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Abstract

Micro-Electro-Mechanical Relay Technology for Beyond-Von-Neumann Computer
Architectures

by

Xiaoer Hu

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Tsu-Jae King Liu, Chair

The invention and development of complementary metal-oxide-semiconductor (CMOS) tran-
sistor technology for digital computing have led to a global information technology revolution
and economic boom, which have shaped modern society. However, transistor leakage current
(IOFF ) and limited subthreshold swing set a fundamental limit on the energy efficiency of
digital computing today. Micro-electro-mechanical (MEM) switches (relays) previously have
been shown to be promising for energy-efficient digital computing applications, due to their
abrupt ON/OFF switching characteristics and negligible OFF-state leakage current.

This dissertation focuses on novel applications of MEM relays for facilitating new computer
architectures that can be much more efficient than the classic von Neumann architecture.
First, MEM relays are demonstrated to operate reliably with millivolt signals at cryogenic
temperatures, due to much lower hysteresis voltage and more stable ON-state resistance.
A sub-10 mV relay-based inverter circuit is demonstrated at a temperature of 4 K. Our
experimental study indicates that MEM relays should be able to operate at temperatures
as low as 1.8 K, making them promising candidates for ultra-low power cryogenic digital
interface circuits for quantum computing.

Then superconducting MEM relays using niobium (Nb) as the contact material are investi-
gated, in order to further reduce the operation power consumption for quantum computing
applications at cryogenic temperatures. The detailed fabrication process flow is shown, and
temperature-dependent measurements are conducted to check the superconductivity of the
Nb electrodes.

Finally, DC-voltage-driven oscillatory behavior of MEM relays is investigated via experimen-
tal study and finite-element-method-based computer simulations. Sub-harmonic injection
locking and coupled oscillation behaviors of MEM relays are demonstrated, indicating that
MEM relay oscillators are promising for implementing Ising machines, which can solve large-
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scale combinatorial optimization problems much more efficiently than conventional computer
architectures.
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Chapter 1

Introduction

1.1 Introduction: Digital Integrated Circuits and

Next-Generation Computing

Integrated circuit ”chips” are the electronic brains used in all computing devices today, and
Complementary Metal Oxide Semiconductor (CMOS) Field Effect Transistors (FETs) are
the predominant type of transistors utilized in all computing chips. Steady advancement in
CMOS manufacturing technology has resulted in a global information technology revolution
that has shaped modern society [1]. In 1967, Gordon Moore observed that the number
of CMOS transistors on the leading microprocessor chip doubles every 18 months [2]; in
1975, he revised this to a more realistic two years [3]. This observation has since become
known as Moore’s law, and the exponential pace of increasing transistor count per chip
has been sustained for more than five decades by the semiconductor industry; as a result,
microprocessor chips have become more functional and energy efficient over the past half-
century. The first commercially produced microprocessor chip, the Intel 4004, was released
in 1971 and fabricated using a 10 µm generation process; it comprised approximately 2000
transistors [4–6]. More than 50 years later, the Apple M1 Ultra, unveiled in March 2022,
comprises 114 billion transistors and is fabricated using a 5 nm generation process at Taiwan
Semiconductor Manufacturing Company [7,8].

The end of Moore’s law will herald a new era of information technology advancement,
as the emphasis of research and development shifts away from scaling down transistor di-
mensions and toward innovation of new devices, new device integration approaches, and new
computing architectures, to sustain the exponential pace of improvement in computational
ability [9, 10].

Quantum computers have the potential to effectively solve problems that are intractable
for classical computers [11–13]. For example, in 1994, Peter Shor demonstrated that quan-
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tum computers are capable of effectively factoring numbers in polynomial time [11], posing a
severe threat to the RSA public-key cryptosystem that is widely used for secure data trans-
mission, which relies on the fact that classical computers, even when equipped with the most
efficient algorithms, are incapable of factoring integers with a length of 1000 decimal dig-
its [14]. Quantum computers would also have a significant impact on fields such as quantum
simulation [15] and machine learning [16–18].

In a classical computer, information is encoded as a binary number or string of binary
digits (bits). The state of each bit is represented as a voltage level: a high voltage corresponds
to a bit value of ’1’ and a low voltage corresponds to a bit value of ’0’. A bit can only
take a single value at a time [19]. Quantum computers manipulate qubits, which leverage
quantum mechanical effects to store more than one state in a single qubit via the principle
of superposition. That is, a qubit has the ability to superpose multiple states with varying
probabilities (for example, 40% 0 and 60% 1) like Schrödinger’s cat [19, 20], and we cannot
predict which state it is in. But the instant when we measure it, it collapses into one of the
definite states.

For a classical computer, for example, if there are 4 bits, there are 16 possible combi-
nations of bit values, and only one of them can be utilized at a time, as seen in Figure
1.1 (a). In contrast, 4 qubits in superposition can each be in any of those 16 combinations
simultaneously, as illustrated in Figure 1.1 (b). Moreover, this number grows exponentially
with each additional qubit, so 20 qubits can store 220 (more than one million) values in
parallel [21]. Therefore, a quantum computer with N qubits can be 2N times more efficient
than a classical computer with N bits.
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Figure 1.1: Comparison of (a) 4 bits in classical computers that each can only represent 1
possible value at a time, and (b) 4 qubits in quantum computers that each can represent all
16 combinations at the same time.

There are several approaches to implementing quantum computers, including supercon-
ducting qubits [13,22–25], polarized photons [26–30], trapped ions [31–34], and electron spins
in silicon [35,36]. Among all the different approaches, superconducting qubits, in particular,
are considered as the most promising candidate for achieving a scalable quantum processor
architecture, due to high designability, scalability, fast and reliable operation, and ability to
be coupled and controlled easily [13, 37].

A CMOS-based digital integrated circuit can be used to control and read information
out of quantum processor, but typically is designed for room temperature operation. The
number of interconnections between the refrigerated quantum processor and the external
CMOS controller constrain the number of qubits that can be used [38, 39]. The CMOS
controller circuitry can be located in the refrigerator together with the quantum processor at
cryogenic temperatures, but may dissipate heat that detrimentally affects qubit operations.

Previous studies have shown that micro/nano-electro-mechanical (M/NEM) relays can
operate at much lower voltages (50 mV and below) than required for CMOS transistors, and
have negligible OFF-state leakage current (in contrast with CMOS transistors), so that they
are a promising candidate for Internet of Things (IoT) applications which require ultra-low-
power consumption [40–46]. Therefore, MEM relays can also be an attractive candidate to
build logic controllers for quantum computing, if they can be operated reliably at cryogenic
temperatures.
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Another attractive non-von Neumann computing architecture is the Ising model, which
can efficiently solve a large number of discrete optimization problems across a wide range of
fields: very-large-scale integrated circuit design, drug discovery, capacity planning, sensing,
and manufacturing [47]. Many of these combinatorial optimization problems are so-called
nondeterministic polynomial time (NP)–hard or NP-complete problems [48]. NP-hard or NP-
complete problems are challenging for conventional digital computers to solve efficiently with
heuristic or ”greedy” algorithms [49,50]. As Figure 1.2 (a) shows, von Neumann computers
use programs to solve problems in a step-by-step repeated manner; as a result, the number of
computing steps and the total computing time will drastically increase when the problem size
becomes large. On the other hand, these problems can be mapped onto Ising models (Figure
1.2 (b)) and solved by finding the ground (minimum energy) state of the corresponding Ising
Hamiltonian (Figure 1.2 (c)) [51, 52]. As a result, Ising machines have attracted increasing
interest as physical solvers for this type of minimization problem, due to their high calculation
speed and energy efficiency.

Figure 1.2: Computing paradigms: (a) Procedure-based approach to solving problem in
conventional computing architectures and ”natural” computing architectures. (b) A 9-spin
Ising model. (c) The energy profile of an Ising model. Adapted from [50].
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An Ising machine comprises a set of ’spins’ - each of which can take one of two values
- that are coupled together. The ’spins’ can take many forms, including optical parametric
oscillators [49, 53], qubits [54–57], CMOS circuits [50], and electronic oscillators [58–60]. A
micro-electro-mechanical (MEM) relay can be made to function as an oscillator, and therefore
can potentially be used to implement Ising machines for solving complicated combinatorial
optimization problems.

1.2 Why Micro-Electro-Mechanical (MEM) Relays?

Figure 1.3 (a) shows the drain current vs. gate voltage semi-log plot of two n-channel MOS-
FETs with different threshold voltages (Vth), and for an ”ideal switch”. The subthreshold
swing (SS) of conventional CMOS transistors is fundamentally limited by Boltzmann statis-
tics to be no steeper than 60 mV/dec at room temperature. The OFF-state leakage current
of a MOSFET, IOFF , is the drain current when VGS = 0 V and VDS = VDD, where VDD is
the power-supply voltage. IOFF increases exponentially with a reduction in Vth:

IOFF = IO × 10−Vth
SS (1.1)

where IO is defined as the current when VGS = Vth.
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Figure 1.3: Conceptual illustrations of (a) transfer I-V characteristics of a high Vth n-channel
MOSFET, a low Vth n-channel MOSFET, and an ideal switch; (b) normalized dynamic,
static, and total energy consumed by a CMOS digital logic circuit to perform a digital
operation, as a function of the supply voltage VDD, showing the tradeoff between dynamic
energy and static energy resulting in a minimum for total energy consumed. Reproduced
from [40].

From Figure 1.3 (a), it can be seen that a reduction in VDD to reduce the dynamic power
consumption of a CMOS digital circuit would result in lower ON-state current (which is
undesirable because it results in slower digital circuit operation) unless Vth is also reduced
- but this would result in higher IOFF (cf. Equation 1.1) which undesirably increases static
power dissipation. Thus, energy wasted due to static power dissipation (defined as Eleak)
increases as VDD is reduced, as illustrated by the yellow curve in Figure 1.3 (b), while energy
consumed to perform a digital operation (Edyn, illustrated by the blue curve in Figure 1.3 (b))
is reduced. Therefore, the total energy consumed (Etot) by a CMOS digital logic circuit has
a fundamental lower limit. This limit exists due to transistor OFF-state leakage and limited
SS. Therefore, an ideal digital logic switch should have zero IOFF and a steep switching
characteristic like the green curve shown in Figure 1.3 (a), which enables ultra-low voltage
operation.

A MEM relay has abrupt switching characteristics (enabling lower VDD and therefore
lower Edyn) and negligible OFF-state leakage current (eliminating Eleak). This is because an
air gap physically separates the conducting electrodes (source electrode and drain electrode)
in the OFF state, as illustrated in Figure 1.4 (a), so that no leakage current can flow between
these electrodes. To turn ON the relay, a voltage is applied between the gate and body
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electrodes, which induces an electrostatic force (Felec) that actuates the movable conducting
electrode into physical contact with a fixed conducting electrode, as illustrated in Figure
1.4 (b). Therefore, the relay current increases abruptly when the gate voltage reaches the
turn-ON voltage, VON . This process is marked with the green arrow in Figure 1.5. To turn
OFF the relay, the gate voltage is reduced so that the spring restoring force (Fspring) of
the deformed movable electrode actuates it out of contact. Due to the existence of contact
adhesive force, Fadh, the turn-OFF voltage (VOFF ) is smaller than the turn-ON voltage. This
turn-OFF process is marked with the orange arrow in Figure 1.5. The minimum gate voltage
swing to switch a relay ON/OFF is the difference between VON and VOFF , which is defined
as hysteresis voltage, VH .

Figure 1.4: A simplified illustration of MEM relay working mechanisms in (a) OFF-state
and (b) ON-state.
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Figure 1.5: A typical IDS -vs.-VG characteristic of a MEM relay, with immeasurably low
IOFF and abrupt switching behavior.

1.3 MEM Relay Design and Operation

The simplified parallel capacitor model of a MEM relay is shown in Figure 1.6. The distance
between the top plate and the bottom plate is labeled as go. The air gap between the source
electrode and drain electrode is marked as gd. The top plate is mechanically suspended
through a spring with an effective spring constant of keff .

Figure 1.6: A simplified parallel capacitor model of a MEM relay.
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When the top plate moves downwards by a distance g toward the bottom fixed plate, the
spring restoring force Fspring can be written as:

Fspring = −keff × g (1.2)

The minus sign in Equation 1.2 indicates the spring restoring force is upward, as shown
also in Figure 1.4 (b). The range of g is between 0 (when the top plate is in its as-fabricated
position) and gd (when the source and drain electrodes make contact with each other). With
VGB applied, the electrostatic force that actuates the top plate moving towards the bottom
plate can be modeled based on the properties of parallel plate capacitors as:

Felec =
1

2

ε0AACTV
2
GB

(go − g)2
(1.3)

where ε0 is the vacuum permittivity, AACT is the effective actuation area (the overlap
area of the parallel plates), and VGB is the potential difference between the gate and body
electrodes. The direction of this electrostatic force Felec is downward, as indicated in Figure
1.4 (b). Therefore, the net force Ftotal (positive direction is downward) can be written as:

Ftotal = Fspring + Felec

= −keff × g +
1

2

ε0AACTV
2
GB

(go − g)2
(1.4)

The derivative of Ftotal over g can be written as:

dFtotal

dg
= −keff +

ε0AACTV
2
GB

(go − g)3
(1.5)

When the suspended top plate moves down, g becomes larger. From Equations 1.2 and
1.3, the upward Fspring is proportional to g, and the downward Felec is inversely proportional
to the square of (go − g). Therefore, when (go − g) gets small, it is possible that both Ftotal

and dFtotal

dg
are larger than 0, resulting in non-linear positive feedback. This phenomenon is

called the pull-in (PI) effect [40]. By setting both Ftotal and dFtotal

dg
to 0:
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0 = −keff × g +

1

2

ε0AACTV
2
GB

(go − g)2

0 = −keff +
ε0AACTV

2
GB

(go − g)3

(1.6)

we can obtain the pull-in voltage VPI and the corresponding displacement of the top plate
g at pull-in: 

VPI =

√
8keffg

3
o

27ε0AACT

g =
go

3

(1.7)

From Equation 1.7, if g is less than 1/3 of go, the MEM relay turns ON before it enters
the PI region of operation. That is to say, gd should be designed to be less than 1/3 of
go, since gd is the maximum value that g can take. In this case, the relay is considered to
operate in non-pull-in (NPI) mode. The turn-ON voltage VON can therefore be calculated
by setting Equation 1.4 to be 0 and g = gd:


0 = −keff × g +

1

2

ε0AACTV
2
ON

(go − g)2

g = gd

(1.8)

and the solution to Equation 1.8 is:

VON =

√
2keffgd(go − gd)2

ε0AACT

(1.9)

As noted in Figure 1.4 (b), when the relay is ON, there is an additional adhesive force
Fadh between the two contacting electrodes primarily due to van der Waals forces [61]. The
total force becomes:

Ftotal ON = Fspring + Felec + Fadh

= −keff × gd +
1

2

ε0AACTV
2
GB

(go − gd)2
+ Fadh

(1.10)
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Therefore, in order to turn OFF the relay, the magnitude of the spring restoring force
must be at least the sum of Felec and Fadh:

keffg = Felec + Fadh

=
1

2

ε0AACTV
2
OFF

(go − gd)2
+ Fadh

(1.11)

By solving Equation 1.11, we can obtain the turn-OFF voltage VOFF :

VOFF =

√
2(keffgd − Fadh)(go − gd)2

ε0AACT

(1.12)

The hysteresis voltage VH is the minimum switching voltage needed for relay-based digital
integrated circuits, and it is defined by the difference between VON and VOFF . VH can be
written and simplified as:

VH = VON − VOFF

=

√
2keffgd(go − gd)2

ε0AACT

−

√
2(keffgd − Fadh)(go − gd)2

ε0AACT

=

√
2(go − gd)2
ε0AACT

× (
√
keffgd −

√
keffgd − Fadh)

=

√
2(go − gd)2
ε0AACT

× (
Fadh√

keffgd +
√
keffgd − Fadh

)

≈ Fadh

√
(go − gd)2

2ε0AACTkeffgd

≥ Fadh

√
2gd

ε0AACTkeff

if keffgd � Fadh

if gd ≤ go
3

(1.13)

From Equation 1.13, it can be seen that if go is smaller, VH can be smaller. But go has to
be at least 3gd for the relay to operate in NPI mode; otherwise the device is prone to failure
to turn OFF [40]. It is also worth noting that the equality in Equation 1.13 holds when
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gd = go
3

. Therefore, the ideal design is to make the relay operate at the boundary of PI mode
and NPI mode. Moreover, decreasing Fadh is a crucial research topic to lower the operating
voltage and thereby improve the energy efficiency of MEM relays. Methods investigated to
date include self-assembled molecular coating [62–64], ion beam induced oxide formation [65],
contact dimple size reduction [61], and lower temperature operation [66].

1.4 Dissertation Overview

In order to address the challenges of data-centric computation and the limitations of present
computing systems, it is necessary to explore alternatives to the conventional von Neumann
computer architecture [10].

This dissertation aims to explore micro-electro-mechanical switch technology for novel
applications that facilitate implementation of non-von-Neumann computing. Operation of
relays with voltage signals as small as 10 mV at cryogenic temperatures is demonstrated, for
quantum computing application, and superconducting materials are considered for MEM re-
lay contact electrodes. The use of relays as DC-voltage-driven oscillators for implementation
of Ising machines is also explored.

Chapter 2 presents the ultra-low voltage operation of MEM relays at cryogenic temper-
atures. First, an overview of quantum computing requirements and MEM relay benefits is
presented. Then the MEM relay fabrication process flow is presented, followed by a study
of the temperature dependence of relay properties. Millivolt operation of relay-based inte-
grated circuits is demonstrated at 77 K and 4 K. The results indicate that MEM relays are
intriguing candidates for monolithic integration of digital control circuitry with qubits, due
to their suitability for ultra-low-power and cryogenic operation.

Chapter 3 describes the requirements for relay contacting electrode material, and in-
vestigates the possibility of using a superconducting material (niobium) to further reduce
relay ON-state resistance at cryogenic temperatures. A detailed integrated process flow
for fabricating Nb-contact relays is presented, followed by electrical characterizations and
comparisons with W-contact relays.

Chapter 4 investigates the novel application of MEM relays as DC-driven non-linear
oscillators to implement Ising machines for solving combinatorial optimization problems.
The effects of applied voltages on the frequency and amplitude of MEM relay oscillators
are studied. Furthermore, sub-harmonic injection locking and coupling of MEM relays are
demonstrated experimentally, representing a significant milestone toward networked arrays
of MEM relay oscillators for building Ising machines.

Chapter 5 outlines the major results and contributions of this dissertation. Additionally,
suggestions for future work are provided.
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Chapter 2

Ultra-Low-Voltage Operation of MEM
Relays for Cryogenic Logic
Applications

2.1 Quantum Computing Benefits and Requirements

Quantum computing has gained much attention recently, because it has the potential to solve
computational problems that are intractable for traditional computing paradigms [38, 67].
Promising applications for quantum computing include: machine learning [17, 18, 68, 69],
database searching [70,71], financial modeling [72–76], and cryptography [77–79].

A quantum computer comprises a quantum processor and a classical electronic controller
[39]. The quantum processor consists of a set of quantum bits (qubits) operating at a few
tens of milli-Kelvin (mK), while the classical electronic controller that is used to read out and
control the quantum processor is operated at room temperature [80], as illustrated in Figure
2.1. This approach becomes increasingly challenging and less cost-effective as the number of
qubits (hence the number of interconnections between the processor and controller) grows.
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Figure 2.1: Quantum processor with classical controller.

To allow for a reduction in the number of interconnections between the cryogenic chamber
and the room-temperature electronics, operation of digital logic circuitry at cryogenic tem-
peratures is of growing interest [81]. As shown in Figure 2.2, ideally the electronic control
circuitry should be monolithically integrated with the qubits, at least for the multiplexer
(MUX) and demultiplexer (DEMUX). These circuits should dissipate as little energy as
possible in order to maintain the computer at mK temperatures [82, 83]. Otherwise qubit
operation can be detrimentally impacted [84].

Figure 2.2: Monolithic integration of quantum processor with electronic control circuitry.
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Therefore, improvements in energy efficiency of CMOS-based digital integrated circuits
are needed for quantum computing; these generally require reductions in the circuit operating
voltage, VDD. In principle, MOSFETs can operate at cryogenic temperatures with very
small subthreshold swing (SS). However, due to temperature-dependent oxide-interface trap
density, SS for conventional bulk-silicon MOSFETs operated at 4 K is at least 10 mV/dec,
which is well above the lower limit set by Boltzmann statistics [85,86]. Therefore, the supply
voltage required to operate CMOS digital circuits at cryogenic temperatures is still more
than 0.25 V.

Micrometer-scale electro-mechanical (MEM) relays have been experimentally demon-
strated to operate with zero off-state leakage current (IOFF ) and ultra-low switching voltage
signals, enabling the demonstration of sub-50 mV digital integrated circuits at room temper-
ature [63, 64, 87]. In this chapter, the operation of MEM relays and relay-based integrated
circuits at temperatures down to 4 K is experimentally investigated for the first time [66].

2.2 Relay Structure and Fabrication Process

Figure 2.3 is a 30° tilted scanning electron micrograph (SEM) image of a fabricated MEM
relay, which comprises a movable gate electrode suspended by four folded-flexure beams over
a fixed body electrode, and two pairs of source/drain electrodes.
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Figure 2.3: 30° tilted SEM image of a MEM logic relay.

The schematic cross-sectional views in Figure 2.4 show the as-fabricated air gap between
the two metal conductive (source and drain) electrodes, gd, as well as the as-fabricated
actuation gap, go. When a voltage difference is applied between the gate and body, the
electrostatic force due to the applied voltage (VGB) will actuate the movable gate towards
the body. This force is opposed by the spring restoring force of the folded flexure beams. The
air gap go is designed to be larger than three times gd so that the relay operates in non-pull-in
mode [40]. When the structure is actuated sufficiently to cause the source electrode to come
into physical contact with the underlying drain electrode, current (IDS) can flow between
the source and drain under the influence of an applied voltage between drain and source
(VDS); this is defined as the ON-state. The minimum value of VGB that causes the relay to
turn ON is referred to herein as the turn-ON voltage, VON . In the ON-state, adhesive force
exists between the source and drain electrodes. Therefore, to turn OFF the relay, the spring
restoring force needs to exceed the sum of the adhesive force and the electrostatic force due
to VGB. The value of VGB that is just small enough to cause the relay to turn OFF is referred
to herein as the release voltage, VRL. The difference between VON and VRL is referred to as
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the hysteresis voltage, VH . By applying a DC bias (VB) to the body electrode such that VB
= −VRL, the relay can be switched ON and OFF by swinging the gate voltage (VG) between
0 V and VH . Therefore, decreasing VH enables lower-voltage relay operation.

Figure 2.4: Schematic cross-sectional views along D-D’ of Figure 2.3: (a) OFF-state (b)
ON-state.

Conventional planar processing techniques are used to fabricate MEM relays, with a
maximum substrate temperature below 450 °C for compatibility with post-CMOS (and post-
qubit) integration. Figure 2.5 illustrates the key steps in the MEM relay fabrication process,
with isometric and cross-sectional views along the A-A’, B-B’, and C-C’ cutlines defined in
Figure 2.3. The starting substrate is a silicon wafer, and alignment marks are patterned on
the wafer to allow subsequent deposited layers of material to be patterned in alignment with
each other.

First an 80 nm-thick electrically insulating Al2O3 layer is deposited by atomic layer depo-
sition using a Picosun ALD system (Figure 2.5(a)). The precursor gases used are trimethy-
laluminum (TMA) and water vapor (H2O). The substrate temperature is set to be 300 °C.
The flow of TMA from source A is set to be 150 sccm, and the H2O flow from source C is 200
sccm. The number of deposition cycles is approximately 900, which usually takes around 2
hours. An ellipsometer (Gaetner Stokes Ellipsometer) is used to check the thickness of the
deposited Al2O3 film.
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Then a 60 nm-thick tungsten (W) layer is deposited by pulsed-DC sputtering using the
MRC944 (MRC Sputtering System with Sputter-Etch), as shown in Figure 2.5(b). The DC
source power is set to be 1 kW and the sputtering pressure is 8 mTorr; 6 sputtering cycles
are required. The sheet resistance should be approximately 3.5 Ω/�.

Lithography and reactive ion etching (RIE) processes are performed to pattern the W
layer to form fixed electrodes, including body electrodes, drain electrodes, and source elec-
trodes, shown in Figure 2.5(c). Hexamethyldisilazane (HMDS) pre-treatment should not be
used when coating the 0.43 µm UV210 photoresist, and a hard bake step should not be used
after the photoresist is developed; otherwise, it will be hard to remove the photoresist from
the underlying W. An ASML DUV Stepper Model 5500/300 (ASML300) is used to expose
the photoresist through a mask, with an energy dosage of 22 mJ/cm2. After the photoresist
is developed, a SF6 plasma in a Lam Metal TCP Etcher (Lam7) is used to remove the W in
regions not protected by photoresist. The flow of SF6 is 50 sccm, the upper electrode power
(TCP RF) is set to be 300 W, and the lower electrode power (bias RF) is 80 W; the etching
time is around 15 seconds. The photoresist is then removed by soaking in MICROPOSIT
Remover 1165 at 80 °C in Msink1 (Pre-Furnace Metal Clean Sink) for at least 30 minutes,
followed by ashing in oxygen plasma at 250 °C for 1 minute in Matrix (Matrix 106 Resist
Removal System). The wafer needs to be cleaned in a SVC-14 bath, also in Msink1, at 80
°C for 10 minutes before entering a furnace.

Subsequently a 160 nm-thick low-temperature deposited silicon dioxide (LTO) layer is
deposited as a first sacrificial layer by low pressure chemical vapor deposition (LPCVD) at
400 °C with 135 sccm O2 flow rate and 90 sccm SiH4 flow rate for about 16.5 minutes, in the
Tystar12 (Tystar12 Non-MOS Clean LTO LPCVD) furnace (Figure 2.5(d)). An ellipsometer
is used to check the thickness of this LTO1 layer, which can be slightly greater than 160 nm.

The contact dimples are then defined by lithography and RIE processes to remove the
LTO in regions over the drain electrodes (Figure 2.5(e)). HMDS pre-treatment should be
used when coating the 0.43 µm UV210 photoresist, to promote adhesion to LTO. The
ASML300 is then used to expose the photoresist with an energy dosage of 20 mJ/cm2.
After the photoresist is developed, the Technics-c (Technics C Plasma Etching System) is
used to descum the photoresist in the small dimple regions at 50 W power for 30 seconds.
Then UV bake is performed in the Axcelis (Axcelis Fusion M200PCU Photostabilizer Sys-
tem) using recipe U. Afterwards the Lam6 (Lam6 Oxide Rainbow Etcher) is used to etch
the LTO1 film using 150 sccm Ar, 25 sccm CHF3, and 25 sccm CF4 with the TCP RF
power set at 750 W for an etch rate of approximately 700 nm/min. Afterwards the wafer is
soaked in MICROPOSIT Remover 1165 at 80 °C in Msink1 for 30 minutes, and processed
in the Matrix for 2.5 minutes to remove any remaining photoresist. Similarly as before, a
pre-furnace metal cleaning process in a SVC-14 bath at 80 °C for 10 minutes is necessary
before the wafer enters a furnace.
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Next, a second sacrificial layer of 60 nm-thick LTO (called LTO2) is deposited using the
same LPCVD recipe in Tystar12 for about 4.5 minutes, as shown in Figure 2.5(f). Note that
the thickness of the second LTO layer corresponds to gd, while the sum of the thicknesses of
the two LTO layers corresponds to go.
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Figure 2.5: Fabrication process of tungsten-contact MEM relays, showing isometric views
on the left and cross-sectional views along A-A’, B-B’, and C-C’ cutlines on the right.
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As shown in Figure 2.5(g), lithography and RIE processes are then applied to remove
the LTO in regions over the fixed source electrodes. The coated photoresist is 0.87 µm-thick
UV210, exposed in AMSL300 with an energy dosage of 18 mJ/cm2. After the photoresist is
developed, the same descum and UV bake steps are performed prior to etching in Lam6 for
about 22 seconds to remove the LTO1 and LTO2 layers in the source anchor regions. Then
the same photoresist removal and cleaning processes as before are used.

Next, a second layer of 60 nm-thick tungsten is deposited in the MRC944 using the same
recipe as before (Figure 2.5(h)). This layer is patterned to form dimpled source electrodes,
each extending over its corresponding drain electrode and anchored to its fixed source elec-
trode (formed in the first W layer), as shown in Figure 2.5(i). The lithography, etching, and
cleaning processes for this second W layer are the same as for the first W layer.

Next, a 55 nm-thick insulating layer of Al2O3 is deposited by ALD using the Picosun,
with approximately 550 deposition cycles (Figure 2.5(j)). Lithography and RIE processes
are then used to remove this second layer of Al2O3 and the LTO in regions over the fixed
body electrodes. The UV210 photoresist is coated to be 0.87 µm thick and is exposed with
a dosage of 18 mJ/cm2, followed by developing and UV bake. A gas mixture of 30 sccm Cl2
and 60 sccm BCl3 with TCP RF power = 700 W and bias RF power = 80 W was used to
etch the Al2O3 in the Lam7 etcher for about 75 seconds (Figure 2.5(k)). Then a gas mixture
of 150 sccm Ar, 25 sccm CHF3, and 25 sccm CF4 was used to etch LTO in the Lam6 etcher
for about 28 seconds (Figure 2.5(l)). Afterwards the wafer is soaked in 1165 photoresist
remover for 30 minutes, followed by a standard Matrix photoresist ashing process for 2.5
minutes, and then soaked in the SVC-14 bath for 10 minutes for pre-furnace cleaning.
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Figure 2.5: Fabrication process of tungsten-contact MEM relays, showing isometric views on
the left and cross-sectional views along A-A’, B-B’, and C-C’ cutlines on the right (cont.)
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Next a structural layer consisting of 1.9 µm-thick p-type heavily in-situ doped polycrystalline-
Si0.4Ge0.6 (poly-SiGe) is deposited via LPCVD at 410 °C for approximately 4 hours in the
Tystar20 (Tystar20 Non-MOS Clean Si-Ge LPCVD), as shown in Figure 2.5(m). The de-
position process comprises a nucleation layer deposition step (5 minutes, 100 sccm Si2H6,
300 mTorr) followed by the poly-SiGe deposition step using 140 sccm SiH4, 60 sccm GeH4,
and 45 sccm dopant gas (1% BCl3 and 99% He) at 600 mTorr. These deposition conditions
provide for the lowest stain gradient poly-SiGe film [88].

Lastly a 400 nm-thick LTO hard-mask layer is deposited to facilitate patterning of the
thick structural layer (Figure 2.5(n)); it is deposited by LPCVD at 400 °C using the same
recipe as for the LTO1 and LTO2 layers. The hard mask is patterned by coating 0.87
µm photoresist, exposing it with an energy dosage of 18 mJ/cm2 followed by developing,
descum, UV bake, and etching in Lam6 for 30 seconds + 35 seconds (to avoid photoresist
burning during one long etch in Lam6), as shown in Figure 2.5(o). The poly-SiGe layer is
subsequently etched in Lam8 (Lam8 Poly-Si TCP Etcher) for about 310 seconds with 50
sccm Cl2 and 150 sccm HBr at 12 mTorr chamber pressure, 300 W TCP RF power, and 150
W bias RF power, as shown in Figure 2.5(p). (The poly-SiGe etch rate is approximately
0.4 µm/min.) The Al2O3 layer is then etched away in the resulting exposed regions, using
Lam7 with 30 sccm Cl2 and 60 sccm BCl3 at 700 W TCP RF and 80 W Bias RF, for about
60 seconds; this exposes the second LTO layer (Figure 2.5(q)).

Finally, vapor hydrofluoric acid (HF) is used to selectively remove the sacrificial LTO
layers while avoiding capillary-force-induced stiction, as shown in Figure 2.5(r). 350 sccm
of ethanol is used to desorb the H2O reaction product from the surface of the wafer, and
310 sccm of HF at 45 °C is used to remove the LTO at an etch rate of about 36 nm/min.
Inert gas (1250 sccm of N2) is used to dampen the effects of changes in vapor pressures of
the active gases, and to prevent ethanol saturation/condensation in the vaporizer.
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Figure 2.5: Fabrication process of tungsten-contact MEM relays, showing isometric views on
the left and cross-sectional views along A-A’, B-B’, and C-C’ cutlines on the right (cont.)
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2.3 Complementary Relay Operation with Body

Biasing

Complementary relay operation is achieved simply by applying body biases of different po-
larity [64], as shown in Figure 2.6. With a negative body bias, the electrostatic field increases
with increasing gate voltage, so that the relay turns ON with increasing gate voltage; this
switching behavior is similar to that of an n-channel MOSFET (NMOS transistor), so a
relay with negative body bias is referred to heretofore as an N-relay. With a positive body
bias, the electrostatic field decreases with increasing gate voltage, so that the relay turns
OFF with increasing gate voltage; this switching behavior is similar to that of a p-channel
MOSFET (PMOS transistor); so a relay with positive body bias is referred to heretofore as
a P-relay.

The N-Relay and P-Relay circuit symbols used herein are similar to those for NMOS
and PMOS transistors, respectively. Note that for a P-relay, if VG is zero, the device is in
the ON-state. Ideally, in a complementary relay circuit, the body bias voltages should be
adjusted such that the N-relays and P-relays are never both ON for the same applied gate
voltage, as shown in Figure 2.6.

Figure 2.6: Complementary relay circuit symbols and I-V characteristics.

2.4 Temperature Dependence of Relay Properties

Changes in the electrical conductivity of the relay electrode materials are gauged by sheet
resistance measurements of the contacting electrode layer (60 nm-thick W) and the structural
gate electrode layer (1.9 µm-thick p-type poly-SiGe), as shown in Figure 2.7. The poly-SiGe
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does not show dopant freeze-out effects down to 1.8 K, and the resistance of W also remains
low, indicating that MEM relays can operate at temperatures as low as 1.8 K. Note that the
sheet resistance of the poly-SiGe layer is lower than that of the W layer; this is because the
poly-SiGe layer is much thicker than the W layer.

Figure 2.7: Temperature dependence of sheet resistance for the W electrode layer and poly-
SiGe structural layer.

As can be seen from Figure 2.8, the relay turn-on voltage (VON) is stable over a wide
range of temperatures. From the zoomed-in figure on the right, it can be seen that VON

decreases slightly with decreasing temperature. This can be explained by an increase in
structural stiffness, that is, an increase in the Young’s modulus of the poly-SiGe film with
decreasing temperature.
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Figure 2.8: Temperature dependence of relay turn-ON voltage.

The relay self-oscillation frequency is used to gauge this change in Young’s modulus with
decreasing temperature. A DC voltage that is slightly less than VON is applied between the
gate and body electrodes, while an applied VDS is used to induce additional electrostatic
force (in the contact dimple region) to turn on the relay (Figure 2.9). When the drain and
source electrodes come into contact, the voltage difference between them decreases so the
total electrostatic force decreases, causing the relay to turn off. When the source and drain
electrodes are separated the voltage difference returns to the applied VDS, causing the relay
to turn on, and so on. Thus the relay can be made to oscillate with only DC voltages applied.

Figure 2.9: Circuit schematic for relay self-oscillation test setup.
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The self-oscillation frequency (ω0) of the MEM relay structure is measured at 300 K, 77
K, and 4 K respectively, as shown in Figure 2.10. Since ω0 ∝

√
k ∝

√
E (where k is the

composite stiffness of the folded-flexure suspension beams and E is the Young’s modulus), it
can be qualitatively deduced that a decrease in temperature increases the Young’s modulus
of the structural material.

Figure 2.10: Relay self-oscillation measurements taken at different temperatures: (a) 300 K,
(b) 77 K, and (c) 4 K.
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The temperature dependence of the hysteresis voltage for a MEM relay is shown in Figure
2.11. It can be seen that VH decreases dramatically with decreasing temperature, indicating
that the contact adhesive force diminishes with decreasing temperature [89].

Figure 2.11: Temperature dependence of relay switching hysteresis voltage.

The average turn-ON voltage (VON) and hysteresis voltage (VH) values across 5 MEM
relays are compared for room temperature vs. cryogenic temperature operation, in Figure
2.12. The average VON at 4 K (16.43 V) is similar to that at 300 K (16.23 V). A much more
significant change with temperature is seen for average VH , dropping from 120 mV at 300 K
to 30 mV at 4 K.
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Figure 2.12: Measured values for 5 MEM relays: (a) Average VON at 4 K and 300 K, (b)
Average VH at 4 K and 300 K.

Measured relay IDS-vs.-VG characteristics are shown in Figure 2.13. As expected, the
relay switches on and off abruptly as the gate voltage is swept up and down, respectively; an
applied body bias voltage (VB) allows for low gate voltage operation. The smaller hysteresis
voltage at 4 K allows MEM relay circuits to be operated with sub-10 mV voltage signals –
which are roughly two orders of magnitude smaller than for MOSFETs.

Figure 2.13: Body-biased relay IDS-vs.-VG characteristics at 300 K and 4 K.
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In addition to low VH , low RON is desirable for digital circuit operation for reduced RC
(electrical charging/discharging) delay. It is difficult to maintain low RON for W-contact
MEM relays operating at room temperature, due to contact oxidation [46, 90, 91]. Even
in a vacuum environment with 1 µTorr pressure, trace amounts of O2 can lead to native
oxide formation on the surfaces of the W electrodes. Figure 2.14 shows that RON decreases
dramatically for temperatures below 90 K. Since this is the boiling point of oxygen gas
(O2), sub-90 K operation inhibits the formation of native oxide on the electrode surfaces and
thereby allows low RON to be maintained.

Figure 2.14: Temperature dependence of relay RON .

Relays used for implementing digital logic must operate properly over many switching
cycles to be of practical use. Figure 2.15 compares how RON evolves over many ON/OFF
switching cycles using 5 kHz square-wave gate voltage signals with 2 V gate overdrive and
VDS = 0.5 V, at various temperatures. Considering that RON should not exceed 10 kΩ for
acceptable relay-based integrated circuit performance [92], the (hot) switching endurance of
a MEM relay operating at 300 K is roughly 106 cycles. For relays operated at liquid nitrogen
temperature (77 K) or liquid helium temperature (4 K), however, the endurance of a relay
exceeds 108 cycles, since there is no O2 to oxidize the W electrodes.
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Figure 2.15: Relay endurance testing at various temperatures.

Figure 2.16 shows measurements of relay turn-ON delay at 300 K and 4 K. With a preset
current compliance, the voltage across the source and drain decreases when the relay turns
ON; therefore, the time when the output voltage starts to drop corresponds to the time that
the relay is turned ON. The mechanical turn-ON delay at 4 K (0.22 µs) is slightly worse
than that at 300 K (0.19 µs), possibly due to lower gate overdrive ratio (VGB/VON).
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Figure 2.16: Relay turn-ON delay measurements with VB = 0 V (a) at 300 K, and (b) at 4
K.

2.5 Millivolt Operation of Relay Integrated Circuits

The circuit diagram and truth table for a relay-based 2:1 multiplexer integrated circuit are
shown in Figure 2.17). Note that it comprises only two relays, whereas a CMOS implemen-
tation requires at least 4 transistors. The upper relay has positive body bias (VBP ) so that
it turns ON when the select voltage signal (VSEL) is low, while the lower relay has negative
body bias (VBN) so that it turns ON in a complementary manner when VSEL is high. Thus,
the upper relay will pass the voltage signal VA to the output (i.e., VOUT = VA) when VSEL is
low (logic ‘0’), and the lower relay will pass the voltage signal VB to the output (i.e., VOUT

= VB) when VSEL is high (logic ‘1’). The waveforms in Figure 2.18(a) show proper circuit
operation at 300 K with 100 mV signals, while the waveforms in Figure 2.18(b) show proper
circuit operation at 77 K with sub-25 mV signals, made possible by smaller VH values. (It
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should be noted that VOUT was monitored by an oscilloscope with an internal impedance of 1
MΩ. If a relay has high on-state resistance (RON) – due to electrode surface oxide formation
– the input voltage signal will not be fully passed to VOUT due to the voltage divider effect.)

Figure 2.17: (a) schematic circuit diagram and (b) truth table of a relay-based 2:1 multiplexer
integrated circuit.
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Figure 2.18: Measured voltage waveforms demonstrating operation of a relay-based 2:1 mul-
tiplexer (a) at 300 K (VBP = 15.5 V, VBN = -14.6 V), and (b) at 77 K (VBP = 17.07 V, VBN

= -14.71 V).
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A MEM relay can be used as a ”pull-up” device or as a ”pull-down” device in an inverter
circuit, as shown in Figure 2.19. Similarly as a PMOS transistor, a relay with positive body
bias can be used to pass a high voltage, VDD, from source to drain when the input voltage
is low (Figure 2.19(a)). Similarly as a NMOS transistor, a relay with a negative body bias
can be used to pass a low voltage, 0 V, from the source to the drain when the input voltage
is high (Figure 2.19(b)).

Figure 2.19: Inverter circuits: (a) MEM relay operating as a pull-up device and (b) MEM
relay operating as a pull-down device.

A MEM relay can operate with sub-100 mV voltage swing at room temperature [87],
as shown in Figure 2.20. With self-assembled molecular coating to reduce contact adhesive
force, a MEM relay-based inverter circuit can operate with sub-50 mV voltage swing at room
temperature [63], as shown in Figure 2.21
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Figure 2.20: Demonstration of sub-100 mV inverter circuit operation at 300 K: (a) relay as
pull-down device with VDD = 80 mV, and (b) relay as pull-up device with VDD = 50 mV.
Adapted from [87].

Figure 2.21: Demonstration of sub-50 mV inverter circuit operation, enabled by self-
assembled molecular coating, at 300 K: (a) relay as pull-down device, and (b) relay as
pull-up device. Adapted from [63].

When MEM relays are operated at 4 K, they have much smaller hysteresis voltage and
hence can be operated with sub-10 mV gate voltage swings, as shown in Figure 2.22. Note
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that the 10 mV input voltage waveform (in black) is a bit noisy because it is generated using
a voltage divider.

Figure 2.22: Measured voltage waveforms of a sub-10 mV relay-based inverter circuit in
which a MEM relay is configured as a pull-down device at 4 K.

2.6 Summary

In this chapter, we demonstrated that MEM relays can operate reliably with millivolt signals
at cryogenic temperatures, due to much lower hysteresis voltage (VH) and more stable ON-
state resistance (RON) with endurance exceeding 108 switching cycles. Relay digital ICs
are demonstrated to function with sub-25 mV voltage signals, providing for more than 10
times lower VDD than for CMOS technology. A sub-10 mV relay-based inverter circuit is
demonstrated at 4 K. Our experimental study indicates that MEM relays should be able to
operate at temperatures as low as 1.8 K, making them promising candidates for ultra-low-
power cryogenic digital interface circuits for quantum computing.
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Chapter 3

Contact Material Exploration for
Cryogenic MEM Relays

3.1 Introduction: Why Superconducting Relays?

Cryogenic operation of digital logic circuitry is gaining increasing attention with the advent
of quantum computers, which require electronic switches to interface with quantum bits
(qubits) [82]. As explained in the previous chapter, digital logic electronic control circuitry
ideally should be monolithically integrated with the qubits and dissipate as little energy
as possible in order to keep the quantum computer operating at mK temperatures. In
contrast with CMOS transistors, MEM relays can function with negligible OFF-state leakage
current and ultra-low-voltage signals, enabling sub-50 mV operation at room temperature
[64, 87] and sub-25 mV operation at 77 K [66]. Also, relay operating characteristics are
improved for cryogenic temperature operation compared to room temperature operation:
the switching hysteresis voltage decreases due to reduced contact adhesive force – enabling
ON/OFF switching with voltage signals below 5 mV (Figure 2.13) [66] – and the contact
resistance is very stable due to the absence of contact oxidation (Figure 2.14). Electrical
conductivity measurements of the electrode layers indicate that MEM relays should function
properly down to 1.8 K (Figure 2.7).

Superconductive electrodes would be advantageous for achieving the lowest possible ON-
state resistance in MEM relays operating at cryogenic temperatures. Tungsten (W) thin films
generally comprise crystalline grains of two phases: the alpha phase becomes superconductive
at 15 mK, while the beta phase has a superconducting transition temperature between 1 K
and 4 K. Tungsten films comprising both alpha and beta phases usually have superconducting
transition temperature around 100 mK [93, 94]. The sputtered W films used in the MEM
relays in this work are not superconductive at 1.8 K, as shown in Figure 2.7. Therefore,
to achieve superconductivity across a wide range of cryogenic temperatures, an alternative
electrode material that has a higher transition temperature is desirable. Pure niobium (Nb)
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is a candidate, as it has a higher transition temperature of 9.29 K [95]. In general, any
potential relay electrode material should satisfy the following requirements:

1. The material should have a high melting point to avoid contact micro-welding issues.
Figure 3.1 shows a simulated temperature contour plot due to Joule heating for a 10 nm
contact asperity with 1 V contact voltage applied. The peak local temperature must
be lower than the contact material’s melting point. Since the melting temperature of
niobium (Nb) is about 2750 K [95], a MEM relay with Nb electrodes should function
reliably without contact welding.

Figure 3.1: ANSYS-simulated temperature contours at a contacting electrode asperity under
Joule heating. For simplicity, all the contacting asperities are lumped into one, and the
asperity radius is set to be 10 nm. The simulated voltage drop across the contact is 1 V.
Adapted from [96].

2. The material should be resistant to mechanical wear [91,97]. W was originally chosen
as the electrode material for our MEM relays because of its high hardness; after 1010

ON/OFF switching cycles, the root-mean-square surface roughness (Rq) of the W
surface only decreased slightly, as shown in Figure 3.2 [91]. The Brinell Hardness
of W is 392-4560 MPa [98], while the Brinell Hardness of Nb is 736-2450 MPa [98].
Therefore, electrode wear should not be an issue if Nb is used as the contact material
for MEM relays.
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Figure 3.2: Atomic force microscopy images of tungsten electrode surfaces from a fresh relay
(Rq = 1.29 nm) vs. a cycled relay (Rq = 0.95 nm). Adapted from [91].

3. The material should not require high processing temperatures, so that it can be easily
monolithically integrated with qubits using a modular (post-qubit) fabrication process.
Assuming that qubits have similar thermal budget tolerance as CMOS circuitry, this
means that the superconducting material deposition temperature should be less than
410 °C. Nb can be deposited at room temperature by ion beam assisted sputtering [99]
or by magnetron sputtering [100]. Besides, Nb can be patterned by dry etching using
CH4 and O2 plasma [101], as well as Ar/Cl2 plasma [102].

4. The material should be compatible with vapor-phase hydrofluoric acid (HF). To avoid
stiction-induced failure, which occurs when attractive capillary forces overwhelm the
spring restoring force of a MEM switch causing the switch to close permanently, it is
necessary to utilize vapor-phase hydrofluoric acid (HF) to release the fabricated MEM
relays. As a result, the electrodes are exposed to HF vapor. Vapor-HF cycling tests
were performed on Nb films, and the results show that Nb is compatible with HF
vapor.

Since Niobium has similar mechanical and electrical properties as tungsten, and is also
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compatible with the MEM relay fabrication process, it is a promising electrode material for
cryogenic relays due to its higher superconducting transition temperature.

3.2 Niobium-Contact Relay Fabrication Process

Development

The fabrication process for niobium-contact MEM relays is very similar to that of tungsten-
contact MEM relays (cf. Figure 2.5). The main differences are in the Nb deposition, Nb
etching, and photoresist coating/removal steps, described in detail below.

First, after an insulating Al2O3 film is deposited onto the Si wafer substrate by ALD,
the Nb electrode layer is deposited by sputter deposition using the Ast-sputter tool. (The
Ast-sputter is a multi-target sputtering tool; the sputtering target has to be loaded manually
before use. Overnight pump-down is preferred for better sputtered material quality.) For
Nb sputtering, the process pressure is set to be 1.5 mTorr, the DC power is set to be 150 W,
the Ar flow rate is set at 56 sccm, the substrate temperature is 300 °C. A sputtering time of
10 minutes yields a 140 nm-thick Nb film with sheet resistance approximately 4 Ω/�, which
is similar to that of the W electrodes used for W-contact relays.

Figure 3.3 (a) shows how the sheet resistance of the sputtered Nb film varies with tem-
perature across the range from 1.8 K to 300 K. It can be seen that the sheet resistance of the
Nb film drops significantly at temperatures below 10 K. Figure 3.3 (b) plots the Nb sheet
resistance for temperatures below 10 K, measured slowly with 0.5 K/min changing rate. It
can be seen that the superconducting transition temperature of the deposited Nb film is
approximately 5.4 K.
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Figure 3.3: Sheet resistance vs. temperature of sputtered Nb thin film: (a) measurement
with a temperature ramp rate of 5 K/min, and (b) measurement with a temperature ramp
rate of 0.5 K/min. The superconducting transition temperature is approximately 5.4 K.

Lithography and etching steps are used to pattern the sputtered Nb film. Different
from the W-contact relay fabrication process, hexamethyldisilazane (HMDS) pre-treatment
is used to passivate the Nb thin film surface before coating it with 0.43 µm UV210 photoresist.
This is to prevent the formation of NbO when positive photoresist comes into contact with
Nb [103].

In this work the Nb film is etched using the Lam 7 tool, using the same mask as described
in Figure 2.5(c). The chamber pressure is 8 mTorr, the flow of Cl2 is 130 sccm, the upper
electrode power (TCP RF) is set to be 400 W, and the lower electrode power (bias RF) is
set to be 100 W; the etch rate is approximately 12 nm/s and the etching time used was
approximately 15 seconds. Immediately after etching, a DI water rinse in an atmospheric
passivation module (APM) supplemented with DI water pour is needed to prevent chlorine
corrosion of Nb upon exposure to the atmosphere.

After etching, the photoresist needs to be removed. In order to reduce the ashing time in
oxygen plasma, wafers are first soaked in MICROPOSIT Remover 1165 at 80 °C in Msink1.
After 2 hours of soaking, it was found that photoresist residue remains on the wafer, as
shown in Figure 3.4 (a). After 1-minute ashing in the Matrix tool, the photoresist is fully
removed, as shown in Figure 3.4 (b).
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Figure 3.4: Microscopic images of a relay wafer surface after Nb etching: (a) after soaking
for 2 hours in MICROPOSIT Remover 1165 bath, and (b) after additional oxygen plasma
ashing for 1 minute at 250 °C.

The same cleaning process and sacrificial LTO layer deposition and patterning steps are
used for Nb-relays as for W-relays (cf. Figure 2.5(d)-(g)). Afterwards the second Nb electrode
layer is sputtered on top of the second LTO layer using the same recipe in Ast-sputter as
described above. It is worthwhile to note here that ruthenium-contact MEM relays were
previously developed and that it was found that ruthenium films crack and delaminate from
LTO surfaces upon being exposed to atmosphere, due to moisture present in air [97, 104];
in contrast with ruthenium, a thin film of Nb does not delaminate from the LTO surface.
Although under the microscope some tiny crack lines were observed near the edge of the
wafer and some test structures (Figure 3.5(a)), the device area looks clean with no crack
lines (Figure 3.5(b)). This is presumably due to larger stress in a thicker metal film near the
edge of the wafer. The same lithography and etching processes used to pattern the first Nb
layer were used to pattern the second Nb electrode layer.
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Figure 3.5: Microscope images of a relay wafer surface after the second Nb film is sputtered
on top of LTO, showing: (a) small crack lines on a test structure, and (b) no cracking issues
in the device area.

The remaining Nb-contact MEM relay fabrication process steps are the same as described
in Figure 2.5(j)-(r).

3.3 Niobium-Contact Relay Operating Characteristics

Since the native oxide of niobium is not conductive, niobium-contact MEM relays also require
an oxide breakdown process to achieve lower ON-state resistance. The hot-switching oxide-
breakdown method used in this work is illustrated in Figure 3.6: first, 3 to 5 V is applied
across the source and drain contact (VDS) before the relay is turned ON, and then the gate
voltage is stepped from 0 V to VON + 2V; at each step the current flowing between the source
and drain electrodes is measured before proceeding to the next voltage step, and the current
compliance is set to be 1 µA. This hot-switching oxide-breakdown method is implemented
using a Keithley 4200A Device Parameter Analyzer and was found to be effectively for
lowering ON-state resistance.
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Figure 3.6: The hot-switching oxide-breakdown method (a) circuit schematic and (b) voltage
timing waveforms (not to scale). Adapted from [42].

IDS -vs.- VGB characteristics were measured for relays of the dual-bridge source/drain
contact design (Figure 3.7(a)) and dual-direct source/drain contact design (Figure 3.7(b)).
The measured results are shown in Figure 3.8.
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Figure 3.7: Schematic cross-sections of MEM relays with different contacting electrode de-
signs, in the OFF-state and in the ON-state: (a) dual-bridge source/drain contact design,
and (b) dual-direct source/drain contact design. Adapted from [46,64,105].

Figure 3.8: Measured IDS -vs.- VGB characteristics of Nb-contact relays. (a) dual-bridge
contact design, (b) dual-direct contact design.

It can be seen from Figure 3.8 that the dual-bridge contact relay has larger VH than the
dual-direct contact relay; this is the same as for tungsten-contact MEM relays as reported
in [64, 105], and is due to the larger total contact area (hence larger contact adhesive force)
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for the dual-bridge contact design. Statistical data for VH and RON across 10 different relays,
for each of the two different contact designs, are shown in Figure 3.9. It can be seen that the
dual-bridge design generally has larger associated hysteresis voltage and smaller ON-state
resistance than the dual-direct design. The larger ON-state resistance of the dual-direct
contact design can be explained by the larger sheet resistance of the second deposited Nb
layer: the second Nb layer has a sheet resistance that is two times larger than the first
Nb layer, as shown in Table 3.1, possibly due to contamination in this Nb layer during the
fabrication process, as discussed below.

Figure 3.9: Average measured values of (a) VH and (b) RON for 10 Nb-contact relays of each
contact design. The error bars indicate the ranges of standard deviation.

Table 3.1: Comparison of sheet resistance values for the electrode and structural layers in
W-contact and Nb-contact relays (unit: Ω/�)

Relay Type First Metal Layer Second Metal Layer Structural SiGe

W-contact 3.0 3.1 2.5
Nb-contact 4.0 8.0 2.4

Unfortunately the Nb-contact relays were found to not exhibit superconductivity at 1.8
K: Measured sheet resistance vs. temperature behavior for a niobium thin-film test structure
on the fabricated chip is shown in Figure 3.10. No abrupt drop in resistance to 0 Ω/� is
observed.



CHAPTER 3. CONTACT MATERIAL EXPLORATION FOR CRYOGENIC MEM
RELAYS 49

Figure 3.10: Measured sheet resistance vs. temperature of a niobium test structure on the
fabricated chip. The temperature was ramped from 1.8 K to 300 K, at 1 K/min.

3.4 Discussion

The sheet resistance of the test structure on a fully processed chip, shown in Figure 3.10, is
higher than that for a blanket film, shown in Figure 3.3. This might be due to reaction of
the Nb film during the fabrication process; for example, the Nb electrode surface may have
been oxidized by exposure to O2 at 400 °C during the LTO film deposition process.

Since the Ast-sputter tool is shared equipment that is used to deposit multiple materials,
the purity of the sputtered thin film may have been compromised: Even though a dedicated
deposition chimney and shield dome (for covering the metal target) was used, the deposited
Nb film might have been contaminated with other metal elements since the deposition cham-
ber is dirty. Figure 3.11 shows a measured energy-dispersive X-ray (EDX) spectrum for a
blanket deposited Nb film that is not superconducting at 1.8 K. (This film did not undergo
lithography, etching, and LTO deposition processes.) In addition to Nb, the detected metals
include iron (Fe), aluminum (Al), and chromium (Cr), which are all targets available for use
in the Ast-sputter tool. The rubidium (Rb) peaks might be a fake signal, as there is no Rb
target available for the Ast-sputter tool.
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Figure 3.11: Measured EDX spectrum of a deposited Nb film that is not superconducting at
1.8 K, showing the presence of Fe, Al, and Cr in the Nb film.

MRC943, also an MRC Sputtering System that is similar to the MRC944 tool (used for
tungsten thin film sputter deposition, described in Chapter 2.2), can also be used to deposit
Nb. Compared with Ast-sputter, MRC943 is much cleaner since it has a chamber for Nb
sputtering only. The DC source power is set to be 1.5 kW and the sputtering pressure is
8 mTorr. After 3 sputtering cycles, the Nb film is about 60 nm, and the sheet resistance
is approximately 4.3 Ω/�. A sheet resistance vs. temperature measurement was performed
to check the superconductivity of the Nb film deposited by MRC943. It can be seen from
Figure 3.12 that this film has a superconducting transition temperature of 8.58 K.

Figure 3.12: Measured sheet resistance vs. temperature of a niobium film deposited in the
MRC943 tool. The temperature was ramped from 1.8 K to 300 K at a rate of 1 K/min. The
superconducting transition temperature is 8.58 K.
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In order to protect the Nb film from exposure to O2 during the LTO deposition step, a
10 nm TiO2 was deposited by ALD using the Picosun tool. However, after patterning the
TiO2 and Nb stack and subsequently depositing LTO and then removing the LTO and TiO2

in vapor HF, the Nb film was found to be non-superconductive at cryogenic temperatures.
Moreover, if the TiO2 and Nb stack is not patterned, then after LTO is deposited and
removed in vapor HF the Nb film cracks due to stress, as shown in Figure 3.13. Although
patterning of the Nb film helps to relieve the stress, cracks could still be observed in regions
near the edge of the wafer.

Figure 3.13: Scanning electron micrograph image of a Nb film after TiO2 and LTO deposition,
and vapor HF removal of the oxide layers.

Other superconductive materials could be explored in the future for achieving supercon-
ducting relays. For example, TiN can be superconducting [106, 107]; however, TiN cannot
withstand HF vapor [97], so an alternative sacrificial material would be required.

3.5 Summary

In this chapter the possibility of using niobium as the contacting electrode material to achieve
superconducting MEM relays was investigated. The conductivity of a sputter-deposited
Nb film was measured to confirm superconductivity at cryogenic temperatures, and Nb-
contact relays were successfully fabricated. The fabricated relays were found to not have
superconductive behavior, however, and attempts to protect the Nb from oxidation during
the fabrication process were found to be ineffective to solve this issue.
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Chapter 4

Study of DC-Driven MEM Relay
Oscillators for Implementation of
Ising Machines

4.1 Ising Machine Background

The proliferation of Big Data and machine learning in recent years has greatly increased the
need for computing resources. Today, leading-edge computing technologies are struggling
to keep pace with the energy efficiency and performance requirements for computationally
intensive applications. To address this issue, alternative approaches are needed to solve large
computational problems much more efficiently than conventional digital computers that are
based on the traditional von Neumann computing architecture. The Ising model is consid-
ered a promising non-von Neumann computing architecture for solving many combinatorial
optimization problems [108,109].

An Ising machine is a physical system to which a combinatorial problem can be mapped,
whose absolute or approximate ground (lowest energy) state corresponds to the solution of
the combinatorial problem [53]. An Ising machine comprises a network of discrete variables
si, referred to as spins. Each spin takes a binary value ±1 to minimize the “energy function”
expressed mathematically as the Ising Hamiltonian shown in Equation 4.1. Combinatorial
optimization problems are mapped onto Ising machines by assigning appropriate values to
the coefficients J , which correspond to the coupling strength between spins, as shown in
Figure 4.1. The combinatorial optimization problems then can be solved efficiently due to
the inherent convergence property of the Ising physical system towards its ground state [110].
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H = −
∑

i,j, i<j

Jijsisj

si ∈ {−1,+1}

(4.1)

Figure 4.1: Illustration of a four-spin Ising model. Each spin can be either up or down, and
the coupling strength between spin si and sj is Jij.

One practical example of a combinatorial optimization problem is the optimization of a
very large scale integrated (VLSI) circuit chip layout. Floorplanning of functional blocks in
VLSI design automation can be formulated as a “rectangle packing problem” which is an
NP-hard problem. Given N rectangles with fixed sizes as shown on the left, the design goal
is to minimize the boundary box area, W × H, without overlapping of the rectangles, as
shown in Figure 4.2. A brute-force search can be used to solve this problem, but it requires
large computational resources and time when N becomes very large. Instead, this problem
can be mapped onto an Ising machine with 3N3 spins and solved within several oscillation
cycles, for a much faster time and lower energy to reach the solution [111].
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Figure 4.2: The combinatorial optimization problem in VLSI floorplanning design can be
formulated as the “rectangle packing problem.” Reproduced from [111].

Another interesting example is the ”graph coloring problem” which is one of the most
famous nondeterministic polynomial time (NP)-complete problems [109]. For example, with
a set of 4 colors, the task is to assign colors to all the 51 states of the US so that every two
adjacent states have different colors, as shown in Figure 4.3 [58]. This problem can be solved
by an Ising machine with 4× 51 = 204 spins. Generally, the graph coloring problem can be
solved by an Ising machine with nN spins, where n is the number of available colors and N
is the problem size [109]. For each state (or vertices in a general graph coloring problem),
there are n spins associated with it to represent the coloring scheme, and only one of them
can be in the +1 state.
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Figure 4.3: The result of the U.S. map coloring problem solved by an Ising machine. Adapted
from [58].

There are many different ways to implement an Ising machine. For example, D-Wave
Systems built adiabatic quantum annealers which have 2000 spins and operate at a temper-
ature of about 15 mK [112, 113]. Such quantum Ising machines have a large footprint for
the necessary cooling system, and cost about $15 million [114]. Another approach is to use
non-quantum devices as ”spins” to enable room temperature operation. The most notable
example is the coherent Ising machine (CIM), which uses laser pulses traveling through a
multi-kilometer-long optical fiber, or degenerate optical parametric oscillators, as Ising spins,
so that an Ising machine is implemented as a network of coherent optical oscillators [49,115].
Although this approach does not require a cooling system, it needs sophisticated manual
fabrication and assembly processes [116]. Besides, it is difficult to miniaturize the CIM due
to its kilometer-long optical fibers.

Compared with the above approaches, an ideal Ising machine should have the advantages
including lower cost, lower power consumption, higher scalability to more spins, higher speed,
and easier fabrication process. It has been shown that Ising machines can be realized using
a network of coupled nonlinear self-sustaining oscillators [58,117,118]. In an oscillator-based
Ising machine (OIM), the phase of each variable oscillator takes a binary value of 0◦ or
180◦, as shown in Figure 4.4 (a). This is achieved through sub-harmonic injection locking
(SHIL) by applying to each oscillator a perturbation signal whose frequency is roughly double
the oscillators’ natural frequency, as illustrated in Figure 4.4 (b) [118]. The lowest energy
configuration is determined by the coupling network, and corresponds to the minimum of
the Ising Hamiltonian.
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Figure 4.4: Oscillator-based Ising Machine (OIM) concept: (a) Illustration of a 4-spin Ising
model implemented using oscillators. (b) A perturbing sub-harmonic injection signal causes
the oscillators to settle into one of two phase states (0◦ and 180◦ phase shift).

In this chapter, the self-sustaining oscillation behavior of micro-electro-mechanical (MEM)
relays is systematically investigated via experiments and computer simulations. The effects
of DC bias voltages on oscillation frequency and amplitude are studied, and sub-harmonic
injection locking is demonstrated to enable phase-based bit encoding. The locked-in phases
of coupled MEM relay oscillators are demonstrated to be optimized for minimal energy con-
sumption, which is dependent on the coupling configuration. Finally, the benefits of using
MEM relays than other oscillators to implement Ising machines are summarized.
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4.2 DC-Driven MEM Relay Oscillation

Figure 4.5 shows a scanning electron micrograph (SEM) image of a fabricated MEM relay,
along with corresponding schematic cross-sectional views. The relay comprises a movable
body electrode suspended by four folded-flexure beams over a fixed gate electrode, and two
pairs of source/drain electrodes. The fixed drain electrodes are co-planar with the gate
electrode. Each source electrode extends underneath the body electrode and is attached
to it via an insulating dielectric layer. In the OFF state, an air gap physically separates
each source electrode from its underlying drain electrode, so that no current (IDS) flows. In
the ON state, the movable body is actuated downward by electrostatic force such that each
source electrode comes into contact with its underlying drain electrode to allow current to
flow if there is a voltage difference (i.e., if VDS 6= 0 V). The dimpled regions of source-drain
contact are defined by lithographic patterning of a first sacrificial layer prior to the deposition
of a second sacrificial layer.

Figure 4.5: (a). Plan-view SEM image of a MEM relay, and cross-sectional views along the
A-A’ cutline: (b) OFF state (c) ON state.

The MEM relays were fabricated using conventional planar processing techniques with
a maximum substrate temperature of 410 ◦C so as to be suitable for monolithic integration
with CMOS circuitry, as described in Chapter 2.2 with more details [66]. The insulating
dielectric layers are formed of Al2O3 deposited by atomic layer deposition (ALD) at 300
◦C. The gate and source/drain conducting electrodes are formed of DC-sputtered tungsten
(W), while the structural (body electrode) layer is formed of boron-doped polycrystalline
Si0.4Ge0.6 deposited via low pressure chemical vapor deposition (LPCVD) at 410 ◦C. The
sacrificial material used was low-temperature-deposited silicon dioxide (LTO) deposited at
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400 ◦C using O2 and SiH4 as precursor gases. Vapor HF was used to selectively remove the
LTO to “release” the movable structure while avoiding capillary-force-induced stiction.

Figure 4.6 shows the relay operation circuit and measured IDS vs.-VGB characteristics.
To turn ON the relay, a voltage is applied to the gate electrode, inducing an electrostatic
force that actuates the body electrode downward. The relay current increases abruptly when
the gate voltage reaches the turn-ON voltage (VON) at which the source electrodes come into
contact with their underlying drain electrodes. (The ON-state current is artificially limited
to 1 µA to avoid contact welding due to Joule heating.) VON is defined as the turn-ON
voltage when the drain voltage is close to 0 V. To turn OFF the relay, the gate voltage
is reduced so that the spring restoring force of the deformed suspension beams overcomes
the electrostatic force plus contact adhesive forces to actuate the body electrode upward,
breaking contact between source and drain electrodes.

Figure 4.6: (a) MEM relay operation circuit diagram. Here, RL is used to set the current
compliance. (b) Typical measured relay IDS-VGB characteristic. It is worthwhile to note
here that the effective subthreshold swing is only 8 mV/dec.

A four-terminal MEM relay can be made to oscillate between ON and OFF states with
only DC voltages applied, as follows:

1. A voltage slightly less than VON is applied to the gate.

2. A voltage VDD is applied to the drain electrode through a load resistor to induce
additional electrostatic force (in the contact dimple region between the drain and source
electrodes) to turn ON the device.
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3. After the drain and source electrodes come into contact, their electrostatic potentials
equilibrate so that the electrostatic force between them disappears, causing the relay
to turn OFF.

4. When the drain electrode is separated from the source electrode, the drain voltage
charges back up toward VDD, inducing electrostatic force once again to turn ON the
relay and discharge the drain voltage.

5. Thus, the drain voltage oscillates as the relay turns ON and OFF repeatedly.

With the gate electrode biased at a voltage slightly smaller than VON , the relay starts to
oscillate when the drain voltage (connected via a load resistor to the power supply VDD) is
sufficiently large, as shown in Figure 4.7 (a). The drain voltage oscillates at approximately
1 MHz, which is close to the fundamental resonant frequency (ωo) of the movable electrode
calculated by Equation 4.2. The parameters used for the resonant frequency are listed in
Table 4.1. Note that here the effective stiffness, keff , is calculated using experimental results
for fabricated relays and Equation 1.8. Figure 4.7 (b) indicates that the oscillation frequency
is stable over many cycles.

ωo =
1

2π

√
keff
m

(4.2)

Table 4.1: Design parameters of a MEM relay for resonant frequency (ωo) calculation

Parameter Value Unit

Effective stiffness, keff 540 N/m
Density, ρ [119] 4126 kg/m3

Actuation Area, A [46] 1062 µm2

Poly Si0.4Ge0.6 thickness, H 1.9 µm
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Figure 4.7: DC-bias-driven MEM relay oscillation: (a) measured voltage waveforms with
applied DC voltages of VGB = VON − 0.5 V and VDD = 2.1 V; (b) relay oscillation frequency
distribution over 100 cycles; (c) simulated MEM relay oscillation behavior for VGB = VON −
1.8 V.
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To facilitate the study of coupled MEM relay oscillators, Coventor MEMS+ [120] finite
element method simulation software was used to model the MEM relay. Figure 4.7 (c) shows
simulated relay oscillation behavior for constant applied VGB and VDD. It should be noted
that this model is not an exact replica of the experimental device; it comprises a stiffer
structure, which results in larger VON and higher resonant frequency. The drain voltage
swing is defined by the difference between the highest and the lowest drain voltages during
oscillatory operation.

In order for a DC-driven MEM relay oscillator to be used as a spin in an Ising machine,
its oscillatory behavior must be influenced by a perturbing SHIL voltage signal. Therefore,
the dependencies of MEM relay oscillation frequency and voltage swing on the applied DC
voltages were investigated. Figure 4.8 shows how the oscillation frequency depends on the
gate voltage VG and drain supply voltage VDD. The relay oscillation frequency increases with
gate voltage at a rate of approximately +60 kHz/V. This is because the source and drain
electrodes are brought closer to each other in the OFF state when VGB increases to be closer
to VON , reducing the distance of oscillatory motion, so that the relay turns ON more quickly
when additional electrostatic force is induced by VD.

The different curves in Figure 4.8 correspond to different values of VDD, showing stronger
and opposite dependence of the oscillation frequency on VDD (-250 kHz/V). The larger the
attractive electrostatic force between the source and drain electrodes, the greater the contact
adhesive force and therefore the longer it takes for the relay to turn OFF.

Figure 4.8: Relay oscillation frequency dependence on VG for different values of VDD.



CHAPTER 4. STUDY OF DC-DRIVEN MEM RELAY OSCILLATORS FOR
IMPLEMENTATION OF ISING MACHINES 62

As VGB increases, the drain voltage swing required to turn OFF the relay increases; this
is because the electrostatic force induced by VD must decrease to a lower level in order to
cause the relay to turn OFF when VGB is larger. Measured data presented in Figure 4.9
confirm that the drain voltage swing increases with VGB, at a rate ∼ 200 mV/V.

The different curves in Figure 4.9 correspond to different values of VDD, showing similar
dependence of the drain voltage swing on VDD, at ∼ 200 mV/V). The greater the contact
adhesive force, the lower the contact resistance RON and hence the lower value of VD reached
when the relay is ON, due to the voltage-divider effect (cf. Figure 4.6 (a)).

Figure 4.9: Relay oscillation drain voltage swing dependence on VG for different values of
VDD.

Simulated MEM relay oscillation frequency and drain voltage swing dependencies on
applied DC bias voltages showed the same trends as experimentally observed (as described
above).

4.3 Demonstration of Relay SHIL Behavior

The voltage-dependent self-oscillating behavior of a MEM relay makes it possible to adjust
the phase of oscillation by coupling the gate or body and the drain to other voltage signals.
Specifically, a sub-harmonic injection locking (SHIL) signal can be used to cause it to settle
into one of two phase states [118, 121]. In this section, a SHIL “sync” signal with a fre-
quency approximately twice that of the relay self-oscillation frequency is superimposed on
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VGB through the body electrode, as shown in Figure 4.10, so that the drain voltage (VD)
locks into one of two phases with this synchronization signal.

Figure 4.10: A Sub-Harmonic Injection Locking (SHIL) signal is applied via the body elec-
trode of a MEM relay.

Shown in Figure 4.11 (a) are simulated voltage waveforms showing how the oscillation
of VD locks into phase with that of a 1 V, 2.3 MHz SHIL signal within 40 oscillation cycles.
The upper blue waveform is the SHIL perturbation signal, and the lower red waveform is the
resulting VD waveform. Figure 4.11 (b) shows how the relay oscillation frequency changes
over time after the SHIL signal is applied. It shows that the frequency stabilizes after about
40 µs.
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Figure 4.11: MEM relay oscillation simulation results: (a) simulated voltage waveforms
showing phase lock with a 1 V, 2.3 MHz SHIL signal within approximately 40 cycles, and
(b) oscillation frequency vs. time, showing frequency stabilization after approximately 40
µs.

Experimental SHIL results are shown in Figure 4.12. The sync SHIL signal is applied to
the body electrodes of two different MEM relays. Their VD responses are plotted in red and
green curves, respectively. Figure 4.12 (a) shows that 0-25 µs after the DC bias voltages
are applied, the two relays are oscillating independently and are not synchronized with the
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SHIL signal. Later, 75-100 µs after start of oscillation as shown in Figure 4.12 (b), the two
relays are oscillating at the same frequency but with 180◦ phase difference; both oscillations
are locked in with the perturbation SHIL signal.

Figure 4.12: Experimental SHIL results. The perturbation 60 mV peak-to-peak SHIL signals
applied to the two MEM relays are synchronized. (a) Initial independent oscillation of the
two MEM relays. (The VD responses of the two MEM relays are not locked in with their
respective SHIL signals.) (b) 75-100 µs after start-up, oscillations locked in with the SHIL
signals are observed, with 180◦ phase difference.

4.4 Coupling of MEM Relay Oscillators

Figure 4.13 is a circuit diagram for relays coupled in a parallel configuration; that is, the
coupling coefficients between their sources and their drains are positive. To demonstrate
SHIL for minimizing the energy dissipation of this relay oscillator network, supply signals
VDD are applied to each relay, DC bias voltages VG1 and VG2 are applied to the gate electrodes,
and a common SHIL signal is applied to the body electrodes. The two relays are turned
ON at staggered times so that they can oscillate initially with random relative phases. In
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this circuit, the use of both “pull-up” (PU) and “pull-down” (PD) load resistors ensures
low current flow, which is desirable for low power consumption. It should be noted that the
electrical (RC) delay should be smaller than the mechanical switching delay of the relay to
ensure stable oscillation.

Figure 4.13: Circuit diagram for two relays coupled together in a parallel configuration.

The simulated voltage waveforms in Figure 4.14 show how the relay drain voltage oscil-
lations lock into phase with each other after the devices are turned ON in sequence while a
SHIL signal is applied to their body electrodes. The blue curve is VD1 (the VD response of
relay 1) and the red waveform is VD2 (the VD response of relay 2). It can be seen that, after
several cycles, the two relays oscillate with the same phase.



CHAPTER 4. STUDY OF DC-DRIVEN MEM RELAY OSCILLATORS FOR
IMPLEMENTATION OF ISING MACHINES 67

Figure 4.14: Simulated voltage waveforms of relay oscillators coupled together in a parallel
configuration.

Figure 4.15 is a circuit diagram for relays coupled in an anti-parallel configuration; that
is, the coupling coefficients between their sources and their drains are negative. Again a
DC bias voltage VDD is applied to each relay, DC bias voltages VG1 and VG2 are applied to
the gate electrodes, and a common SHIL signal is applied to the body electrodes. The two
relays are turned ON at staggered times so that they oscillate initially with random relative
phases.
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Figure 4.15: Circuit diagram for two relays coupled together in an anti-parallel configuration.

Similarly as before, shown in Figure 4.16 are simulated voltage waveforms showing how
the relay drain voltage oscillations lock out of phase with each other after they are turned
ON in sequence while a SHIL signal is applied to their body electrodes, to minimize the total
energy dissipation.
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Figure 4.16: Simulated voltage waveforms of relay oscillators coupled together in an anti-
parallel configuration.

Figure 4.17 shows experimental results for two relays coupled together in a parallel con-
figuration (cf. Figure 4.13). The experiment was performed with the relays in a Lakeshore
TTPX cryogenic vacuum probe station, at ∼ 5 µTorr and at room temperature. Since this
probe station only has 6 probes for measurement, the body electrodes of the two relays were
connected by wire-bonding, and the gate electrodes were also connected by wire-bonding.
The experimental results indicate that, even though the two relays initially oscillate at dif-
ferent frequencies and phases, with a 1 V, 2 MHz SHIL signal applied, after approximately
10 cycles, the two relays start to couple in phase, and synchronicity is maintained as long as
the SHIL signal does not change.
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Figure 4.17: Experimental parallel-coupled relay oscillation voltage waveforms: (a) 0 - 25
µs, and (b) 25 - 50 µs after application of DC voltage signals. The red and green curves
correspond to each of the two different relay oscillators.

To implement a larger Ising machine, an additional relay oscillator (with PU and PD
resistors) would be added for each node, and coupling elements would be added to connect
it with the other oscillators.
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4.5 Discussion

Endurance

From previous studies [91,122], the hot-switching endurance of a tungsten-contact MEM re-
lay increases exponentially with decreasing contact voltage (that is, the source-drain voltage
difference) and is projected to exceed 1016 cycles for contact voltage below 1 V. Therefore,
for tungsten-contact MEM relay operation as an oscillator with an oscillation frequency of
approximately 1 MHz, endurance is expected to exceed 300 years.

Size of the Relay Oscillators

Vertically oriented nano-electro-mechanical (NEM) switches can be implemented utilizing
standard interconnect layers formed in the back-end-of-line (BEOL) steps of a conventional
CMOS fabrication process, to achieve smaller footprint (chip layout area) and monolithic
integration with CMOS integrated circuits [43, 44, 123]. The working mechanism of vertical
NEM switches is similar to that of the MEM relays discussed above in Section 4.2, so vertical
NEM switches can also be used as non-linear oscillators, in principle. The footprint of
vertical BEOL NEM switches scales with the Minimum Metal Pitch (MMP) of the fabrication
process. Vertical BEOL NEM switches have been successfully fabricated using a standard
16 nm-generation CMOS manufacturing process by TSMC [44]. In the future, BEOL NEM
switch oscillators can be scaled down even further.

Speed of Calculation

From the results in Section 4.3 and Section 4.4, it takes 10 to 50 oscillation cycles for a
two-relay MEM oscillator system to reach its minimum energy state. Since relay oscillation
frequency scales up while the relay switching voltage scales down with miniaturization (cf.
Equation 4.2), the time and energy required to reach the solution (minimum energy state)
can be expected to improve dramatically with relay scaling.

As the size of a NP problem increases, traditional computing architectures require geo-
metrically increasing computing time [50,124]. In contrast, the Ising machine architecture is
expected to require at most a proportionately larger number of oscillation cycles [112,125].

Other Advantages of Relays as Oscillators

Compared with other oscillators, relay oscillators have unique benefits. First, they can be
fabricated monolithically with CMOS circuitry [66]. Also, they can work reliably across a
wide temperature range and also endure irradiation. This is especially advantageous for edge
computing devices (in the Internet of Things), which must work dependably under harsher
environmental circumstances than cloud computing devices (in data centers). In previous
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work, MEM relay integrated circuits (2:1 MUX, OR, and inverter) were proven to function
properly at temperatures down to 77 K and up to 400 K with VDD as low as 25 mV [42,66].
Besides, MEM relays were demonstrated to function well at 4 K with sub-10 mV hysteresis
voltage in Chapter 2.

Additionally, as mentioned above, relays can be scaled down to relatively small size.
CMOS oscillators can also be used to implement Ising machines [58, 116, 118], but they
require several inverters (each comprising two transistors) and hence would consume more
chip area than a single BEOL NEM relay oscillator. Also, the power consumption of a NEM
relay [40,126] can be expected to be smaller that that of a CMOS ring oscillator.

4.6 Summary

In this chapter, MEM relays are experimentally demonstrated to be capable of being operated
as DC-voltage-driven non-linear oscillators. The applied voltages can impact the oscillation
frequency and amplitude; therefore, sub-harmonic injection locking (SHIL) of MEM relay
oscillation is possible and is successfully demonstrated. Coupling-dependent relay oscillation
phases are also verified via simulations and experiments. Adequate endurance, fast comput-
ing speed, scalable device design, wide-range operating temperature range, and compatibility
with CMOS process technology make relay-based Ising machines a promising approach for
solving complex combinatorial optimization problems efficiently.
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Chapter 5

Conclusions and Future Work

5.1 Contributions of This Work

Moore’s law sets the pace for increasing the number of CMOS transistors on a chip [2, 3]
which provides for improvements in computation speed and energy efficiency. Over the last
five decades, the industry has successfully followed Moore’s law. As fundamental limits of
transistor scaling approach, alternative devices and computing chip architectures must be
developed to improve computational performance. This dissertation aims to explore novel
applications of micro-electro-mechanical (MEM) relays for beyond-von-Neumann computing
chip architectures.

MEM relays have the potential to be superior to CMOS transistors for interfacing with
quantum computers, because they can be operated with much lower switching voltage and
have zero OFF-state leakage current. This lower power consumption makes it easier to main-
tain the milli-Kelvin temperature environment required by the quantum computer, while
reducing the number of interconnections between the electronic controller and qubits. In
Chapter 2, the temperature dependence of several relay properties has been studied; these
include the sheet resistances (RS) of the contact material and of the structural material,
turn-ON voltage (VON), self-oscillation frequency, switching hysteresis voltage (VH), ON-
state resistance (RON) and stability, and turn-ON delay. Moreover, sub-25 mV voltage
operation of relay digital ICs is demonstrated at 77 K, and sub-10 mV relay-based inverter
circuits are demonstrated at 4 K. These results indicate that MEM relays are promising for
implementing ultra-low-power cryogenic digital interface circuits for quantum computing.

In Chapter 3 superconductive contacting electrode materials have been considered for
cryogenic MEM relays, for electrical performance (RC delay) improvement. Niobium (Nb)
is a promising candidate because its superconducting transition temperature is 9.29 K, and
it satisfies the electrical and mechanical requirements for a relay contact material. The inte-
grated process flow for fabricating Nb-contact MEM relays is described. Then the electrical
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characteristics of Nb-contact MEM relays are measured, for different relay contact designs,
and key performance characteristics of Nb-contact relays are compared against those of W-
contact relays.

The Ising model is a promising non-von-Neumann computing architecture for efficiently
solving large combinatorial optimization problems, by mapping the problems into Ising
Hamiltonians of physical systems which naturally reach their ground state. Nonlinear self-
sustaining oscillators have been proven to work as artificial Ising spins [58]. In Chapter
4, MEM relays are designed to oscillate between ON and OFF states with only DC biases
applied. The gate voltage and drain voltage impacts on the oscillation frequency and drain
voltage swing have been studied and analyzed, indicating the feasibility of sub-harmonic in-
jection locking (SHIL) and coupled relay interaction. SHIL is experimentally demonstrated
to lock MEM relay oscillation into one of two phase states (with 180◦ phase difference).
Coupled relay oscillation is also demonstrated through both simulation and experiment, in-
dicating that networked MEM relay oscillators are appealing for building Ising machines
that have low power consumption. Finally, the benefits of MEM relay-based Ising machines
are discussed in terms of endurance, size (cost), and speed.

5.2 Suggestions for Future Work

While this dissertation has explored new applications for MEM relays, there is still room for
further improvement and exploration:

Milli-Kelvin Relay Operation. Demonstration of MEM relay digital circuits (MUX, in-
verters, etc.) at milli-Kevin temperatures can be done in the future with sub-10 mV or even
lower voltages, for cryogenic computing applications. Additionally, superconducting contact
material integration can be further investigated. For example, additional protection meth-
ods can be researched to maintain the superconductivity of the niobium contacts; alternative
sacrificial materials and the associated release-etch steps can be investigated to further re-
duce the relay fabrication process temperature when the contact materials are exposed; or
a more stable metallic material with a high superconducting transition temperature can be
used to form the contacting electrodes.

Contact Exploration with Machine Learning Algorithms. More stable contact materials
for MEM relays can be explored in the future, both for room temperature and cryogenic
temperature applications. Machine learning is one of the most interesting new methods
in the material science research toolkit in recent years. With the increasing availability of
experimental and simulated databases for material science such as the Materials Project
[127–129], Crystallography Open Database [130–132], and Materials Data Facility [133–
135], the ability of machine learning-assisted algorithms and frameworks for novel material
design [136–138] and material property prediction [139–142] has been significantly improved.
Therefore, the material databases and machine learning algorithms might be able to expand
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the contact material selection pool, as previous research mainly focused on refractory metals,
but there are also a large number of alloys and ceramic materials available that might be
able to satisfy all the requirements for relay contacting electrode materials.

Oscillation Analytical Model and Vertical BEOL NEM Relay Oscillators. Further work
can also be done to create an accurate analytical model for relay oscillations, in order to better
understand the benefit of device scaling for relay oscillators, as well as to systematically study
the influence of different relay designs (for example, dual-bridge contact, dual-direct contact,
and single-direct contact designs [46]) on oscillation behavior. Moreover, the oscillation
behavior of vertical back-end-of-line (BEOL) Nano-Electro-Mechanical (NEM) switches [143]
can be studied, for compact implementation of relay oscillator based Ising machines.
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