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Pain is a subjective experience that alerts an individual to actual or potential tissue

damage. Through mechanisms that are still unclear, normal physiological pain can lose

its adaptive value and evolve into pathological chronic neuropathic pain. Chronic pain is

a multifaceted experience that can be understood in terms of somatosensory, affective,

and cognitive dimensions, each with associated symptoms and neural signals. While

there have been many attempts to treat chronic pain, in this article we will argue that

feedback-controlled ‘closed-loop’ deep brain stimulation (DBS) offers an urgent and

promising route for treatment. Contemporary DBS trials for chronic pain use “open-loop”

approaches in which tonic stimulation is delivered with fixed parameters to a single brain

region. The impact of key variables such as the target brain region and the stimulation

waveform is unclear, and long-term efficacy has mixed results. We hypothesize that

chronic pain is due to abnormal synchronization between brain networks encoding

the somatosensory, affective and cognitive dimensions of pain, and that multisite,

closed-loop DBS provides an intuitive mechanism for disrupting that synchrony. By

(1) identifying biomarkers of the subjective pain experience and (2) integrating these

signals into a state-space representation of pain, we can create a predictive model

of each patient’s pain experience. Then, by establishing how stimulation in different

brain regions influences individual neural signals, we can design real-time, closed-loop

therapies tailored to each patient. While chronic pain is a complex disorder that has

eluded modern therapies, rich historical data and state-of-the-art technology can now

be used to develop a promising treatment.

Keywords: closed-loop stimulation, deep brain stimulation, neuropathic pain, chronic pain, control theory,

somatosensory, affective, cognitive

INTRODUCTION

Chronic pain is a major healthcare problem, and estimates by the CDC suggest that it
affects more people in the US than heart disease, diabetes and cancer combined (CDC,
2016). Central neuropathic pain, defined by the International Association for the Study of
Pain as pain originating from a lesion of the brain or spinal cord, is often refractory to
treatments (IASP)1. Common pharmacological therapies have marginal analgesic benefit, and
so far, modern neuromodulation therapies such as spinal cord or deep brain stimulation
have had limited efficacy over time. Currently, these therapies offer a one-size-fits-all

1IASP Classification of Chronic Pain, 2nd Edn. (Revised) - IASP. Available online at: https://www.iasp-pain.org/

PublicationsNews/Content.aspx?ItemNumber=1673&navItemNumber=677 (Accessed Dec 5, 2017).
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approach that is not optimized for individual neural signatures
of pain. However, we believe that central pain syndromes
are particularly good candidate conditions for personalized
medicine. Each patient’s pain is amultifaceted experience that can
be understood in terms of somatosensory, affective, and cognitive
dimensions, each correlated with activity in different brain
regions (Melzack and Casey, 1968; Melzack, 1999; Figure 1).
We hypothesize that enduring analgesia will be best achieved
by identifying patients’ unique neurophysiological biomarkers
of pain perception across multiple brain regions and providing
tailored, feedback-controlled deep brain stimulation across those
target regions. Importantly, we acknowledge that we seek not to
abolish all pain perception per se, as pain may serve an adaptive
role to averting tissue injury. In this article, we outline prior
approaches to DBS for chronic pain, an approach to identifying
neural biomarkers of pain, and propose strategies to develop a
framework for closed-loop DBS based on control theory and
state-space paradigms.

A BRIEF HISTORY OF DBS FOR PAIN

Chronic pain has been conceptualized as a multidimensional
process for many decades. Opioids, one of the most common
therapies for chronic pain, incidentally provide relief for
somatosensory, affective, and cognitive aspects of pain and target
top down modulation of pain sensation (Zubieta et al., 2001;
Villemure and Bushnell, 2002; Ossipov et al., 2010). However,
most neuromodulatory therapies such as transcranial magnetic
stimulation (TMS) and DBS still focus on a single facet of

FIGURE 1 | The Kanizsa triangle can be used to represent a multidimensional

framework for pain. Pain is an underlying state made apparent by three types

of observable symptoms (somatosensory, affective, and cognitive). Therapies

which selectively address a single facet of pain risk misinterpreting aspects of

symptoms (the “shape” of the symptoms) outside of the context of the larger

pathology. The optimal way to “break” the pain state might lie in modulation (or

“re-orienting”) the facets of pain rather than trying to suppress them (adapted

from https://commons.wikimedia.org/wiki/File:Kanizsa_triangle.svg; Accessed

on March 14, 2018).

pain, originally targeting either somatosensory networks or more
recently targeting affective regions. These therapies and their
outcomes provide insight into the potential and limitations
of addressing centralized pain syndromes as a single-modality
pathology.

DBS for Somatosensory Pain Symptoms
Early efforts at targeting DBS for pain focused on modulating
signals in somatosensory networks. Initial inspiration to target
these brain regions was inspired by Dejérine and Roussy’s
descriptions of post-stroke pain syndrome in patients with
thalamic infarcts involving the spinothalamic pathway (Dejerine
and Roussy, 1906). In an attempt to silence aberrant activity
in somatosensory pathways, patients underwent ablations of
various segments along the spinothalamic tract and the dorsal
thalamus (Wycis and Spiegel, 1949; Tasker, 1990). Eventually,
direct electrical stimulation of the dorsal column (Shealy, 1969),
internal capsule (Adams et al., 1974) and sensory thalamus
(Hosobuchi et al., 1973) provided a reversible alternative to
ablation.

Based on results from intraoperative microstimulation in
humans, several groups designed studies to disrupt neural
signals of different nodes in the somatosensory/nociceptive
network. Since 1969, small case series targeting DBS to
the ventral (or caudal) thalamus (vT), internal capsule, and
periventricular/periaqueductal gray (PVG/PAG) were conducted
with efficacy rates ranging from 23 to 59% (Hosobuchi et al.,
1973; Adams et al., 1974; Levy et al., 2010). To extend these case
series, Medtronic conducted two large, multicenter, randomized
controlled trials in the early 1990s for a heterogeneous group
of chronic pain conditions (Coffey, 2001). All patients were
implanted with bilateral electrodes targeted the vT and PAG.
These trials established the primary endpoint still used by most
modern chronic pain trials: >50% reduction of the pain visual
analog score (VAS) at 1 year. However, they were aborted in the
1990s, largely due to poor enrollment and participant attrition.
Around the same time, the FDA granted Medtronic approval
of DBS for Parkinson’s Disease (PD) and essential tremor and
Medtronic never sought market approval for pain indications.
Common criticisms of Medtronic’s DBS trials for chronic pain
include (1) poor patient selection due to wide heterogeneity of
pain etiologies (i.e., nociceptive pain, neuropathic pain, thalamic
pain, visceral pain, brachial plexus avulsion, unspecified etc.), (2)
a minority of purely neuropathic pain syndromes (∼30%) and
(3) lack of appropriate patient follow up. This study used fixed,
tonic stimulation parameters ranging from 100 to 130Hz which
were manually optimized at the start of the study for each patient.
It remained unclear exactly how electrical stimulation affected
targeted regions, but long-term pain relief waned, likely due to
adaptation of the nervous system to continuous stimulation and
the development of tolerance. Despite this lack of mechanistic
clarity, DBS became a compelling experimental therapy because
it is still preferable to permanent ablation or resection of brain
tissue which has low analgesic efficacy.

Early attempts to stimulate the somatosensory cortex directly
failed to provide pain relief (Hosomi et al., 2015). Instead,
stimulation of the adjacent motor cortex with arrays of electrodes
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has been successfully used to treat pain syndromes such as
pelvic pain (Louppe et al., 2013), trigeminal neuralgia (Brown
and Pilitsis, 2005) and phantom limb pain (Lefaucheur et al.,
2009), presumably by providing feedback inhibition of S1 inputs
(Hosomi et al., 2015). Efficacy rates of motor cortex stimulation
range from 40 to 60% but significant long-term studies are
lacking.

DBS for Affective Pain Symptoms
Based on animal studies implicating limbic system structures
in emotional experience and expression (Papez, 1937; Nauta,
1958), early brain surgery for chronic pain involved anterior
cingulotomy to alleviate pain. Case studies of these patients
described individuals with intact somatosensation, but who
seemed to lack “emotional tension” (Whitty et al., 1952;
Ballantine et al., 1967) and lacked “emotional reactivity” to
pain stimuli (Foltz and White, 1962) without being emotionally
blunted.

The earliest reports of DBS induced analgesia were actually
serendipitous findings from stimulation of septal nuclei in
patients with psychiatric disorders in the 1950’s (Levy et al., 2010).
These findings were not followed up until the 1960’s, when Lewin
andWhitty performed intraoperative stimulation of the cingulate
cortex which produced transient analgesia.

Modulating the affective component of pain reflects a
paradigm shift for DBS in the twenty-first century. Recent
studies measuring cerebral blood flow with positron emission
tomography (PET) or functional magnetic resonance imaging
(fMRI) have specifically identified the dorsal anterior cingulate
(dACC), insula, and dorsolateral prefrontal cortex (DLPFC) as
key substrates underlying subjective pain experience (Coghill
et al., 2003; Wager et al., 2013) of which the ACC may be
specific to the affective component of pain (Rainville et al.,
1997). Animal studies have further corroborated this evidence
by demonstrating a causal role for ACC neurons in mediating
the “aversiveness” of nociceptive stimuli. Fields and colleagues
demonstrated that destructive lesions of the rostral ACC reduce
learned conditioned pain preference in a rat pain assay (Johansen
et al., 2001). Injecting an excitatory amino acid into the ACC,
even in the absence of a noxious pain stimulus, actually
increases conditioned place preference, suggesting that the ACC
is both necessary and sufficient for learning the “unpleasantness”
associated with pain stimuli (Johansen and Fields, 2004).

Two cases of ACC stimulation for spinal cord injury have
shown therapeutic promise (Spooner et al., 2007), and another
recent study demonstrated that stimulation of the anterior
midcingulate cortex produced an attitude of resilience and
“will to persevere (Parvizi et al., 2013).” The first human
clinical trial using open-loop DBS in ACC for chronic pain
showed a significant decrease in pain ratings (Visual Analog
Score) at 1 year with enduring relief at a 2 year time point
(Boccard et al., 2015, 2017). A recent attempt to modulate
the affective dimension of pain with DBS targeting the ventral
striatum/anterior limb of the internal capsule for post stroke
pain did not show improvement in pain scores, but did enhance
measures of mood further implicating basal forebrain regions in
distributed pain circuits (Lempka et al., 2017).

Limitations to Current Approaches
Current clinical paradigms for DBS are all “open-loop” systems,
in which tonic stimulation is continuously applied to a single
brain region. Constraints on electrode location and stimulation
parameters limit the efficacy of open-loop DBS.

Anatomical Limitations

By restricting stimulation to one brain region, traditional
DBS fails to account for the fact that the hallmark of pain
is not based on strong signals in any single one of the
three components of pain (somatosensory, affective, and
cognitive), but a confluence of signals in all three (Figure 1).
We hypothesize that chronic pain is due to abnormal
synchronization between brain networks encoding these
three dimensions of pain. Consequently, effective pain relief
is unlikely to be achieved by blunting a single component;
instead, it will be more effective to decouple and modulate
each of them through multisite stimulation. Below, we propose
the following candidate brain regions as appropriate targets
to test our hypothesis: primary somatosensory cortex (S1,
somatosensory), dorsal anterior cingulate cortex (dACC,
affective), and orbitofrontal cortex (OFC, affective and cognitive)
(Figure 3).

Stimulation Limitations

By restricting stimulation to fixed parameters, an open-loop
strategy cannot take into account the fact that pain for a single
patient is dynamic and comes in many forms. While some
instances of pain are evoked by sensory stimuli, spontaneous and
constant pain states are also influenced by mood and attention
(Villemure and Bushnell, 2002; Bushnell et al., 2013). Based
on personal pain symptoms, abnormal somatosensory signals
will need to be modulated to different degrees than affective
and cognitive signals in a time varying manner. Currently,
stimulation parameters are optimized through trial-and-error by
a healthcare provider by systematically changing variables such
as pulse width, frequency and amplitude to find the settings
that best provide a desired effect. Changes are made on the
timescale of patient visits. Ideally, adaptive stimulation would
change in real-time to match the dynamic changes in a patient’s
pain state.

Temporal Limitations

Tonic, open-loop stimulation also does not account for the
dynamic nature of pain or adaptation of the brain over time. Loss
of therapy over months to years has been attributed to changing
impedance of electrodes and development of scar tissue around
contact sites, though more recent evidence implicates adaptation
of neural activity to tonic stimulation (Romanelli et al., 2004).
A feedback driven stimulation paradigm would ideally account
for such adaptation and adjust the contact site or parameters
of stimulation appropriately. Closed-loop DBS provides flexible
solutions to limitations of open-loop approaches. Below, we
describe a theoretical framework for design of a feedback-
controlled (closed-loop) DBS system to address the multiple
dimensions of chronic pain using state-space control theory.
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APPLYING CONTROL THEORY TO DBS
FOR PAIN

Pain can be studied, understood, and treated through different
levels of abstraction. Prescribing opioids inherently addresses
pain as a chemical process. Here we will address pain as a
network process. Through this lens we will analogize pain to a
dysfunctional signal within an electrical network, which itself is
limited to a few components within the central nervous system.
In this analogy, managing pain can be addressed as a control
systems problem, in which the brain is the component we are
trying to regulate, and the DBS device is the control box. The
availability of different control systems, particularly open-loop
vs. closed-loop devices, leads to different goals and approaches.
However, no artificial system will be a full substitute for a healthy
human pain system, which relies on access to widespread brain
regions to provide pain control that is influenced by mood, social
context, physical modality, emotional valence, attention and
temporal structure. We suggest that both open-loop and closed-
loop strategies should set realistic goals, such as identifying and
preventing both constant and spontaneous pain states and/or
giving patients more control over their pain treatment.

Mapping DBS Onto a Control Framework
We would like to clearly map out the analogy between classic
control schemas and pain control through external devices.
Figure 2A shows the classic layout of a feedback-driven control
system, and Figure 2B shows how different components of DBS
as a medical intervention map onto each role. The system
in question is the brain itself, specifically the pain-related
regions with pathological pain signals. The system output is
an observable biomarker which we hypothesize as giving an
accurate, relevant, and temporally appropriate view into the
patient’s pain state. The sensor is any implanted recording
electrodes (e.g., microwire arrays, ECoG grids, EEG leads),
which records neural signals. The reference signal is the desired
version (pain-free) of the neural signal. A closed-loop device
would compare the sensed neural signals to the reference signal
(measured difference) and trigger the DBS device (controller)
to appropriate corrective stimulation, with the assumption that
stimulation can control the relevant internal state of the patient.

An open-loop system would be limited to the components
in the red box (Figure 2B). Since there is no sensor, the
output of this system is the patient’s self-report of pain. The
healthcare provider compares this self-report to a reference,
pain-free state and can adjust DBS stimulation parameters as
needed. The timescale of updates is clinic visits, and there is no
view into underlying neural signals related to pain. A closed-

loop system (minimally defined as any system with in which
stimulation is based on a sensor readout) gives access to neural
signals that are interpreted as real-time proxies for the patient’s
internal pain state. This readout is fed back and compared to a
reference neural signal. Based on the difference between these
signals, a controller makes responsive, real-time adjustments to
stimulation parameters. It is the hope that closed-loop paradigms
will improve outcomes and reduce side-effects compared to
open-loop paradigms.

State Space Models

State-space representations are used in control engineering
to model systems with multiple inputs, multiple outputs and
latent state variables which can be used to represent dynamic
sequences of brain states (Smith and Brown, 2003; Hsieh and
Shanechi, 2016). Neural state-space representations can consist
of a number of time dependent input variables, such as firing
rates from neurons or local field potentials (LFP) power time
series from multiple recording channels. If the number of
variables (i.e., neurons or electrode contacts) is very large, it
is useful to first reduce the dimensionality of the data to a
set of orthogonal dimensions that describes the phenomena of
interest with fewer variables (Cunningham and Yu, 2014). This
dimensionality reduction is commonly done with tools such
as principal components or factor analysis which can help to
identify latent variables that define a new coordinate system.
Temporal evolution of the neural signal through this coordinate
system can be interpreted as “neural trajectories.”

Recently, state-space representations have been used to
understand the evolution of neural signals from motor cortex
during reaching tasks (Churchland et al., 2006; Shenoy et al.,
2013). The relationships between external triggers (visual reach
target onset, go cue), internal state (movement preparation),
conscious experience (anticipation), and behavior (movement
onset) are intuitive for motor processes, and we argue that
applying state-space analysis to pain dynamics may be similarly
useful. While dynamical systems analysis of movement has so
far mostly relied on single-neuron signals, there are also ample
reports of using LFP from motor cortex to decode movements
and screen cursor location (Flint et al., 2012; Orsborn et al., 2013;
So et al., 2014; Stavisky et al., 2015). Because shifts in pain state
are slow, multiregional neural phenomena, we predict that LFP
changes across multiple brain regions will provide a temporally
appropriate neural report of pain state fluctuations. Multivariate
data such as LFPs frommultiple brain regions can be represented
in a “state-space” for pain (Figure 4). These are particularly
appropriate for analyzing multidimensional phenomena like
dimensions of pain. In the next section, we will outline the
specific nature of the neural signals which can be interpreted as
biomarkers of internal pain states.

Local Field Potentials Are the Most
Tractable Signal for Identifying Biomarkers
for Closed-Loop DBS
Candidate neurophysiological biomarkers for chronic pain can
be derived from three types of signal: single action potentials,
LFP within specific frequency bands, and blood oxygen level
dependent (BOLD) signals.

Single action potentials are the neural signal with the highest
temporal and spatial resolution. However, action potentials
collected from chronically implanted tungsten or silicone probes
are unstable due to probe drift and sensitivity to behavioral
context (i.e. sensory stimulation, arousal state, etc.). Single action
potentials from S1 and ACCwere used in a rodent model of acute
thermal pain to decode a pain state defined through use of a
Hidden Markov Model (Chen et al., 2017). In this experiment,
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FIGURE 2 | Block Diagram schematics of closed-loop control systems. (A) Classical block diagram of a single-input, single-output negative feedback control system,

where the measured output of the system is compared to a reference signal via a closed-loop, to modify the system output and minimize error [adapted from

(Orzetto)]. (B) Example block diagram of a multi-input, multi-output closed-loop DBS system where a pain signal derived from biomarkers is compared to a reference

signal via a feedback loop. Multi-regional stimulation is triggered to bring the system closer into the reference state. The red box highlights elements of an open-loop

paradigm. aAvailable online at: https://upload.wikimedia.org/wikipedia/commons/2/24/Feedback_loop_with_descriptions.svg (Accessed Nov 30, 2017).

signals from the population of single neurons used to computed
baseline and pain states were not stable over even a few trials,
making the chronic computation of a pain state untenable.
Assuming that recorded action potentials from human patients
would experience similar instability, chronic biomarkers based
on these signals are not tractable. A potential work-around would
be to calculate biomarkers based on dynamics from population
neural firing combined with high frequency local field potential,
a promising strategy used in human brain-machine interfaces
(Pandarinath et al., 2017).

Local field potentials represent aggregate population
subthreshold activity among a spatially localized population
of neurons (Buzsáki et al., 2012). While the term LFP usually
refers to signals captured by implanted depth electrodes or
cortical electrodes, LFP is thought to reflect brain oscillations
similar to those captured by intracranial electroencephalography
(iEEG) and magnetoencephalography (MEG). Previous attempts
at decoding subjective pain intensity with resting state EEG
(Schulz et al., 2012) or MEG (Kuo et al., 2017) have used
time-frequency representations of brain oscillations with high
accuracy, supporting the feasibility of using LFP to define a pain
state. Additionally, LFP signals are (1) easier to record than
spikes or evoked potentials over single trials (2) often highly
reproducible within an individual and (3) can be examined by
well-developed signal analysis tools (Bokil et al., 2010). Previous
studies of Parkinson’s disease have successfully used LFP from
depth electrodes and cortical strips to define biomarkers for
tremor and dyskinesia over many days/months, providing
support for the stability and longevity of this signal type
(Hemptinne et al., 2015). In a closed-loop DBS trial for chronic
pain, the healthcare team could record from multiple brain
regions simultaneously to track changes in the multiple parallel
dimensions of pain: somatosensory (S1, vT, insula), affective

(ACC, medial thalamus, and striatum) and cognitive (PFC, OFC,
insula).

Finally, several studies have used blood-oxygen-level
dependent contrast imaging (BOLD signals) to detect and define
pain states in fMRI research (Wager et al., 2013; Lieberman
and Eisenberger, 2015; Reddan and Wager, 2017). BOLD
signal can reflect brain activity at a spatial resolution under
1mm and at a temporal resolution of a few seconds (Goense
et al., 2016), providing excellent whole-brain localization and
temporal tracking of neural activity correlating with pain states.
Unfortunately, these signals are not available in the ambulatory
setting, prohibiting their use in chronic patient therapy. Also,
current closed-loop DBS probes are not MRI compatible, and
it is unclear whether these probes would cause signal artifacts
once they are implanted. However, asking patients to complete a
pre-implantation fMRI study to capture neural signals correlated
with spontaneous and evoked pain would be extremely useful to
direct patient-tailored anatomic targeting of the probe implant.
Ideally, the healthcare team would capture simultaneous fMRI
and EEG signals, which could also inform the initial search for
LFP-based biomarkers (assuming that LFP signals provide a local
view of neural signals more grossly captured in EEG; Huster
et al., 2012).

COMPUTING A PAIN STATE FROM
REGIONAL BIOMARKERS

Pain is a multi-faceted process that can be broken down into
somatosensory, affective, and cognitive components (Melzack
and Casey, 1968). Each component can be associated with
distinct symptoms and brain regions. Importantly, information
processing for each component is not fully segregated, but instead
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involves activity in overlapping neural pathways. Currently,
constellations of somatosensory, affective, and cognitive signs
and symptoms are integrated by healthcare providers to
characterize each patient’s pain state. For example, two patients
with back pain might have different locations and intensities of
pain and might also be more or less bothered and distracted by
that pain. Ideally, a complete description of a patient’s pain state
contains all of these components.

Similarly, neural recordings from different brain regions could
be integrated to provide a multidimensional neural signature
of a patient’s pain state (Figure 3). Through this neural report,
closed-loop brain stimulation becomes a tractable strategy for
addressing dynamic pathological brain states. Based on real-
time representations of a patient’s pain within a neural state
space, a closed-loop system can stimulate different brain regions
to normalize different components of pain. Such a real-time
representation of pain requires accurate and reliable detection
of neural biomarkers for somatosensory, affective, and cognitive
components of pain. Like patient-reported symptoms of pain,
these biomarkers can be thought of as the observable markers of
the pain state.

We argue that using LFP signals from three brain regions—S1,
dACC, and OFC—could be used to calculate multidimensional,
patient-specific pain states (Figure 3). (While we believe these
brain regions are critical sites for detecting pain signals there
are other valuable regions that have been omitted for clarity in
Figure 3). Each patient’s biomarkers will need to be determined
empirically, but prior literature (elaborated below), suggests high
gamma power in S1, high gamma and low alpha power in dACC,
and low alpha power in OFC as reasonable starting points.

Somatosensory Signals
The somatosensory-discriminatory component of pain
encompasses the intensity, location and duration of a noxious
stimulus (“what,” “where,” and “when”). This component of
pain has been the most widely studied and is often modeled
with transient acute painful stimuli such as electric shock or
a phasic thermal or laser pain stimulus lasting a few seconds.
As a first step toward decoding chronic pain states, it may be
helpful to study decoding of acute pain stimuli, though it is
critical to distinguish biomarkers of pain perception from mere
pre-perceptual stimulus processing. Human functional imaging
data point to a widely distributed neural network that is activated
by acute experimental pain perception including the primary and
secondary somatosensory cortex (S1 and S2), insula, ACC, PFC
and thalamus (Coghill et al., 2003; Apkarian et al., 2005; Wager
et al., 2013). However, not all signals can strictly be interpreted
to represent somatosensory perception.

A recent study using magnetoencephalography (MEG) to
identify neural correlates of cutaneous laser evoked pain in
healthy human subjects showed an increase in gamma band
amplitude (65–90Hz) in the contralateral S1 at 200–400ms
post stimulus onset (Gross et al., 2007). This gamma increase
was predictive of subjective pain intensity and persisted when
controlling for stimulus salience or attentional (cognitive) effects
by presenting a stimulus repeatedly (Zhang et al., 2012).
Therefore, gamma activity may represent pain perception and

FIGURE 3 | Pain related brain regions. Key brain regions related to

somatosensory (blue), affective (green), and cognitive (orange) pain

processing. Only regions of interest have been included for clarity.

not just stimulus processing. However, many of these studies
lack non-painful control stimuli, making it possible that gamma
activity reflects somatosensation more generally.

Baseline EEG recordings of patients with chronic neuropathic
pain show increased theta (4–10Hz), alpha (12–20Hz), and
beta (20–30Hz) band power in the insula, frontal cortices, and
anterior cingulate (Sarnthein et al., 2006; Stern et al., 2006)
which may reflect multiple pain dimensions. There is a further
trend toward global slowing with lower peak alpha and theta
frequencies in patients with neuropathic or thermal pain (Boord
et al., 2008) which is not seen in nociceptive pain (Schmidt
et al., 2012). Further, suppression of alpha band oscillations is
commonly reported after acute pain stimuli (further discussion
below, Ploner et al., 2006). Together these data point to band-
limited power changes in S1, insula and thalamus as candidate
biomarkers for somatosensory- discriminative pain perception.

Given the pragmatic need to select a single somatosensory
region from which to derive pain signals, we suggest recording in
S1 rather than vT because cortical regions have higher amplitude
signals and may be more reliable over time. While optimal
somatosensory biomarkers are best determined empirically for
each patient, filtered high gamma power has been a consistent
marker in several studies and provides a reasonable starting
point as a feedback-control signal for closed-loop DBS. After
correlating the relationship of gamma power to patient-reported
pain scores, values for gamma power that reliably distinguish
high pain states from low pain states can be used to define
a high pain-state detection threshold. Then, threshold crossing
of real-time gamma power, in combination with other regional
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FIGURE 4 | A multidimensional state space framework can be used to characterize pain states, reference states, and goals of DBS paradigms. (A) A state space

representing neural activity can be defined along the multiple dimensions of pain: somatosensory, affective and cognitive. For simplicity, a pain state is represented as

a single red zone in the upper right corner, with defined threshold boundaries (dashed red line). The reference (pain-free) state is any region outside the red zone. The

dynamics of neural activity that underlie transition from a pain-free state toward a pain state are shown as neural trajectories (black arrows). During constant baseline

pain, there is a self-sustaining neural trajectory confined to the pain state (spiral arrow). (B) Different paradigms of DBS accomplish different goals. Tonic, open-loop

DBS aims to maintain neural activity in a constant pain-free state (blue arrow). Abortive, patient-triggered or sensor-triggered DBS aims to push neural representations

out of the pain state into the reference state (purple arrows). Closed-loop DBS will ideally deflect neural activity well before entering a pain-state (green arrows).

biomarkers, can be used to automatically activate analgesic
stimulation as needed (see section Pragmatic Considerations for
a Closed-Loop DBS Protocol for details).

Affective Signals
The affective dimension involves the “unpleasantness” of a
stimulus, and is tied to motivation to rid the pain, changes
in mood and anxiety and the degree of suffering (Bushnell
et al., 2013). Brain regions underlying affective encoding were
identified using positron emission tomography (PET) in subjects
undergoing hypnosis to selectively reduce the “unpleasantness”
of acutely painful stimuli (Rainville et al., 1997). While
individuals still felt similar intensity of pain stimuli under
hypnotic suggestion, they were not bothered by these stimuli and
they showed reduced activation of the ACC (but not S1) which
was linearly related to pain unpleasantness. The role of the rostral
ACC in the affective dimension of pain is also corroborated
by a recent large meta-analysis of over 10,000 functional MRI
datasets (Lieberman and Eisenberger, 2015) and animal studies
that support the role of the medial ACC in transition from acute
to chronic pain which has a larger affective component (Nevian,
2017).

Tonic pain stimuli lasting longer than 10min are likely closer
tomodeling chronic pain states, and engage distinct brain regions
from acute pain stimuli (Ploner et al., 2017). EEG recordings in
humans point to increased amplitude of gamma band oscillations
in the cingulate and medial prefrontal cortex after tonic pain
stimuli (Schulz et al., 2015; Li et al., 2016a).

Animal studies also help to identify brain regions and
candidate signals that may serve as affective biomarkers of pain
perception. In a study recording single spikes from S1 and ACC
of rats, a state space model was used to identify neuronal codes
underlying acute painful thermal stimuli that produce a paw
withdrawal reflex (Chen et al., 2017). One key insight from this
study was that population spiking activity from S1 provides better

sensitivity for acute pain prediction, while activity from ACC
provides better specificity suggesting that a subset of neurons
in ACC encode pain information. Simultaneous single neuron
recordings in mice in S1, vT, ACC, and mediodorsal thalamus
(MD) show temporal and lateralized segregation of encoding
of noxious stimuli (Wang et al., 2003). While S1 and vT cells
predominantly fired early and contralateral to the pain stimulus,
MD and ACC cells had long lasting firing which correlates with
the longer time course of pain related anxiety or mood. These
data further support the role of the MD thalamus or ACC in
affective pain processing. Because cortical signals provide easier
surgical access and higher amplitude LFP signals, ACC would be
a reasonable initial brain target.

Cognitive Signals
Cognitive aspects of the pain experience involve implementing
successful coping strategies, pain anticipation/expectations and
behaviors related to attention and distraction (Bushnell et al.,
2013 ). Increased attention to a painful stimulus will increase the
perceived intensity of pain without altering its unpleasantness;
distraction from pain can be analgesic. Further, pain itself often
interferes with attentional processes, making causal inference of
the role of attention difficult. Cognitive strategies that reduce
pain perception such as distraction increase the amplitude of
EEG activity in the DLPFC, orbitofrontal cortex (OFC) and
caudal ACC shortly after a pain stimulus (Moont et al., 2012).
Modulation of the alpha rhythm is widely associated with the
cognitive component of pain. Intracranial recordings in epilepsy
patients suggests that increased attention toward a painful
stimulus is correlated with alpha and beta band activity in the
medial PFC and parasylvian regions that exert a causal influence
over S1; this relationship is the opposite with distraction (Liu
et al., 2011). Similar alpha coherence between PFC and S1 is seen
in ECoGs during pain anticipation (Ohara et al., 2006). Further,
the amplitude of frontocentral alpha correlates with subjective
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expectation of pain relief induced by placebo (Li et al., 2016b).
These observations support the role of perisylvian regions such
as PFC and OFC, and alpha band oscillations in the cognitive
dimension of pain.

Oscillations before the onset of pain can shape the experience
of pain and may serve as a context dependent biomarker of
cognitive control over pain. Two recent studies show that the
amplitude of pre-stimulus alpha oscillations (12–20Hz) over
somatosensory cortex is inversely correlated with pain perception
(Babiloni et al., 2006; Tu et al., 2016). However, multiple
other studies report changes in alpha power of the PFC with
attention and perception of non-painful stimuli, confounding
general interpretation of this effect. Functional imaging and
EEG studies further point to functional connectivity between
the PFC, anterior insula and temporoparietal junction that form
a “salience network” that underlies cognitive control over pain
(Kucyi and Davis, 2015).

Based on the available literature, OFC would be a reasonable
initial target to identify putative pain biomarkers of the cognitive-
evaluative dimension.

Multidimensional Biomarkers for Chronic
Pain
By simultaneously recording intracranial LFPs in multiple brain
regions, it may be possible to identify biomarkers for unique
pain states (spontaneous pain flare, evoked pain, and baseline
pain) that are more sensitive and specific than any single brain
region can provide. Further, frequency band-limited activity
between these brain regions is interpreted to reflect the flow
of information (Ohara et al., 2006; Colgin et al., 2009; Ploner
et al., 2017), more accurate prediction of pain states may result
from calculating phase coherence or amplitude co-modulation
between each region’s signal. Recent evidence suggests phase or
amplitude relationships between different frequency oscillations
within a brain region may also be informative about information
flow (Sarnthein et al., 2006; Shirvalkar et al., 2010; Tort et al.,
2010) as in a model of closed-loop DBS for Parkinson’s Disease
(Hemptinne et al., 2015).

We argue that using LFP signals from three brain regions—S1,
dACC, and OFC—could be used to calculate multidimensional,
patient-specific pain states. Patients’ pain states endogenously
fluctuate through the day, with higher pain experienced at
some time points (e.g., mornings, evenings) and lower pain
states expected during periods of rest, sleep or after medication.
To identify biomarkers of pain-states, we envision a protocol
that involves sampling neural recordings and coincident pain
scores during a wide range of naturally fluctuating chronic pain
states in the ambulatory setting. Once neural data are collected,
they can be transformed to a time-frequency representation
to calculate power spectral density. Then, spectral density
values within bands of interest (theta, alpha, gamma, etc.)
should be used as independent variables to predict pain scores
(dependent variables) (see section Pragmatic Considerations for
a Closed-Loop DBS Protocol). The most predictive variables or
combination thereof would serve as optimal biomarkers from
each brain region.

Ideally, a multidimensional biomarker (based in regions
relevant to dimensions of pain) will define a pain “landscape” that

will distinguish pain states to be avoided from pain-free states
that are desired (see Figure 4). In this theoretical framework,
the next challenge is characterizing the dynamics of how brain
activity in the above regions naturally enters and exits this pain
state. As such, the boundaries of a pain state biomarker can be
established by setting an appropriate threshold. The ideal goal
of a closed-loop DBS paradigm is to prevent the onset of a pain
state, rather than simply aborting it once it has commenced.
By characterizing the causal consequences of different patterns
of brain stimulation, we can determine the optimal stimulation
parameters needed to avoid pain states, at multiple points in
the landscape. Neural activity is adaptive, however, and this pain
landscapemay evolve over timemaking it difficult to define stable
boundaries of pain-free states.

Computing a Reference State
We can define a pain-free reference state with the same protocol
(section Multidimensional Biomarkers for Chronic Pain) used to
define the boundaries of a high pain-state (Figure 4). The role of
a reference state is to define the range of biomarker values which
in turn will guide selection of a threshold to trigger stimulation.
In practice, a “reference” state would reflect any value of the
biomarker below a defined threshold for high-pain (i.e., NRS >

7). In this view reference can simply be interpreted tomean “non-
high pain state.” Empirical data from chronic human recordings
is needed to understand the stability of pain-state detection
thresholds. Higher instability would require more frequent re-
calculation in order to provide a meaningful contrast between
the reference and pain states. Ideally, such a signal would be
usefully stable on the order of months, but it may be reasonable to
perform automated re-calibration monthly or weekly. Potential
lapses in therapeutic stimulation can be recognized by the
patient who can trigger recalibration to update the model. This
updating will entail definition of new pain-state thresholds and
the selection of new stimulation parameters.

Alternatively, a reference state can be interpreted to mean
a “low pain-state” where numerical pain scores would be <3,
for example. The possible utility of separately defining such a
reference state has been suggested by a computational model
for closed-loop control to treat essential tremor in non-human
primates (Santaniello et al., 2011). In this model, investigators
developed a closed-loop control system that automatically
adjusted DBS stimulation amplitude based on the spectral
content of simulated LFPs from a cohort of 100 neurons in the
Vim thalamus. Optimal DBS output to suppress tremor replaced
the tremor-related pathological.

LFP spectrum with LFP patterns similar to those simulated
in a “reference” tremor-free state. Similar approaches may help
control stimulation amplitude in multiple brain regions based on
expected “pain-free” regional LFP spectra.

MODULATING A PAIN STATE WITH
DIFFERENT STIMULATION PARADIGMS

Analogous to how biomarkers are selected to best delimit a pain
state, stimulation parameters must be optimized to best control
the pain state-space trajectory (Figure 4A). The pre-defined goals
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for stimulation control are to either abort or avoid pain states.
The stimulation goal and parameter selection will depend on the
control paradigm: open-loop, patient-triggered, sensor-triggered
(on/off), or true closed-loop.

Open-Loop Stimulation
In an open-loop paradigm, the goal must be to avoid pain
states because there is no sensor available to detect them (which
would be necessary to abort them). Therefore, the stimulation
parameters must be chosen to maintain the neural state in the
pain-free zone (see Figure 4B). We hypothesize that this is best
accomplished by consistently de-coupling the neural signals in
each pain-related region. For example, leads in S1 and ACC could
be alternately pulsed at high gamma frequencies to disrupt the
ability of the two regions to develop pathological coherence. If
only one stimulation site is available, we favor targeting ACC
rather than S1 or OFC, given recent promise in clinical trials
(Boccard et al., 2017). Decoupling ACC from other regions might
be accomplished by tonically inputting local entrainment signals
that would block information flow about inappropriate pain.
Similarly, local decoupling has been proposed as a hypothesized
target for the treatment of hyperkinetic states in DBS for
Parkinson’s Disease (Swann et al., 2016).

Once the stimulation is turned on, the goal is indefinite
avoidance of a pain state. However, onset of the therapeutic effect
may take a few days, as continuous pain states fluctuate on the
time course of days, and we expect the pain dynamics to have
some “inertia.” In a recent trial of open-loop ACC stimulation for
chronic pain (Boccard et al., 2015), there was a wash-in period of
many days for any therapeutic effect.

Patient-Triggered Stimulation
In a patient-triggered paradigm, the goal is to abort pain states
detected by the patient. Effective stimulation must be able to halt
pain quickly, making the therapy more suitable to modulation
of transient, breakthrough pain. Somatosensory signals are the
best candidates for interruption in a single-region stimulation
paradigm because we assume they have faster dynamics and
often begins “upstream” in the pain triggering process. We
theoretically favor targeting ventral thalamus or motor cortex
(adjacent to S1) for single-region, patient-controlled gamma-
frequency stimulation, based on previous partial success of
these therapies (Lima and Fregni, 2008; Keifer et al., 2014).
Long-term tolerance to stimulation seen in previous vT trials
might be prevented by limiting stimulation to brief, patient-
triggered periods. However, because chronic pain can be also
triggered by affective and cognitive events, such as stress
and rumination, a somatosensory-only detection paradigm
leaves patients vulnerable to breakthrough pain. Multi-region
stimulation in S1 and ACC (or OFC) would aim to de-couple
these regions, but the insidious time course of pain dynamics in
ACC and OFC may belie optimal control of breakthrough pain.
Prior work with “preventative” devices for epilepsy had a 40%
failure rate in preventing seizures, highlighting the limitations of
an abortive strategy for neuromodulation (Ben-Menachem et al.,
1994). Altogether avoiding entry into pain states requires online
tracking of the pain state’s ongoing dynamics.

Sensor-Triggered Stimulation
Instead of relying on external input, a fixed stimulation protocol
can be triggered based on the detected position and/or trajectory
of the state within in the neural manifold (Figure 4B). To
make this possible, the device must include sensors that can
detect relevant biomarkers and an algorithm to decode the
pain state with a latency short enough to allow intervention.
This is commonly referred to as adaptive DBS (aDBS). As we
hypothesize that continuous pain states arise from maladaptive
coherence between regions involved in in pain processing, multi-
area coherence may be an ideal signal to track the underlying
neural state. We propose tracking gamma coherence between
S1, ACC, and OFC. Preliminary recordings from pain elicited
by somatosensory and cognitive events (i.e., touch, asking the
patient to attend to their pain) would allow investigators to
determine a threshold of gamma coherence to characterize the
pain state. Thereafter, coherence values close to that threshold
would trigger de-synchronized stimulation in each region in
order to prevent further evolution of inter-regional coherence.
Side-effects of S1-OFC stimulation are unknown, however. It
is possible that pain dynamics may evolve too rapidly to be
interrupted before a noticeable pain threshold is breached,
leading to breakthrough pain. Decreasing the threshold for
allowable coherence may address this shortfall. Overall, sensor-
triggered stimulation is a reasonable staring point in the quest
to develop new feedback-controlled paradigms. A promising
alternative is to implement a closed-loop paradigm with the
possibility to continuously manipulate underlying neural states.

Closed-Loop Stimulation
In a truly closed-loop system (as we define it), unique stimulation
patterns are delivered based on the real-time predicted course of
the pain trajectory. This is distinguished from sensor-triggered
stimulation in that in a closed-loop protocol, the same coordinate
location in a state spacemay trigger different stimulation patterns
or update stimulation parameters (pulse width, frequency,
amplitude) dependent on the history and context of the neural
trajectory. For this to be possible, we must create a predictive
model of the multidimensional pain state such that the future
path of each trajectory can be determined based on history and
the current state (Churchland et al., 2006; Mante et al., 2013;
Figure 4A). There are several methods for producing such a
model, including (1) modeling the state as a three dimensional
flow field (Rabinovich et al., 2012; Ashwin et al., 2016), or (2)
creating a map outlining the probability of transitioning from
any point in the field to every other point (i.e., Hidden Markov
Models, Radons et al., 1994).

Based on the assumption that stimulation can control
or influence neural trajectories related to pain, the model
must additionally contain predictions about the effect of
stimulation on the pain trajectory (Figure 4B). Typically,
characterizing the input-output (IO) relationship between
stimulation and neural state in DBS is a painstaking manual
process whereby a clinician systematically varies stimulation
parameters (pulse width, amplitude, frequency) and records
consequent changes in the neural state (Kumar, 2002; Volkmann
et al., 2002). A promising method to automate stimulation
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parameter optimization involves the use of a “binary noise”
modulated stimulation pattern whereby a range of parameters
are stochastically sampled and used for stimulation (Yang and
Shanechi, 2016). With simultaneous neural recordings, one may
use binary noise to define IO dynamics of a closed-loop DBS
system more efficiently. However, both of these methods risk
producing uninterpretable IO relationships if the timescale of
stimulation parameter changes does not match the timescale of
state space changes (e.g., long wash-in latency for therapeutic
effect).

There are many pragmatic barriers to implementing a truly
closed-loop system. First, only few devices with dual sensing
and stimulating functions are approved for chronic implant in
humans: NeuroPace RNS, while other devices are investigational
only: Braingate system and Medtronic Activa PC+S device
(Hochberg et al., 2006; Sun and Morrell, 2014; Swann et al.,
2018). Because there are no chronic, invasive cortical recordings
from candidate stimulation regions in patients with chronic pain,
it is unclear whether the hypothesized biomarkers will provide
sufficient observability of the internal pain state. Second, while
computing multi-dimensional state spaces from neural data is
routinely done to visualize offline data, implantable devices have
not been optimized to perform these computations online. It is
unclear what amount of computation will be viable to perform
for continuous pain monitoring. Third, because there have been
few long-term successes from small-scale trials of DBS for pain,
it is unclear whether chronic pain states will be controllable via
stimulation. Resolving this uncertainty will require a chronic,
multi-site, sensing and stimulating device that allows for rapid
exploration of a large range of stimulation parameters. Finally,
one of the hopes for closed-loop stimulation is that it will
allow for a reduction of current dosage (relative to continuous
stimulation in open-loop paradigms), thereby increasing the
device’s battery life and reducing the side effects of unnecessary
stimulation. However, optimizing stimulation based on battery
life will require additional trade-offs, such as deciding on a pain
threshold at which stimulation will be initiated, limiting duration
of stimulation bouts to the minimum required for pain relief, and
potentially sacrificing benefits of long-term stimulation, such as
learned desynchronization of pain-related regions.

CONCLUSION

Pragmatic Considerations for a
Closed-Loop DBS Protocol
Above we provide evidence that spectral power of oscillations
within specific frequency bands (e.g., theta, alpha, gamma) shows
changes in relevant brain regions that may predict low or high
pain states. By recording theta, alpha and gamma oscillations
from the LFP signal in S1, ACC and OFC during natural
fluctuations in a patient’s chronic pain state, we can compute
spectral power density during periods of high pain states and so
define a neural state space model for predicting chronic pain. For
this purpose, the low pain state can be interpreted as a “baseline”
or reference state.

To compute a time-frequency representation of the raw LFP
signal, we use a variant of the discrete Fourier Transform

(DFT). There are multiple methods to implement a DFT- we
prefer using the multitaper DFT implemented in the Chronux
Toolbox for MATLAB, which reduces broadband bias (Bokil
et al., 2010). To adequately sample pain states, we propose to
use at-home, patient-triggered recordings be collected. Two data
collection schemes can be used as needed (1) 60-s recordings
can be scheduled at pre-set time points throughout the day (e.g.,
8 a.m., 12 noon, 4 p.m., 8 p.m.) or (2) activated by patients by
pressing a button on their DBS programmer. Self-reporting of
pain numerical rating scores can be done via an automated text-
messaging system. For convenience, patients can be prompted up
to 4 times per day to report pain scores and trigger recordings if
pre-scheduled recordings are not set. Once a series of pain scores
spanning a wide range (at least 5 different values on the numerical
rating score) are collected, putative biomarker features can be
used (as independent variables) to predict high (>7/10) or low
(<4/10) pain score (dependent variable).

One possible solution to predicting low vs. high pain
states is to use multivariate logistic regression using biomarker
features as independent variables, and low/high pain state as the
dichotomous independent variable to be predicted. For example,
if the ACC signal shows increased gamma power, and OFC
shows decreased theta power during high pain states compared to
baseline in an individual patient, predictive value of ACC gamma
and OFC theta would be established through a multivariate
logistic regression to predict pain state. A classification table
would be used to calculate the probability of false positives and
negatives, and overall prediction accuracy. In depth methods for
developing multivariate classifiers based on logistic regression
have been presented previously (Hastie et al., 2009), as has
their personalized application to closed-loop DBS systems based
on brain-state (Ezzyat et al., 2017). Using receiver operating
characteristic (ROC) curves, one could then calculate optimal
threshold values for each biomarker such that real-time crossing
of ACC gamma or OFC theta power above/below this threshold
would activate stimulation. This scheme represents a sensor-
triggered protocol which is a good first-step approximation to
building a fully closed-loop system that would adjust stimulation
amplitude or other parameters based on ongoing neural
activity. Solutions to developing fully-closed loop algorithms and
optimizing stimulation based on biomarkers have been suggested
by computational studies. Recent models have used LFP spectra
(beta and gamma power) as feedback-control signals to provide
efficient and selective target stimulation in Parkinson’s Disease
(Karamintziou et al., 2017) and essential tremor (Santaniello
et al., 2011). Using finite element modeling, anatomical models
from imaging data can be combined with electrical models
to optimize how current is delivered from the DBS electrode
(Xiao et al., 2016). Further, stimulation patterns derived from
computational evolution models may provide more battery-
efficient stimulation protocols that can augment energy savings
afforded by closed-loop DBS (Brocker et al., 2017). While explicit
models have not been reported for closed-loop control in chronic
pain states, future studies will need to incorporate multiregional
brain recording and stimulation in relevant areas to provide
analgesic closed-loop DBS.

As of the writing of this paper, our group is currently
enrolling patients for participation in a feasibility study to
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develop closed-loop DBS algorithms for chronic neuropathic
pain (ClinicalTrials.gov ID# NCT03029884). This trial seeks to
enroll 10 patients with refractory neuropathic pain syndromes
over 2 years and aims to develop a personalized treatment for
multiple pain disorders using theMedtronic Activa PC+S device.

DISCUSSION

The current article makes several important assumptions to
create a simple theoretical framework for implementing closed-
loop DBS for chronic pain syndromes. First, to disentangle
biomarkers related to the somatosensory, affective, and cognitive
components of pain, we impose artificial distinctions between
brain regions that underlie each dimension of pain. We do
not actually believe that chronic pain can be divided into
three segregated, independent components with corresponding
brain regions Rather, coalitions of cells in specific brain regions
provide overlapping and complementary information about
pain states.

Second, we would like to acknowledge that DBS provides
an artificial input that may drive neural signals into unnatural
regions of the pain based state space (Jazayeri and Afraz, 2017).
We hypothesize that such an induced discrepancy with natural
states leads to reduced efficacy and increased side-effects. One
of the main potential benefits of closed-loop stimulation would
be to modulate neural signals to stay within natural bounds of
information processing as seen in endogenous pain-free epochs.

Finally, the proposed framework assumes that optimal
biomarkers come from neural signals. However, there are
many other correlates of pain that provide useful signals. For
example, the RESTORE trial matches different spinal cord

stimulation parameters with different patient body positions,
determined from an implanted 3D accelerometer (Schultz et al.,
2012). Adapting stimulation to time of day, medication timing,
sleep metrics, and other external variables would also improve
intervention efficacy. Broadly speaking, we acknowledge that
open-loop paradigms still incorporate a form of feedback, but on
the timescale of clinic visits. Ultimately, all stimulation protocols
for pain including personalized closed-loop models are designed
based on offline analysis by the healthcare team. The most
important “biomarker” relevant for determining efficacy will
always be the patients’ self-report of pain.

AUTHOR CONTRIBUTIONS

PS and TV developed the hypothesis, elaborated the theory,
wrote themanuscript and created the Figures. HDprovided input
to the hypothesis and theory. EC provided the framework for the
theory, and edited the manuscript.

FUNDING

This study is funded by Department of Defense: Defense
Advanced Research Projects Agency (DARPA) SUBNETS grant
#P0063517 and National Defense Science and Engineering Grant
Fellowship.

ACKNOWLEDGMENTS

We thank Howard Fields, Maryam Bijanzadeh, Kristin
Sellers, and Katherine Scangos for their comments on this
manuscript.

REFERENCES

Adams, J. E., Hosobuchi, Y., and Fields, H. L. (1974). Stimulation of

internal capsule for relief of chronic pain. J. Neurosurg. 41, 740–744.

doi: 10.3171/jns.1974.41.6.0740

Apkarian, A. V., Bushnell, M. C., Treede, R.-D., and Zubieta, J.-K. (2005). Human

brain mechanisms of pain perception and regulation in health and disease. Eur.

J. Pain 9, 463–463. doi: 10.1016/j.ejpain.2004.11.001

Ashwin, P., Coombes, S., and Nicks, R. (2016). Mathematical frameworks

for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6:2.

doi: 10.1186/s13408-015-0033-6

Babiloni, C., Brancucci, A., Del Percio, C., Capotosto, P., Arendt-Nielsen, L., Chen,

A. C. N., et al. (2006). Anticipatory electroencephalography alpha rhythm

predicts subjective perception of pain intensity. J. Pain Off. J. Am. Pain Soc.

7, 709–717. doi: 10.1016/j.jpain.2006.03.005

Ballantine, H. T., Cassidy, W. L., Flanagan, N. B., and Marino, R. (1967).

Stereotaxic anterior cingulotomy for neuropsychiatric illness and intractable

pain. J. Neurosurg. 26, 488–495. doi: 10.3171/jns.1967.26.5.0488

Ben-Menachem, E., Mañon-Espaillat, R., Ristanovic, R., Wilder, B. J., Stefan,

H., Mirza, W., et al. (1994). Vagus nerve stimulation for treatment

of partial seizures: 1. a controlled study of effect on seizures. First

International Vagus Nerve Stimulation Study Group. Epilepsia 35, 616–626.

doi: 10.1111/j.1528-1157.1994.tb02482.x

Boccard, S. G. J., Pereira, E. A. C., and Aziz, T. Z. (2015). Deep brain stimulation for

chronic pain. J. Clin. Neurosci. 22, 1537–1543. doi: 10.1016/j.jocn.2015.04.005

Boccard, S. G. J., Prangnell, S. J., Pycroft, L., Cheeran, B., Moir, L., Pereira,

E. A. C., et al. (2017). Long-Term results of deep brain stimulation of the

anterior cingulate cortex for neuropathic pain.World Neurosurg. 106, 625–637.

doi: 10.1016/j.wneu.2017.06.173

Bokil, H., Andrews, P., Kulkarni, J. E., Mehta, S., and Mitra, P.

(2010). Chronux: a platform for analyzing neural signals. J.

Neurosci. Methods 192, 146–151. doi: 10.1016/j.jneumeth.2010.

06.020

Boord, P., Siddall, P. J., Tran, Y., Herbert, D., Middleton, J., and Craig,

A. (2008). Electroencephalographic slowing and reduced reactivity in

neuropathic pain following spinal cord injury. Spinal Cord 46, 118–123.

doi: 10.1038/sj.sc.3102077

Brocker, D. T., Swan, B. D., So, R. Q., Turner, D. A., Gross, R. E., and

Grill, W. M. (2017). Optimized temporal pattern of brain stimulation

designed by computational evolution. Sci. Transl. Med. 9:eaah3532.

doi: 10.1126/scitranslmed.aah3532

Brown, J. A., and Pilitsis, J. G. (2005). Motor cortex stimulation for central and

neuropathic facial pain: a prospective study of 10 patients and observations

of enhanced sensory and motor function during stimulation. Neurosurgery 56,

290–297. doi: 10.1227/01.NEU.0000148905.75845.98

Bushnell, M. C., Ceko, M., and Low, L. A. (2013). Cognitive and emotional

control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 14:502.

doi: 10.1038/nrn3516

Buzsáki, G., Anastassiou, C. A., and Koch, C. (2012). The origin of extracellular

fields and currents–EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13,

407–420. doi: 10.1038/nrn3241

CDC (2016). Wide-Ranging Online Data for Epidemiologic Research. Atlanta, GA:

WONDER.

Chen, Z., Zhang, Q., Tong, A. P. S., Manders, T. R., and Wang, J. (2017).

Deciphering neuronal population codes for acute thermal pain. J. Neural Eng.

14:036023. doi: 10.1088/1741-2552/aa644d

Churchland, M. M., Yu, B. M., Ryu, S. I., Santhanam, G., and Shenoy,

K. V. (2006). Neural variability in premotor cortex provides

Frontiers in Computational Neuroscience | www.frontiersin.org 11 March 2018 | Volume 12 | Article 18

https://doi.org/10.3171/jns.1974.41.6.0740
https://doi.org/10.1016/j.ejpain.2004.11.001
https://doi.org/10.1186/s13408-015-0033-6
https://doi.org/10.1016/j.jpain.2006.03.005
https://doi.org/10.3171/jns.1967.26.5.0488
https://doi.org/10.1111/j.1528-1157.1994.tb02482.x
https://doi.org/10.1016/j.jocn.2015.04.005
https://doi.org/10.1016/j.wneu.2017.06.173
https://doi.org/10.1016/j.jneumeth.2010.06.020
https://doi.org/10.1038/sj.sc.3102077
https://doi.org/10.1126/scitranslmed.aah3532
https://doi.org/10.1227/01.NEU.0000148905.75845.98
https://doi.org/10.1038/nrn3516
https://doi.org/10.1038/nrn3241
https://doi.org/10.1088/1741-2552/aa644d
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Shirvalkar et al. Closed-Loop DBS for Pain

a signature of motor preparation. J. Neurosci. 26, 3697–3712.

doi: 10.1523/JNEUROSCI.3762-05.2006

Coffey, R. J. (2001). Deep brain stimulation for chronic pain: results of two

multicenter trials and a structured review. Pain Med. Malden Mass 2, 183–192.

doi: 10.1046/j.1526-4637.2001.01029.x

Coghill, R. C., McHaffie, J. G., and Yen, Y.-F. (2003). Neural correlates of

interindividual differences in the subjective experience of pain. Proc. Natl. Acad.

Sci. U.S.A. 100, 8538–8542. doi: 10.1073/pnas.1430684100

Colgin, L. L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., et al.

(2009). Frequency of gamma oscillations routes flow of information in the

hippocampus. Nature 462, 353–357. doi: 10.1038/nature08573

Cunningham, J. P., and Yu, B. M. (2014). Dimensionality reduction for large-scale

neural recordings. Nat. Neurosci. 17, 1500–1509. doi: 10.1038/nn.3776

Dejerine, J., and Roussy, G. (1906). Le syndrome thalamique. Rev. Neurol. Paris 14,

521–532.

Ezzyat, Y., Kragel, J. E., Burke, J. F., Levy, D. F., Lyalenko, A., Wanda,

P., et al. (2017). Direct brain stimulation modulates encoding states

and memory performance in humans. Curr. Biol. 27, 1251–1258.

doi: 10.1016/j.cub.2017.03.028

Flint, R. D., Lindberg, E. W., Jordan, L. R., Miller, L. E., and Slutzky, M. W. (2012).

Accurate decoding of reaching movements from field potentials in the absence

of spikes. J. Neural Eng. 9:046006. doi: 10.1088/1741-2560/9/4/046006

Foltz, E. L., and White, L. E. (1962). Pain “Relief” by Frontal Cingulumotomy. J.

Neurosurg. 19, 89–100. doi: 10.3171/jns.1962.19.2.0089

Goense, J., Bohraus, Y., and Logothetis, N. K. (2016). fMRI at high spatial

resolution: implications for BOLD-Models. Front. Comput. Neurosci. 10:66.

doi: 10.3389/fncom.2016.00066

Gross, J., Schnitzler, A., Timmermann, L., and Ploner, M. (2007). Gamma

oscillations in human primary somatosensory cortex reflect pain perception.

PLOS Biol. 5:e133. doi: 10.1371/journal.pbio.0050133

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, 2nd. Edn. New York,

NY: Springer-Verlag. Available online at: http://www.springer.com/us/book/

9780387848570 (Accessed Feb. 26, 2018).

Hemptinne, C., de, Swann, N. C., Ostrem, J. L., Ryapolova-Webb, E. S., Luciano,M.

S., Galifianakis, N. B., et al. (2015). Therapeutic deep brain stimulation reduces

cortical phase-amplitude coupling in Parkinson’s disease. Nat. Neurosci. 18,

779–786. doi: 10.1038/nn.3997

Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A.

H., et al. (2006). Neuronal ensemble control of prosthetic devices by a human

with tetraplegia. Nature 442, 164–171. doi: 10.1038/nature04970

Hosobuchi, Y., Adams, J. E., and Rutkin, B. (1973). Chronic thalamic stimulation

for the control of facial anesthesia dolorosa. Arch. Neurol. 29, 158–161.

doi: 10.1001/archneur.1973.00490270040005

Hosomi, K., Seymour, B., and Saitoh, Y. (2015). Modulating the pain network—

neurostimulation for central poststroke pain. Nat. Rev. Neurol. 11, 290–299.

doi: 10.1038/nrneurol.2015.58

Hsieh, H. L., and Shanechi, M. M. (2016). “Multiscale brain-machine interface

decoders,” in 2016 38th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC) (Orlando, FL),

6361–6364.

Huster, R. J., Debener, S., Eichele, T., and Herrmann, C. S. (2012). Methods for

simultaneous EEG-fMRI: an introductory review. J. Neurosci. 32, 6053–6060.

doi: 10.1523/JNEUROSCI.0447-12.2012

Jazayeri, M., and Afraz, A. (2017). Navigating the neural space in search of the

neural code. Neuron 93, 1003–1014. doi: 10.1016/j.neuron.2017.02.019

Johansen, J. P., and Fields, H. L. (2004). Glutamatergic activation of anterior

cingulate cortex produces an aversive teaching signal.Nat. Neurosci. 7, 398–403.

doi: 10.1038/nn1207

Johansen, J. P., Fields, H. L., and Manning, B. H. (2001). The affective

component of pain in rodents: direct evidence for a contribution of the

anterior cingulate cortex. Proc. Natl. Acad. Sci. U.S.A. 98, 8077–8082.

doi: 10.1073/pnas.141218998

Karamintziou, S. D., Custódio, A. L., Piallat, B., Polosan, M., Chabardès, S., Stathis,

P. G., et al. (2017). Algorithmic design of a noise-resistant and efficient closed-

loop deep brain stimulation system: a computational approach. PLoS ONE

12:e0171458. doi: 10.1371/journal.pone.0171458

Keifer, O. P., Riley, J. P., and Boulis, N. M. (2014). Deep brain

stimulation for chronic pain. Neurosurg. Clin. N. Am. 25, 671–692.

doi: 10.1016/j.nec.2014.07.009

Kucyi, A., and Davis, K. D. (2015). The dynamic pain connectome. Trends

Neurosci. 38, 86–95. doi: 10.1016/j.tins.2014.11.006

Kumar, R. (2002). Methods for programming and patient management with

deep brain stimulation of the globus pallidus for the treatment of

advanced Parkinson’s disease and dystonia. Mov. Disord. 17, S198–S207.

doi: 10.1002/mds.10164

Kuo, P.-C., Chen, Y.-T., Chen, Y.-S., and Chen, L.-F. (2017). Decoding the

perception of endogenous pain from resting-stateMEG.Neuroimage 144, 1–11.

doi: 10.1016/j.neuroimage.2016.09.040

Lefaucheur, J.-P., Drouot, X., Cunin, P., Bruckert, R., Lepetit, H., Créange, A.,

et al. (2009). Motor cortex stimulation for the treatment of refractory peripheral

neuropathic pain. Brain J. Neurol. 132, 1463–1471. doi: 10.1093/brain/awp035

Lempka, S. F., Malone, D. A., Hu, B., Baker, K. B., Wyant, A., Ozinga, J. G., et al.

(2017). Randomized clinical trial of deep brain stimulation for poststroke pain.

Ann. Neurol. 81, 653–663. doi: 10.1002/ana.24927

Levy, R., Deer, T. R., and Henderson, J. (2010). Intracranial neurostimulation for

pain control: a review. Pain Physic. 13, 157–165.

Li, L., Liu, X., Cai, C., Yang, Y., Li, D., Xiao, L., et al. (2016a). Changes of gamma-

band oscillatory activity to tonic muscle pain. Neurosci. Lett. 627, 126–131.

doi: 10.1016/j.neulet.2016.05.067

Li, L., Wang, H., Ke, X., Liu, X., Yuan, Y., Zhang, D., et al. (2016b). Placebo

analgesia changes alpha oscillations induced by tonic muscle pain: EEG

frequency analysis including data during pain evaluation. Front. Comput.

Neurosci. 10:45. doi: 10.3389/fncom.2016.00045

Lieberman, M. D., and Eisenberger, N. I. (2015). The dorsal anterior cingulate

cortex is selective for pain: results from large-scale reverse inference. Proc. Natl.

Acad. Sci. U.S.A. 112, 15250–15255. doi: 10.1073/pnas.1515083112

Lima, M. C., and Fregni, F. (2008). Motor cortex stimulation for chronic pain:

systematic review and meta-analysis of the literature.Neurology 70, 2329–2337.

doi: 10.1212/01.wnl.0000314649.38527.93

Liu, C.-C., Ohara, S., Franaszczuk, P. J., Crone, N. E., and Lenz, F. A. (2011).

Attention to painful cutaneous laser stimuli evokes directed functional

interactions between human sensory and modulatory pain-related cortical

areas. Pain 152, 2781–2791. doi: 10.1016/j.pain.2011.09.002

Louppe, J.-M., Nguyen, J.-P., Robert, R., Buffenoir, K., de Chauvigny, E.,

Riant, T., et al. (2013). Motor cortex stimulation in refractory pelvic and

perineal pain: report of two successful cases. Neurourol. Urodyn. 32, 53–57.

doi: 10.1002/nau.22269

Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T. (2013). Context-

dependent computation by recurrent dynamics in prefrontal cortex. Nature

503, 78–84. doi: 10.1038/nature12742

Melzack, R. (1999). From the gate to the neuromatrix. Pain 82, S121–S126.

doi: 10.1016/S0304-3959(99)00145-1

Melzack, R., and Casey, K. (1968). “Sensory, motivational and central control

determinants of pain: a new conceptual model,” in The Skin Senses

(Tallahassee, FL).

Moont, R., Crispel, Y., Lev, R., Pud, D., and Yarnitsky, D. (2012). Temporal

changes in cortical activation during distraction from pain: a comparative

LORETA study with conditioned pain modulation. Brain Res. 1435, 105–117.

doi: 10.1016/j.brainres.2011.11.056

Nauta, W. J. (1958). Hippocampal projections and related neural pathways to the

midbrain in the cat. Brain J. Neurol. 81, 319–340. doi: 10.1093/brain/81.3.319

Nevian, T. (2017). The cingulate cortex: divided in pain. Nat. Neurosci. 20,

1515–1517. doi: 10.1038/nn.4664

Ohara, S., Crone, N. E., Weiss, N., and Lenz, F. A. (2006). Analysis of synchrony

demonstrates ‘pain networks’ defined by rapidly switching, task-specific,

functional connectivity between pain-related cortical structures. Pain 123,

244–253. doi: 10.1016/j.pain.2006.02.012

Orsborn, A. L., So, K., Dangi, S., and Carmena, J. M. (2013). “Comparison

of neural activity during closed-loop control of spike- or LFP-based brain-

machine interfaces,” in 2013 6th International IEEE/EMBS Conference on

Neural Engineering (NER) (San Diego, CA), 1017–1020.

Ossipov, M. H., Dussor, G. O., and Porreca, F. (2010). Central modulation of pain.

J. Clin. Invest. 120, 3779–3787. doi: 10.1172/JCI43766

Pandarinath, C., Nuyujukian, P., Blabe, C. H., Sorice, B. L., Saab, J., Willett,

F. R., et al. (2017). High performance communication by people with

paralysis using an intracortical brain-computer interface. Elife 6:e18554.

doi: 10.7554/eLife.18554

Papez, J. (1937). A proposed mechanism of emotion. Arch. Neurol. Psychiatry 38,

725–743. doi: 10.1001/archneurpsyc.1937.02260220069003

Frontiers in Computational Neuroscience | www.frontiersin.org 12 March 2018 | Volume 12 | Article 18

https://doi.org/10.1523/JNEUROSCI.3762-05.2006
https://doi.org/10.1046/j.1526-4637.2001.01029.x
https://doi.org/10.1073/pnas.1430684100
https://doi.org/10.1038/nature08573
https://doi.org/10.1038/nn.3776
https://doi.org/10.1016/j.cub.2017.03.028
https://doi.org/10.1088/1741-2560/9/4/046006
https://doi.org/10.3171/jns.1962.19.2.0089
https://doi.org/10.3389/fncom.2016.00066
https://doi.org/10.1371/journal.pbio.0050133
http://www.springer.com/us/book/9780387848570
http://www.springer.com/us/book/9780387848570
https://doi.org/10.1038/nn.3997
https://doi.org/10.1038/nature04970
https://doi.org/10.1001/archneur.1973.00490270040005
https://doi.org/10.1038/nrneurol.2015.58
https://doi.org/10.1523/JNEUROSCI.0447-12.2012
https://doi.org/10.1016/j.neuron.2017.02.019
https://doi.org/10.1038/nn1207
https://doi.org/10.1073/pnas.141218998
https://doi.org/10.1371/journal.pone.0171458
https://doi.org/10.1016/j.nec.2014.07.009
https://doi.org/10.1016/j.tins.2014.11.006
https://doi.org/10.1002/mds.10164
https://doi.org/10.1016/j.neuroimage.2016.09.040
https://doi.org/10.1093/brain/awp035
https://doi.org/10.1002/ana.24927
https://doi.org/10.1016/j.neulet.2016.05.067
https://doi.org/10.3389/fncom.2016.00045
https://doi.org/10.1073/pnas.1515083112
https://doi.org/10.1212/01.wnl.0000314649.38527.93
https://doi.org/10.1016/j.pain.2011.09.002
https://doi.org/10.1002/nau.22269
https://doi.org/10.1038/nature12742
https://doi.org/10.1016/S0304-3959(99)00145-1
https://doi.org/10.1016/j.brainres.2011.11.056
https://doi.org/10.1093/brain/81.3.319
https://doi.org/10.1038/nn.4664
https://doi.org/10.1016/j.pain.2006.02.012
https://doi.org/10.1172/JCI43766
https://doi.org/10.7554/eLife.18554
https://doi.org/10.1001/archneurpsyc.1937.02260220069003
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Shirvalkar et al. Closed-Loop DBS for Pain

Parvizi, J., Rangarajan, V., Shirer, W. R., Desai, N., and Greicius, M. D.

(2013). The will to persevere induced by electrical stimulation of the

human cingulate gyrus. Neuron 80, 1359–1367. doi: 10.1016/j.neuron.2013.

10.057

Ploner, M., Gross, J., Timmermann, L., Pollok, B., and Schnitzler, A. (2006).

Pain suppresses spontaneous brain rhythms. Cereb. Cortex. 16, 537–540.

doi: 10.1093/cercor/bhj001

Ploner, M., Sorg, C., and Gross, J. (2017). Brain rhythms of pain. Trends Cogn. Sci.

21, 100–110. doi: 10.1016/j.tics.2016.12.001

Rabinovich, M. I., Afraimovich, V. S., Bick, C., and Varona, P. (2012).

Information flow dynamics in the brain. Phys. Life Rev. 9, 51–73.

doi: 10.1016/j.plrev.2011.11.002

Radons, G., Becker, J. D., Dülfer, B., and Krüger, J. (1994). Analysis, classification,

and coding of multielectrode spike trains with hidden Markov models. Biol.

Cybern. 71, 359–373. doi: 10.1007/BF00239623

Rainville, P., Duncan, G. H., Price, D. D., Carrier, B., and Bushnell, M. C. (1997).

Pain affect encoded in human anterior cingulate but not somatosensory cortex.

Science 277, 968–971. doi: 10.1126/science.277.5328.968

Reddan, M. C., and Wager, T. D. (2017). Modeling Pain Using fMRI: From

Regions to Biomarkers. Neurosci. Bull. 34, 208–215. doi: 10.1007/s12264-017-

0150-1

Romanelli, P., and Heit, G. (2004). Patient-controlled deep brain stimulation

can overcome analgesic tolerance. Stereotact. Funct. Neurosurg. 82, 77–79.

doi: 10.1159/000077404

Santaniello, S., Fiengo, G., Glielmo, L., and Grill, W. M. (2011). Closed-Loop

control of deep brain stimulation: a simulation study. IEEE Trans. Neural Syst.

Rehabil. Eng. 19, 15–24. doi: 10.1109/TNSRE.2010.2081377

Sarnthein, J., Stern, J., Aufenberg, C., Rousson, V., and Jeanmonod, D.

(2006). Increased EEG power and slowed dominant frequency in

patients with neurogenic pain. Brain 129, 55–64. doi: 10.1093/brain/

awh631

Schmidt, S., Naranjo, J. R., Brenneisen, C., Gundlach, J., Schultz, C., Kaube, H.,

et al. (2012). Pain ratings, psychological functioning and quantitative EEG

in a controlled study of chronic back pain patients. PLoS ONE 7:e31138.

doi: 10.1371/journal.pone.0031138

Schultz, D. M., Webster, L., Kosek, P., Dar, U., Tan, Y., and Sun, M. (2012). Sensor-

driven position-adaptive spinal cord stimulation for chronic pain. Pain Physic.

15, 1–12.

Schulz, E., May, E. S., Postorino, M., Tiemann, L., Nickel, M. M., Witkovsky, V.,

et al. (2015). Prefrontal gamma oscillations encode tonic pain in humans.Cereb.

Cortex 25, 4407–4414. doi: 10.1093/cercor/bhv043

Schulz, E., Zherdin, A., Tiemann, L., Plant, C., and Ploner, M. (2012).

Decoding an individual’s sensitivity to pain from the multivariate

analysis of EEG data. Cereb. Cortex 22, 1118–1123. doi: 10.1093/cercor/

bhr186

Shealy, C. N. (1969). Dorsal column electrohypalgesia. Headache 9, 99–102.

doi: 10.1111/j.1526-4610.1969.hed0902099.x

Shenoy, K. V., Sahani, M., and Churchland, M. M. (2013). Cortical control of

arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36,

337–359. doi: 10.1146/annurev-neuro-062111-150509

Shirvalkar, P. R., Rapp, P. R., and Shapiro, M. L. (2010). Bidirectional

changes to hippocampal theta–gamma comodulation predict memory for

recent spatial episodes. Proc. Natl. Acad. Sci. U.S.A. 107, 7054–7059.

doi: 10.1073/pnas.0911184107

Smith, A. C., and Brown, E. N. (2003). Estimating a State-Space model

from point process observations. Neural Comput. 15, 965–991.

doi: 10.1162/089976603765202622

So, K., Dangi, S., Orsborn, A. L., Gastpar, M. C., and Carmena, J. M. (2014).

Subject-specific modulation of local field potential spectral power during

brain–machine interface control in primates. J. Neural Eng. 11:026002.

doi: 10.1088/1741-2560/11/2/026002

Spooner, J., Yu, H., Kao, C., Sillay, K., and Konrad, P. (2007). Neuromodulation of

the cingulum for neuropathic pain after spinal cord injury. J. Neurosurg. 107,

169–172. doi: 10.3171/JNS-07/07/0169

Stavisky, S. D., Kao, J. C., Nuyujukian, P., Ryu, S. I., and Shenoy, K. V. (2015).

A high performing brain–machine interface driven by low-frequency local

field potentials alone and together with spikes. J. Neural Eng. 12:036009.

doi: 10.1088/1741-2560/12/3/036009

Stern, J., Jeanmonod, D., and Sarnthein, J. (2006). Persistent EEG overactivation in

the cortical pain matrix of neurogenic pain patients. Neuroimage 31, 721–731.

doi: 10.1016/j.neuroimage.2005.12.042

Sun, F. T., and Morrell, M. J. (2014). The RNS system: responsive cortical

stimulation for the treatment of refractory partial epilepsy. Expert Rev. Med.

Devices 11, 563–72. doi: 10.1586/17434440.2014.947274

Swann, N. C., de Hemptinne, C., Miocinovic, S., Qasim, S., Ostrem, J. L.,

Galifianakis, N. B., et al. (2018). Chronic multisite brain recordings

from a totally implantable bidirectional neural interface: experience

in 5 patients with Parkinson’s disease. J. Neurosurg. 128, 605–616.

doi: 10.3171/2016.11.JNS161162

Swann, N. C., Hemptinne, C., de, Miocinovic, S., Qasim, S., Wang, S. S., Ziman, N.,

et al. (2016). Gamma oscillations in the hyperkinetic state detected with chronic

human brain recordings in Parkinson’s Disease. J. Neurosci. 36, 6445–6458.

doi: 10.1523/JNEUROSCI.1128-16.2016

Tasker, R. R. (1990). Thalamotomy. Neurosurg. Clin. N. Am. 1, 841–864.

Tort, A. B. L., Komorowski, R., Eichenbaum, H., and Kopell, N. (2010). Measuring

Phase-Amplitude coupling between neuronal oscillations of different

frequencies. J. Neurophysiol. 104, 1195–1210. doi: 10.1152/jn.00106.2010

Tu, Y., Zhang, Z., Tan, A., Peng, W., Hung, Y. S., Moayedi, M., et al.

(2016). Alpha and gamma oscillation amplitudes synergistically predict the

perception of forthcoming nociceptive stimuli.Hum. Brain Mapp. 37, 501–514.

doi: 10.1002/hbm.23048

Villemure, C., and Bushnell, C. M. (2002). Cognitive modulation of pain: how

do attention and emotion influence pain processing? Pain 95, 195–199.

doi: 10.1016/S0304-3959(02)00007-6

Volkmann, J., Herzog, J., Kopper, F., and Deuschl, G. (2002). Introduction to

the programming of deep brain stimulators. Mov. Disord. 17, S181–S187.

doi: 10.1002/mds.10162

Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C.-W., and Kross, E.

(2013). An fMRI-Based neurologic signature of physical pain. N. Engl. J. Med.

368, 1388–1397. doi: 10.1056/NEJMoa1204471

Wang, J.-Y., Luo, F., Chang, J.-Y., Woodward, D. J., and Han, J.-S. (2003). Parallel

pain processing in freely moving rats revealed by distributed neuron recording.

Brain Res. 992, 263–271. doi: 10.1016/j.brainres.2003.08.059

Whitty, C. W. M., Duffield, J. E., Tow, P. M., and Cairns, H. (1952). Anterior

cingulectomy in the treatment of mental disease. Lancet 259, 475–481.

doi: 10.1016/S0140-6736(52)90051-2

Wycis, H. T., and Spiegel, E. A. (1949). Thalamotomy and

mesencephalothalamotomy; neuro-surgical aspects, including treatment

of pain. N. Y. State. J. Med. 49, 2275–2277.

Xiao, Y., Peña, E., and Johnson, M. D. (2016). Theoretical optimization

of stimulation strategies for a directionally segmented deep brain

stimulation electrode array. IEEE Trans. Biomed. Eng. 63, 359–371.

doi: 10.1109/TBME.2015.2457873

Yang, Y., and Shanechi, M. M. (2016). “Generalized Binary Noise Stimulation

Enables Time-Efficient Identification of Input-Output Brain Network

Dynamics,” in 2016 38th Annual International Conference of the IEEE

Engineering inMedicine and Biology Society (EMBC) (Orlando, FL), 1766–1769.

Zhang, Z. G., Hu, L., Hung, Y. S., Mouraux, A., and Iannetti, G. D. (2012).

Gamma-Band oscillations in the primary somatosensory cortex—a direct and

obligatory correlate of subjective pain intensity. J. Neurosci. 32, 7429–7438.

doi: 10.1523/JNEUROSCI.5877-11.2012

Zubieta, J.-K., Smith, Y. R., Bueller, J. A., Xu, Y., Kilbourn, M. R., Jewett, D. M.,

et al. (2001). Regional mu opioid receptor regulation of sensory and affective

dimensions of pain. Science 293, 311–315. doi: 10.1126/science.1060952

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Shirvalkar, Veuthey, Dawes and Chang. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 March 2018 | Volume 12 | Article 18

https://doi.org/10.1016/j.neuron.2013.10.057
https://doi.org/10.1093/cercor/bhj001
https://doi.org/10.1016/j.tics.2016.12.001
https://doi.org/10.1016/j.plrev.2011.11.002
https://doi.org/10.1007/BF00239623
https://doi.org/10.1126/science.277.5328.968
https://doi.org/10.1007/s12264-017-0150-1
https://doi.org/10.1159/000077404
https://doi.org/10.1109/TNSRE.2010.2081377
https://doi.org/10.1093/brain/awh631
https://doi.org/10.1371/journal.pone.0031138
https://doi.org/10.1093/cercor/bhv043
https://doi.org/10.1093/cercor/bhr186
https://doi.org/10.1111/j.1526-4610.1969.hed0902099.x
https://doi.org/10.1146/annurev-neuro-062111-150509
https://doi.org/10.1073/pnas.0911184107
https://doi.org/10.1162/089976603765202622
https://doi.org/10.1088/1741-2560/11/2/026002
https://doi.org/10.3171/JNS-07/07/0169
https://doi.org/10.1088/1741-2560/12/3/036009
https://doi.org/10.1016/j.neuroimage.2005.12.042
https://doi.org/10.1586/17434440.2014.947274
https://doi.org/10.3171/2016.11.JNS161162
https://doi.org/10.1523/JNEUROSCI.1128-16.2016
https://doi.org/10.1152/jn.00106.2010
https://doi.org/10.1002/hbm.23048
https://doi.org/10.1016/S0304-3959(02)00007-6
https://doi.org/10.1002/mds.10162
https://doi.org/10.1056/NEJMoa1204471
https://doi.org/10.1016/j.brainres.2003.08.059
https://doi.org/10.1016/S0140-6736(52)90051-2
https://doi.org/10.1109/TBME.2015.2457873
https://doi.org/10.1523/JNEUROSCI.5877-11.2012
https://doi.org/10.1126/science.1060952
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Closed-Loop Deep Brain Stimulation for Refractory Chronic Pain
	Introduction
	A Brief History of DBS for Pain
	DBS for Somatosensory Pain Symptoms
	DBS for Affective Pain Symptoms
	Limitations to Current Approaches
	Anatomical Limitations
	Stimulation Limitations
	Temporal Limitations


	Applying Control Theory to DBS for Pain
	Mapping DBS Onto a Control Framework
	State Space Models

	Local Field Potentials Are the Most Tractable Signal for Identifying Biomarkers for Closed-Loop DBS

	Computing a Pain State from Regional Biomarkers
	Somatosensory Signals
	Affective Signals
	Cognitive Signals
	Multidimensional Biomarkers for Chronic Pain
	Computing a Reference State

	Modulating a Pain State with Different Stimulation Paradigms
	Open-Loop Stimulation
	Patient-Triggered Stimulation
	Sensor-Triggered Stimulation
	Closed-Loop Stimulation

	Conclusion
	Pragmatic Considerations for a Closed-Loop DBS Protocol

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	References




