronger sufficient “incoherence” condition
which applies to problem (5.1b) is given in [36].

5.1. Weighted minimum trace factor analysis. Both mr(Σ) and mr+(Σ) in
(4.1) and (4.2), respectively, remain invariant under scaling of rows and the corre-
sponding columns of Σ by the same coefficients. On the other hand, the minimizers
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in (5.1a) and (5.1b) and their respective ranks are not invariant under scaling. This
fact motivates weighted-trace minimization,

min
{

trace(W Σ̂) | Σ = Σ̂ +D, Σ̂ ≥ 0, diagonal D ≥ 0
}

, (5.2)

given Σ > 0 and a diagonal weight W > 0. As before the characterization of mini-
mizers relates to a suitable condition for the corresponding Lagrange multipliers:

Proposition 12 ([38]). Let Σ = Σ̂0 +D0 > 0 for a diagonal matrix D0 ≥ 0 and
consider a diagonal W > 0. Then,

(Σ̂0, D0) = argmin{trace(W Σ̂) | Σ = Σ̂ +D > 0, Σ̂ ≥ 0, diagonal D ≥ 0} (5.3)

⇔ ∃ Λ0 ≥ 0 : Σ̂Λ0 = 0 and

{

[Λ0]ii = [W ]ii, if [D0]ii > 0,
[Λ0]ii ≥ [W ]ii, if [D0]ii = 0.

A corresponding sufficient and necessary condition for (Σ̂, D) to be a minimizer
in Shapiro’s problem is that there exists a Grammian in the null space of Σ̂ whose
diagonal entries are equal to the diagonal entries of W .

Minimum-rank solutions may be recovered as solutions to (5.3) using suitable
choices of weight. However, these choices depend on Σ and are not known in advance –
this motivates a selection of certain canonical Σ-dependent weight as well as iteratively
improving the choice of weight. One should note that since D is diagonal, letting W
be a not-necessarily diagonal matrix does not change the problem –only the diagonal
entries of W determine the minimizer.

We first consider takingW = Σ−1. A rationale for this choice is that the minimal
value in (5.2) bounds mr+(Σ) from below, since for any decomposition Σ = Σ̂ +D,

rank(Σ̂) = trace(Σ̂♯Σ̂)

≥ trace((Σ̂ +D)−1Σ̂)

= trace(Σ−1Σ̂) (5.4)

where ♯ denotes the Moore-Penrose pseudo inverse. Continuing with this line of
analysis

rank(Σ̂) = trace(Σ̂♯Σ̂)

≥ trace((Σ̂ + ǫI)−1Σ̂) (5.5)

for any ǫ > 0, suggests the iterative re-weighting process

D(k+1) := argmin
D

trace
(

(Σ−D(k) + ǫI)−1(Σ−D)
)

(5.6)

for k = 1, 2, . . . and D(0) := 0. In fact, as pointed out in [14], (5.6) corresponds to
minimizing log det(Σ−D + ǫI) by local linearization.

Next we provide a sufficient condition for Σ̂ to be such a stationary point (5.6),
i.e., for Σ̂ to satisfy

argmin
D

trace
(

(Σ̂ + ǫI)−1(Σ̂−D)
)

= 0. (5.7)
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The notation ◦ used below denotes the element-wise product between vectors or ma-
trices which is also known as Schur product [20] and, likewise, for vectors a, b ∈ Rn×1,
a ◦ b ∈ Rn×1 with [a ◦ b]i = [a]i[b]i.

Proposition 13. Let Σ̂ ∈ Sn,+ and let the columns of U form a basis of R(Σ̂).
If

R(U ◦ U) ⊂ R(ΠN (Σ̂) ◦ΠN (Σ̂)), (5.8)

then Σ̂ satisfies (5.7) for all ǫ ∈ (0, ǫ1) and some ǫ1 > 0.
We first need the following result which generalizes [39, Theorem 3.1].
Lemma 5.1. For A ∈ Rn×p and B ∈ Rn×q having columns a1, . . . , ap and

b1, . . . , bq, respectively, we let

C = [a1 ◦ b1, a1 ◦ b2, . . . , a2 ◦ b1 . . . ap ◦ bq] ∈ R
n×pq,

φ : R
n → R

n d 7→ diag(AA′ diag∗(d)BB′), and

ψ : R
p×q → R

n ∆ 7→ diag(A∆B′).

Then R(φ) = R(ψ) = R((AA′) ◦ (BB′)) = R(C).
Proof: Since diag(AA′ diag∗(d)BB′) = ((AA′) ◦ (BB′))d, it follows that

R(φ) = R((AA′) ◦ (BB′).

Moreover, diag(A∆B′) =
∑p

i=1

∑q
j=1 ai ◦ bj[∆]ij , and then R(ψ) = R(C). We only

need to show that R(C) = R((AA′) ◦ (BB′)). This follows from

(AA′) ◦ (BB′) =
p

∑

i=1

q
∑

j=1

(aia
′
i) ◦ (bjb′j)

=

p
∑

i=1

q
∑

j=1

(ai ◦ bj)(ai ◦ bj)′ = CC′.

Thus R(C) = R((AA′) ◦ (BB′)).
Proof: [Proof of Proposition 13:] Assume that Σ̂ satisfies (5.7). If rank(Σ̂) = r,

let Σ̂ = USU ′ be the eigendecomposition of Σ̂ with S = diag∗(s) with s ∈ Rr. Let
the columns of V be an orthogonal basis of the null space of Σ̂, i.e., ΠN (Σ̂) = V V ′.
Then

(Σ̂ + ǫI)−1 = (Σ̂ + ǫΠR(Σ̂) + ǫΠN (Σ̂))
−1 = (Σ̂ + ǫΠR(Σ̂))

♯ +
1

ǫ
ΠN (Σ̂),

and

arg min
D:Σ̂≥D

trace
(

(Σ̂ + ǫI)−1(Σ̂−D)
)

=

arg min
D:Σ̂≥D

trace
((

ǫ(Σ̂ + ǫΠR(Σ̂))
♯ +ΠN (Σ̂)

)

(Σ̂−D)
)

.

From Proposition 12, (5.7) holds if there is M ∈ Sr,+ such that

diag(VMV ′) = diag
(

ǫ(Σ̂ + ǫΠR(Σ̂))
♯ +ΠN (Σ̂)

)

. (5.9)
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Obviously, if ǫ = 0 M = I satisfies the above equation. We consider the matrix M of
the form M = I +∆. For (5.9) holds, we need diag((Σ̂ + ǫΠR)♯) to be in the range
of ψ for

ψ : Sn → R
n ∆ 7→ diag(V∆V ′).

From Lemma 5.1 that R(ψ) = R(ΠN (Σ̂) ◦ΠN (Σ̂)). On the other hand, since

ǫ(Σ̂ + ǫΠR(Σ̂))
♯ = U diag

([

ǫ

[s]1 + ǫ
, . . . ,

ǫ

[s]r + ǫ

])

U ′,

then diag(ǫ(Σ̂ + ǫΠR(Σ̂))
♯) ∈ R(U ◦ U). So if (5.8) holds, there is always a ∆ such

that M = I + ∆ satisfies (5.9). Morover, it is also required that I + ∆ ≥ 0. Since
the map from ǫ to ∆ is continuous, for small enough ǫ, i.e. in a interval (0, ǫ1) the
condition I +∆ can always be satisfied.

We note that (5.8) is a sufficient condition for Σ̂ to be a stationary point of (5.7)
in both Frisch’s and Shapiro’s settings.

6. Certificates of minimum rank. We are interested in obtaining bounds on
the minimal rank for the Frisch problem so as to ensure optimality when candidate
solutions are obtained by the earlier optimization approach in (5.6).

The following two bounds were proposed in [44], and follow from Theorem 2.
However, both of these bounds require exhaustive search which may be prohibitively
expensive when n is large.

Corollary 14. Let Σ ∈ Sn,+ and Σ > 0. If there is an s1 × s1 principle minor
of Σ whose inverse is positive, then

mr+(Σ) ≥ s1 − 1. (6.1a)

If there is an s2 × s2 principle minor of Σ−1 which is element-wise positive, then

mr+(Σ) ≥ s2 − 1. (6.1b)

Next we discuss three other bounds that are computationally more tractable –
the first two were proposed by Guttman [18]. Guttman’s bounds are based on a
conservative assessment for the admissible range of each of the diagonal entries of
D = Σ− Σ̂.

Proposition 15. Let Σ ∈ Sn,+ and let

D1 := diag∗(diag(Σ))

D2 :=
(

diag∗(diag(Σ−1))
)−1

.

Then the following hold,

mr+(Σ) ≥ n+(Σ−D1) (6.1c)

mr+(Σ) ≥ n+(Σ−D2). (6.1d)

Further, n+(Σ−D1) ≤ n+(Σ−D2).
Proof: The proof follows from the fact that Σ ≥ D implies D ≤ D2 ≤ D1. See

[18] for details.
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It is also easy to see that mr(Σ) ≥ n+(Σ−D1) which provides a lower bound for
the minimum rank in Shapiro’s problem. Next we return to a bound, which we noted
earlier in (5.4).

Proposition 16. Let Σ ∈ Sn,+. Then the following holds:

mr+(Σ) ≥ min
Σ≥D≥0

trace(Σ−1(Σ−D)). (6.1e)

Proof: The statement follows readily from (5.4).
Evidently an analogous statement holds for mr(Σ). We note that (6.1c) and

(6.1d) remain invariant under scaling of rows and corresponding columns, whereas
(6.1e) does not, hence these two cannot be compared directly.

7. Correspondence between decompositions. We now return to the decom-
position of the data matrixX = X̂+X̃ as in (3.4) and its relation to the corresponding
sample covariances. The decomposition of X into “noise-free” and “noisy” compo-
nents implies a corresponding decomposition for the sample covariance, but in the
converse direction, a decomposition Σ = Σ̂ + Σ̃ leads to a family of compatible de-
compositions for X , which corresponds to the boundary of a matrix-ball. This is
discussed next.

Proposition 17. Let X ∈ Rn×T , and Σ := XX ′. If

Σ = Σ̂ + Σ̃ (7.1)

with Σ̂, Σ̃ symmetric and non-negative definite, there exists a decomposition

X = X̂ + X̃ (7.2a)

for which

X̂X̃ ′ = 0, (7.2b)

Σ̂ = X̂X̂ ′, (7.2c)

Σ̃ = X̃X̃ ′. (7.2d)

Further, all pairs (X̂, X̃) that satisfy (7.2a-7.2d) are of the form

X̂ = Σ̂Σ−1X +R1/2V, X̃ = Σ̃Σ−1X −R1/2V, (7.3)

with

R := Σ̂− Σ̂Σ−1Σ̂ (7.4a)

= Σ̃− Σ̃Σ−1Σ̃ (7.4b)

= Σ̂Σ−1Σ̃

= Σ̃Σ−1Σ̂,

and V ∈ Rn×T such that V V ′ = I, XV ′ = 0.
Proof: The proof relies on a standard lemma ([10, Theorem 2]) which states

that if A ∈ Rn×T , B ∈ Rn×m with m ≤ T such that AA′ = BB′, then A = BU for
some U ∈ Rm×T with UU ′ = I. Thus, we let A := X ,

S :=

[

Σ̂ 0

0 Σ̃

]

,

17



and B :=
[

I I
]

S1/2, where S1/2 is the matrix-square root of S. It follows that there
exists a matrix U as above for which A = BU , and therefore we can take

[

X̂

X̃

]

:= S1/2U.

This establishes the existence of the decomposition (7.2a).
In order to parameterize all such pairs (X̂, X̃), let Uo be an orthogonal (square)

matrix such that

XUo = [Σ1/2 0].

Then X̂Uo and X̃Uo must be of the form

X̂Uo =:
[

X̂1 ∆
]

, X̃Uo =:
[

X̃1 −∆
]

, (7.5)

with X̂1, X̃1 square matrices. Since

[

X̂

X̃

]

[

X̂ ′ X̃ ′] =

[

Σ̂ 0

0 Σ̃

]

,

then

X̂1X̂
′
1 +∆∆′ = Σ̂ (7.6a)

X̂1X̃
′
1 −∆∆′ = 0 (7.6b)

X̃1X̃
′
1 +∆∆′ = Σ̃. (7.6c)

Substituting X̂1X̃
′
1 for ∆∆′ into (7.6a) and using the fact that X̃1 = X1 − X̂1 with

X1 = Σ1/2 we obtain that

X̂1 = Σ̂Σ−1/2.

Similarly, using (7.6c) instead, we obtain that

X̃1 = Σ̃Σ−1/2.

Substituting into (7.6b), (7.6a) and (7.6c) we obtain the following three relations

∆∆′ = Σ̂Σ−1Σ̃

= Σ̂− Σ̂Σ−1Σ̂

= Σ̃− Σ̃Σ−1Σ̃.

Since ∆∆′ and the Σ’s are all symmetric,

∆∆′ = Σ̃Σ−1Σ̂

as well. Thus, ∆ = R1/2V1 with V1V
′
1 = I. The proof is completed by substituting

the expressions for X̂1 and ∆ into (7.5).
Interestingly,

rank(R) + rank(Σ) = rank

([

Σ̂ Σ̂

Σ̂ Σ

])

= rank

([

Σ̂ 0

0 Σ̃

])

= rank(Σ̂) + rank(Σ̃),

18



and hence, the rank of the “uncertainty radius” R of the corresponding X̂ and X̃-
matrix spheres is

rank(R) = rank(Σ̂) + rank(Σ̃)− rank(Σ).

In cases where identifying X̂ from the data matrix X , different criteria may be used
to quantify uncertainty. One such is the rank of R while another is its trace, which is
the variance of estimation error in determining X̂. This topic is considered next and
its relation to the Frisch decomposition highlighted.

8. Uncertainty and worst-case estimation. The basic premise of the decom-
position (7.1) is that, in principle, no probabilistic description of the data is needed.
Thus, under the assumptions of Proposition 17, R represents a deterministic radius
of uncertainty in interpreting the data. On the other hand, when data and noise
are probabilistic in nature and represent samples of jointly Gaussian random vectors
x, x̂, x̃ as in (3.1 - 3.2a), the conditional expectation of x̂ given x is E{x̂|x} = Σ̂Σ−1x,
while the variance of the error

E{(x̂− Σ̂Σ−1x)(x̂− Σ̂Σ−1x)′} = Σ̂− Σ̂Σ−1Σ̂

= R

is the radius of the deterministic uncertainty set. Either way, it is of interest to assess
how this radius depends on the decomposition of Σ.

8.1. Uniformly optimal decomposition. Since the decomposition of Σ in the
Frisch problem is not unique, it is natural to seek a uniformly optimal choice of the
estimate Kx for x̂ over all admissible decompositions. To this end, we denote the
mean-squared-error loss function

L(K, Σ̂, Σ̃) := trace (E ((x̂−Kx)(x̂−Kx)′))

= trace
(

Σ̂−KΣ̂− Σ̂K ′ +K(Σ̂ + Σ̃)K ′
)

, (8.1)

and define

S(Σ) := {(Σ̂, Σ̃) : Σ = Σ̂ + Σ̃, Σ̂, Σ̃ ≥ 0 and Σ̃ is diagonal}

as the set of all admissible pairs. Thus, a uniformly-optimal decomposition of X into
signal plus noise relates to the following min-max problem:

min
K

max
(Σ̂,Σ̃)∈S(Σ)

L(K, Σ̂, Σ̃). (8.2)

The minimizer of (8.2) is the uniformly optimal estimator gain K. Analogous min-
max problems, over different uncertainty sets, have been studied in the literature [12].
In our setting

min
K

max
(Σ̂,Σ̃)∈S(Σ)

L(K, Σ̂, Σ̃) ≥ max
(Σ̂,Σ̃)∈S(Σ)

min
K

L(K, Σ̂, Σ̃) (8.3a)

= max
(Σ̂,Σ̃)∈S(Σ)

trace
(

Σ̂− Σ̂Σ−1Σ̂
)

(8.3b)

= max
(Σ̂,Σ̃)∈S(Σ)

trace
(

Σ̃− Σ̃Σ−1Σ̃
)

. (8.3c)
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The functions to maximize in (8.3b) and (8.3c) are both strictly concave in Σ̂ and Σ̃.
Therefore the maximizer is unique. Thus, we denote

(Kopt, Σ̂opt, Σ̃opt) := arg max
(Σ̂,Σ̃)∈S(Σ)

min
K

L(K, Σ̂, Σ̃), (8.4)

where, clearly, Kopt = Σ̂optΣ
−1.

In general, the decomposition suggested by the uniformly optimal estimation
problem does not lead to a singular signal covariance Σ̂. The condition for when that
happens is given next. Interestingly, this is expressed in terms of half the candidate
noise covariance utilized in obtaining one of the Guttman bounds (Proposition 15).

Proposition 18. Let Σ > 0, and let

D0 :=
1

2
diag∗

(

diag(Σ−1)
)−1

(8.5)

(which is equal to 1
2D2 defined in Proposition 15). If Σ−D0 ≥ 0, then

Σ̃opt = D0 and Σ̂opt = Σ−D0. (8.6a)

Otherwise,

Σ̃opt ≤ D0 and Σ̂opt is singular. (8.6b)

Proof: From (8.3c),

L(Kopt, Σ̂opt, Σ̃opt) = max
{

Σ̃− Σ̃Σ−1Σ̃ | Σ ≥ Σ̃ ≥ 0, Σ̃ is diagonal
}

≤ max
{

Σ̃− Σ̃Σ−1Σ̃ | Σ̃ is diagonal
}

(8.7)

=
1

2
trace(D0)

with the maximum attained for Σ̃ = D0. Then (8.6a) follows. In order to prove
(8.6b), consider the Lagrangian corresponding to (8.3c)

L(Σ̃,Λ0,Λ1) = trace(Σ̃− Σ̃Σ−1Σ̃ + Λ0(Σ− Σ̃) + Λ1Σ̃)

where Λ0, Λ1 are Lagrange multipliers. The optimal values satisfy

[I − 2Σ−1Σ̃opt − Λ0 + Λ1]kk = 0, ∀ k = 1, . . . , n, (8.8a)

Λ0Σ̂opt = 0, Λ0 ≥ 0, (8.8b)

Λ1Σ̃opt = 0, Λ1 ≥ 0 and is diagonal. (8.8c)

If Σ−D0 6≥ 0 we show that Σ̂opt is singular. Assume the contrary, i.e., that Σ̂opt > 0.

From (8.8b), we see that Λ0 = 0, while from (8.8a), [I − 2Σ−1Σ̃opt]kk ≤ 0. This gives
that

[Σ̃opt]kk ≥ 1

2[Σ−1]kk
= [D0]kk,

for all k = 1, . . . , n, which contradicts the fact that Σ − D0 6≥ 0. Therefore Σ̂opt is

singular. We now assume that Σ̃ 6≤ D0. Then there exists k such that [Σ̃opt]kk >
[D0]kk. From (8.8c) and (8.8a), we have that

[Λ1]kk = 0 and [I − 2Σ−1Σ̃opt]kk ≥ 0
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which contradicts the assumption that [Σ̃opt]kk > [D0]kk. Therefore Σ̃opt ≤ D0 and
(8.6b) has been established.

We remark that while

E ((x̂−Kx)(x̂ −Kx)′) = Σ̂−KΣ̂− Σ̂K ′ +KΣK ′

= (Σ̂Σ− 1
2 −KΣ

1
2 )(Σ̂Σ− 1

2 −KΣ
1
2 )′ + Σ̂− Σ̂Σ−1Σ̂

is matrix-convex in K and a unique minimum for K = Σ̂Σ−1, the error covariance
Σ̂− Σ̂Σ−1Σ̂ may not have a unique maximum in the positive semi-definite sense. To

see this, consider Σ =

[

2 1
1 2

]

. In this case D0 = 3
4I, Σ̂opt =

[

5/4 1
1 5/4

]

, and

Σ̂opt − Σ̂optΣ
−1Σ̂opt =

[

3/8 3/16
3/16 3/8

]

. (8.9)

On the other hand, for Σ̂ =

[

3/2 1
1 3/2

]

, then

Σ̂− Σ̂Σ−1Σ̂ =

[

1/3 1/12
1/12 1/3

]

which is neither larger nor smaller than (8.9) in the sense of semi-definiteness. This
is a key reason for considering scalar loss functions of the error covariance as in (8.1).

Next we note that there is no gap between the min-max and max-min values in
the two sides of (8.3a).

Proposition 19. For Σ ∈ Sn,+, then

min
K

max
(Σ̂,Σ̃)∈S(Σ)

L(K, Σ̂, Σ̃) = max
(Σ̂,Σ̃)∈S(Σ)

min
K

L(K, Σ̂, Σ̃). (8.10)

Proof: We observe that for a fixed K, the function L(K, Σ̂, Σ̃) is a linear
function of (Σ̂, Σ̃). For fixed (Σ̂, Σ̃), the function is a convex function of K. Under
this conditions it is standard that (8.10) holds, see e.g. [5, page 281].

We remark that when D0 = 1
2 diag

∗ (diag(Σ−1)
)−1

is admissible as noise co-

variance, i.e., Σ − D0 ≥ 0, the optimal signal covariance is Σ̂opt = Σ − D0, and

the gain matrix Kopt = Σ̂optΣ
−1 = I − D0Σ

−1 has all diagonal entries equal to 1
2 .

Thus, with Kopt in (8.1) the mean-square-error loss is independent of Σ̂ and equal to
trace

(

KoptΣK
′
opt

)

for any admissible decomposition of Σ.
We also remark that the key condition (Proposition 18)

Σ ≥ 1

2
diag∗

(

diag(Σ−1)
)−1

⇔ 2 diag∗
(

diag(Σ−1)
)

≥ Σ−1

can be equivalently written as Σ−1 ◦ (2I − 11′) ≥ 0, and interestingly, amounts
to the positive semi-definitess of a matrix formed by changing the signs of all off-
diagonal entries of Σ−1. The set of all such matrices, {S | S ≥ 0, S ◦ (2I − 11′) ≥ 0},
is convex, invariant under scaling rows and corresponding columns, and contains the
set of diagonally dominant matrices {S | S ≥ 0, [S]ii ≥

∑

j 6=i |[S]ij | for all i}.
We conclude this section by noting that trace(Ropt), with

Ropt := Σ̂opt − Σ̂optΣ
−1Σ̂opt,
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quantifies the distance between admissible decompositions of Σ. This is stated next.

Proposition 20. For Σ > 0 and any pair (Σ̂, Σ̃) ∈ S(Σ),

trace
(

(Σ̂− Σ̂opt)Σ
−1(Σ̂− Σ̂opt)

′
)

≤ trace(Ropt).

Proof: Clearly 0 ≤ trace(Σ̂− Σ̂Σ−1Σ̂), while from Proposition 19,

L(Kopt, Σ̂, Σ̃) = trace(Σ̂− 2Σ̂optΣ
−1Σ̂ + Σ̂optΣ

−1Σ̂′
opt) (8.11)

≤ trace(Ropt).

Thus, trace(Σ̂Σ−1Σ̂− 2Σ̂optΣ
−1Σ̂ + Σ̂optΣ

−1Σ̂′
opt) ≤ trace(Ropt).

8.2. Uniformly optimal estimation and trace regularization. A decom-
position of Σ in accordance with the min-max estimation problem of the previous
section often produces an invertible signal covariance Σ̂. On the other hand, it is
often the case and it is the premise of factor analysis, that Σ̂ is singular of low rank
and, thereby, allows identifying linear relations in the data. In this section we consider
combining the mean-square-error loss function with regularization term promoting a
low rank for the signal covariance Σ̂ [13]. More specifically, we consider

J = min
K

max
(Σ̂,Σ̃)∈S(Σ)

(

L(K, Σ̂, Σ̃)− λ · trace(Σ̂)
)

, (8.12)

for λ ≥ 0, and properties of its solutions.

As noted in Proposition 19 (see [5, page 281]), here too there is no gap between
the min-max and the max-min, which becomes

max
(Σ̂,Σ̃)∈S(Σ)

min
K

L(K, Σ̂, Σ̃)− λ · trace(Σ̂)

= max
(Σ̂,Σ̃)∈S(Σ)

min
K

trace
(

(1− λ)Σ̂−KΣ̂− Σ̂K ′ +K(Σ̂ + Σ̃)K ′
)

= max
(Σ̂,Σ̃)∈S(Σ)

trace
(

(1− λ)Σ̂− Σ̂(Σ̂ + Σ̃)−1Σ̂
)

(8.13a)

= max
(Σ̂,Σ̃)∈S(Σ)

trace
(

−λΣ+ (1 + λ)Σ̃− Σ̃(Σ̂ + Σ̃)−1Σ̃
)

. (8.13b)

Since (8.13a) and (8.13b) are strictly concave functions of Σ̂ and Σ̃, respectively, there
is a unique set of optimal values (Kλ,opt, Σ̂λ,opt, Σ̃λ,opt).

Proposition 21. Let Σ > 0, D0 = 1
2

(

diag∗ diag(Σ−1)
)−1

, λmin be the smallest

eigenvalue of D
− 1

2

0 ΣD
− 1

2

0 , and (Kλ,opt, Σ̂λ,opt, Σ̃λ,opt) as above, for λ ≥ 0. For any

λ ≥ λmin − 1, Σ̂λ,opt is singular.

Proof: The trace of (−λΣ+(1+λ)Σ̃−Σ̃Σ−1Σ̃) is maximal for the diagonal choice
Σ̃ = (1+ λ)D0. For any λ ≥ λmin − 1, Σ− (1 + λ)D0 fails to be positive semidefinite.
Thus, the constraint Σ− Σ̃ ≥ 0 in (8.13b) is active and Σ̂λ,opt is singular.

Note that Σ− 2D0 6≥ 0 (unless Σ is diagonal), and therefore λmin < 2. Hence, for
λ ≥ 1, Σ̂λ,opt is singular. When λ → 0 we recover the solution in (8.4), whereas for
λ→ ∞ we recover the solution in Proposition 10.
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9. Accounting for statistical errors. From an applications standpoint Σ rep-
resents an empirical covariance, estimated on the basis of a finite observation record
in X . Hence (3.3a) and (3.3b) are only approximately valid, as already suggested in
Section 3. Thus, in order to account for sampling errors we can introduce a penalty
for the size of C := X̂X̃ ′, conditioned so that

Σ = Σ̂ + Σ̃ + C + C′,

and a penalty for the distance of Σ̃ from the set {D | D diagonal}.
Alternatively, we can use the Wasserstein 2-distance [33, 32] between the respec-

tive Gaussian probability density functions, which can be written in the form of a
semidefinite program

d(Σ̂ +D,Σ) = min
C1

(

trace(Σ + Σ̂ +D + C1 + C′
1) |

[

Σ̂ +D C1

C′
1 Σ

]

≥ 0

)

.

Returning to the uncertainty radius of Section 7 and the problem discussed in
Section 8, we note that the problem

maxmin
K

L(K, Σ̂, D) = max trace
(

Σ̂− Σ̂(Σ̂ +D)−1Σ̂
)

can be expressed as the semidefinite program

max
Q

{

trace
(

Σ̂−Q
)

|
[

Q Σ̂

Σ̂ Σ̂ +D

]

≥ 0

}

.

Thus, putting the above together, a formulation that incorporates the various tradeoffs
between the dimension of the signal subspace, mean-square-error loss, and statistical
errors is to maximize

trace(Σ̂−Q)− λ1 trace(Σ̂)− λ2 trace(Σ̂ +D − C1 − C′
1) (9.1)

subject to

[

Q Σ̂

Σ̂ Σ̂ +D

]

≥ 0,

[

Σ̂ +D C1

C′
1 Σ

]

≥ 0, with D ≥ 0 and diagonal.

The value of the parameters λ1, λ2 dictate the relative importance that we place on
the various terms and determine the tradeoffs in the problem.

We conclude with an example to highlight the potential and limitations of the
techniques. We generate data X in the form

X = FV + X̃

where F ∈ Rn×r, V ∈ Rr×T , and X̃ ∈ Rn×T with n = 50, r = 10, T = 100.
The elements of F and V are generated from normal distributions with mean zero
and unit covariance. The columns of X̃ are generated from a normal distribution
with mean zero and diagonal covariance, itself having (diagonal) entries which are
uniformly drawn from interval [1, 10]. The matrix Σ = XX ′ is subsequently scaled so
that trace(Σ) = 1. We determine

(Σ̂, Q,D) = argmax
{

trace(Σ̂−Q)− λ · trace(Σ̂)
}
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subject to

[

Q Σ̂

Σ̂ Σ̂ +D

]

≥ 0, d(Σ̂ +D,Σ) ≤ ǫ, with Σ̂, D ≥ 0 and D diagonal,

and tabulate below a typical set of values for the rank of Σ̂ (Table 1) as a function of
λ and ǫ. We observe a “plateau” where the rank stabilizes at 10 over a small range of
values for ǫ and λ. Naturally, such a plateau may be taken as an indication of a suit-
able range of parameters. Although the current setting where a small perturbation in
the empirical covariance Σ is allowed, the bounds for the rank in (6.1d) and (6.1e) are
still pertinent. In fact, for this example, in 7/10 instances where the rank(Σ̂) = 10
the bound in (6.1d) (computed based on the perturbed covariance Σ̂ +D) has been
tight and it thus a valid certificate. For the same range of parameters, the bound in
(6.1e) has been lower than the actual rank of Σ̂. In general, the bounds in (6.1d) and
(6.1e) are not comparable as either one may be tighter than the other.

❍
❍
❍
❍
❍

λ
ǫ

0 0.08 0.10 0.12 0.14 0.16

1 46 26 24 23 22 22
5 46 17 14 10 10 9
10 45 16 12 10 10 8
20 45 15 12 10 10 8
50 45 15 12 10 10 8
100 45 15 11 10 10 8

Table 1: rank(Σ̂) as a function of λ and ǫ

10. Conclusions. In this paper we considered the general problem of identifying
linear relations among variables based on noisy measurements –a classical problem of
major importance in the current era of “Big Data.” Novel numerical techniques and
increasingly powerful computers have made it possible to successfully treat a number
of key issues in this topic in a unified manner. Thus, the goal of the paper has been to
present and develop in a unified manner key ideas of the theory of noise-in-variables
linear modeling.

More specifically, we considered two different viewpoints for the linear model
problem under the assumption of independent noise. From an estimation viewpoint,
we quantify the uncertainty in estimating “noise-free” data based on noise-in-variables
linear models. We proposed a min-max estimation problem which aims at a uniformly
optimal estimator –the solution can be obtained using convex optimization. From the
modeling viewpoint, we also derived several classical results for the Frisch problem
that asks for the maximum number of simultaneous linear relations. Our results pro-
vide a geometric insight to the Reiersøl theorem, a generalization to complex-valued
matrices, an iterative re-weighting trace minimization scheme for obtaining solutions
of low rank along with a characterization of fixed points, and certain computational
tractable lower bounds to serve as certificates for identifying the minimum rank. Fi-
nally, we consider regularized min-max estimation problems which integrate various
objectives (low-rank, minimal worst-case estimation error) and explain their effective-
ness in a numerical example.

In recent years, techniques such as the ones presented in this work are becoming
increasingly important in subjects where one has very large noisy datasets including
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medical imaging, genomics/proteomics, and finance. It is our hope that the mate-
rial we presented in this paper will be used in these topics. It must be noted that
throughout the present work we emphasized independence of noise in individual vari-
ables. Evidently, more general and versatile structures for the noise statistics can
be treated in a similar manner, and these may become important when dealing with
large databases.

A very important topic for future research is that of dealing with statistical errors
in estimating empirical statistics. It is common to quantify distances using standard
matrix norms –as is done in the present paper as well. Alternative distance measures
such as the Wasserstein distance mentioned in Section 9 and others (see e.g., [32])
may become increasingly important in quantifying statistical uncertainty.

Finally, we raise the question of the asymptotic performance of certificates such
as those presented in Section 6. It is important to know how the tightness of the
certificate to the minimal rank of linear models relates to the size of the problem.
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