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A FLEXIBLE PARAMETERIZATION FOR BASELINE MEAN 
DEGREE IN MULTIPLE-NETWORK ERGMS

Carter T. Butts and
Departments of Sociology, Statistics, and EECS, and Institute for Mathematical Behavioral 
Sciences, University of California, Irvine, California, USA

Zack W. Almquist
Department of Sociology, School of Statistics, and Minnesota Population Center, University of 
Minnesota, Minneapolis, Minnesota, USA

Abstract

The conventional exponential family random graph model (ERGM) parameterization leads to a 

baseline density that is constant in graph order (i.e., number of nodes); this is potentially 

problematic when modeling multiple networks of varying order. Prior work has suggested a 

simple alternative that results in constant expected mean degree. Here, we extend this approach by 

suggesting another alternative parameterization that allows for flexible modeling of scenarios in 

which baseline expected degree scales as an arbitrary power of order. This parameterization is 

easily implemented by the inclusion of an edge count/log order statistic along with the traditional 

edge count statistic in the model specification.
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Exponential family random graph models (ERGMs) are widely used to describe 

distributions on graphs, particularly social networks (Wasserman & Robins, 2005; Robins & 

Morris, 2007). While most work to date has focused on graphs of constant order (i.e., 

number of vertices), there is growing interest in the modeling of graph sets whose members 

vary in order, either dynamically (Almquist & Butts, 2014) or cross-sectionally (Lubbers & 

Snijders, 2007; Goodreau, Kitts, & Morris, 2009). While specifications in such multiple 

network cases vary, they have in common the use of an exponential family (ERGM) form 

for the conditional probability of a given graph in the set (Yi ∈ (Y1,…, Yk)); i.e.,
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where Yi is a random graph on support i (often, the set of all graphs or digraphs of order 

Ni), Xi is a covariate set, Ni is the order of Yi, θ ∈ ℝp is a parameter vector, and t : i, Xi, Ni 

→ ℝp is a vector of sufficient statistics. Model parameterization focuses on the elements of 

the linear predictor, θTt(Y, X, N); t is generally chosen on substantive grounds (see, e.g., 

Robins & Pattison, 2005) and θ is inferred from data, although constraints may be placed on 

θ (resulting in curved families, e.g., Hunter & Handcock, 2006).

In typical ERGM applications, it is common to include a term whose statistic counts the 

number of edges (here denoted by M); we may thus decompose the linear predictor as

where ϕ is the parameter associated with the edge count, and ψ and s constitute the 

remainder of θ and t (respectively). Our focus is here on this first term, which sets the base 

tie probability within the network. Specifically, holding out all other effects (i.e., setting ψ = 

0), the expected density of Yi in the above parameterization is logit−1 ϕ, and hence constant 

in Ni.

Constant density is implausible in many settings, particularly as Ni becomes large (Mayhew 

& Levinger, 1976). An alternative parameterization was proposed by Butts (2011), which 

instead results in a constant expected degree:

(1)

with δ being the expected degree. (Note that this is obtained by simply rewriting the 

expected density in terms of the expected degree and applying the logit transform.) This 

parameterization is an exact version of an approximate constant mean degree 

parameterization proposed earlier by Krivitsky, Handcock, and Morris (2011), which arises 

as the sparse-graph limit of ϕδ. Specifically,

with ϕK being the Krivitsky parameterization. ϕK closely approximates ϕδ in most practical 

settings (see below) and is of considerable utility due to ease of implementation: simply 

adding a −log Ni offset to the edge term in the fitted ERGM yields the correct scaling, with 

the remaining estimated coefficient corresponding approximately to logδ (i.e., the log 

expected degree).

The above parameterizations provide alternatives for the constant density and constant mean 

degree cases, respectively, but leave open the problem of specifying baselines that vary as a 

more general function of Ni. As we show, this can easily be done for the particular case in 

which expected degree scales as a power law in Ni. We begin by taking the expected degree 

for a given N to be equal to a degree constant multiplied by a fixed power of N; i.e., 

. This functional form has been suggested on empirical grounds, for example, by 
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Leskovec, Kleinberg, and Faloutsos (2007), who refer to it as a “densification power law”; it 

may also be regarded as a convenient approximation to the broader class of nonlinearly 

varying baseline degree functions. Substituting δN for the expected degree in Eq. (1) yields

(2)

(3)

This limiting form closely resembles the Krivitsky parameterization, with the important 

exception that −log Ni is no longer an offset for the edge term. Instead, our ERGM form has 

two terms: one corresponding to (log δ) M(Yi), and another corresponding to (γ − l) (log Ni) 

M(Yi) (i.e., an interaction between the log number of vertices and the number of edges). 

Both terms are identifiable so long as multiple graphs are observed with varying N (and the 

graphs are neither null nor complete).

Note that the above parameterization recovers both constant density (i.e., ) and constant 

mean degree (i.e., ) as special cases. In the former case, ϕδN approaches log δ as γ 

approaches 1, with log δ in turn approaching ϕ as δ/Ni approaches 0 (since log x → logit x as 

x → 0). In the latter case, it is immediate from the definitions of ϕδN and ϕK that the ϕδN → 

ϕK as γ → 0. More generally, 0 ≤ γ < 1 describes the regime in which mean degree is 

constant or sublinearly increasing in N, the most plausible range for most social networks. γ 

> 1 implies a net density increase (supralinearly increasing mean degree), which is unlikely 

to be sustainable over a large size range; by turns, γ < 0 implies mean degree that declines as 

N grows (likewise dubious in most settings). With the proviso that we remain in the sparse 

regime (i.e., N much larger than mean degree), the parameterization of Eq. (3) covers a wide 

range of cases.

Since the above results are given for the sparse limit, it is useful to have some sense of the 

approximation error involved for less sparse cases. Comparing the approximate 

parameterization of Eq. (3) with its exact counterpart Eq. (2), we see that the absolute error 

in the density parameter reduces to log . Figure 1 shows the 

absolute error isolines for various choices of order and expected density; as the figure 

illustrates, the isolines have a simple form, with the absolute error being ≤ ε so long as the 

maximum expected baseline degree is ≤ Ni(1 − e−ε) − 1. The approximation error is quite 

small for even moderately large graphs, so long as the expected baseline degree is less than 

10 or so. For networks with hundreds or thousands of nodes, the approximation error will be 

negligible relative to the size of the true parameter, even if the baseline mean degree is quite 

large in absolute terms.

To use the flexible baseline parameterization in practice, one employs the following simple 

procedure:

1. Add two statistics to the linear predictor, one for M(Yi) and one for (log Ni) M(Yi).
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2. Fit the model using standard ERGM/TERGM methods, yielding respective 

parameter estimates  and  for the edge count and size interaction statistics.

3.
Find  and .

The estimated (baseline) expected degree scaling is then δ̂Nγ̂
.

Note that step 1 is even easier than it appears: M(Yi) is just the standard edge count statistic, 

and adding (log Ni) M(Yi) simply requires adding an edge covariate for each (j, k) edge 

variable in each Yi equal to log Ni. This can be performed using standard software tools 

(e.g., Hunter, Handcock, Butts, Goodreau, & Morris, 2008; Wang, Robins, & Pattison, 

2009) without recourse to custom procedures.

The flexible parameterization usefully extends the family of baselines that can be used with 

multiple-network ERGMs. Obviously, the standard (fixed ϕ) parameterization is appropriate 

when one is willing to assume constant baseline density. When one is willing to assume 

constant baseline mean degree and is in the large/sparse regime, the Krivitsky et al. (2011) 

parameterization is a simple and appropriate choice; the curved parameterization of Eq. (1) 

provides an exact alternative for small and/or dense graphs. When it is unknown whether 

baseline mean degree scales nonlinearly with N, the flexible parameterization described here 

allows a straightforward method of modeling this dependence (while still capturing constant 

density and constant mean degree as special cases). It is hoped that the availability of this 

and related techniques will serve to encourage further work on the modeling of multiple 

networks within the ERGM framework.

Acknowledgments

FUNDING

This work is based on research supported by National Science Foundation award #IIS-1251267 and Army Research 
Office award #W911NF-14-1-0552.

REFERENCES

Almquist ZW, Butts CT. Logistic network regression for scalable analysis of networks with joint edge/
vertex dynamics. Sociological Methodology. 2014; 44:273–321. [PubMed: 26120218] 

Butts CT. Bernoulli graph bounds for general random graphs. Sociological Methodology. 2011; 
41:299–345.

Goodreau SM, Kitts JA, Morris M. Birds of a feather, or friend of a friend?: Using exponential random 
graph models to investigate adolescent social networks. Demography. 2009; 46:103–125. [PubMed: 
19348111] 

Hunter DR, Handcock MS. Inference in curved exponential family models for networks. Journal of 
Computational and Graphical Statistics. 2006; 15:565–583.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M. ergm: A package to fit, simulate and 
diagnose exponential-family models for networks. Journal of Statistical Software. 2008; 24(3):1–29. 
[PubMed: 18612375] 

Krivitsky PN, Handcock MS, Morris M. Adjusting for network size and composition effects in 
exponential-family random graph models. Statistical Methodology. 2011; 8:319–339. [PubMed: 
21691424] 

Butts and Almquist Page 4

J Math Sociol. Author manuscript; available in PMC 2015 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Leskovec J, Kleinberg J, Faloutsos C. Graph evolution: Densification and shrinking diameters. ACM 
Transactions on Knowledge Discovery from Data. 2007; 1(1)

Lubbers MJ, Snijders TAB. A comparison of various approaches to the exponential random graph 
model: a reanalysis of 102 student networks in school classes. Social Networks. 2007; 29:489–507.

Mayhew BH, Levinger RL. Size and density of interaction in human aggregates. American Journal of 
Sociology. 1976; 82:86–110.

Robins GL, Morris M. Advances in exponential random graph (p*) models. Social Networks. 2007; 
29:169–172.

Robins, GL.; Pattison, PE. Interdependencies and social processes: Dependence graphs and 
generalized dependence structures. In: Carrington, PJ.; Scott, J.; Wasserman, S., editors. Models 
and methods in social network analysis. Cambridge, UK: Cambridge University Press; 2005. p. 
192-214.

Wang P, Robins G, Pattison P. PNet: Program for the simulation and estimation of exponential random 
graph (p*) models. 2009 [Electronic data file]. Retrieved from http://sna.unimelb.edu.au/PNet. 

Wasserman, S.; Robins, GL. An introduction to random graphs, dependence graphs, and p. In: 
Carrington, PJ.; Scott, J.; Wasserman, S., editors. Models and methods in social network analysis. 
Cambridge, UK: Cambridge University Press; 2005. p. 148-161.

Butts and Almquist Page 5

J Math Sociol. Author manuscript; available in PMC 2015 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://sna.unimelb.edu.au/PNet


FIGURE 1. 
Approximation error for the density parameter in the log N parameterization, as a function of 

order (Ni) and expected baseline degree  (simple graph case). Dotted line indicates 

maximum possible degree; contour lines show absolute error versus exact parameterization.
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