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Abstract

We present a statistical framework for estimation and application of sample allele frequency spectra from New-Generation
Sequencing (NGS) data. In this method, we first estimate the allele frequency spectrum using maximum likelihood. In
contrast to previous methods, the likelihood function is calculated using a dynamic programming algorithm and
numerically optimized using analytical derivatives. We then use a Bayesian method for estimating the sample allele
frequency in a single site, and show how the method can be used for genotype calling and SNP calling. We also show how
the method can be extended to various other cases including cases with deviations from Hardy-Weinberg equilibrium. We
evaluate the statistical properties of the methods using simulations and by application to a real data set.
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Introduction

The biological sciences have been transformed by the emer-

gence of New-Generation Sequencing (NGS) technologies pro-

viding cheap and reliable large scale sequencing (e.g, [1]). These

technologies are used for de novo genome sequencing (e.g., [2]), in

human disease genetics and diagnostics (e.g., [3,4]), in gene

expression analyses (e.g., [5]), in population genetic studies (e.g.,

[6]), and in many other applications. In this paper, we will mostly

be interested in population genetic applications. However, the

methods used in this paper may also be helpful for genotype and

SNP calling in other studies based on multiple individuals, such as

association mapping studies.

Many NGS studies (e.g., [6,7,8] are based on medium to low

coverage, i.e. coverage at ,20X. While the price of NGS is

declining, the demand for larger sample sizes is similarly

increasing, suggesting that low or medium sequencing coverage

may be the design of choice for many future studies in the years

to come. In such data, genotype calling for each individual is

associated with statistical uncertainty. There are two reasons for

this. First, in heterozygous individuals, both alleles may not have

been sampled. Secondly, the high raw error rates often associated

with NGS may cause a significant amount of homozygous

genotypes to be wrongly inferred as heterozygous, if genotype

calling is based on just absence/presence of an allele. In most

NGS, the error rate is at least 0.1% even after stringent filtering

based on quality scores (e.g., [9]). In 5X data, an error will then

appear in at least 0.5% of all homozygotes, i.e. at a level

comparable to the SNP level. If multiple individuals are sampled,

most SNPs will then in fact be errors. For this reason, more

stringent criteria are typically used for calling SNPs and for

calling heterozygote individuals. Some of these might in effect

correspond to requiring the minor allele to be observed twice in

an individual to be called. If such a criterion is applied, the

chance of calling a heterozygous individual as homozygous in 5X

data is approx. 0.375. More clever algorithms can be designed for

calling SNPs and for calling genotypes than this (e.g.,

[10,11,12,13]), but if the coverage is low, they will be sharing

the basic features outlined here: a trade-off between including too

many SNPs and under-calling true heterozygotes. As a result, low

coverage and medium coverage NGS data tends to provide

biased estimates of the distribution of allele frequencies

([14,15,16,17] In this paper, we will explore the implications of

this for population genetic inferences. We will also present and

evaluate a set of algorithms for providing more precise SNP calls,

genotype calls, and estimates of allele frequency. The strategy

presented in this paper is to estimate the distribution of sample

allele frequencies, the so-called Site Frequency Spectrum (SFS),

jointly for all individuals and for all sites without calling

individual genotypes. When first a good estimate of the SFS

has been obtained, better priors can be defined for allele

frequencies leading to improved genotype calling and SNP

calling. For population genetic inferences, the SFS is in itself of

primary interest, and population genetic inferences can proceed

directly from the estimated SFS without using individual

genotype calls. For example common estimators of effective

population sizes and mutation rates, such as Watterson’s

estimator [18] and p [19] are simple functions of the SFS. Many

methods for detecting natural selection, such as Tajima’s D [19]

are also simple functions of the SFS. Finally, methods for
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estimating demographic parameters (e.g. [20]) and quantifying

population subdivision using FST (e.g., [21]) also proceed from

estimates of the SFS. For population genetic inferences from

next-generation sequencing data, obtaining reliable estimates of

the SFS is, therefore, fundamental.

We test the new methods using simulations and apply them to

data from 200 previously sequenced human exomes. The methods

developed here are available in the program package Analyses of

Next-Generation Sequencing Data (ANGSD) downloadable from

http://popgen.dk/software/angsd.html.

Methods

The SFS describes the distribution of allele frequencies. Let the

proportion of SNPs, with a derived allele frequency of i/2k in a

sample of k diploid individuals, be pi. The SFS is then given by the

vector (p1, p2, ... p2k-1). We here consider an expanded version of

the SFS: the vector P = (p0, p1, ... p2k), i.e. we also consider sites in

the alignment that are fixed. The zero category then represent sites

in which all individuals are homozygous for the ancestral allele,

and the 2k category represents sites that are fixed for the derived

allele. The SFS also exists in a so-called folded version,

P* = p�0,p�1,:::p�k
� �

, in which p�i ~pizp2k{i for i,k and p�i ~pi

for i = k. The folded version of the SFS is often used when no

reliable information can be used to determine which allele is

ancestral and which is derived.

As a note of notation, we distinguish between population allele

frequencies and sample allele frequencies by denoting the former

by p, as in the preceding section, and the latter by f. Most of the

methods discussed in this paper concerns sample allele frequencies,

but we also occasionally discuss the use of population allele

frequencies. A number of previous papers have focused on

population allele frequencies, including [22,23]. The methods

presented here differ from those methods by focusing on sample

allele frequencies, except otherwise stated.

Calculation of recalibrated quality scores and genotype
likelihoods

Any method for SNP calling and allele frequency estimation

must rely on a base calling algorithm and a method for

calculating quality scores. A quality score is a function of the

probability of the most likely base in a particular read given the

observed data. It is typically reported using a phred scaling, i.e. as

the log10 likelihood ratio relative to the most common base.

Standard next-generation sequencing methods provide such

quality scores associated with each base call. However, the raw

quality scores are often not very accurate and must be re-

calibrated taking observed error rates in the data into account.

The objective of this paper is not to explore different methods for

calculating and calibrating quality scores. The methods presented

here can be used based on any method for calculating quality

scores. However, in our data analyses we use a method similar to

the method currently implemented in SOAPsnp [11]. In brief,

the raw quality scores from Illumina reads are calibrated taking

the observed allelic type and sequencing cycle (coordinate on

read) into account. Using observed mismatch rates, the empirical

probability of observing the data in a position of a read given the

raw quality scores, the sequencing cycle, and the true allelic state

can then be calculated. We interpret the probability calculated

for read i of a particular site as a likelihood of a particular allele,

L
(i)
b , b M B, B = {A, C, T, G}. The genotype likelihood, in a site

covered by r reads, can then be obtained as the product of

individual allelic likelihood values (e.g., [24]):

p(X DG~bh)~ P
r

i~1
L

(i)
b =2zL

(i)
h =2

� �
, b, h [ B: ð1Þ

Notice here that there is an implicit assumption regarding

independence of reads in Equation (1). However, this is not the

same as assuming Hardy-Weinberg Equilibrium (HWE) as the

probability is calculated conditional on the genotype. Posterior

probabilities will, in contrast, depend either on HWE assumptions

or on an explicit modeling of deviations from HWE. It is also

important to notice that the modeling of the error structure in the

data is done through the calculation of the genotype likelihood.

Likelihood function for the allele frequency spectrum
For low coverage data, estimation of allele frequency for a

particular site can be associated with great uncertainty. Likewise,

SNP calling for rare SNPs can be difficult. However, as shown in

the Results section based on methods developed here, the joint

estimation for multiple sites in the genome of the distribution of

allele frequencies, and the number of SNPs can be carried out with

quite high accuracy.

Consider a statistical model in which the sample allele

frequencies are free parameters, i.e. for k individuals there are

2k+1 possible sample allele frequencies including 0 and 1. The

vector of parameters is then P = (p0, p1, ... p2k) defined on the unit

simplex {(p0, . ., p2k) M 2k+1 |
X2k

i~0
pi~1 and pi $ 0 for all i}.

These sample allele frequencies define the SFS with fixed

ancestral and derived alleles included. The ith sample allele

frequency, pi, is the proportion of sites in the sample in which the

derived allele has a frequency of i/2k in the sample, i = 0,1,..,2k.

As the sample allele frequencies must sum to one, there are 2k

parameters to estimate. Estimation of these 2k parameters

assumes that the ancestral state of each SNP can be identified

using outgroups (e.g. other primates for humans). However, if the

identification of ancestral state is uncertain, the frequency

spectrum can be folded, i.e. the number of observations in

category i and category 2k-i can be added together as described in

the results section. For next-generation sequencing data P is not

known, but must be estimated from the data. An estimate of P
also provides an estimate of the fraction of variable sites (SNPs) in

the sample as 1 – p0 – p2k. Notice that there is here an implicit

assumption that at most two nucleotides are present in the locus.

We will later describe how to take into account the presence of

more than two nucleotides, but will for now assume that there are

at most two alleles, an ancestral allele (a) and a derived allele (A),

and that they can be unambiguously identified in each site,

except for sites with only one allele.

Assuming that genotype likelihoods can be calculated as

discussed above, a likelihood function for P can be defined as a

function of the genotype likelihood values. LetX
(v)
d and G

(v)
d M {0, 1,

2} be the observed data and the unknown genotype, respectively,

for individual d in site v. The genotype counts the number of

derived alleles, i.e. G
(v)
d = 0 implies an aa genotype. The genotype

likelihood for individual d in site v can then, with this expanded

notation, be written as p(X
(v)
d DG(v)

d ). If the genotypes were known,

the sampling probability, as a function of P, in site v would be

found by taking the product of the probability of the data given the

sample allele frequency multiplied by the probability of the sample

allele frequency, given P, and then summing over all possible

values of the sample allele frequency:

Allele Frequency Estimation from NGS Data
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p(X (v),G(v)DP)~
X2k

j~0

p(SA~jDP)p(X (v),G(v)DSA~j)

~
X2k

j~0

pjp(X (v),G(v)DSA~j)

~
X2k

j~0

pjp(X (v)DG(v))p(G(v)DSA~j)

~
X2k

j~0

pj P
k

d~1
p(X

(v)
d DG(v)

d )

� �
p(G(v)DSA~j)

ð2Þ

where the function

p(G vð Þ SA~ jÞj ~
2k

j

� 	
 {1

2

kP
I

d~1
(G

(v)
d

~1)
if
Xk

d~1

G
(v)
d ~j, ð3Þ

is the combinatorial probability that a sample contains the labeled

genotype vector G(v)~ G
(v)
1 ,G

(v)
2 ,:::G(v)

k

� �
given that it contains a

total of SA alleles of the derived type. This expression assumes

Hardy-Weinberg equilibrium.

However, the true genotypes are not known. The likelihood

function for P must, therefore, be obtained by summing over all

the unknown genotypes:

p(X (v)DP)~
X
G(v)

p(X (v),G(v)DP)

~
X
G(v)

X2k

j~0

pjp(G(v)DSA~j) P
k

d~1
p(X

(v)
d DG(v)

d )

~
X2k

j~0

pj

X
G(v)

p(G(v)DSA~j) P
k

d~1
p(X

(v)
d DG(v)

d )

~
X2k

j~0

pj

X
G1

(v)

:::
X
G

(v)
k

p(G(v)DSA~j) P
k

d~1
p(X

(v)
d DG(v)

d )

Assuming independence among sites, we then multiply the

likelihood among all

sites and obtain:

L(P)~P
v

(
X2k

j~0

Pj
X
G

(v)
1

� � �
X
G

(v)
k

p(G(v)DSA~j) P
k

d~1
p(X

(v)
d DG(v)

d ): ð4Þ

This likelihood function is the one underlying the EM algorithm

applied in [24] and is, if ignoring the difference in handling of

errors, also effectively identical to the likelihood function used in

[25]. While it might initially appear very challenging to calculate

this function for large values of k and v directly, a simple dynamic

programming algorithm can be devised that greatly simplifies

these calculations.

Direct evaluation of the likelihood function
The first step in the algorithm is to calculate the likelihood

function for each site, Lv(P), separately. In the following we will

describe this algorithm, suppressing the index for site v in the

notation to enhance readability:

Initialization:

Set h0~p(X1DG1~0),h1~2p(X1DG1~1),h2~p(X1DG1~2),and

hj = 0 for j = 3,4,…,2k.

Recursion

For d = 2, 3,…, k:

For j = 2d, 2d-1,…,2:

Set hj~p(Xd DGd~2)hj{2z2p(Xd DGd~1)hj{1zp(Xd DGd~0)hj

Set h1 = p(Xd | Gd = 0)h1 + p(Xd | Gd = 1)h0

Set h0 = p(Xd | Gd = 0)h0

Termination

Set hj~hj
2k
j

� �{1

for j = 0,1,2,…,2k.

The likelihood function can then be expressed as

L(P)~P
v

X2k

j~0

pjh
(v)
j

 !
ð5Þ

where h
(v)
j is the value of hj calculated for the vth site

(~p(X (v)DSA~j)). By tabulating the values of h
(v)
j in a table of

size (2k+1)6S, where S is the total number of sites, the likelihood

function can be re-calculated very fast for different values of P.

Notice that the computational speed is O(k2S). Similar algorithms

have been used for single site inferences in [8] and [26].

We have here assumed an unfolded (polarized) frequency

spectrum. However, the algorithm can also be applied directly to

folded data, but with a k+1 dimensional parameter space instead of

a 2k+1 dimensional parameter space.

Optimization
After tabulation of values of h

(v)
j we optimize the likelihood

function for P using the BFGS algorithm [27]. In order to do that

we transform the parameter space from 2k+1 to 2k parameters.

The transformation used is

p0~1= 1z
X2k

i~1

hi

 !
and pj~hj= 1z

X2k

i~1

hi

 !
,j[f1,:::,2kg: ð6Þ

We then optimize the log likelihood function with respect to the

transformed parameters h = (h1… h2k) using analytical derivatives.

Application of standard calculus techniques lead to the following

derivatives of the log likelihood function for the transformed

parameters:

L‘(q)

Lhi

~
X

v

{ 1z
X2k

j~1

hj

 !{1

z
h

(v)
i

h
(v)
0 z

P2k

j~1

hjh
(v)
j

: ð7Þ

The BFGS algorithm can then be applied to h, and the

estimates of the natural parameters, P, can be found by using the

transformation in eq. (6).

Unknown derived allele
The representation given above assumes that the ancestral and

derived (if it exists) alleles always can be unambiguously identified.

Allele Frequency Estimation from NGS Data
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However, for most next-generation sequencing data, there might

be considerable difficulties in separating errors from true low

frequency alleles. If the ancestral allele is the common allele,

identification of the derived allele will then be ambiguous. The

frequency spectrum is only properly defined for di-allelic loci.

The approach we will take to this problem is to assume that all

loci are truly di-allelic, and errors are responsible when more

than two alleles are observed. For most human data, mutation

rates are so low that this should be a reasonable approximation.

The likelihood function can then be modified by calculating the

likelihood for each locus assuming any of the three possible

derived alleles, and then adding these likelihood values together,

weighted by the probability that each possible derived allele is

truly the derived allele. This probability has been set to 1/3 in all

analyses presented in this paper. But we note that the inference

method could potentially be improved by instead using empirical

substitution matrices for this weighting.

We also note that a situation might arise where the inferred

ancestral allele is not observed in the data, but two other alleles

are segregating, both at high frequency. In these cases the

unfolded frequency spectrum is not well-defined. Such loci are

typically ignored in population genetic analyses, and will also be

ignored here.

SNP calling and Empirical Bayes estimation of allele
frequencies at individual sites

To estimate the sample allele frequency in a single site, we could

in theory sum the posterior expectation of the marginal allele

frequency calculated for each individual together for all individ-

uals. However, in most applications it will be desirable to obtain

the joint posterior distribution for the allele frequency, as

downstream inferences then can be performed by integrating

over this distribution.

The ML estimates can be used directly in inferences in

individual sites for SNP calling, genotype calling, and estimation

of allele frequencies. In particular, an Empirical Bayes (EB)

method in which the ML estimates are used to make inferences for

each individual site might have desirable properties. The posterior

probability of the allele frequency in a particular site is given by

p Sm~jDXð Þ~ p X DSm~jð Þp Sm~jð ÞP2k

i~1

p(X DSm~i)p(Sm~i)

,j~0,1,2,::,2k ð8Þ

as in [24] which using the algorithm from the previous section can

be calculated as

p Sm~jDXð Þ~ hjpjP2k

r~0

hrpj

,j~0,1,2,::,2k: ð9Þ

A point estimate of the sample allele frequency can then be

obtained as arg maxj{p(Sm = j | X)}. As we often will be interested in

SNP calling and genotype calling in all sites, and not only in sites

in which the ancestral base is among the segregating nucleotides,

inferences can be done using the folded, rather than the unfolded,

frequency spectrum. To calculate the posterior probability, we

then need to sum over foldings, and over assignments of derived

and ancestral alleles:

p Sm~j Xjð Þ

~
hj(pjzp2k{j)zh2k{j(pjzp2k{j)Pk{1

r~0

hr(przp2k{r)z2hkpkz
P2k

r~kz1

hr(przp2k{r)

,j~0,1,2,::,k{1

and

p(Sm~k X )j ~
2hkpkPk{1

r~0

hr(przp2k{r)z2hkpkz
P2k

r~kz1

hr(przp2k{r)

ð10Þ

Finally, if we wish to take into account uncertainty in the

assignments of ancestral and derived alleles, we need to sum over

all possible pairs of segregating alleles:

p Sm~j Xjð Þ

~

P
(a,b)

h
(ab)
j pjzh

(ab)
2k{jp2k{j

� �
P
(a,b)

Pk{1

r~0

h
(ab)
r przh

(ab)
k pkz

P2k

r~kz1

h
(ab)
r pr

 ! ,j~0,1,2,::,k{1

and

p(Sm~k)~

P
(a,b)

h
(ab)
k pk

P
(a,b)

Pk{1

r~0

h
(ab)
r przh

(ab)
k pkz

P2k

r~kz1

h
(ab)
r pr

 !

ð11Þ

where h
(ab)
j is the function hj calculated assuming a is derived and b

is ancestral, and the sum is over all ordered pairs (a, b) M B2. There is

here an implicit assumption of equal weighting of all possible alleles

as ancestral and derived. The method could possibly be improved

by using a more careful weighting using empirically derived

proportions of segregating nucleotide pairs.

The expression given above can be used directly for SNP calling

using a fixed cut-off forp(Sm~0DX ), such as p Sm~0DXð Þ,0.05 or

some lower value depending on how conservative one wants to be

in calling SNPs.

If SNP calling has already been performed based on the same

data, so that only sites expected to be variable are included in the

analysis, estimation of allele frequencies should proceed by

conditioning on the site being variable in the sample, by modifying

the denominator in the expression above to reflex that zero

probability is assigned to the event Sm~0:or Sm~2k. For

example, Equation (11) becomes

p Sm~j Xjð Þ~

P
(a,b)

h
(ab)
j

pjzh
(ab)

2k{j
P2k{j

� �
P
(a,b)

Pk{1

r~1

h
(ab)
r przh

(ab)

k
pkz

P2k{1

r~kz1

h
(ab)
r pr

� 	 ,j~1,2,:::k{1 and

p Sm~kDXð Þ~

P
(a,b)

hk
(ab)pk

P
(a,b)

Pk{1

r~1

hr
(ab)przhk

(ab)pkz
P2k{1

r~kz1

hr
(ab)pr

 ! ð12Þ
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Genotype probabilities
The framework derived above for allele frequency estimation

and SNP calling can also be used for estimating individual

genotype probabilities, leveraging information from all other

individuals in the genotype call for a single individual. We will

assume that the site has already been called to be variable with a

SNP of a specific type with nucleotides h and g.

The posterior probability for a genotype for an individual, d,

then becomes

p Gd (g,h)~jorGd (h,g)~2{j Xjð Þ

~
p X ,Gd (g,h)~jð Þzp X ,Gd (h,g)~2{jð Þ

p(X )

~

p Xd Gd (g,h)~jjð Þ
P2k{2zj

r~j

cr,j prh
�(g,h)
r{j,d

h i
zp Xd Gd (h,g)~2{jjð Þ

P2k{j

r~2{j

cr,2{jh
�(h,g)
r{2zj,d pr

h i
Pk2

r~0

pr h
(g,h)
r zh

(h,g)
r

� �h i

and

cr,j~

r

j

� 	
2k{r

2{j

� 	
2k

2

� 	
0 otherwise

8>>>>><
>>>>>:

if jƒr

Here, the event Gd (g,h)~j indicates that individual d has

genotype j M {0, 1, 2}, j indicating the number of derived allele,

with g as the derived and h as the ancestral allele. h
�(g,h)
r,d is the

value of h(g,h)
r calculated for individuals (1, 2,..., d-1, d+1,.., k).

This algorithm for estimation of genotype probabilities,

therefore requires recalculation of the hj functions for all k

possible subsets found by excluding one individual from the

data.

We notice that p(X ,Gd (g,h)~j)~p X ,Gd (h,g)~2{jð Þ: Further-

more, assuming symmetry in the probability of being ancestral and

derived among nucleotides, h(g,h)
r ~h

(h,g)
2k{r and h

�(g,h)
r,d ~h

�(h,g)
2k{2{r,d ,

and, therefore the denominator can be calculated faster as

ð13Þ

P
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Figure 1. The distribution of true (True) and estimated unfolded SFS using the Maximum Likelihood method (ML) presented in the
paper, genotype calling based on choosing the genotype with highest posterior probability (GC), and using the Bayesian
procedure described in the text (Bay) in a sample from 50 MB 10 diploid individuals, where 2% of all SNPs are variable in the
population and follow a distribution of allele frequencies, p, proportional to 1/p. An error rate of 0.5% is assumed. The mean
sequencing depths are 1X (a), 3X (b), 5X (c), and 10X (d). The values presented in the figure legend box are the estimates of the proportion of sites
that are variable in the sample.
doi:10.1371/journal.pone.0037558.g001
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Likewise, the numerator becomes

2p Xd DGd (g,h)~jð Þ
Xk{1

r~0

cr,jh
�(g,h)
r{j,d przp2k{rð Þ

h i
zck,jh
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k{j,d pk

 !
ð15Þ

In cases where SNP calling precedes genotype calling, the

summations in the numerator and denominator should be

modified to appropriately condition on variability.

Again, specific weighting schemes for the pairs (a, b) could

possibly be used to improve the estimates. Finally, we note that

these expressions assume Hardy-Weinberg equilibrium.

Incorporating external information regarding allele
frequency

The algorithms described above have been developed

assuming that no external information exists regarding allele

frequencies. When that is not true, the algorithm can be

modified to incorporate external estimates of the allele

frequency.

Assume that we know the population allele frequency of the

major allele, f, in the site. Then, assuming Hardy-Weinberg

equilibrium, the marginal posterior for a particular genotype is

p(Gd~jDXd )~
p(Xd DGd~j)p(Gd~jDf )P2

i~0

p(Xd DGd~i)p(Gd~iDf )

, ð16Þ

where, assuming Hardy-Weinberg Equilibrium.

p Gd~0 Dfð Þ~f 2,p Gd~1 Dfð Þ~2f 1{fð Þ,p Gd~2 Dfð Þ~ 1{fð Þ2:
The allele frequency, f, will typically be based on estimates obtained

from a larger set of sites. We can consider this another type of

Empirical Bayes (EB) procedure in that a parameter of the prior for

each individual is estimated jointly based on all individuals (and

possibly other external data). We will use the maximum likelihood

estimator of population allele frequency (not to be confused with

sample allele frequency) described by [22] in any data applications in

this paper. This approach may not work well when there are only very

few individuals for which to estimate f. In such cases, it might work

better to obtain joint ML estimates of genotypes from all individuals

using an EM algorithm with f as the latent variable, to use a full

Bayesian approach integrating the joint likelihood function all

individuals over f, or to revert to the previously discussed methods

which does not rely on estimation of f. When k is relatively large (e.g.,
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Figure 2. ROC curves for different SNP callers. Data for 10 individuals were simulated assuming a sequencing depth of 2 and a raw sequencing
error rate of 1% (A) and (B) a depth of 5 and a raw sequencing error rate of 5%. The SFS method is the main method described in the text. The GC
method is based on genotype calling using the genotype with the highest posterior probability. The LR method is based on a likelihood ratio test of
the hypothesis that the allele frequency is zero. The SFS based method and the LR method have similar performance except for very high error rates,
where the SFS tends to be somewhat better. Both methods in general perform much better than the GC method. The difference would even larger in
larger panels of individuals. Simulations under other conditions can be found in Figure S1.
doi:10.1371/journal.pone.0037558.g002
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.20), the EB procedure should provide marginal posteriors for the

genotypes from each individual close to the ones that would have been

obtained using a full Bayesian approach.

Similarly, we will use an estimator of f obtained for each site

independently, but jointly for all individuals: the maximum

likelihood estimator described by [8,22]. For simulation purposes

we will occasionally also use the estimator by [8], which is faster to

calculate but may not be as accurate as the ML estimator.

Determination of status as major or minor will be defined based on

these estimates. Because of this we can also safely ignore the

possibility that a site is invariable because the minor allele is fixed,

and equate invariability to 0 , Sm ,2k.

We are then interested in obtaining

p Sm~j Xjð Þ

~
p X Sm~jjð Þp Sm~j varjð ÞpvarP2k{1

i~1

p X Sm~ijð Þp Sm~i varjð Þpvarz 1{pvarð Þp X 0vSmv2kjð Þ
,j~1,2,::,2k{1 ð17Þ

and X = (X1,…, Xk) now is the vector of read data for all

individuals. The variable ‘var’ indicates the event that the site is a

variant, i.e. 0 , Sm ,2k. p Sm~jDXð Þ can then be estimated, using

the same algorithm as described for calculation of the likelihood

function, but with the following Termination step

Termination

Set hj, = hjf
2k{j 1{fð Þj

.
1{f 2k{(1{f )2k
� �

for j = 1,2,…,2k-1.

The posterior probabilities are then given by

p Sm~jDXð Þ~ hjpvar

pvar

P2k

r~1

hrz(1{pvar)(h0zh2k)

,j~1,2,::2k{1, ð18Þ

After completion of the algorithm, status of major and minor

allele might then appropriately be re-assigned if this is used

in the downstream inferences and if p(Sm . k | X) .0.5.

Alternatively, the results can be polarized with respect to

ancestral and derived allele or be folded. The allele

frequency can then be estimated as the value of j that

maximizes p Sm~jDXð Þ, or inferences can, in most cases,

more appropriately be made by summing over the posterior

distribution of Sm.

ð17Þ
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Figure 3. The error rate of different genotype callers for different call rates. The SFS-method is the method described in the main text. The
MAF method is based on first obtaining a maximum likelihood estimate of the allele frequency, and then use the estimated allele frequency to define
priors for genotype calling. The GC-max method is based on calling genotypes with highest posterior probability. The GC-ratio method is based on
calling genotypes depending on the ratio of the likelihood for the most likely to second most likely genotype. The jagged behavior of some of the
curves is a consequence of the discrete nature of the data, i.e. an individual contains a discrete number of copies of the minor allele. 10 individuals are
simulated for 50,000 variable sites with a distribution of allele frequencies (p), proportional to 1/p with an error rate of 0.5%. Results for other error
rates are shown in Figure S2.
doi:10.1371/journal.pone.0037558.g003

Allele Frequency Estimation from NGS Data

PLOS ONE | www.plosone.org 7 July 2012 | Volume 7 | Issue 7 | e37558



Incorporating deviations from Hardy-Weinberg
Equilibrium (HWE)

The EB estimator of allele frequency can also be modified to

incorporate deviations from HWE. Assume that an inbreeding

coefficient, Fd, has been estimated for individual d, d = 1, 2, …, k.

Fd can take on both positive and negative values. Let

md0~f 2zFdf 1{fð Þ, md1~ 1{Fdð Þ2f 1{fð Þ,
and md2~ 1{fð Þ2zFdf 1{fð Þ. Then the following algorithm

calculates the likelihood used in the EB estimation:

Initialization:

Set h0~m10p X1DG1~0ð Þ,h1~m11p X1DG1~1ð Þ,
h2~m12p X1DG1~2ð Þ, and hj = 0 for j = 3,4,…,2k.

Recursion

For d = 2, 3,…, k:

For j = 2d, 2d-1,…,2:

Set

hj~md2p Xd DGd~2ð Þhj{2zmd1p Xd DGd~1ð Þhj{1

zmd0p Xd DGd~0ð Þhj

Set h1 md0p(Xd | Gd = 0)h1 + md1p(Xd | Gd = 1)h0

Set h0 = md0p(Xd | Gd = 0)h0

Termination

Set hj~hj= 1{ P
k

d~1
md0{ P

k

d~1
md2

� 	
for j = 1,2,…,2k-1.

The posterior probabilities can then be evaluated as before.

Simulations
To compare methods we conducted simulations under simpli-

fied assumptions. In all simulations, except if otherwise stated, we

simulated data by allowing a Poisson distributed number of reads

for each individual in each site independently of each other. The

distribution of allele frequency (x) was assumed to be proportional

to 1/x in the population. Each site is assumed to be variable with

probability pvar. Errors are introduced randomly an symmetrically

among all bases. Genotype probabilities are calculated according

to the model assuming known error rates. We also compared

methods by examining their performance on real data. This was

done using HapMap data with known genotypes (the reported

genotype error rate is ,0.1%).

Results

In the Methods section, we described a likelihood function for

P, i.e. we derived Pr(X | P), where X is all the sequencing data

from multiple individuals and multiple sites. This is the likelihood

function underlying the EM algorithm for estimating the SFS

presented in [24]. [25] also developed a similar method, but could

only analyze small sample sizes due to computational constraints.

As shown in the Methods section, the likelihood function can be

evaluated directly, using a dynamic programming algorithm, with

computational time that is linear in the number of sites, and

quadratic in the number of individuals. The function can be

optimized using standard optimization algorithms, using analytical

derivatives, to provide a maximum likelihood estimate of the SFS.

This method provides a computational alternative to the method

of [24] for obtaining maximum likelihood estimates of the SFS.

To evaluate the method, we simulate data with known error

rates (Fig. 1), mimicking the variation in sequencing depths

observed in real data. The number of data points needed to

provide good estimates depend both on the number of sites/SNPs

analyzed, the number of individuals and on the sequencing depth.

For example, 50 MB of data with 1% variable sites is sufficient to

provide reasonable estimates even if the average sequencing depth
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Figure 4. The unfolded site frequency spectrum from 25 Danish indivuduals. The data were previously analyzed in Yi et al. 2010.
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is only 1X per individual (0.5X per chromosome). However, with

only 10 MB, higher depth is needed and good estimates are first

obtained with a depth of 3–5X.

To illustrate the difference between the new method and

methods based directly on genotype calling, we compared with the

case where the most likely genotype is chosen, with and without

filtering of genotypes with low confidence (Figure 1). Clearly,

simple genotype calling leads to an excess of singletons when no

filtering is done. This problem can be partly corrected by using

more conservative SNP calling procedures. But even in such cases,

the SFS estimates tend to be poor from low frequency data. The

effect is very similar to the one described [15,16] in which they

show that no simple cut-off method leads to unbiased estimates of

the population genetic parameter h ( = 4Nm where N is the

population size and m is the mutation rate) when using low or

moderate coverage shotgun sequencing data. The same effect is

observed for estimation of the SFS. Using filters in which only high

confidence genotypes are called leads to new biases because it is

easier to call homozygous than heterozygous individuals. This bias

will affect different allele frequency categories differentially and

lead to biases in the estimate of the SFS. [15,16] argue that

methods for estimating h should instead take the inherent

uncertainty in the data into account. The method developed here

is a conceptual extension of this concept to the SFS.

Inferences for individual sites
The method used for inferences of the SFS for a whole genome

or for a large set of sites, can also be modified to make inferences

for a single site [24]. The estimated SFS can be used as a prior for

the allele frequency, and inferences regarding a particular site can

then proceed using classical Bayesian procedures. The algorithmic

details are provided in the Methods section. This method can be

considered a Empirical Bayes method (e.g., [28]) as a large set of

data points is being used to define a prior that subsequently can be

applied to each data point. Figure 1 shows that, in average, the use

of this procedure provides a distribution of allele frequencies that

accurately reflects the true distribution of allele frequencies.

SNP calling
An algorithm similar to the one used for estimating the SFS can

be used to make inferences for individual sites, and is described in

the Methods section. The method proceeds by first estimating the

SFS. The estimated distribution of allele frequencies, and the total

frequency of SNPs in the sample (1 2G�0 ), then provides priors in a

Bayesian SNP caller similar to the one used in the 1000 Genomes

project [7]. This is the approach outlined for SNP calling in [24].

We compare this type of SNP calling to two other methods: (1)

traditional SNP calling based on observing at least X high quality

reads of the minor allele, and (2) a likelihood ratio test based on

testing the null hypothesis that the minor allele frequency is zero

(Figure 2; Figure S1). The latter method is based on the likelihood

function described in [11,22,23,29].

We see that the Bayesian SNP caller is substantially better than

traditional methods, but does only marginally better than the

likelihood ratio tests (Figure 2; Figure S1). The use of prior

information regarding allele frequencies only provide a marginal

improvement. However, in the analyses of human data, or other

data where large reference data sets are available, optimal SNP

callers will include prior information from the reference data,

possibly using methods related to imputation (e.g.,

[30,31,32,33,34]) as in the 1000 Genomes project [7]. For such

methods, an important initial step is calculation of posterior

probabilities for each SNP. Depending on the specifics of the

implementation of the imputation methods, the methods described

here for estimating sample allele frequencies may also be useful in

the application of some imputation methods.

Genotype calling
The Methods section described a Bayesian method for genotype

calling using the estimated SFS as a prior. In brief, it calculates the

posterior probability of the genotype in each individual conditional

on all data from both the focal individual and the other individuals

in the sample. Information from other individuals can substantially

improve genotype calling. This is illustrated using simulations in

Figure 3 (see also Figure S2). Notice that the genotype calling

accuracy is greatly improved compared to the case of just choosing

the most likely genotype.

Again, in human data, and other data for which large reference

data sets are available, these data should be incorporated for

genotype calling. In fact, imputation based genotype calling will

lead to a substantial increase in accuracy over other methods [7].

Applications to data from 25 exomes
To illustrate the use of these methods on real data, we analyzed

previously published data from 25 Danish exomes [6]. The

resulting frequency spectrum is depicted in Figure 4. As in [6] we

find that nonsynonymous mutations show an excess of rare alleles

compared to synonymous mutations, presumably due to slightly

and weakly deleterious alleles.

The Methods section also describes a method for incorporating

prior information regarding allele frequencies and for incorporat-

ing deviations from Hardy-Weinberg Equilibrium when estima-

tion allele frequencies.

Discussion

We have here developed a method for estimating the SFS that can

be used for population genetic inferences. This method may also be

used to define priors used in SNP calling and genotype calling leading

to improved analyses of next-generation sequencing data.

The methods rely on accurate estimation of genotype

likelihoods. Much research has been devoted to this (e.g.

[10,11]), and there is some hope that reasonably accurate

genotype likelihoods eventually can be calculated for most

sequencing platforms. However, it is worth emphasizing that

inaccurate genotype likelihoods can lead to false inferences when

applied in the present context. In real data, it can often be difficult

to determine if genotype likelihoods have been calculated

correctly. However, the improvements observed over simpler

method when applied to real data, suggests that genotype

likelihoods, as calculated by, for example, the SOAPsnp program

([11]) used here, provides sufficiently accurate genotype likelihoods

to make the application of the new methods worthwhile.

Several of the methods presented here are similar to methods

developed in parallel and recently published by [24] Li (2011). In

particular, [24] provided an EM algorithm for estimating the SFS

under the same model and [25] developed a method applicable to

smaller samples. Our approach differs from these approaches by the

use of a dynamic programming algorithm that makes the likelihood

function accessible to direct fast evaluation and numerical

optimization. Similar dynamic programming algorithm has previ-

ously been used in [8] and [26] for single site inferences. In addition,

we show how to use the resulting estimated SFS for genotype

calling. Our genotype caller differs from previous genotype callers

by explicitly calculating the posterior probability of a genotype

conditional on the data obtained from all individuals in the sample

under a joint prior for the sample allele frequency. [26] presented

closely related genotype callers based on inferences on single sites,
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also using a dynamic programming algorithm allowing calculation

of joint allele frequencies. The SNP calling algorithm we use is

identical to the one in [24]. We also present additional results on

how to incorporate deviations from Hardy-Weinberg equilibrium

when estimating allele frequencies, how to address issues regarding

the folding of the frequency spectrum and how to incorporate

external information regarding allele frequencies. In addition, we

provide some simulation results evaluating the performance of the

SNP callers, Genotype callers and SFS estimators.

A number of different methods have been proposed for

estimating allele frequencies and the SFS from NGS data. In this

paper we discuss the use of joint maximum likelihood estimates

from multiple sites. This was also the approach taken by [24] and

[25]. As illustrated in Figure 1, this approach will recover the true

frequency spectrum when the modeling assumptions are correct.

Methods based on estimating the allele frequency separately in

each site will not generally have this property. [35] provided an

alternative approach. The idea in this approach is to compare the

inferred SFS based on genotype calling to the SFS obtained in

other data that can be assumed not to have the types of biases

introduced in NGS data. The extent of bias can then be quantified

statistically, and used to correct SFS based on genotype calling in a

larger data set. This approach may be preferable when the error

structure is difficult to model, because it does not rely on such

modeling. However, it requires the availability of accurate

genotype calls from a large representative panel.

Supporting Information

Figure S1 ROC curves for different SNP callers. Data for

10 individuals were simulated for different depths and error rates (d

indicates depth and e is the reror rate). The SFS method is the main

method described in the text. The GC method is based on genotype

calling using the genotype with the highest posterior probability.

The LR method is based on a likelihood ratio test of the hypothesis

that the allele frequency is zero. larger panels of individuals.

(DOC)

Figure S2 The error rate of different genotype callers
for different call rates. The SFS-method is the method

described in the main text. The MAF method is based on first

obtaining a maximum likelihood estimate of the allele frequency,

and then use the estimated allele frequency to define priors for

genotype calling. The GC-max method is based on calling

genotypes with highest posterior probability. The GC-ratio

method is based on calling genotypes depending on the ratio of

the likelihood for the most likely to second most likely genotype.

The jagged behavior of some of the curves is a consequence of the

discrete nature of the data, i.e. an individual contains a discrete

number of copies of the minor allele. 10 individuals are simulated

for 50,000 variable sites with a distribution of allele frequencies (p),

proportional to 1/p and with a varying error rate.

(DOC)

Author Contributions

Conceived and designed the experiments: RN TK AA YL JW. Performed

the experiments: RN TK AA. Analyzed the data: RN TK AA. Contributed

reagents/materials/analysis tools: YL WJ. Wrote the paper: RN.

References

1. Schuster SC (2008) Next-generation sequencing transforms today’s biology.

Nature Methods 5: 16–18.

2. Li RQ, Fan W, Tian G, Zhu HM, He L, et al. (2010) The sequence and de novo

assembly of the giant panda genome. Nature 463: 311–317.

3. Tucker T, Marra M, Friedman JM (2009) Massively Parallel Sequencing: The

Next Big Thing in Genetic Medicine. American Journal of Human Genetics 85:

142–154.

4. Voelkerding KV, Dames SA, Durtschi JD (2009) Next-Generation Sequencing:

From Basic Research to Diagnostics. Clinical Chemistry 55: 641–658.

5. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for

transcriptomics. Nature Reviews Genetics 10: 57–63.

6. Li YR, Vinckenbosch N, Tian G, Huerta-Sanchez E, Jiang T, et al. (2010)

Resequencing of 200 human exomes identifies an excess of low-frequency non-

synonymous coding variants. Nature Genetics 42: 969–U982.

7. Altshuler DL, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, et al.

(2010) A map of human genome variation from population-scale sequencing.

Nature 467: 1061–1073.

8. Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, et al. (2010) Sequencing of

50 Human Exomes Reveals Adaptation to High Altitude. Science 329: 75–78.

9. Gibbons JG, Janson EM, Hittinger CT, Johnston M, Abbot P, et al. (2009)

Benchmarking Next-Generation Transcriptome Sequencing for Functional and

Evolutionary Genomics. Molecular Biology and Evolution 26: 2731–2744.

10. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and

calling variants using mapping quality scores. Genome Research 18: 1851–1858.

11. Li RQ, Li YR, Fang XD, Yang HM, Wang J, et al. (2009) SNP detection for

massively parallel whole-genome resequencing. Genome Research 19: 1124–

1132.

12. Harismendy O, Ng PC, Strausberg RL, Wang XY, Stockwell TB, et al. (2009)

Evaluation of next generation sequencing platforms for population targeted

sequencing studies. Genome Biology 10.

13. Hedges D, Burges D, Powell E, Almonte C, Huang J, et al. (2009) Exome

Sequencing of a Multigenerational Human Pedigree. Plos One 4.

14. Hellmann I, Mang Y, Gu Z, Li P, de la Vega FM, et al. (2008) Population

genetic analysis of shotgun assemblies of genomic sequences from multiple

individuals. Genome Res 18: 1020–1029.

15. Johnson PLF, Slatkin M (2006) Inference of population genetic parameters in

metagenomics: A clean look at messy data. Genome Research 16: 1320–1327.

16. Johnson PLF, Slatkin M (2008) Accounting for bias from sequencing error in

population genetic estimates. Molecular Biology and Evolution 25: 199–206.

17. Lynch M (2008) Estimation of Nucleotide Diversity, Disequilibrium Coefficients,

and Mutation Rates from High-Coverage Genome-Sequencing Projects.

Molecular Biology and Evolution 25: 2409–2419.

18. Watterson GA (1975) On the number of segregation sites. Theor Pop Biol 7:

256–276.

19. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by

DNA polymorphism. Genetics 123: 585–595.

20. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD (2009)

Inferring the Joint Demographic History of Multiple Populations from

Multidimensional SNP Frequency Data. Plos Genetics 5.

21. Weir BS, Cockerham CC (1984) Estimating F-Statistics for the Analysis of

Population-Structure. Evolution 38: 1358–1370.

22. Kim SY, Li YR, Guo YR, Li RQ, Holmkvist J, et al. (2010) Design of

Association Studies with Pooled or Un-pooled Next-Generation Sequencing

Data. Genetic Epidemiology 34: 479–491.

23. Kim SY, Lohmueller KE, Albrechtsen A, Li YR, Korneliussen T, et al. (2011)

Estimation of allele frequency and association mapping using next-generation

sequencing data. Bmc Bioinformatics 12.

24. Li H (2011) A statistical framework for SNP calling, mutation discovery,

association mapping and population genetical parameter estimation from

sequencing data. Bioinformatics 27: 2987–2993.

25. Keightley PD, Halligan DL (2011) Inference of Site Frequency Spectra From

High-Throughput Sequence Data: Quantification of Selection on Nonsynon-

ymous and Synonymous Sites in Humans. Genetics 188: 931–U295.

26. Le SQ, Durbin R (2011) SNP detection and genotyping from low-coverage

sequencing data on multiple diploid samples. Genome Research 21: 952–

960.

27. Press WH (2000) Numerical recipes in C; the art of scientific computing. 2nd ed.

Cambridge; New York: Cambridge University Press.

28. Casella G (1985) An Introduction to Empirical Bayes Data-Analysis. American

Statistician 39: 83–87.

29. Martin ER, Kinnamon DD, Schmidt MA, Powell EH, Zuchner S, et al. (2010)

SeqEM: an adaptive genotype-calling approach for next-generation sequencing

studies. Bioinformatics 26: 2803–2810.

30. Dai JY, Ruczinski I, LeBlanc M, Kooperberg C (2006) Imputation methods to

improve inference in SNP association studies. Genetic Epidemiology 30: 690–

702.

31. Minichiello MJ, Durbin R (2006) Mapping trait loci by use of inferred ancestral

recombination graphs. American Journal of Human Genetics 79: 910–922.

Allele Frequency Estimation from NGS Data

PLOS ONE | www.plosone.org 10 July 2012 | Volume 7 | Issue 7 | e37558



32. Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing

and missing-data inference for whole-genome association studies by use of
localized haplotype clustering. American Journal of Human Genetics 81:

1084–1097.

33. Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint
method for genome-wide association studies by imputation of genotypes. Nature

Genetics 39: 906–913.

34. Howie BN, Donnelly P, Marchini J (2009) A Flexible and Accurate Genotype

Imputation Method for the Next Generation of Genome-Wide Association
Studies. Plos Genetics 5.

35. Gravel S, Henn BM, Gutenkunst RN, Indap AR, Marth GT, et al. (2011)

Demographic history and rare allele sharing among human populations.
Proceedings of the National Academy of Sciences of the United States of

America 108: 11983–11988.

Allele Frequency Estimation from NGS Data

PLOS ONE | www.plosone.org 11 July 2012 | Volume 7 | Issue 7 | e37558




