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ABSTRACT

GREENWOOD-HICKMAN,M. A., S. NAKANDALA,M.M. JANKOWSKA, D. E. ROSENBERG, F. TUZ-ZAHRA, J. BELLETTIERE, J.

CARLSON, P. R. HIBBING, J. ZOU, A. Z. LACROIX, A. KUMAR, and L. NATARAJAN. The CNN Hip Accelerometer Posture (CHAP)

Method for Classifying Sitting Patterns from Hip Accelerometers: A Validation Study.Med. Sci. Sports Exerc., Vol. 53, No. 11, pp. 2445-2454,

2021. Introduction: Sitting patterns predict several healthy aging outcomes. These patterns can potentially be measured using hip-worn accelerom-

eters, but current methods are limited by an inability to detect postural transitions. To overcome these limitations, we developed the Convolutional

Neural Network Hip Accelerometer Posture (CHAP) classification method. Methods: CHAP was developed on 709 older adults who wore an

ActiGraph GT3X+ accelerometer on the hip, with ground-truth sit/stand labels derived from concurrently worn thigh-worn activPAL inclinometers

for up to 7 d. The CHAP method was compared with traditional cut-point methods of sitting pattern classification as well as a previous

machine-learned algorithm (two-level behavior classification).Results:Forminute-level sitting versus nonsitting classification, CHAP performed bet-

ter (93% agreement with activPAL) than did other methods (74%–83% agreement). CHAP also outperformed other methods in its sensitivity to de-

tecting sit-to-stand transitions: cut-point (73%), TLBC (26%), andCHAP (83%). CHAP’s positive predictive value of capturing sit-to-stand transitions

was also superior to other methods: cut-point (30%), TLBC (71%), and CHAP (83%). Day-level sitting pattern metrics, such as mean sitting bout

duration, derived from CHAP did not differ significantly from activPAL, whereas other methods did: activPAL (15.4 min of mean sitting bout du-

ration), CHAP (15.7 min), cut-point (9.4 min), and TLBC (49.4 min). Conclusion: CHAP was the most accurate method for classifying sit-to-

stand transitions and sitting patterns from free-living hip-worn accelerometer data in older adults. This promotes enhanced analysis of older adult

movement data, resulting in more accurate measures of sitting patterns and opening the door for large-scale cohort studies into the effects of sitting

patterns on healthy aging outcomes. Key Words: MACHINE LEARNING, HEALTHY AGING, SIT-TO-STAND TRANSITIONS,

ACTIVPAL, ACTIGRAPH, FREE-LIVING, OLDER ADULT
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 Sedentary behavior is a severe and prevalent health risk

for older adults comprising 10–14 h of older adults’ days
(1–6). Recent evidence suggests that there may be

additional risk associated with sitting for prolonged periods of
time independent of the total time spent sitting (7–9). The
latter findings have led to increased interest in the study of
“sitting patterns,” which refers to the number and duration of
sitting bouts (i.e., continuous periods of sitting) versus
nonsitting bouts (i.e., continuous periods of standing or
stepping), as well as the postural transitions between them.
Sitting patterns can be quantified using metrics such as
number of daily sit-to-stand transitions, number of daily sitting
bouts, number of daily prolonged sitting bouts (≥30 min),
mean sitting bout duration (total daily sitting time/total sit-to-
stand transitions), and usual bout duration (the sitting bout
duration at or above which 50% of an individual’s sitting time
is accumulated) (8,10).

Sitting patterns are generally measured using thigh or hip-
worn accelerometers; however, to date, hip-worn accelerometry
is the best approach to measure motion and movement (seden-
tary behavior), whereas thigh-worn devices are better at measur-
ing posture and postural transitions (sitting patterns) (11–13).
Although systems using several sensors can measure both
sedentary behavior and sitting patterns (14), it is desirable
for participant ease and comfort to have one device that can
measure both with high validity. Measures of sitting patterns
derived from cut-point–based hip-worn accelerometer data
do not adequately measure the postural transitions that form
the basis of sitting pattern metrics, including overestimating
the number of sit-to-stand transitions and underestimating
prolonged sitting time (15–17). Progress in machine learning
techniques may make it possible to address hip-worn
accelerometry’s major limitation and close the gap in sitting
pattern measurement between hip-worn and thigh-worn
accelerometers, as evidenced by developments in related
areas such as activity type and intensity classification (18–21).
However, the ability of current algorithms to identify the
postural transitions (sit-to-stand) needed to measure sitting
patterns in free-living populations is low, and there is a
lack of algorithms that are specifically trained to identify
transitions (22–24).

Thigh-worn inclinometers such as activPAL have been
shown to accurately capture sit-to-stand transitions and can
be used as high-frequency ground truth in posture labeling be-
cause data are provided many times per second (25). In previ-
ous work, we have demonstrated that activPAL data can be
used to train machine learning models for capturing postural
transitions in free-living hip-worn accelerometer data, although
a small sample with low generalizability was used (26,27).
Here we build on this previous work and describe the training
and validation of a Convolutional Neural Network (CNN) + bi-
directional long short-termmemory network (BiLSTM) model
designed to classify sitting patterns as well as sedentary behav-
ior from hip-worn ActiGraph accelerometer data. We dub this
algorithm the CNN Hip Accelereometer Posture (CHAP) method
and detail its superior accuracy for identifying sit-to-stand
2446 Official Journal of the American College of Sports Medicine
transitions using data from 709 older men and women who
concurrently wore hip-worn ActiGraph accelerometers and
thigh-worn activPAL inclinometers for up to 7 d.
METHODS

Parent Study

Data were obtained from the Adult Changes in Thought
(ACT) study, an ongoing longitudinal cohort study that main-
tains an active enrollment of approximately 2000 older adults
(≥65-yr old) in Washington State. The ACT study began in
1994 to investigate risk factors for development of dementia
and has since provided a unique opportunity to additionally
study a wide range of noncognitive factors of healthy aging.
Starting in 2016, the ACT activity monitor substudy (ACT-AM)
was initiated, adding a device-based activity monitoring com-
ponent to capture the spectrum of sedentary and physically ac-
tive patterns (28). Participants were excluded from ACT-AM
if they were wheelchair bound, receiving hospice or care for
a critical illness, or resided in a nursing home, or if memory
problems became evident during testing. The remaining par-
ticipants were asked to wear a hip-worn ActiGraph wGT3X+
(ActiGraph LLC, Pensacola, FL), activated using ActiLife
software to capture 30-Hz triaxial (i.e., data captured from
three spatial axes) data and worn on an elastic belt situated
so the device rests on the right side at the level of the suprailiac
crest, and a thigh-worn activPAL micro3 (PAL Technologies,
Glasgow, Scotland, United Kingdom), activated using a 10-s
minimum threshold for labeling postural transitions and secured
to the front, center thighwithwaterproofedmaterials. Participants
were asked to wear both devices 24 h·d−1 for 1 wk. Although
some participants elected only to wear one device, most wore
both simultaneously. Participants also recorded self-reported
sleep logs throughout their device wear. Ethics approval was
obtained from the Kaiser Permanente Washington institutional
review board (approval no. 821300). All participants provided
written informed consent.

Data Cleaning and Preprocessing

In-bed and accelerometer nonwear time was removed from
the device data. The collected self-reported sleep logs were
used to identify and remove in-bed time. Missing sleep log in-
formation was imputed using person-specific means, when
available, or using the sample average. To identify and remove
periods of nonwear, ActiGraph accelerometer data were
processed using the Choi algorithm (29,30) applied to vector
magnitude counts per minute using a 90-min window, 30-min
streamframe, and 2-min tolerance.

For inclusion in this study, data were required from both the
ActiGraph and activPAL devices simultaneously. Participants
were excluded if data from either of the monitors were missing
or invalid. No minimum wear time criteria were required; all
days with concurrent device wear for any length of time were
considered valid days and were included in the sample. After
restricting towakingwear time on both devices, visual inspection
http://www.acsm-msse.org
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was used to define invalid data based on time drift between the
monitors, a phenomenon in which data collected from one de-
vice seem to gradually lose or gain timewhen comparedwith an-
other device resulting in the two data streams no longer aligning
(Figure, Supplemental Digital Content–Appendix, which depicts
an example of drift between activPAL and ActiGraph, http://
links.lww.com/MSS/C335) (31).
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CHAP Design

The CHAP method was developed using a deep neural net-
work (32) to classify sitting versus nonsitting behavioral pos-
tures and postural transitions from 10-Hz triaxial ActiGraph
data (downsampled from 30-Hz via boxcar aggregation to re-
duce the size of the dataset). All computations were made on
10-s nonoverlapping windows of continuous 10-Hz data, each
containing 100 triaxial acceleration values. The 10-s window
size was chosen to align with activPAL’s 10-s minimum
threshold for labeling postural transitions. We used a model
architecture family called CNN-BiLSTM architecture (33),
which has three main components: 1) a CNN base (34), 2) a
BiLSTM network (35), and 3) a softmax output layer akin to
a logistic regression classifier (36). The first component auto-
matically extracted features for identifying sitting versus
nonsitting for each time point, the second component refined
these features by considering neighboring time points and
the most likely sequence of events, and the third component
converted the extracted features to a final classification label
(sitting or nonsitting). Hereinafter, detailed descriptions are
given for each component of CHAP and the unique way these
components work synergistically.

CNN.After partitioning both activPAL and triaxial ActiGraph
data into nonoverlapping 10-s increments, featureswere extracted
for eachwindow.Unlike traditionalmachine learningmodels that
target certain predefined features (e.g., time- or frequency-domain
summary values), the CNN automatically learned its own
features by repeatedly convolving the raw triaxial data, with
each convolution using a different kernel. During training, the
model learned the parameters of each kernel, which enabled
the convolution-based features to capture the relevant infor-
mation for the posture classification task.

BiLSTM. The CNN classifications weremade under the as-
sumption that all 10-s windows contained independent and
identically distributed data (37). Human behavior does not
meet these conditions, as a given action will generally be influ-
enced by the preceding actions. Therefore, it was important to
account for this temporal dependence (38), which necessitated
layering the BiLSTM on top of the CNN. The BiLSTM com-
ponent automatically learned temporal features from the pat-
terns of variations across time to differentiate activities. The
BiLSTM component took in a sequence of features produced
by the CNN component for a window of input data and output
another sequence of BiLSTM-extracted features correspond-
ing to each 10-s window of the input. During training, the pa-
rameters of the BiLSTM component were adjusted to properly
smooth the output so that there was minimal opportunity for
CLASSIFYING SITTING FROM HIP ACCELEROMETERS
the model to insert spurious interruptions during continuous
sitting or nonsitting bouts.

CNN and BiLSTM featurization relationship. The
CNN and BiLSTM components have a complementary rela-
tionship in how they featurized the data for classification. The
CNN captured behaviors at a lower temporal granularity using
the immediate temporal relationships within the classification
window (10 s). This helped identify sudden changes in the base
accelerometer features, for example, those caused by transi-
tions. In a sense, similar to how two-dimensional CNNs exploit
spatial dependencies in image pixels to extract relevant features,
our one-dimensional CNN effectively treated time series as
“one-dimensional images” across time. The BiLSTM’s mem-
ory cells “remembered” patterns in the extracted CNN features
over time to discern higher-level behaviors with longer temporal
relationships. This helped identify both nonchanges in the base
features, for example, those during sitting (or nonsitting) bouts,
as well as reoccurring changes, for example, back-to-back tran-
sitions. Together, these capabilities demonstrated the power of
modern deep learning in automatically featurizing low-level se-
quence data: myriad manually tuned temporal thresholds are re-
placed with compact end-to-end learned neural architectures.

Softmax output layer. The output of the BiLSTMcompo-
nent was a sequence of intermediate features corresponding to a
windowof input data. To perform the final behavior classification
on the extracted features, we used a Softmax layer. The Softmax
layer converts input features to final probabilities of each 10-s
time interval belonging to sitting or nonsitting behavior. We then
selected the most probable label as the final classification.
CHAP Development and Evaluation

The sample was divided into a training sample (n = 399 par-
ticipants), a holdout validation sample (n = 97), and a test sam-
ple (n = 213). The training and validation samples were used to
determine the optimal settings for CHAP, whereas the test sam-
ple was withheld until final models were selected and used for a
performance comparison of CHAP and two other commonly
used sitting pattern classification methods (described hereinaf-
ter). Given the large number of steps and parameter tuning that
occurs when building CNN models, a test dataset was critical
for obtaining unbiased estimates of model performance.

Model development. The CHAP method was trained
end to end using the backpropagation technique (32), meaning
that output from each layer was sequentially fed into the sub-
sequent layer to generate a final output. During training, we
fed each window of input ActiGraph data through CHAP,
generating classifications for each 10-s time interval in each
input window. We then compared classifications with the
activPAL-derived ground-truth labels corresponding to the
same 10-s input window in question, which are assigned
based on the majority activPAL-designated posture in a
given 10-s window (note: in the case of a tie, the sitting label
was chosen). Based on this comparison, we then used the
backpropagation method to update the learnable parameters in
the model in order to minimize the cross-entropy of classifications
Medicine & Science in Sports & Exercise® 2447
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TABLE 1. Definitions and interpretations of accuracy and error metrics.

Confusion Matrix of Actual and Predicted 10-s Segments

Predicted Sitting Predicted Nonsitting

Actual sitting a b
Actual nonsitting c d

Metric Definition† Interpretation

Accuracy (a + d )/(a + b + c + d ) Proportion of segments correctly predicted
Sensitivity a/(a + b) Proportion of activPAL sitting segments that were predicted sitting. Shows out of all the activPAL sitting

segments, how many were correctly precited as sitting
Specificity d/(c + d ) Proportion of activPAL nonsitting segments that were predicted nonsitting. Shows out of all the

activPAL not sitting minutes, how many were correctly predicted as nonsitting
Balanced accuracy 0.5a/(a + b) + 0.5d/(c + d ) Average of sensitivity and specificity
Sitting time MAPE 100 (|(a + b) − (a + c)|)/(a + b) Absolute percent error in total predicted sitting time (vs total actual sitting time)
Notsitting time MAPE 100 (|(c + d ) − (b + d )|)/(c + d ) Absolute percent error in total predicted nonsitting time (vs total actual nonsitting time)

†Refers to letters defined in the confusion matrix.

SP
EC

IA
L
C
O
M
M
U
N
IC
AT

IO
N
S

(i.e., maximize accuracy) between the predicted classifications
and the ground-truth labels. This process was completed for
all input training data and repeated several times.

Training neural networks is a complex process involving
multiple parameters and tuning steps that could lead to models
that overfit the data. Thus, it is unwise to use training data
alone for model selection given that the goal is to apply the algo-
rithm on future data that is independent of the training set (39).
Therefore, we fitted several model configurations on the training
data and compared their performance when applied to the hold-
out validation data. Model configurations varied on four dimen-
sions: BiLSTM window size (7 and 9 min), number of neurons
in a CNN layer (3200 and 6400 neurons), learning rate (0.001
and 0.0001), and regularization coefficient (0.001 and 0.0001).
All possible unique combinations of domain values were tested,
for a total of 16 unique model configurations tested. These com-
parisons enabled us to identify the best model configuration,
based on several performancemetrics (Table 1).Metrics included
overall and balanced classification accuracy, ability to accurately
capture transitions (i.e., changes in posture), sitting and nonsitting
bout deviations, andKolmogorov–Smirnov statistics for compar-
ing CHAP-predicted versus true (activPAL) probability distribu-
tions of sitting and nonsitting bouts.Models with low accuracy or
high variance, relative to competingmodels, on any of thesemet-
rics were eliminated. Three models performed equally well on all
metrics, and these models were used to create a hybrid ensemble
model that made classifications based on the majority vote. This
ensemble model represented the complete CHAP method. For
each of the three models that performed best in the validation
set and the final ensemble model, we calculated the means and
SD of the evaluation metrics described in Table 1.

Model evaluation. Using data from the test set, we com-
pared the performance of CHAP with the performance of two
other classification approaches that are commonly used in the
field: 1) the standard ActiGraph cut-point (AG cut-point) method
and 2) a previously developed two-level behavior classification
(TLBC) machine-learned model designed to differentiate sitting
from standing postures. The AG cut-point method is designed
to capture sedentary, nonmovement bouts, which are sometimes
used as a proxy for sitting bouts (7). Sedentary bouts were de-
fined using 1-min epoch data, in which minutes was classified
as sedentary if the vertical axis counts were less than 100 (40).
2448 Official Journal of the American College of Sports Medicine
Consecutive sedentary minutes were classified as bouts with no
minimum duration required and no allowance for interruptions.
TLBC sequentially applies a pretrained random forest and hid-
den Markov model to 30-Hz triaxial accelerometer data and
was trained using annotated images captured from person-worn
SenseCams (41–43). TLBC first converts the 30-Hz triaxial
accelerometer data into a set of 41 engineered features that are
used to classify minutes of sitting, riding in a vehicle (which
collectively represent sitting), standing, and walking/running
(which collectively represent nonsitting). We defined sitting
bouts as any period labeled by TLBC as a sitting posture,
specifically sitting and riding in a vehicle.

The methods were compared using the same classification
metrics that were used during validation (Table 1). Because
the TLBC and AG cut-point methods yielded results at the
minute level, for model comparison purposes, CHAP’s 10-s-
level classifications were aggregated to the minute level using
majority vote for sitting versus nonsitting labels. We also in-
cluded comparisons of common person-level sitting pattern
metrics, including mean sitting bout duration (total sitting
time/number of sitting bouts), average daily sitting time (total
sitting time/number of days), and average daily number of sitting
bouts (number of sitting bouts/number of days). A final perfor-
mance indicator was how well each method was able to predict
the timing of postural transitions at a 10-s granularity within
a 1-min window. This analysis was done using the transition
pairing method (44), which uses an extended Gale-Shapley al-
gorithm to pair actual and predicted transitions together for
analysis. The method allowed for the exclusion of nonsequen-
tial pairings and any pairings that exceeded a specified lag
time (tolerance), which was 1 min for this study. One minute
was the minimum tolerance level after which the number of
successful pairings leveled off (Supplemental Table 1, Supple-
mental Digital Content–Appendix, which shows transition
pair sensitivity and precision results at different tolerance
levels, from no tolerance to 5 min, across methods, http://
links.lww.com/MSS/C335). The pairings were analyzed to
determine the true positive rate (recall) and positive predictive
value (PPV; precision) of predicted transitions.

Performance metrics were calculated for each person and
method. Summary statistics were then calculated across partici-
pants, and boxplots were used to visually examine variability
http://www.acsm-msse.org
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FIGURE 1—Flow diagram from the ACT study for inclusion into this study and random division into training and testing data sets. 1Nonconcurrent wear
represents data in which the devices are not worn concurrently. 2Drift is a phenomenon in which data collected from one device seems to gradually lose or
gain time when compared with another device, such that, over time, the two data streams no longer align. See Figure, Supplemental Digital Content for an
example of drift in this sample, http://links.lww.com/MSS/C335.
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across test subjects. In addition to model performancemetrics, we
also compared commonly used sitting pattern metrics (mean sit-
ting bout duration, mean daily sitting time, and mean number of
daily sitting bouts), derived using each method to the activPAL
ground truth.General estimating equations, accounting for nesting
of methods within participants, were used to evaluate differences
of performance between methods and whether sitting pattern
metrics derived from different methods were significantly dif-
ferent from those derived from activPAL. A general estimating
equation was implemented using an exchangeable correlation
structure and robust standard errors. Finally, to allow inference
about individual-level, in addition to sample-level, agreement,
TABLE 2. Participant characteristics for the full, training, validation, and test sets.

Full Sample

Characteristics n = 709

Age, yr 76.70 (6.52) 7
Sex

Female 415 (58.5)
Race ethnicity

Hispanic or non-White 70 (9.9)
Education

Less than high school 10 (1.4)
Completed high school 52 (7.3)
Some college 113 (15.9)
Completed college 534 (75.3)

BMI, kg�m�2

≤29 537 (77.4)
>29 157 (22.6)

Self-rated health
Good, poor, or very poor 279 (39.4)

Difficulty in walking half a mile
Some or more 168 (23.7)

aDifferences between training and validation sets and the test set were not statistically significant a
variables.

CLASSIFYING SITTING FROM HIP ACCELEROMETERS
sitting pattern metrics derived from each modeling approach
(AG cut-point, TLBC, and CHAP) were also compared with
activPAL using mean absolute error (MAE).
RESULTS

Sample partitioning and characteristics. Figure 1
summarizes data loss and partitioning, and Table 2 shows par-
ticipant characteristics for the final sample. Participant char-
acteristics for the included overall ACT-AM sample were
similarly distributed in the training (n = 399), validation
(n = 97), and test sets (n = 213).
Traininga Validationa Test

n = 399 n = 97 n = 213
Mean (SD)

6.87 (6.38) 76.60 (6.84) 76.44 (6.64)
n (%)

234 (58.6) 54 (55.7) 127 (59.6)

31 (7.8) 16 (16.5) 23 (10.9)

7 (1.8) 1 (1.0) 2 (0.9)
25 (6.3) 8 (8.2) 19 (8.9)
68 (17.0) 13 (13.4) 32 (15.0)
299 (74.9) 75 (77.3) 160 (75.1)

293 (74.7) 81 (88.0) 163 (77.6)
99 (25.3) 11 (12.0) 47 (22.4)

164 (41.1) 37 (38.1) 78 (36.6)

99 (24.8) 21 (21.6) 48 (22.5)

t the 5% level using two-sample t-test for continuous variables and χ2 test for categorical

Medicine & Science in Sports & Exercise® 2449
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TABLE 3. Test set performance of top 3 performing CNN models and ensemble CHAP at the 10-s level (mean (SD) of metrics).

Models Accuracy (%)
Balanced

Accuracy (%)
Sitting Time
MAPE (%)

Nonsitting
Time MAPE (%)

Transition Sensitivity
(Recall) % at 1-min Tolerancea

Transition PPV (Precision)
% at 1-min Tolerancea

A 93.5 (3.9) 91.8 (4.7) 5.3 7.7 76.7 (10.3) 74.5 (12.6)
B 93.7 (3.8) 91.9 (5.1) 5.2 8.7 76.2 (11.1) 76.7 (12.3)
C 93.7 (3.6) 92.4 (4.2) 5.5 9.8 75.8 (9.9) 77.0 (11.6)
CHAP (ensemble) 94.1 (3.6) 92.6 (4.5) 5.2 8.2 77.1 (10.8) 80.0 (12.5)

aDetection of transitions within ±6 10-s epochs of ActiGraph data.
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Model accuracy. Ten-second-level summary statistics of
the three best CNNmodel configurations (labeledA, B, C) and
the CHAPmodel are displayed in Table 3. Here we focus on the
accuracy and mean absolute percent error (MAPE) metrics de-
fined in Table 1 between the three CNN model configurations,
which estimate agreement and deviation between the actual and
predicted values.

Across all performance metrics, CHAP was superior to the
other methods (Fig. 2) at the minute level. For balanced accu-
racy, which is the average of sensitivity and specificity, the
AG cut-point method performed worst, with a value of 74%,
followed by 83% for TLBC versus 93% for the CHAP model.
All models had high sensitivity for classifying sitting, ranging
from 88% (AG cut-point) to 97% (CHAP). Specificity varied
markedly between models: 60% for AG cut-point, 74% for
TLBC, and 89% for CHAP. The differences in performance
in balanced accuracy, sensitivity, and specificity between
CHAP and the AG cut-point method, and between CHAP
and TLBC were statistically significant at the 5% level. The
MAPE values of sitting versus nonsitting classification were
not similar. Although all methods were able to accurately
classify true sitting, the AG cut-point and TLBC methods
classified between 25% and 40% of true (activPAL regis-
tered) nonsitting as sitting. Of note, the variation in these
metrics was also higher for the AG cut-point and TLBC ver-
sus CHAP, indicating superior individual-level agreement
for the latter method.

Participant-level sitting pattern classification. Figure 3
shows results of the sitting pattern analyses. The average mean
bout duration fromCHAP, 15.7 min·d−1, did not significantly differ
FIGURE 2—Minute-level performance (balanced accuracy, sensitivity/recall, sp
(pink), TLBC (blue), and CHAP (green).

2450 Official Journal of the American College of Sports Medicine
relative to activPAL, 15.4 min·d−1 (MAECHAP = 2min). Aver-
age mean bout duration using the AG cut-point (9.4 min·d−1)
and TLBC methods (49.4 min·d−1), did significantly differ at
the 5% level relative to activPAL (MAEAG cut-point = 6 min
and MAETLBC = 34 min). Average daily sitting time derived
using AG cut-point (643.2 min·d−1) and using the TLBC method
(616.2 min·d−1), was significantly different relative to activPAL
(594.6 min·d−1; MAEAG cut-point = 75 min, and MAETLBC =
50 min), but average daily sitting time derived from CHAP
(595.4 min·d−1) was not significantly different relative to
activPAL (MAECHAP = 31 min). Average daily number of sit-
ting bouts using all three methods was significantly different
from activPAL. Of the three methods, average daily number
of sitting bouts derived using CHAP (41.8 per day) was the
closest to activPAL (43.9 per day;MAECHAP = 5), and the dif-
ference was not deemed to be relevant in practice. The average
daily number of sitting bouts derived using AG cut-point (79.2
per day) and TLBC (14.1 per day) had much larger deviations
relative to activPAL (MAEAG cut-point = 35 andMAETLBC = 30).
The results suggest that the latter two methods are unable to
accurately capture sitting patterns. AG cut-point overpredicted
the number of transitions by two times explaining why its
mean bout duration was lower than activPAL, whereas TLBC
underpredicted relative to activPAL by two-thirds and hence
why its mean bout duration was higher. Despite its superior
performance to the other two methods, the CHAP method
had slightly lower person-to-person variability (i.e., lower
SDs) compared with activPAL.

Classifying the timing of sit-to-stand transitions.
We examined accuracy in predicting sit-to-stand transitions
ecificity) in classifying sitting vs not sitting comparing AG cut-point
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FIGURE 3—Person-level sitting pattern metrics (mean sitting bout duration, average daily sitting time in minutes, average daily number of sitting bouts)
comparing activPAL (orange), AG cut-point (pink), TLBC (blue), and CHAP (green).
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within a 1-min window by the three methods compared with
the activPAL (Fig. 4). Transition sensitivity estimates the per-
cent of true transitions (as registered by the activPAL), which
were captured by the different methods. Sensitivity for transi-
tion detection was similar for the AG cut-point (72%) and
CHAP (83%), whereas it was only 26% for TLBC, likely due
to oversmoothing. Transition PPV or precision estimates the
proportion of predicted transitions, which are true activPAL
transitions. In contrast to the sensitivity results, PPVwas similar
for CHAP (83%) and TLBC (71%), whereas it was only 30%
for the AG cut-point. The differences in performance in transi-
tion sensitivity and transition PPV between CHAP and the AG
cut-point method, and between CHAP and TLBC were statisti-
cally significant at the 5% level.
DISCUSSION

The CHAP model had higher accuracy than existing
methods for classifying sitting bouts and sit-to-stand transi-
tions from free-living hip-worn accelerometer data in older
adults. As such, it represents an important step forward in
FIGURE 4—Assessment of minute-level performance in timing of classification
actual and predicted transitions for AG cut-point (pink), TLBC (blue), and CHA

CLASSIFYING SITTING FROM HIP ACCELEROMETERS
the field of sitting pattern measurement in this population.
CHAP will allow for less cumbersome protocols for studies
in older adults by necessitating only one hip-worn device to
measure both posture and motion. CHAP can be used to repro-
cess previously collected hip-worn accelerometer data among
older adults, resulting in more accurate measures of true sitting
time and patterns in existing cohort studies as well as future
studies that choose to use hip-worn accelerometers.

The AG cut-point method overestimated true sitting time
and failed to capture sit-to-stand transitions that are key to
the measurement of sitting patterns (15–17,45). This under-
scores the importance of using methods for their intended
use. That is, cut-point methods are meant to capture move-
ment intensity and nonmovement but not changes in posture.
The main shortcoming of the cut-point method was that it
misclassified approximately 40% of activPAL registered
nonsitting time as sitting, while simultaneously overpredicting
sit-to-stand transitions such that approximately 70% of the
transitions it predicted were not activPAL transitions, resulting
in inaccurate measures of sitting patterns. These findings
are in line with other studies that support the use of hip-worn
of sit-to-stand transitions within 1-min window (tolerance) using paired
P (green).
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 accelerometry for measuring motion and movement but sug-

gest thigh-worn devices for measuring posture and pos-
tural transitions (11–13,15–17). Thus, evidence on sitting
patterns measured using ActiGraph cut-points should be
interpreted with caution. It is not clear whether such
misestimation has major impacts on the ability to detect
associations between sitting patterns and health. Nonetheless,
there is sufficient evidence to suggest that sitting pattern
estimates, derived from ActiGraph cut-points should not
be compared with studies that employed posture-based
measures such as activPAL or used to inform specific
thresholds of sitting patterns when generating intervention
or public health recommendations.

Transitions have been a large issue for the field even with
application of machine-learned algorithms. Machine learning
approaches most often rely on single-label classification within
a given window or period (e.g., 5 min), and therefore, an inher-
ent assumption is that only one activity type occurs within each
interval window (22). Laboratory-based training data reduce the
amount of transitions, resulting in algorithms with high predic-
tive accuracy, but algorithms trained on data obtained from
free-living populations must account for the inherent messiness
of human postural changes and movement. The TLBC method
was designed to address some of these limitations by training it
against free-living images collected by a body-worn camera.
However, the body-worn camera captured images triggered
by changes in light and movement, meaning TLBC was unable
to reliably capture postural transitions or their exact timing,
leading to an underestimation of postural transitions (44). Solu-
tions have been proposed in the literature to allow for better
identification of transitions by machine learning models includ-
ing activity-basedwindowing and adaptive slidingwindow seg-
mentation, where for both solutions windows are adjusted to
ensure one activity is represented per window and windows
can vary in size throughout the dataset (46,47). Alternatively,
CHAP uses a BiLSTM component with a fixed window that
automatically learns to capture the transitions during training.
We found that, although the model accuracy did not signifi-
cantly vary (at most 2% variation) with the chosen BiLSTM
window size, it significantly affected the ability of the model
to capture transitions correctly. As the window size was in-
creased from 1 to 9 min, the transition capturing recall reduced
by 6% from 83% to 77% and the PPV increased by 23% from
56% to 79%. In practice, we found that a window size of
7–9 min works well for our data, which had a mean activPAL
sitting bout time of 15.4 min and mean nonsitting bout time
of 7.9 min. More experimental results on the model sensitivity
for the chosen BiLSTM window size are provided in Supple-
mental Table 2 (see Table, Supplemental Digital Content, Ap-
pendix, http://links.lww.com/MSS/C335).

Deep learning methods to improve measures derived from
accelerometer data are of growing interest in the field. For in-
stance, Nawaratne et al. (48) leverage a CNNmodel architecture
to derive measures of physical activity intensity fromwrist-worn
ActiGraph that are of equal caliber to those measured from the
hip-worn ActiGraph. Although the goals of Nawaratne et al.’s
2452 Official Journal of the American College of Sports Medicine
model differ from those of CHAP, making the results not di-
rectly comparable, their work demonstrates the utility of CNN
model architecture in constructing machine-learned approaches
to processing accelerometer data. CHAP builds on this ap-
proach, adding a BiLSTM layer for improved measurement
of activity transitions.

We were able to find only one other study that uses hip-
worn ActiGraph data to classify sedentary behavior and sitting
patterns in a free-living population with high accuracy. Kuster
et al. (49) developed an algorithm utilizing hip-worn ActiGraph
data in a sample of office workers (n = 38) to detect prolonged
sitting bouts (≥5 and ≥10 min). Their method used a random
forest classifier on 563 engineered ActiGraph signal features,
followed by a bagged classification tree ensemble method.
The model achieved a low bias of ≤7 min·d−1, when classifying
time spent in prolonged sitting bouts (≥5 and ≥10 min) relative
to activPAL. CHAP builds on the model of Kuster et al. in sev-
eral ways. Most importantly, it was developed, validated, and
tested on a larger and more representative cohort (n = 709) of
free-living older adults. Through the CNN + BiLSTM architec-
ture, CHAP was also able to automate the feature extraction
process rather than relying on human-engineered features. As
a result, CHAP requires less human input than the Kuster et al.
model and is a versatile and flexible model that can be used to
derive various person-level sitting pattern variables beyond pro-
longed sitting bouts. This application in the older adult popula-
tion of the ACT cohort represents only the first test-case for
CHAP. Future work will apply this method in other populations
to assess performance and generalizability of CHAP in other
age groups, and refine the model for broader generalizability
across age, sex, and other key demographic factors.

Researchers interested in more deeply exploring the CHAP
algorithm or applying CHAP to their existing hip-worn acceler-
ometer data to derive postural transition and sitting pattern met-
rics are invited to explore the study’s GitHub repository. CHAP
and associated user documentation are available for download
from https://github.com/ADALabUCSD/DeepPostures.

Our study has several limitations that should be considered.
We used thigh-worn activPAL data as ground truth rather than
direct observation, which could lead to compounding of the
activPAL’s inherent measurement error. However, we believe
the benefit of obtaining large amounts of free-living data out-
weighs limitations of activPAL. Furthermore, activPAL has
been shown to be a highly valid instrument for measuring pos-
tural transitions (25). Notably, CHAP had slightly lower
person-to-person variability (i.e., lower SDs for derived sitting
pattern metrics) compared with activPAL, which could poten-
tially result in reduced statistical power in studies of associations
between sitting patterns and health outcomes, and should be ad-
dressed in future studies. However, because our CHAP model
predictions have similar probability distributions to that of the
ground truth (activPAL), in practice, we do not expect sub-
stantial negative effects on study power when using CHAP
predictions. Despite these limitations, our study had consider-
able strengths, including the large sample size and rigorous
machine learning procedures used. Although CHAP allows
http://www.acsm-msse.org
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posture-based classification from a single device, the hip-worn
ActiGraph, it is important to acknowledge that methods for
integrating both types of sensors (e.g., activPAL and ActiGraph)
to achieve systems for postural and motion measurement
have been previously developed (14). In addition, recent
studies have developed accurate classification methods of
wrist-worn accelerometer data for both sedentary behavior
and sitting patterns (50,51).

CHAP performed much better than currently available
methods, and it established a novel and powerful framework
for models that use hip-worn data. This advance will allow re-
searchers to better understand the epidemiology of sitting pat-
terns, including norms among healthy and unhealthy people and
how sitting patterns are causally associated with a myriad of
healthy aging outcomes. In addition, it will reduce participant
burden by allowing for accurate measurement of posture and
CLASSIFYING SITTING FROM HIP ACCELEROMETERS
motion using one hip-worn device, rather than necessitating sev-
eral devices. Ultimately, these data will be needed to help inform
future guidelines for sedentary behavior among older adults.
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