UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Memory Performance in Special Forces: Speedier Responses Explain Improved Retrieval Performance after Physical Exertion

Permalink

https://escholarship.org/uc/item/8cd256tc

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

ISSN

1069-7977

Authors

van der Velde, Maarten Sense, Florian Borst, Jelmer <u>et al.</u>

Publication Date

2021

Peer reviewed

Memory Performance in Special Forces: Speedier Responses Explain Improved Retrieval Performance after Physical Exertion

Maarten van der Velde

University of Groniningen, Groningen, Netherlands

Florian Sense

University of Groningen, Groningen, Netherlands

Jelmer Borst

University of Groningen, Groningen, Groningen, Netherlands

Ruud Den Hartigh

University of Groningen, Groningen, Netherlands

Maurits Baatenburg de Jong

Ministry of Defence, Roosendaal, Netherlands

Hedderik van Rijn

University of Groningen, Groningen, Netherlands

Abstract

Performance on cognitive tasks is typically affected by many factors simultaneously. For example, performance on a retrieval practice task is determined not only by memory encoding and retrieval processes, but also by motor processes, executive functions, affective state, etc. Often, these contributing processes also vary over time. This makes it challenging to attribute performance changes to a single mechanism, especially in real-world settings.

Here we analyse performance data from multiple retrieval practice sessions completed by special forces trainees before and after a high-intensity speed march. Learning outcomes improved from session to session, which suggests increased memory function. However, a linear ballistic accumulator fitted to the data showed that changes in non-memory processes—a decrease in non-retrieval time in particular—sufficed to explain the observed improvements.

This work demonstrates that even with a simple task, assuming that performance changes are attributable to a single cognitive process can lead to erroneous conclusions.