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Quantum Criticality in the infinite-range Transverse Field Ising Model

Nicholas Curro, Kaeshav Danesh and Rajiv R. P. Singh
University of California Davis, CA 95616, USA

(Dated: July 23, 2024)

We study quantum criticality in the infinite range Transverse-Field Ising Model. We find subtle
differences with respect to the well-known single-site mean-field theory, especially in terms of gap,
entanglement and quantum criticality. The calculations are based on numerical diagonalization of
Hamiltonians with up to a few thousand spins. This is made possible by the enhanced symmetries
of the model, which divide the Hamiltonian into many block-diagonal sectors. The finite temper-
ature phase diagram and the characteristic jump in heat capacity closely resemble the behavior in
mean-field theory. However, unlike mean-field theory where excitations are always gapped, the ex-
citation gap in the infinite range model goes to zero from both the paramagnetic side and from the
ferromagnetic side on approach to the quantum critical point. Also, contrary to mean-field theory,
at the quantum critical point the Quantum Fisher Information becomes large, implying long-range
multi-partite entanglement. We find that the main role of temperature is to shift statistical weights
from one conserved sector to another. However, low energy excitations in each sector arise only
near the quantum critical point implying that low energy quantum fluctuations can arise only in
the vicinity of the quantum critical field where they can persist up to temperatures of order the
exchange constant.

INTRODUCTION

Recent studies of quadrupolar transverse-field Ising be-
havior in thulium vanadate materials have raised im-
portant questions about quantum criticality in such sys-
tems [1–3]. The finite temperature thermodynamic be-
havior shows a jump in the heat-capacity characteris-
tic of mean-field behavior that is expected for phonon-
mediated systems with long-range interactions [1, 4].
Yet, surprisingly, NMR spin-echo experiments show a
dramatic wipe-out phenomena extending over a fan-like
region in the temperature-transverse field plane near the
quantum critical field, signifying persistent quantum crit-
ical fluctuations [5]. The well known single-site mean-
field theory captures the phase diagram and the jump
in the heat capacity quite well. However, the mean-field
theory always has a large energy gap and hence no low
energy fluctuations that can cause rapid decoherence of
NMR signals [6]. The purpose of this work is to study a
concrete model that has mean-field thermodynamic be-
havior and yet may support persistent quantum critical
fluctuations.

We consider a system of N half integer spins. The infi-
nite range Transverse-Field Ising Model (TFIM) Hamil-
tonian can be expressed in terms of Pauli spin matrices
for the ith spin σα

i as

H = − J

2N
(
∑
i

σz
i )

2 − hx

∑
i

σx
i . (1)

We will set J = 1, which sets all energy scales.

MEAN-FIELD THEORY

The standard mean-field theory replaces the Hamilto-
nian by a single site effective Hamiltonian [7, 8]

Heff = −mzσ
z − hxσ

x, (2)

where the magnetization mz needs to be determined self-
consistently

mz = ⟨σz⟩. (3)

Various physical properties are easy to calculate in this
approximation. It leads to a transition temperature as a
function of transverse-field given by

Tc(hx) = hx/ tanh
−1 (hx). (4)

In our units the zero field transition temperature Tc(0)
and the critical field at zero temperature hc are both
unity.
The mean-field approximation is known to be exact in

the thermodynamic limit for the classical model (hx =
0). In this study we explore deviations from the mean-
field behavior for the infinite-range model for non-zero
hx and the implications for quantum critical phenomena.
We note that the infinite range model has been derived
as a zeroth order model for the thulium vanadate and
other quadrupolar transverse-field Ising materials where
gapless phonons mediate long-range interactions between
the Ising degrees of freedom [1, 4, 9, 10].

INFINITE-RANGE MODEL

The infinite range model has a large number of sym-
metries. Because the Hamiltonian depends only on two
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operators

Sz =
∑
i

Sz
i , (5)

and

Sx =
∑
i

Sx
i , (6)

both of which commute with the total spin operator

S2
t =

∑
i

S2
i , (7)

the Hamiltonian becomes block diagonal into many rel-
atively small (O(N)) Hilbert-space sectors [11, 12]. The
energy levels and properties in each sector depend on the
total spin st, which can take values from 0 to N/2 (we
will assume N is even). The spin sector has Hilbert space
dimension 2st + 1. The number of copies of the spin st
sector is the number of ways N spin-half objects can be
combined into total spin st. This number d(st) is one for
st = N/2 and for st < N/2 can be expressed in terms of
the combinatoric factors Cm

n as

d(st) = CN
N/2+st

− CN
N/2+st+1. (8)

In each st sector the Hamiltonian matrix can be written
out in terms of the matrix elements of spin operators and
diagonalized numerically. Thus, given the symmetries it
is possible to numerically calculate energy eigenlevels of
the system with up to a few thousand spins rather than
few tens of spins for most lattice models.

Energy gap

.
The ground state always lies in the largest st sector.

Energy gap between the lowest excited states and the
ground state are shown in Fig. 1 and Fig. 2 as a function
of the transverse-field hx. In the N → ∞ limit, there
are two degenerate ground states in the ordered phase at
hx < 1. One can see the difference between the energies
of the first two states in Fig. 1. With increasing system
size this is rapidly going to zero for h < hc. To measure
the excitation energy below hc one needs to look at the
next excited state in the ordered phase. This excitation
energy is shown in Fig. 2.

From the two figures, a key difference from the single
site mean-field theory becomes clear. In mean-field the-
ory the gap does not go below 2J . It goes to zero at
hc in the infinite-range model as expected at the quan-
tum critical point. The gap vanishes as one approaches
the quantum critical point hc from either side. Further
more, at the quantum critical point, one expects a whole
cascade of states to come down to zero energy in the
thermodynamic limit.
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FIG. 1. Energy difference between the lowest two states.
Note that for h < hc = 1, there are two degenerate states
in the thermodynamic limit and hence this energy difference
goes to zero. Mean-field theory results are shown by dashed
lines.
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FIG. 2. Energy difference between the third lowest energy
state and the ground state showing that excitation energy
goes to zero from both sides as one approaches the quantum
critical point. Mean-field theory results are shown by dashed
lines.

To see how the gap vanishes with system size N at the
quantum critical point, we show a log-log plot of several
energy gaps as a function of system size in Fig. 3. All the
states shown exhibit gaps vanishing as N−1/3 as N → ∞
(See also Ref. [13]).

The two lowest excitations in the paramagnetic phase,
within a sector, can be identified with one and two spin-
flip excitations. Even for large hx the gap stays below
the mean-field value by an amount J = 1 and 2J = 2
within a given st sector. As shown in the Appendix, this
result can be obtained from perturbation theory around
the large field limit and shows that deviations from mean-
field theory are present for all fields and not just near the
critical field.
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FIG. 3. Log-log plot of energy gaps vs N at the quantum crit-
ical point for several low lying states showing the gap scaling
as N−1/3.
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FIG. 4. A plot of the Quantum Fisher Information further
confirms the quantum critical nature by showing the build up
of quantum entanglement in the thermodynamic state at low
temperatures near the quantum critical point.

Quantum Fisher Information

In mean field theory, the quantum state factorizes and
does not have any quantum entanglement between dif-
ferent sites, even at the quantum critical point. One
can consider multi-particle entanglement as one of the
defining properties of quantum criticality. To look for
multi-partite entanglement in the infinite-range model,
we turn to Quantum Fisher Information QFI [11]. QFI
is the generalization of Fisher Information from classical
statistics to a quantum mechanical system. For a pure
state, the QFI associated with a variable Ô is simply
proportional to its variance. In a mixed state, such as at
finite temperatures, let the ith eigenstate of the system
have probability pi. Then the QFI FQ for the observable
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FIG. 5. Derivative of the Quantum Fisher Information with
respect to temperature shows that fQ inherits the energy sin-
gularity and hence its derivative has a discontinuity like the
heat capacity at the finite temperature transition. Note that
the thinner lines correspond to the same parameter as the
solid line but for smaller system sizes (N = 768, 512 and
256)to indicate how the curves move with size of the system.

Ô is given by the expression [11]:

FQ = 2
∑
i,j

(pi − pj)
2

pi + pj
| < i|Ô|j > |2. (9)

The QFI is a witness of multi-particle entanglement.
For a system of N spin-half objects, if the QFI per site
for any extensive variable Ô defined as

fQ = FQ/N, (10)

exceeds some integer m (for sufficiently large N), then
there is at least m + 1-particle entanglement in the sys-
tem.
The operator with the largest Fisher Quantum Infor-

mation for our model is:

Ô = Sz, (11)

where Sz is the total z-component of the spin-operator
defined in Eq. 5. All QFI calculations will be shown for
this operator. Figure 4 shows fQ for several system sizes.
Note that for a proper calculation at finite temperatures
one must sum over all states of the system and not just
consider one spin sector of the Hilbert space [11]. It is
clear that near the quantum critical point at low tem-
peratures fQ becomes large and this means that the sys-
tem becomes highly entangled. Note also that the Fisher
Quantum Information decreases more rapidly at T = 0 in
the ordered phase than in the disordered phase. This is
consistent with the behavior of other measures of quan-
tum entanglement such as Renyi entanglement entropy
(See e.g. Ref. [14]).
Figure 5 shows the derivative of fQ with respect to

temperature for different transverse field values. One
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FIG. 6. Scaling plots of Fisher Quantum Information fQ at
critical field hc versus T (left) and at T = 0 versus transverse-
field (right) for different system sizes N . We have scaled N
by a fixed reference size N0 = 128.
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FIG. 7. Plot of the transverse magnetization Mx (left) and
transverse susceptibility χxx (right) as a function of the trans-
verse field in the ground state of the system. Mean-field re-
sults are shown by dashed lines.

finds a characteristic behavior of a sharp maxima fol-
lowed by a minima, which presumably becomes a dis-
continuity in the thermodynamic limit. This feature
tracks the critical temperatures at different fields which
are shown by dashed lines. This is not surprising as mea-
sures of quantum entanglement can inherit an energy-like
singularity even at a finite temperature phase transition,
just from the singular changes in the density of states
at the finite temperature critical point [15–17]. Note
however that this finite temperature singularity does not
mean there is any enhanced multi-particle quantum en-
tanglement at the classical phase transition, as the mag-
nitude of fQ remains small away from the quantum crit-
ical region.

QUANTUM CRITICAL PROPERTIES OF THE
QUANTUM FISHER INFORMATION

At T = 0, QFI reduces to the variance of the operator
Sz in the ground state of the system, up to an overall
factor. Near the quantum critical point N → ∞, T →
0, h → hc, homogeneity [18] implies, we can write the
singular piece of QFI as

fQ(N,T, h) = NaX(T N b, (h− hc) N
c), (12)

whereX(x, y) is a scaling function of two variables. Fig. 6
shows the scaling plots for (a) h = hc and (b) T = 0
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FIG. 8. A plot of the longitudinal magnetization (left)
and longitudinal susceptibility (right) as a function of the
transverse-field in the ground state of the system obtained
with a small symmetry-breaking field hz = 0.0001.

with exponents a = 1/3, b = 1/3, c = 2/3. Note that
the exponent b is consistent with gap scaling with power
N−1/3. Our scaling relations imply that in the thermo-
dynamic limit, at h = hc, fQ diverges as 1/T as T → 0
and furthermore, at T = 0, fQ diverges as (h− hc)

−1/2.
The latter exponent is consistent with the expected di-
vergence with a critical exponent γ − zν, with γ = 1,
z = 1 and ν = 1/2.

Ground-state magnetization and susceptibilities

The transverse magnetization Mx and susceptibility
χxx in the ground state can be obtained by taking deriva-
tives of the ground state energy with hx. To calculate the
longitudinal magnetization or order parameter Mz and
the order parameter susceptibility χzz one needs to add
a small symmetry-breaking field. These quantities are
shown in Figs. 7 and 8. Deviations from mean-field the-
ory is most pronounced in the transverse susceptibility
near the quantum critical point hx = hc. In the mean-
field theory the transverse susceptibility is a constant be-
low hc and the magnetization Mx increases linearly with
the field. In the infinite range model there is very little
deviation from mean-field results in the thermodynamic
limit (N → ∞) away from the critical point. However,
an enhanced susceptibility very near the critical point
with a sharp peak at the transition seems to persist with
increasing N as seen in Fig. 7. Note that the jump in the
transverse susceptibility reflects the mean-field critical
behavior and is not special to the infinite-range model.
Singularities in longitudinal magnetization and suscepti-
bility are consistent with mean-field critical exponents as
shown by fits to mean-field behavior in Fig 8. That is,
Mz ≃ |hx−hc|β and χzz ≃ |hx−hc|−γ with β = 1/2 and
γ = 1.
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FIG. 9. Heat capacity as a function of temperature for
various values of the transverse field for N = 1024 spins.
The solid lines are for N = 1024 and the dashed lines for
N = 2048.
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FIG. 10. Transverse susceptibility as a function of
transverse-field for fields for various temperatures for the
infinite-range model. Solid lines are for N = 1024 and dashed
lines for N = 2048.

FINITE TEMPERATURE THERMODYNAMIC
PROPERTIES AND THULIUM VANADATES

Thermodynamic properties such as entropy, heat ca-
pacity and transverse susceptibilities at finite tempera-
tures can be obtained from the partition function of the
system. The partition function is given by:

Z(T, hx) = Tr exp(−βH)

=
∑
st

d(st)
∑
i∈st

e−βEi , (13)

where d(st) is the number of sectors with spin st in the
system.

A plot of the calculated heat capacity as a function of
temperature is shown in Fig. 9 for a range of transverse-
field values. The system studied is large enough to ex-
hibit the characteristic jump like feature of mean-field
theory as observed in the TmVO4 materials [1].

Transverse-susceptibility as a function of field for vari-
ous temperatures is shown in Figure 10, and as a function
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FIG. 11. Transverse susceptibility as a function of tempera-
ture for various transverse fields for the infinite-range model.
Solid lines are for N = 1024 and dashed lines for N = 2048.
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FIG. 12. Normalized spin decoherence rate, T 0
2 /T2 =

− log(I(h)/I(0)) measured in TmVO4 at T = 0.77 [5]. Here I
is the integrated spectral intensity measured by spin echoes,
normalized such that I(0) is unity, and the constant T 0

2 ≈
6 × 10−5 sec. The sharp rise at the quantum critical field is
indicative of quantum criticality.

of temperature for various fields in Figure 11. In mean-
field theory the susceptibility is constant in the ordered
phase and jumps at the transition as a function of field
and then rapidly decreases in the paramagnetic phase.
The most visible difference from mean-field theory is the
rise of the transverse susceptibility in the ordered phase
above the mean-field value and a small but distinct peak
near the quantum critical point. At low temperatures,
this peak increases with increase in temperature. Such a
peak may be observable in the materials.

The TmVO4 materials

Our study provides a resolution of the different be-
haviors observed in the thermodynamic and NMR spin-
echo measurements in the thulium vanadate materials.
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Away from the quantum critical point at hx = hc = 1, the
system has a large gap. At the quantum critical point, a
number of states converge towards zero energy with increase
in system size.

The phase diagram and heat capacity jump of the model
closely follow mean-field theory. These are well repro-
duced by the infinite-range model. However, unlike
mean-field theory, NMR spin-echo measurements show
persistent low energy quantum critical fluctuations near
the critical field. As an example, the divergent spin-spin
relaxation rate is shown in Fig. 12. The infinite range
transverse-field Ising model shows that both the mean-
field thermodynamic and low energy spectral behaviors
can be simultaneously present in a long-ranged system.

In Fig. 13, we show the spectral function associated
with the total transverse spin operator. In these finite
systems, the spectral weights consist of a series of delta-
function peaks that have been broadened by a Lorentzian
with a broadening parameter η = 10−5. The spectral
functions are shown on a logarithmic scale. One can see
that away from the quantum critical point at hc = 1,
there is a gap in the spectra of order J which is almost
size independent. This gap is too large to cause any
low frequency NMR relaxation. In contrast, at the crit-
ical point hc = 1 a whole series of states are converging
towards zero energy. It is these states at low energies,
characteristic of a quantum critical point, that can cause
a rapid decoherence of the nuclear spins.

The main effect of temperature in the model is that
the probability of finding the system in a spin-sector st
changes as a function of temperature. Probability distri-
bution for finding the system in different spin-sectors, for
two different values of the transverse-field, for a system
of N = 1024 spins are shown in Fig. 14 for temperatures
up to twice the zero-field transition temperature. At low
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FIG. 14. Probability distribution for finding the system in
spin-sector S at the critical field hc = 1 (left) and deep inside
the ordered phase hc = 0.4 (right) at several temperatures for
a system of N = 1024 spins with maximum spin of st = 516.
For h < hc, such as hc = 0.4, there is a finite temperature
phase transition and the largest shift in the probability dis-
tribution happens as one crosses the phase transition.

temperatures (up to about T = 0.2) this probability is
very sharply peaked near the highest spin sector, where
the ground state resides. Even at twice the ordering tem-
perature the probability is still peaked in a spin sector
that is a fraction of the maximum spin, hence extensive
in number of spins. It would take an unphysically large
temperature for the probability to finally shift to sectors
with spin of order one. One can also see in the plot that
the largest change in the probability distribution occurs
as one crosses the phase transition.

In each such sector with an extensive spin value, the
system supports low energy quantum dynamics near the
critical field. That is, the gaps go to zero in every large
spin sector at hc. As the main role of temperature is
to shift the probability distribution to reduced st values,
low energy weight remain at the critical field even as
temperature increases. This tells us that for a sufficiently
large system the quantum critical fluctuations can persist
at the quantum critical point to temperatures of order the
exchange constant. We note that it has been shown in
literature that in a one-dimensional transverse-field Ising
model, quantum critical fluctuations persist up to infinite
temperature [6, 19].

SUMMARY

In summary, we have shown that the infinite range
transverse-field Ising model exhibits quantum criticality.
The energy gap goes to zero as the quantum critical field
is approached from either side of the transition. The
study of Quantum Fisher Information shows that the
system becomes highly entangled as the quantum crit-
ical point is approached in the temperature-field plane.
While the Quantum Fisher Information appears to be
singular at the finite temperature phase transition, it
does not serve as a witness for enhanced quantum en-
tanglement along the finite temperature phase boundary
away from the quantum critical region. In other words,
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the enhanced multi-partite quantum entanglement is ob-
served only in the quantum critical region.

Various thermodynamic quantities show deviations
from mean-field behavior especially near the quantum
critical field. Heat capacity has a jump at the transition
which closely resembles the mean-field behavior. How-
ever, the transverse susceptibility shows a peak at T = 0
near the quantum critical point, unlike mean-field theory.
At finite temperatures also a small but distinct peak in
the transverse susceptibility remains. The spectral func-
tion associated with the transverse-susceptibility shows
low energy weights only near the quantum critical point,
which persists over a range of temperatures.

This study points to a possible consistent explanation
of the various observed properties in the Thulium Vana-
date materials. While the heat capacity in the material
shows a jump quite similar to mean-field theory, NMR
studies find quantum critical features with a vanishing
spin-gap and a rapid decoherence of nuclear spin states in
the vicinity of the quantum critical field consistent with
the results of our model study. We also find peaks in
the transverse susceptibility at low temperatures in the
quantum critical region and speculate that such peaks
should be present for phonon mediated transverse-field
Ising systems that can be modelled with long-range in-
teractions.
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APPENDIX

In this appendix we develop high-field perturbation
theory for the infinite-range model to show that the gaps
in excitation energy have finite corrections to the mean-
field results even in the limit that the transverse-field hx

goes to infinity. In mean-field theory, the entire param-
agnetic phase is described by decoupled spins in a trans-
verse field, for which the excitation gap corresponding to
flipping a spin has energy 2hx. We consider the maxi-
mum St sector of our infinite-range model in which the
ground state lies for all hx. In this sector, all states cor-
respond to a uniform state analogous to a q = 0 state in
finite dimensional system.

In the ground state for hx going to infinity, all spins are
pointing in the x-direction. Its energy can be calculated
perturbatively and gives

E0 = −Nhx − J2

16hx
, (14)

as hx → ∞ corrections to mean-field result goes to zero.
The one-particle state or single spin-flip state is an equal
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superposition of spin-flip states at each site. Its energy
already changes in first order perturbation theory due to
matrix elements connecting flipped spins at different sites
leading to

E1 = −(N − 2)hx − J. (15)

Similarly, the energy of two-spin flip state has energy

E2 = −(N − 4)hx − 2J. (16)

This shows that as hx goes to infinity, there remains a
correction to energy gaps from the mean-field result. The
one-particle excitation has a gap of 2hx − J and two-
particle gap has excitation gap 4hx − 2J .
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