
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Zombie Instability in Rotating, Stably-Stratified Shear Flows and in Protoplanetary Disks

Permalink
https://escholarship.org/uc/item/8cg625m9

Author
Pei, Suyang

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8cg625m9
https://escholarship.org
http://www.cdlib.org/


Zombie Instability in Rotating, Stably-Stratified Shear Flows and in
Protoplanetary Disks

by

Suyang Pei

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Philip S. Marcus, Chair
Professor Tarek I. Zohdi

Professor Mark T. Stacey

Spring 2014



Zombie Instability in Rotating, Stably-Stratified Shear Flows and in
Protoplanetary Disks

Copyright 2014
by

Suyang Pei



1

Abstract

Zombie Instability in Rotating, Stably-Stratified Shear Flows and in Protoplanetary Disks

by

Suyang Pei

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Philip S. Marcus, Chair

One of the most important problems in astrophysics is how angular momentum is trans-
ported in protoplanetary disks (PPDs - disks containing gas and dust orbit around newly-
forming protostars). Collisional viscosity is believed to be insufficient for angular momentum
transport. Therefore, turbulence enhanced transport are proposed. In addition, long-lived
coherent vortices are also speculated to exist in PPDs, which could play an important role in
completing star formation and building planets. Without instabilities, turbulence and vor-
tices cannot form. In weak magnetized PPDs, magneto-rotational instability (MRI) operates
to generate turbulence. However, regions known as “dead zone”, are cool and unionized to
have MRI. This has led to intense theoretical and computational search for pure hydrody-
namic instabilities.

A new hydrodynamic, finite amplitude instability has been discovered in linearly stable,
rotating, stably-stratified, shear flows. The instability starts from a new family of critical
layers - baroclinic critical layers. These critical layers, which are linear, neutrally stable
eigenmodes in stratified shear flows, have singularity in their vertical velocities. Under the
effect of rotation, these critical layers produce vortex layers. Vortex layers intensify by
drawing energy from the background shear flows, and subsequently roll up to create new
vortices, which in turn excite new critical layers. The process self-replicates until the whole
domain is filled with large-volume, large amplitude vortices. Because this instability can
occur in the dead zones of protoplanetary disks we refer it as zombie instability and these new
class of vortices that self-replicate as zombie vortices. High resolution numerical simulations
show this instability can be triggered by a variety of weak perturbations including small
volume compact single vortex, a pair of vortices and noise. The threshold of the instability
is determined by the Rossby number or vorticity of the initial perturbations. Energy analysis
based on the zonal non-zonal decomposition of the energy shows energy that supplies the
instability is extracted from the zonal flows. Vortex is responsible for the energy extraction
process. Zombie instability saturates when all the space are taken by zombie vortices. The
separation distance between zombie vortices is approximately the distance from critical layers
with lowest stream-wise wave number to the perturbations. The flows at late time are
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determined only by the background parameters not their initial perturbations. Zombie
instability is also discussed in a broader picture to show the dead zones of PPDs are not
dead. Our numerical simulation suggest although zombie instability is a finite-amplitude
instability, due to the large Reynolds number of the disk flows, it is effectively a linear
instability. How zombie instability might lead to sufficient angular momentum transport is
also discussed. Finally, we speculate there might not be a laminar Keplerian disks at all. The
disk flows are essentially turbulent from the collapsing of gas cloud, with one possibilities
being turbulent flows filled with zombie vortices. A newly developed semi-analytic method
for flows with strong background shear is introduced to be an alternative to widely used
shearing sheet method in the astrophysical community. The semi-analytic method is used
for simulating internal inertial-gravity waves in rotating, stratified flows with and without
shear. The method can also be generalized to systems with linear forcing terms.
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cubic box with size L = 2.3562. a) Non-zonal kinetic energy KEN evolution in
time. b) t = 1340.41, x − z plane at y=0. Anticyclonic ωz is blue and cyclonic
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4.1 This is Figure 1 from BHS96, which shows the temporal evolution of the fluc-
tuation kinetic energy per unit mass, defined in § 4.3, where time is in units
of “years” (2π/Ω0) and the kinetic energy per unit mass is in units of (LxΩ0)2.
The time evolutions are for different values of q as defined by eq. (4.1). These
are fully-compressible simulations with g = 0, N = 0, γ = 5/3. The size of
the computational domain is Lx = Ly = Lz. The numerical code was ZEUS
with a spatial grid of 643 points. The initial fluctuation kinetic energy per unit
mass is KE0 = 5.9× 10−3, corresponding to an initial fluctuation rms velocity of
∼ 0.1(Ω0Lx). The initial spectrum of the noise was homogeneous, isotropic, and
Gaussian in wavenumber k. The initial unperturbed equilibrium flow had uniform
pressure, density, and temperature. The curve labeled with “shr” in Figure 4.1
corresponds to the case with q = 3/2 and with the Coriolis and tidal acceleration
terms dropped from eq. (4.2) The growth and decay of the fluctuation kinetic
energy as a function of q supports Rayleigh’s theorem that the flow is stable for
q < 2 for f lows with constant density. . . . . . . . . . . . . . . . . . . . . . . . 54
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4.2 Time evolution of the fluctuation kinetic energy per unit mass with different q
as in Figure 4.1 and with the same parameter values and units as in Figure 4.1,
but using the anelastic equations, which are identical to the Boussinesq equations
when g ≡ 0, as is the case here. Unlike the flows in Figure 4.1, the flows here
were initialized with a smaller energy fluctuation (see text for details) of 3×10−4

(which is the value of the energy that all of the curves in Figure 4.1 plummet
to almost immediately). The initial 3D spectrum of the energy fluctuations used
in this figure was homogeneous and isotropic, but unlike the initialization in
Figure 4.1, was Kolmogorov, rather than Gaussian (see § 4 for details). The
Boussinesq/anelastic simulations used g = 0, N = 0. The spatial resolution of
the spectral calculations used 1283 Fourier modes. The stability of the anelastic
and computed flows as a function of q are the same as shown in Figure 4.1. . . 55

4.3 Time evolution of the fluctuation kinetic energy per unit mass (which in this
case is the non-Keplerian kinetic energy) for anelastic and Boussinesq flows for
q ≡ 3//2. Blue solid line - anelastic calculation with vertical density stratification.
Black solid line – Boussinesq with vertical density stratification. Black dash line
- Boussinesq/anelastic flow with g = 0 and N = 0, which is the same calculation
as shown in Figure 4.2 labeled with “1.5”, but integrated for a much longer time.
The figure shows that with vertical density stratification, flows with q = 3/2 are
unstable. In the two density stratified simulations, we set H = Lx = Ly = Lz
and N0/Ω0 = 2 or β = 10. Note that the Brunt-Väisälä frequencies, gravity
are spatially uniform in the stratified flow. The spatial resolution is 2563 Fourier
modes. To guide the eye, and to remove fast oscillations in the energy that
are due to the shearing box boundary conditions, the due energies in this figure
and in Figure are moving-averages-in-time, with a window size of 10 yrs. The
anelastic simulation has an initial rms Mach number Ma0 = 4.3 × 10−3 based
on the isothermal sound speed. The initial anelastic flows are isothermal, and
all three flows were initially perturbed with Kolmogorov noise as in Figure 4.2
with an initial fluctuation kinetic energy of 9.2× 10−5 (see Figure 4.1 for units),
which is 1/64 of the initial fluctuation kinetic energy used in Figure 4.1. The
time evolution of kinetic energy can be divided into 3 parts. The first part is
from t = 0 ∼ 50 yr, in which the flow adjusts from the initial condition with
most of the initial vorticity destroyed by hyper-viscosity. This causes the initial
fast decrease in the fluctuation kinetic energy. After the time that the fluctuation
kinetic energy reaches its minimum to t =∼ 250 yr, the fluctuation kinetic energy
increases approximately exponentially. During this time, the critical layers are
strongly excited (see § 5), turn into vortex layers, and roll-up into zombie vortices.
In third part, from t = 250 yr onward, the fluctuation energy growth is slower as
the flow reaches a statistically steady equilibrium. The fluctuation kinetic energy
asymptotes at late times to a value of ∼ 3 × 10−4. . . . . . . . . . . . . . . . 57
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4.4 As in Figure 4.3 with β = 10, but with both of the plotted flows having an initial
fluctuating energy per unit mass of 1.9× 10−4, which is approximately twice that
of the blue curve in Figure 4.3, and both flows have β = 10. The dashed curve
is computed with the anelastic equations, and the solid curve computed with
the fully compressible equations using ATHENA. The reason why the anelastic
kinetic energy is relatively small is due to the anelastic code’s vertical boundary
damping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 figure 5 caption see next page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Same as Figure 5 but in the x-y plane at z = 0. Panel a looks like Figure 5a

because the initial noise is isotropic and homogeneous. . . . . . . . . . . . . . . 65
4.7 a) As in Figure 4.5d , b) as in Figure 4.6d , but for the flow computed with

the fully compressible equations using ATHENA in Figure 4.3 with an initial
fluctuation kinetic energy per unit mass of 1.9×10−4, β = 10, or equivalently, with
N0/Ω0 = 2. No damping at the vertical boundaries is used in this simulation. The
flow is shown at t = 190 yrs. Although the zombie instability is well underway, the
turbulence is not fully developed. The pattern is still evolving and the fluctuation
kinetic energy is still growing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Time evolution of the rms Mach number (based on the isothermal sound speed)
Marms(t) (panel a) and Rorms(t) (panel b) for the anelastic flow in Figure 4.5 and
Figure 4.6 with an initial fluctuation kinetic energy per unit mass of 9 × 10−5,
N0/Ω0 = 1 or β = 2.5. The initial rms velocity is vrms = 0.0136(Ω0Lx), which is
1/8th of the value of the flows in Figure 4.1. The initial rms Mach numbers and
Rossby numbers are 8.6 × 10−3 and Rorms = 0.4267, respectively. Both values
rapidly plummet due to the dissipation, but grow after the zombie instability
sets in and eventually plateau. All of our calculations with zombie turbulence
have late-time values of Rorms(t) between 0.2 and 0.3 At late times, the value of
Marms(t) is slaved to the value of Rorms(t) – § 3.3 for details. . . . . . . . . . . 67

4.9 Time evolution of Marms and Rorms as plotted in Figure 4.8, but for the anelastic
flow in Figure 4.3 so this flow has the same initial fluctuation kinetic energy per
unit mass of 9 × 10−5 as the flow in Figure 4.9 but β = 10 rather than 2.5 (or
N0/Ω0 = 2, rather than unity). The initial rms Mach and Rossby numbers are
4.3× 10−3 and 0.4267, respectively. The late-time Rorms is slightly smaller than
that in Figure 4.8. The flow at t = 100 yrs is not yet in equilibrium as indicated
by the fact that Marms(t) is still increasing at that time. However, the fact that
Rorms(t) has reached a plateau at that time shows that the inverse cascade of
energy is still active. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.10 As in Figure 4.9 for an anelastic flow with same values of β = 10 (and N0/Ω0 = 2)
as in Figure 4.9, but with an initial fluctuation kinetic energy per unit mass of
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ωz of the anticyclonic (blue) vortices and cyclonic (red) vortex layers in the x-y
plane. The initial perturbing vortex at the origin is above the plane shown here
(z/∆ = −0.4). The first generation zombie vortices form at |x|/∆ ≤ 1, and
sweep outward in x. The Rossby number Ro of these vortices is ∼ -0.2. (The
color is reddest at ωz/Ω0 = 0.4, bluest at ωz/Ω0 = −0.4, and green at ωz = 0).
Ω0/N0 = 0.5 and q = 3/2. The x-y domain is |x|/∆ ≤ 4.7124; |y|/∆ ≤ 2.3562,
and is larger than shown. a) t = 64/N0. b) t = 256/N0. c) t = 576/N0. d)
t = 2240/N0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.17 Zombie vortices sweep outward from the perturbing vortex at the origin in the
x–z plane (at y = 0). Anticyclonic ωz is black (darkest is ωz/Ω0 = −0.4) and
cyclonic is white (lightest is ωz/Ω0 = 0.4). This is the same flow as in Figure 4.16.
The domain has |z|/∆ ≤ 4.7124 and is larger than shown. a) t = 128/N0. Critical
layers and young zombie vortices with s = 0 and |m| = 1, 2, and 3 are visible.
Diagonal lines are internal inertia-gravity waves with shear, not critical layers.
b) t = 480/N0. 1st-generation vortices near |x|/∆ = 1 and 1/2 have rolled-up
from critical layers with s = 0 and |m| = 1 and 2, respectively. c) t = 1632/N0.
2nd-generation vortices have spawned from the 1st generation vortices. d) t =
3072/N0. 1st, 2nd and 3rd generation vortices. . . . . . . . . . . . . . . . . . . . 84



xii

Acknowledgments

First and foremost, I would like to thank Philip Marcus, my Ph.D. advisor. Phil is very
sharp in research and kind in life. His passion, energy and devotion always inspire me a
lot. I learned a lot from him including Fluid Mechanics, Computation, Maths, Astrophysics
and more importantly how to approach a complex problem. I also learned teaching and
presentation skill from him. It is honor to have him as my Ph.D. advisor. Besides, I am
truly appreciate his understanding, concerns and support for my family issue. I had a
wonderful time at Berkeley in the Computational Fluid Dynamics (CFD) Lab working with
Phil.

Much appreciation and special thanks go to Chung-Hsiang Jiang. Being a senior lab
mate, I learned lots of computing skills from him. He always provides insightful comments
and suggestions. Being a good friend, I enjoy exchanging opinions with him on different
topics. He is very thoughtful and helps me a lot, especially during the time when I am not
in Berkeley. Working with Chung-Hsiang made my Ph.D. more fruitful and joyful.

One of the motivations of the current research is from an open problem raised by Joe
Barranco, who is a previous graduate student in our lab. I would like to thank him for
his kind help for guiding me at the very beginning of my research and his suggestions and
comments later on.

Pedram and I came to Phil’s group at the same time. During the first years, we had
several courses and learned spectral methods together as well as prepared our first DFD
talk. He is always eager to help and share his opinions. I enjoy the time we worked together.

I would like to thank Caleb Levy for helping me run many simulations on NASA cluster
before my account was reactivated. He was very patient and really help me a lot on my
simulations.

I would like to thank friends that work together, Daniel Lecoanet, Meng Wang, Sa Huck,
Mani Mahdinia, Aaron Wienkers ...

I would like to thank my thesis committee member: Prof. Tarek Zohdi and Prof. Mark
Stacey for their time and support.

Finally, thanks to my parents, my parents in law, my lovely daughter and my wife for
their emotional support.



1

Chapter 1

Introdution

One of the most important problems in astrophysics is how mass and angular momentum
are transported in the protoplanetary disks (PPDs), which are disks containing gas and dust
orbit around newly-forming protostars. Because PPDs are differentially rotating, viscous
torquing could transport angular momentum. However, viscosity from molecular collisions
appears to be inefficient. To model the structure and dynamics of the disks, Shakura and
Sunyaev [Shakura and Sunyaev 1973] proposed a disk model including turbulence enhanced
transport, and so introduced a turbulent or “eddy” viscosity, but left the source of the
turbulence to be an open question.

3D coherent vortices are also speculated to play an important role in the late stage of star
formations and earliest stages of plant formations in PPDs. In cool, neutral protoplanetary
disks, vortices might transport angular momentum radially outward such that mass can
continue accretion on to the protostars. Besides, anticyclonic vortices can accumulate dust
and grains in their centers, which help form kilometer-size planetesimals, the building bloks
to form planets [Barranco and Marcus 2005; 2000]. It has been observed atmosphere of the
gas giants are filled with large long-lived vortices, most famous example being the Great Red
Spot in Jovian atmosphere. The three important characteristics of the Jovian atmosphere
are rotation, shear and stratification, which all exist in PPDs. Therefore, it is proposed
PPDs also contain long-lived vortices [Adams and Watkins 1995; Barge and Sommeria 1995;
Barranco and Marcus 2005; Tanga et al. 1996].

However, without instabilities, turbulence and long-lived coherent vortices cannot form.
This has led to intense theoretical and computational studies. The Keplerian flows of the
disks are linearly stable to infinitely small perturbations with respect to Rayleigh’s crite-
rion for centrifugal stability; i.e., the absolute value of angular momentum increases with
increasing radius [Rayleigh, Lord 1916]. In weakly magnetized accretion disks, the magneto-
rotational instability (MRI) [Balbus and Hawley 1991], first proposed by Velikhov [Velikhov
1959] and Chandrasekhar [Chandrasekhar 1960], is believed to be the source of turbulence
generation and angular momentum transport in the non self-gravitating disks. The onset of
MRI requires an negative radial gradient of angular velocity, which states Keplerian flows is
always linearly unstable to MRI. The growth rate of its most unstable mode is order of the
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orbital period. MRI turbulence could provide angular momentum transfer rate close to the
theoretically requirement [King et al. 2007]. However, there exists relative cool and nearly
neutral disk regions around protostars which lack sufficient ionization for the gas to couple
to the magnetic fields. These regions are sandwiched by thin surface layers above and below,
which have been ionized by cosmic rays or stellar radiation [Gammie 1996]. They are stable
to MRI and therefore known as “dead zone”. It is now generally accepted the existence of
the dead zone theoretically [Bai and Goodman 2009; Turner, Carballido, et al. 2010; Turner
and Drake 2009], and there has been increasingly interests in the dynamics within the dead
zone [Armitage 2011]. However, Angular momentum must be transported through dead zone
in order for protostars to complete their formation. There has been substantial efforts to
search for purely hydrodynamic instabilities.

Because Keplerian flows have very high Reynolds number (Re ∼ 1013), it has been
widely hoped the Keplerian flows are unstable to finite-amplitude perturbations [Dubrulle
1993; Dubrulle et al. 2005a; Hersant et al. 2005; D. Richard and Zahn 1999] by analogy with
other unstratified linearly-stable shear flows, such as channel flow and pipe flow [Chagelishvili
et al. 2003]. However, no self-sustained turbulences have been reported for Keplerian flows
by numerical simulations [Balbus, Hawley, and Stone 1996; Hawley et al. 1999; Johnson and
Gammie 2005b; Shen et al. 2006]. This could be due to the lack of resolution in simulations
[Lesur and Longaretti 2005]. Experimental studies of vertically unstratified Taylor-Couette
flows produce controversial measurements of angular momentum transport [Ji et al. 2006;
Paoletti and Lathrop 2011; van Gils et al. 2011] and their results are still in debate [Balbus
2011; Paoletti, van Gils, et al. 2012; Schartman et al. 2012]. The disagreement in their results
is mainly due to the presence of Ekman pumping from the top and bottom lid. To date,
people tend to believe the unstratified Keplerian flows are also nonlinearly stable although
there are no definite proofs of that.

The disks can be linearly unstable globally due to the Rossby wave instability (RWI) and
produce large coherent vortices called Rossby vortices. RWI was first studied by Lovelace
group in 2D disks both analytically and numerically [Li, Colgate, et al. 2001; Li, Finn,
et al. 2000; Lovelace et al. 1999]. It can be seen as an equivalent of the Kelvin-Helmholtz
instability in the context of a differentially rotating disk. Vortices form at the inflexion point
of the flow, with Rossby waves and spiral density waves propagating outward. The criterion
for this instability is an extremum in the generalized potential vorticity (vortensity) of the
equilibrium flow. Certain quantities that has extremum such as surface density, pressure and
density can trigger the instability. 3D hydrodynamic and resistive magnetohydrodynamical
simulations of RWI are performed at the boundary of dead zone to study the structure and
evolution of the Rossby vortices formed. [Lyra and Mac Low 2012; Meheut 2013; Meheut
et al. 2010; 2008; Meheut, Meliani, et al. 2012; Meheut, Yu, et al. 2012; S. Richard and
Barge 2013; S. Richard, Barge, and Le Dizès 2013]. Vortices formed in 3D have strong
vertical convective rolls and do not migrate. It is expected that a density bump can be
naturally generated at the boundaries of dead zone due to the different mass accretion rate
on each side of its boundary, which triggers the RWI to form vortices on both side of dead
zone boundary [Varnière and Tagger 2006]. To sustain vortices, the initial bump needs to
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be continuously regenerated, which is likely unphysical.
Another instability that exists in unmagnetized non-barotropic disks creating large co-

herent vortices is baroclinic instability. It was first observed by [Klahr and Bodenheimer
2003] in the global simulations of disks with an outward decreasing entropy profile. Further
investigations by [Klahr 2004; Petersen, Julien, et al. 2007; Petersen, Stewart, et al. 2007]
using 2D global simulations and [Lesur and Papaloizou 2010] using both 2D and 3D local
simulations confirmed it is a nonlinear (subcritical) instability supported by the baroclinic
generation of vorticity that could occurred in disks with a linearly stable entropy gradi-
ent. The instability is also known as the subcritical baroclinic instability (SBI). It could
be triggered by finite amplitude temperature or vorticity perturbations. However, SBI is
very subtle. First, for it to operate, the thermal state of the background disk must be
Schwarzschild unstable (convective instability criteria without shear), but Solberg-Höıland
stable (convective instability criteria with shear) to avoid linear instability to axisymmet-
ric perturbations. Second, for SBI to be self-sustained a proper selected time scale for the
thermal relaxation process is required. It can neither be too slow, which will make the flow
around the vortex almost adiabatic therefore kills the baroclinic vorticity generation; nor too
fast, which will reduce the effect of buoyancy. These two conditions together result in self-
sustained vortices. Lyra and Klahr [Lyra and Klahr 2011] performed 3D fully-compressible
magneto-hydrodynamic (MHD) simulations and found the baroclinic instability is important
only when magnetic fields are too weakly coupled to the gas(i.e. in the dead zones). They
do not survive when MRI is active. Recently, a detailed parameter study has been done for
this instability [Raettig et al. 2013].

Turbulence could also be driven by convection. Radially convective instablity has been
studied both linearly and nonlinearly with 2D simulations, showing slightly inward angular
momentum transport [Johnson and Gammie 2005a; 2006]. In terms of vertical convec-
tion, while early 3D numerical simulations of convective instability have consistently yielded
inward angular momentum transport[Cabot 1996; Stone and Balbus 1996]. Recent high-
resolution incompressible simulations of disk convection show outward transport of angular
momentum, that under reasonable disk conditions might yield a angular momentum trans-
port that is not very small [Lesur and Ogilvie 2010]. It appears the early inward angular
momentum transport is due to an invalid analytic approximation used. However, this con-
vection transports heat vertically rather than angular momentum radially. Moreover, the
mechanism to sustain the unstable stratification is missing in the simulations.

In recent studies, the importance of vertical stable stratification has been considered. It
is an important characteristics in the disk flows yet was not considered in most previous
studies. The reasons might be the following. First, PPDs are thin in vertical directions. In
many studies, 2D models with surface density (density integration over vertical directions)
are used. Second, the computational resource is limited to perform full 3D simulations at
early times. Third, there might be a common belief that if flows with constant density fluid
are stable, then vertical stable stratification should make them even more stable. However,
this is not true. Vertical stratification, even it is stable, could bring new degrees of freedom
to the systems that may lead new instabilities.[Barranco and Marcus 2005; Marcus, Pei,
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et al. 2013; Tevzadze, Chagelishvili, and Zahn 2008]
An example of this is strato-rotational instability (SRI) [Molemaker et al. 2001; Yavneh

et al. 2001]. It shows Couette-Taylor flows in a stratified fluid may become unstable even
if the Rayleigh criterion for stability was satisfied, i.e., in the corresponding stable regime
of constant density fluid flow. Moreover, the most unstable modes of this instability are
non-axisymmetric, contrary to the classical Taylor vortices of the centrifugal instability. In
the small gap limit, SRI is due to the resonance of boundary trapped modes. The theoretical
analysis has then been continued in an astrophysical context [Shalybkov and Rüdiger 2005a;
b] and extended to the stability of accretion disk Keplerian flows [Dubrulle et al. 2005b]. It
has been confirmed by experimental analysis [Le Bars and Le Gal 2007]. However, since the
unstable modes of the instability results from the resonance of boundary trapped modes,
SRI needs the presence of close boundaries. When the gap width extends to infinity, SRI
transforms into a radiative instability [Le Dizés and Billant 2009]. And it is found the
decreasing stratification stabilizes the flows [Le Dizés and Riedinger 2010]. However, the most
unstable modes are localized near the inner boundary. The boundary conditions required by
these instabilities are not physical in unbounded disk flows.

The linear evolution of vertically stratified Keplerian flows has been studied extensively
[Salhi and Cambon 2010; Salhi, Lehner, et al. 2013; Tevzadze, Chagelishvili, and Zahn 2008;
Tevzadze, Chagelishvili, Zahn, et al. 2003; Volponi 2010]. The transient amplification of
the leading vortex modes via shearing are studied, which can then generate spiral-density
waves by linear mode coupling. However, they didn’t provide any positive nonlinear feedback
mechanism for the density spiral wave to regenerate the leading vortex modes. In addition,
the fully nonlinear evolution of vertically stratified Keplerian shear flows were studied by
several groups [Fleming and Stone 2003; Fromang and Papaloizou 2006; Oishi and Mac Low
2009]. These simulations include a magnetic filed with a large magnetic resistivity near the
disk mid-plane to represent the dead zone region. It is found MRI is present far from the
mid-plane and stable dead zone forms near the midplane.

Barranco and Marcus [Barranco and Marcus 2005] performed the first 3D simulation to
study vortex dynamics and formations in a vertically stably-stratified disk with an isother-
mal background which corresponds to a linear Brunt-Väisälä frequency. Spectral method
is used to obtain high spacial resolution. In the vertical direction, the size of the compu-
tational domain either extends to 4 pressure scale height or maps to infinity. They found
vortices at the disk midplanes are not stable. More interestingly, new off-midplane vortices
spontaneously formed. In one of their simulations, which the vertical domain was mapped to
infinity and the Brunt-Väisälä frequency has a maximum due to gravity turning over to zero
close to infinity, a third vortex was created in between the two formerly created off-midplane
vortices. To understand the formation of the those off mid-plane vortices motivates the
current research.

A new pure hydrodynamic, finite-amplitude instability has been discovered in linearly
stable, rotating, stably-stratified, shear flows. The instability starts from a new family
of critical layers, which we called baroclinic critical layers because it requires vertical stable
stratification. These critical layers, which are linear, neutrally stable eigenmodes in stratified
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shear flows, have singularity in their vertical velocities. Under the effect of rotation, these
critical layers produce vortex layers. Vortex layers intensify by drawing energy from the
background shear flows, and subsequently roll up to create new vortices, which in turn excite
new critical layers. The process self-replicates until the whole domain is filled with large-
volume, large amplitude vortices. High resolution numerical simulations show this instability
can be triggered by a variety of weak perturbations. The threshold of the instability is
determined by the Rossby number or vorticity of the initial perturbations. This instability
is not subtle; it requires no special tuning or unphysical initial condition and boundary
conditions. It is the cause of the formation of the off-midplane vortices [Barranco and
Marcus 2005] mentioned above. Because this instability can occur in the dead zones of
PPDs, we refer it as zombie instability and those large volume and Rossby number vortices
that self-replicate as zombie vortices. In this dissertation, We discuss in details of zombie
instability and its application in the dead zone by performing high resolution simulations of
3D rotating, stratified shear flows for either Boussinesq (salt water) or anelastic (ideal gas)
fluid.

Chapter 2 discusses numerical methods used. In the numerical simulations with intense
shear such as the flows in protoplanetary disks, the computation challenge comes from the
advection by shear velocity terms, which constrain the maximum timestep allowed to use. To
remove this constraint, two different methods are used in our simulations. One is the shear
sheet method, which is commonly used in the astrophysical community to study the local
property of the protoplanetary disk. The details of this method and its problems are briefly
reviewed. We developed another method to evolve the problematic terms semi-analytically
in time. The idea of the method is first illustrated by the 2D Euler equation with background
shear. It is then generalized to 3D systems that describe salt water (Boussinesq equations) or
ideal gas (anelastic equations) with rotation, stratification and sponge layers near boundaries.
Unlike the shearing sheet method, the semi-analytic method doesn’t introduce any artificial
frequencies to the system. Therefore it is preferred in the simulations of the inertial-internal
gravity waves under the effect of the background shear. Preliminary results of these waves
are showed to verify the code.

Chapter 3, which partly appears in [Marcus, Pei, et al. 2013] and [Marcus, Jiang, et al.
2013], presents the details of zombie instability in rotating, vertically stably-stratified, shear
flows with Boussinesq fluid. The finite-amplitude stability starts from a new class of linear
neutrally stable eigenmodes in stratified shear flows, which we called baroclinic critical layer.
These critical layers have singularity in vertical velocities and densities. Our high resolution
numerical simulations show small localized perturbations can easily excite baroclinic critical
layers, which produce vortex layers under the effect of rotation. Vortex layers growth by
drawing energy from the background shear flow, and subsequently roll up and create new
vortices. The new vortices then excite new critical layers, and the processes of critical layers
excitation, vortex layer growth, roll-up and new vortices creation self-replicate until the
whole computational domain are filled up with vortices. The instability is illustrated with
initial perturbations in the form of a single compact vortex, a compact wave generator, a
pair of vortex and random noise with Kolmogorov spectrum. It is showed the exponential
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growth of the instability is due to the space filling of zombie vortices self-replication. Energy
analysis based on the zonal non-zonal decomposition of kinetic energy shows energy that
supplies the instability is extracted from the zonal flows. Vortex is responsible for the
energy extraction process. Instability saturates when the all the space are taken by zombie
vortices. The separation distance between zombie vortices is approximately the distance
from critical layers with lowest stream-wise wave number to the perturbations. The flows at
late time are determined only by the background parameters not their initial perturbations.
This instability is expected to happen in the ”dead zone” of a protoplanetary disk to fill it
with large-amplitude zombie vortices. It may also be observable in the lab experiments of
stratified Couette-Taylor flows. The reasons why this instability is not seen previously are
discussed at the end.

Chapter 4 describes the zombie instability to the astrophysical community in a broader
picture. Random noises with small Mach number are well-accepted as the proper initial
conditions to perturbed the laminar Keplerian flows. Simulation results are presented with
initial noises using the anelastic as well as fully-compressible equations for idea gas, which is
more relevant to the ”dead zone” of the protoplanetary disk. Comparison to a classical study
of hydrodynamic instability of the disk reveals the importance of vertical stable stratification,
which is ignored in most of the previous studies. The instability is proved by numerical
simulations with both our spectral code and astrophysical ATHENA code [Gardiner and
Stone 2008; Stone, Gardiner, et al. 2008]. The space filling factors of the zombie vortices are
discussed. A scaling relation between Mach number and Rossby number is derived for the
fully developed turbulence flow filled with zombie vortices. Based on the scaling we proposed
for fully-compressible flows, zombie vortices have large amount of solenoidal component of
kinetic energy as showed in our anelastic simulations. Due to the equi-partition of kinetic
energy of the fully-compressible turbulence, the dilatational component of kinetic energy is
also expect to be large, which contains acoustic waves. Acoustic waves have good correlations
between density and velocities that could efficiently transfer angular momentum outward.
The initial noises in the simulations are characterized by energy, the length of the inertial
range and type of the spectrum. Noises with certain types of spectrum have its velocity
and vorticity resides at different scales. This property is used to answer the importance
question: what is the criteria for the instability. It is proved by numerical simulations,
Rossby number of initial noises sets the threshold of the instability. By analogy of turbulent
pipe flows, we are skeptical that there may not be a state of laminar disk at all. The disk
flows are essentially turbulence from the last stage of cloud collapse. One possibility could
be turbulent flows created by zombie instability.
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Chapter 2

An Semi-analytic Method for
Simulating Shearing, Rotating,
Stratified Flows

2.1 Introduction

Motivated by studying vortex dynamics in flows of protoplanetary disks (gas flows around
newly forming stars), whose characteristic features are rotation, vertical stratification and
intense background shear, an 3D spectral code has been developed [Barranco and Marcus
2006]. Vortices within protoplanetary disks (PPDs) are most likely to be subsonic because
for supersonic vortices, sound waves and shocks radiated would rapidly dissipate their ki-
netic energy leaving them to be subsonic. Anelastic approximation [P. R Bannon 1996],
which filters out the acoustic modes, has been re-derived with a modification to include a
background shear for flows within a isothermal PPD, i.e., a disk with constant background
temperature [Barranco and Marcus 2006; Barranco, Marcus, and Umurhan 2000]. It is be-
lieved long-live coherent vortices and turbulence eddies have size smaller than a vertical
pressure scale height. To obtain high resolution, simulations are performed in a local region
of PPD (domain size is or order of vertical scale height) with spectral methods.

In the simulations, computational variables are expanded in Fourier series in the hori-
zontal, i.e., stream-wise and cross-stream directions. The background shear velocity is uni-
directional in the stream-wise direction and linearly depends on the cross-stream coordinate.
This makes the equations non-autonomous in the cross-stream direction, therefore periodic
boundary conditions cannot be directly applied in this direction. In addition, imposing back-
ground shear brings new computational challenge. Because of intense background shear, the
advection by shear terms, if computed explicitly, could only adopt a very small timestep
for time integration to avoid numerical instability due to large Courant number. To over-
come these difficulties, a shearing sheet method is used by transforming the equations into
quasi-Lagrangian coordinates that advect with the background shear [Barranco and Marcus
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2006; Goldreich and Lynden-Bell 1965; Marcus and Press 1977; Rogallo 1981]. Shearing
sheet methods are widely used in local simulations of PPDs. However, one problem of the
shearing sheet method is the computational grid is sheared with the background flow and
will become greatly distorted in time. Periodically, it is necessary to re-map the shearing
coordinate system back onto the original undistorted grid (details in [Barranco and Marcus
2006]), which introduces an artificial temporal forcing. The forcing could cause parametric
instability that creates unphysical waves and other flow features.

An alternative method is proposed to accurately study the inertial-internal gravity waves
behavior under the effect of background shear. Instead of a linear shear, a periodicized
“sawtooth” background shear is used together with a sponge layers close to the boundaries.
This periodicized shear profile allows to impose periodic boundary conditions directly in
cross-stream direction. To evolve flows with background shear, a semi-analytic method is
developed to compute the advection by shear terms implicitly in the mixed Fourier and Phys-
ical space. This method could use comparable timestep as the shearing sheet method but
will not introduce any artificial frequencies to the system. It is also generalized to include
rotation and arbitrary form of vertical stratifications. In section 2, governing equations are
written down; In section 3, semi-analytic method is constructed for the 2D Euler equations
with background shear and then generalized to 3D Boussinesq equations with rotation, ver-
tical stratification and background shear; In section 4, the developed semi-analytic method
is tested and verified by various numerical simulations; Section 5 is conclusion.

2.2 Boussinesq Equations for Shearing, Rotating,

Vertically Stratified Flows

The simplest model which involves all the important physics of flows in PPD is the rotat-
ing, vertically stratified plane Couette flow with Boussinesq fluid, which is considered the
canonical test to study the PPD stability [Marcus, Pei, et al. 2013]. The flow rotates with
an angular velocity Ω ≡ f/2, where f is the Coriolis parameter. In a rotating frame about
the vertical axis z, the equations of motion for total velocity v are:

∇ · v = 0, (2.1)

∂v

∂t
= −(v · ∇)v − ∇p

ρo
+ v× f ẑ − ρ− ρo

ρo
gẑ, (2.2)

∂ρ

∂t
= −(v · ∇)ρ, (2.3)

where p is the pressure, ρ is the total density of the flow and ρo is a constant reference
density. g is gravity, which is a constant. Coordinates with ”hats” are unit vectors.

The flow has an unperturbed density ρ̄(z) = ρo(1−N̄2z/g), where N̄ ≡
√
−g( dρ̄/ dz)/ρo

is the unperturbed Brunt-Väisälä frequency, which is constant in the simplest case to involve



CHAPTER 2. AN SEMI-ANALYTIC METHOD FOR SIMULATING SHEARING,
ROTATING, STRATIFIED FLOWS 9

vertical stable stratification. The unperturbed velocity of plane Couette flow is v̄ = V̄ (y)x̂,
where V̄ is the uni-directional shear velocity, and x, y are the stream-wise and cross-stream
coordinates. The total velocity can be written as v = V̄ (y)x̂ + v′, where v′ = (v′x, v

′
y, v
′
z) is

the perturbed velocity to V̄ (y)x̂. Replacing v with V̄ (y) and v′, equations (2.1)–(2.3) can
be re-written as:

∇ · v′ = 0. (2.4)

∂v′

∂t
= −V̄ ∂v

′

∂x
− (v′ · ∇)v′ − v′y

dV̄

dy
x̂− ∇p̃

ρo
+ v′× f ẑ − ρ̃

ρo
gẑ, (2.5)

∂ρ̃

∂t
= −V̄ ∂ρ̃

∂x
− (v′ · ∇)ρ̃+ ρo

N̄2

g
v′z, (2.6)

where p̃ and ρ̃ are the pressure and density deviation from the unperturbed field.
The flows described here can have a shear velocity that is an arbitrary function in y. It

is also not necessary for the gravity and Brunt-Väisälä frequencies to be constant, i.e., both
are linear in the isothermal PPD. The semi-analytic method developed in following sections
is general. It can be used for Boussinesq as well as anelastic equations with arbitrary V̄ (y)
and N̄(z).

2.3 Semi-analytic method with periodicized shear

and sponge layers

The computational challenge comes from the advection by shear velocity terms which are
the first terms in equations (2.5) & (2.6) in the form of V̄ ∂

∂x
. In the shearing sheet method,

shear velocity is a linear function V̄ (y) = −σy, with σ = −3/2Ω being the Keplerian shear.
In semi-analytic method, it is replaced the with a periodicized ”sawtooth” velocity that is
periodic in y and almost everywhere equal to the true Keplerian velocity except near the
turning point of the ”sawtooth”, which is close to the boundary of cross-stream direction. In
the region near turning point, and only in that region, sponge layers in terms of boundary
damping are introduced to prevent instability forming near the turning point of the shear
velocity as well as remove the unphysical ”reflection” of the outgoing waves back into the
computational domain. The periodicized ”sawtooth” shear and damping function are showed
in Figure 2.1. The sawtooth velocity is the same as linear shear velocity in the interior
region except near cross-stream boundary it turns over to zero to become periodic in y. The
damping function S(y) is 0 in the interior and gradually become −1 close the cross-stream
boundaries. Therefore the damping is only effective near the cross-stream boundaries. Both
the sawtooth shear and damping velocity are smoothed in the Fourier space by setting Fourier
coefficients of the highest 1/3 wave numbers to be zero. We have tested the code by using
many different cross-stream domain size Ly and found that the periodicity of V̄ (y) and the
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Figure 2.1: Periodicized sawtooth shear velocity and damping function in cross-stream
direction. Dot dash line: linear shear velocity (−σy, used in shearing sheet approximation);
Solid line: periodicized shear velocity; Dash line: damping function.

damping near y boundary do not affect our results if Ly is sufficiently large. Semi-analytic
methods ware used to treat rotation, stratification in previous studies [Barranco and Marcus
2006]. Here it is developed to evolve V̄ ∂/∂x terms implicitly in time and discussed in a more
generalized way with details.

2D Euler System with Background Shear

To better illustrate the idea, we first consider the 2D Euler equations with periodicized
background shear flow and damping near y boundaries

∇ · v = 0, (2.7)

∂v

∂t
= −V̄ (y)

∂v

∂x
− v · ∇v − vy

dV̄

dy
−∇p− S(y)

v

τ
, (2.8)

where V̄ ≡ V̄ (y)x̂ is the periodicized ”sawtooth” shear. S(y) is the damping function. τ is
the damping time scale which is a constant. Note because we expand variables in stream-wise
direction by Fourier series, we have ∂/∂x = ikx in the Fourier space, where kx ≡ 2πm/Lx
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is the stream-wise wave number, m being a positive integer. In Fourier space the nonlinear
terms V̄ (y)∂/∂x become linear. This motivates us to transform equation (2.8) to Fourier
space in stream-wise direction

∂v̂

∂t
= ξv̂ + â−∇p̂. (2.9)

Variables with “hat” are in mixed space whose stream-wise direction is in Fourier space and

cross-stream direction is in Physical space. â ≡ ̂−v · ∇v − ̂
vy

dV̄
dy

includes all the nonlinear
terms. The coefficient in front of the linear terms is

ξ ≡ −ikxV̄ (y) + S(y)/τ, (2.10)

which is a function of y. Without loss of generality, the system of equation (2.9) can be
described by a simple ordinary differential equation:

dφ

dt
= ξφ+ r, (2.11)

where r is the forcing constant. The exact solution for equation (2.11) is

φ(t) = eξtφ0 +
eξt − 1

ξ
r. (2.12)

equation (2.12) can be used as a template for deriving the semi-analytic scheme to evolve
equation (2.9) in time numerically. Note the forcing term in equation (2.9) are not constant
in time but corresponding to the nonlinear terms and pressure gradient terms. We treat
the nonlinear terms with Adams-Bashforth scheme, the pressure gradient terms with Crank-
Nicholson scheme to obtain a 2nd-order accurate scheme in time

v̂N+1 = eξ∆tv̂N +
eξ∆t − 1

ξ
(
3

2
âN − 1

2
âN−1)− eξ∆t − 1

ξ
(
1

2
∇p̂N +

1

2
∇p̂N+1). (2.13)

This is not the only choice. There are other semi-analytic schemes to evolve equation (2.9)
in time. For instance, replacing (eξ∆t − 1)/ξ with e(ξ∆t/2)∆t results in a new semi-analytic
scheme which is also 2nd-order accurate in time

v̂N+1 = eξ∆tv̂N + eξ
∆t
2 ∆t(

3

2
âN − 1

2
âN−1)− eξ

∆t
2 ∆t(

1

2
∇p̂N +

1

2
∇p̂N+1). (2.14)

However, since equation (2.13) is constructed based on the exact solution, it has the smallest
truncation error. It can be showed analytically the truncation error of equation (2.13) is

proportional to ξ∆t3

6
while for equation (2.14) it is proportional to ξ2 ∆t3

6
.

In practical, there are many other concerns when choosing numerical integration schemes.
In above Euler system, in order to make velocities at time tN+1 satisfy the continuity equa-
tion (2.7), we need to take divergence on equation (2.13) to compute pressure at time tN+1

by solving a Poisson equation to obtain p̂N+1, and then update velocity to v̂N+1. In the
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case where ξ is a constant, e(ξ∆t/2)∆t can be taken out of the divergence operator, and the
original Poisson operator remains. So the semi-analytic scheme in equation (2.13) works fine.
However, in the case where the flow has a background shear, from equation (2.10), ξ will
be a function of y, which makes the Poisson operator complicated. In addition, in next sec-
tion we will generalize the semi-analytic scheme to three dimensional system. Brunt-Väisälä
frequency and vertical boundary damping (necessary for a triply periodic code), which are
generally functions of z, will be included. This makes the Poisson operator too complicated
to solve the pressure with a fast solver. Instead, full matrix multiplication has to be used.
This will slow down our simulations dramatically, which makes no sense to use semi-analytic
scheme any more. Therefore, we want to modify the pressure gradient part in the semi-
analytic scheme of equations (2.13) & (2.14) to avoid changing the Poisson operator but still
keep it 2nd-order accurate in time.

We keep the coefficient in front of∇p̂N+1 to be constant ∆t/2 so that the Poisson operator
is preserved, but modify the coefficient in front of ∇p̂N . To simplify notations, we define
Π̂ ≡ ∆t

2
∇p̂. Based on our numerical tests, we found the following scheme stable and allow

us to use a comparable timestep as shearing sheet method

v̂N+1 = eξ∆t(v̂N − Π̂
N

) +
eξ∆t − 1

ξ
(
3

2
âN − 1

2
âN−1)− Π̂

N+1
, (2.15)

where Π̂
N

and v̂N are combined together because they have the same coefficients. It can be
proved this scheme is 2nd-order accurate in time. However, the price we paid to modified the
pressure gradient term is now the truncation error of equation (2.15) becomes proportional

to ξ2 ∆t3

6
. We can also modified the scheme with equation (2.14) as

v̂N+1 = eξ∆t(v̂N − Π̂
N

) + eξ
∆t
2 ∆t(

3

2
âN − 1

2
âN−1)− Π̂

N+1
. (2.16)

The truncation error of equation (2.16) is still ∝ ξ2 ∆t3

6
. Now, this scheme is comparable to

scheme with equation (2.15) in terms of accuracy. This has been verified in Figure 2.2 for a
generalized ξ in a three-dimensional problem.

In 2D Euler equations, the horizontal components of velocity do not couple. The simple
system has two separate scalar equations that have the same one-dimensional eigenvalue ξ.
The procedures to construct a semi-analytic scheme can be generalized to 3D problems with
more physics involved such as rotation, stratification, viscosity and so on.

3D Boussinesq System with Rotation, Stratification and Background Shear

For a 3D system that describes flows in a PPD, we can reduce it to a similar system like
equation (2.9) by solving an eigenvalue problem of the linear operator, from which the same
procedures can be taken to construct the semi-analytic scheme. Here we take the Boussinesq
flow system described by equations (2.5)–(2.6) as an example. Besides the background
shear flow, the system also has constant rotation around vertical axis and stable density
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stratification along the vertical direction. The horizontal components of velocity couple
together by Coriolis force, resulting in inertial oscillation with the Coriolis frequency ωf ≡√
f(f − dV̄ / dy), where f ≡ 2Ω is the Coriolis parameter with Ω being the constant angular

velocity of the rotating system. Here the inertial frequency is modified by the background
shear flow. The vertical component of velocity and density couple together by buoyancy
force, resulting in buoyant oscillation with Brunt-Väisälä frequency N̄ . To be general we
can make N̄ an arbitrary real function of z. We also put sponge layers in forms of damping
function S(y)/τ near y boundaries.

Boussinesq equations (2.5)–(2.6) can be written into a matrix form

∂û

∂t
= Lû + q̂ − p̂, (2.17)

where

û =


v̂′x
v̂′y
v̂′z
ˆ̃ρ

 , q̂ =


− ̂(v′ · ∇)v′x
− ̂(v′ · ∇)v′y
− ̂(v′ · ∇)v′z
− ̂(v′ · ∇)ρ̃

 , p̂ =


∂ ˆ̃p/∂x

∂ ˆ̃p/∂y

∂ ˆ̃p/∂z
0

 , (2.18)

L is the linear operator matrix,

L =


−ikxV̄ − S/τ f − dV̄ / dy 0 0

−f −ikxV̄ − S/τ 0 0
0 0 −ikxV̄ − S/τ −g
0 0 N̄2/g −ikxV̄ − S/τ

 , (2.19)

which is a block diagonal matrix because the Coriolis force couples the horizontal components
of velocity and buoyancy force couples the vertical velocity and the density. It can be
diagonalized as L = SDS−1, D is the eigenvalue matrix

D =


−ikxV̄ − S/τ + iωf 0 0 0

0 −ikxV̄ − S/τ − iωf 0 0
0 0 −ikxV̄ − S/τ + iN̄ 0
0 0 0 −ikxV̄ − S/τ − iN̄

 ,

(2.20)
S is the eigenvector matrix whose columns are the corresponding eigenvectors

S =


√
f − dV̄ / dy

√
f − dV̄ / dy 0 0

i
√
f −i

√
f 0 0

0 0 ig −ig
0 0 N̄ N̄

 , (2.21)

Left multiply equation (2.17) by S−1 resulting in

∂ŵ

∂t
= Dŵ + â− b̂, (2.22)
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where ŵ = S−1û, â = S−1p̂, b̂ = S−1q̂. Now the new system with equation (2.22)
decoupled as four scalar equations for components of ŵ. The problem reduces to the model
problem described by equation (2.9). We construct the same semi-analytic scheme for time
integration of ŵ. Then we go back to the primary variables system by left multiplying S to
the discretized system.

To make the scheme 2nd-order accurate, we treat nonlinear advection terms by Adams-
Bashforth scheme

P̂ ≡ 3

2
( ̂v · ∇v)N − 1

2
( ̂v · ∇v)N−1, (2.23)

Q̂ ≡ 3

2
( ̂v · ∇ρ̃)N − 1

2
( ̂v · ∇ρ̃)N−1. (2.24)

Define Π̂ ≡ ∆t
2
∇p̂ as in previous section. The semi-analytic scheme written in primary

variables is

v̂N+1
x = c1(v̂Nx − Π̂N

x ) + c2P̂x + c3α1(v̂Ny − Π̂N
y ) + c4α1P̂y − Π̂N+1

x , (2.25)

v̂N+1
y = c1(v̂Ny − Π̂N

y ) + c2P̂y − c3α2(v̂Nx − Π̂N
x )− c4α2P̂x − Π̂N+1

y , (2.26)

v̂N+1
z = d1(v̂Nz − Π̂N

z ) + d2P̂z − d3β1
ˆ̃ρN − d4β1Q̂ − Π̂N+1

z , (2.27)

ˆ̃ρN+1 = d1
ˆ̃ρN + d2Q̂+ d3β2(v̂Nz − Π̂N

z ) + d4β2P̂z, (2.28)

where the coefficients are defined as

λ ≡ −ikxV̄ − S/τ, (2.29)

α1 ≡ f − dV̄ / dy, α2 ≡ f, ωf ≡
√
α1α2, (2.30)

c1 ≡ eλ∆t cos(ωf∆t), (2.31)

c2 ≡
1

λ2 + ωf 2
[λ(eλ∆t cos(ωf∆t)− 1) + ωfe

λ∆t sin(ωf∆t)], (2.32)

c3 ≡ eλ∆t sin(ωf∆t)

ωf∆t
∆t, (2.33)

c4 ≡
1

λ2 + ωf 2
[λeλ∆t sin(ωf∆t)

ωf∆t
∆t+ 1− eλ∆t cos(ωf∆t)], (2.34)

β1 ≡ g, β2 ≡
N̄2

g
, (2.35)

d1 ≡ eλ∆t cos(N̄∆t), (2.36)

d2 ≡
1

λ2 + N̄2
[λ(eλ∆t cos(N̄∆t)− 1) + N̄eλ∆t sin(N̄∆t)], (2.37)

d3 ≡ eλ∆t sin(N̄∆t)

N̄∆t
∆t, (2.38)

d4 ≡
1

λ2 + N̄2
[λeλ∆t sin(N̄∆t)

N̄∆t
∆t+ 1− eλ∆t cos(N̄∆t)]. (2.39)
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This scheme is an analog to equation (2.15). We call it scheme1. The other scheme based
on equation (2.16) has all the same coefficent defined as in scheme1, except

c2 ≡ eλ
∆t
2 cos(ωf

∆t

2
)∆t, (2.40)

c4 ≡ eλ
∆t
2

sin(ωf
∆t
2

)

ωf
∆t
2

∆t2

2
, (2.41)

d2 ≡ eλ
∆t
2 cos(N̄

∆t

2
)∆t, (2.42)

d4 ≡ eλ
∆t
2

sin(N̄ ∆t
2

)

N̄ ∆t
2

∆t2

2
. (2.43)

and we refer this as scheme2
In scheme1 the term 1/(λ2 +ωf

2) in equations (2.32) & (2.34) and the term 1/(λ2 +ωN̄
2)

in equations (2.37) & (2.39) become zero at cross-stream location y∗, where V̄ (y∗) = ±ωf

kx

and V̄ (y∗) = ±ωN̄

kx
respectively. In this case, we can go back to equation (2.15), it shows

lim
ξ→0

eξ∆t − 1

ξ
→ ∆t (2.44)

This indicates the semi-analytic scheme reduces to Adams-Bashforth scheme at these lo-
cations. Similar schemes can be also derived for the anelastic equations. To solve equa-
tions (2.25)–(2.28), a fractional step method is used. In advection step, all the right-hand-

side terms are computed except for Π̂
N+1

terms. In pressure step followed, Poisson equation

is solved with a fast solver to get Π̂
N+1

. Finally, all variables are updated to N + 1 step.
It is showed below both scheme1 and scheme2 are 2nd-order accurate in time. Details of
the fast solver for Poisson equation refers to [Barranco and Marcus 2006].

2.4 Numerical Tests

It can be proved analytically both semi-analytic schemes are 2nd-order accurate in time. This
is also seen in our numerical test shown in Figure 2.2. As indicated by analytic analysis,
these two schemes should have errors at the same order of magnitude. This is shown in the
plots that the errors of the two schemes almost lie on top of each other. In addition, both
semi-analytic schemes have errors nearly an order of magnitude smaller than the explicit
treatment of Coriolis and buoyancy terms.

A series of simulations has been done to test the parallel performance of the code, showed
in Figure 2.3. In these simulations we use scheme1 with 384 Fourier modes in the horizontal
directions and 256 Chebyshev modes in the vertical direction, which are the typical number
of modes used in our simulations of zombie instability. Power law (Time ∝ Nproc−p) is used
to fit the data to show how the total computing time scale with number of processors. p ≈ 1
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Figure 2.2: Fractional error in perturbation kinetic energy of different time evolution
schemes for Boussinesq equations. Explicit: semi-analytic method only on the advection
by shear part, Adams-Bashforth scheme on Coriolis and buoyancy terms. Semi-analytic-1:
semi-analytic scheme1. Semi-analytic-2: semi-analytic scheme2. Solid line: power-law fit
of the explicit scheme with exponent 2.00; dash line: power-law fit of semi-analytic scheme-
1 with exponent 2.01; dash line: power-law fit of semi-analytic scheme-1 with exponent
2.01. (covered under dash line.)

is the ideal performance.The slope here is p = 1.12, showing good parallel performance of
the code.

To compare semi-analytic method and shearing sheet method, we performed anelastic
simulation of a single vortex initialized at the midplane in an isothermal PPD. The vortex
will be unstable to an anti-symmetric eigenmode which exponentially grows from the roundoff
errors [Barranco and Marcus 2005]. Once this mode becomes dominant, it can be easily seen
by plotting the anti-symmetric part of the maximum absolute value of vertical vorticity,
showed in Figure 2.4. The semi-analytic method is able to predict the same growth rate as
the shearing sheet method, which corresponds to an e-folding time of 3.8 orbit period. The
difference between this result and the one reported in [Barranco and Marcus 2006] is here
we use a larger cross-stream domain size (4 times larger) to reduce the effects from periodic
images in the cross-stream direction.
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Figure 2.3: Wall-clock time to compute one timestep using 16, 32, 64, 128 and 256 processors
on XSEDE cluster Stampede . The circle are the data points; the solid line are power-law
fits; the number above is the best-fit exponent.

The semi-analytic method developed is good for simulating inertial-internal gravity waves
without introducing artificial time scales. We test it by simulating these waves that are
present in rating, stratified flows. To generate waves, we use a numerical wave generator,
which is a spatially compact source oscillating in time imposed to the momentum equations
(see Appendix).

Consider the waves in the flows without background shear, i.e., V̄ (y) = 0. Internal
inertial-gravity waves are neutrally stable (neither grow nor decay) eigenmodes of the sys-
tems. They have dispersion relation:

s2 = N̄2(sin θ)2 + f 2(cos θ)2, (2.45)

where s is the eigenvalue (or frequency) of the mode, θ is the angle of the group velocity
of the wave with respect to the horizontal plane. From equation (2.45), it shows waves can
only exist when their frequencies satisfy the following solvability conditions of θ:

|f | < |s| < N̄ or N̄ < |s| < |f |, (2.46)

where the left-side relation is for internal waves and the right-side relation is for inertial
waves. Waves coming from a compact source (i.e., a wave generator) form wave packets or
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Figure 2.4: Comparison between shearing sheet method and semi-analytic method on the
growth rate of anti-symmetric unstable linear eigenmode associated with a vortex initialized
in an isothermal disk simulation. The unstable eigenmode is described by the maximum
absolute value of the antisymmetric part of the vorticity associated with the vortex. Circle:
shearing sheet method with cross-stream and vertical boundary damping. Cross: semi-
analytic method with cross-stream and vertical boundary damping.

“beams” which consist multiple wavenumber components. The beams propagate with their
group velocity emanating from the source. For a constant N̄ , those beams are straight and
appear as a St Andrews cross pattern with its angle given by

(tan θ)2 = (s2 − f 2)/(N2 − s2), (2.47)

where s is the forcing frequency of the wave source. In 3D, the beams have a conical shape.
Figure 2.5 shows simulation results of internal gravity wave with |f | < |s| < N̄ with V̄ (y) = 0.
The numerical wave path matches the analytic one very well. Without using semi-analytic
method, only 1/8 of the current timestep is allowed.

In an isothermal PPD, N̄ is zero at disk midplane and linearly increases away from
midplane. First, consider the linear stratified flow without background shear, i.e., N̄ = αz
and V̄ (y) = 0. Under the condition that the length scale of the background stratification is
much larger than the wave length (i.e., waves propagate in a slowly varying medium), locally
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Figure 2.5: Numerical simulation of internal gravity wave in a non-shear flow with constant
Brunt-Väisälä frequency. Contour plot: vertical vorticity ωz in y−z plane at x = 0, showing
St Andrew’s cross pattern. The colormap range is from −0.2 to 0.2, with black being
negative (anticyclonic) vorticity and white being positive (cyclonic) vorticity. Black dash
line: analytic solution of the wave path angle (only showing one branch). The background
parameters of the simulation are V̄ (y) = 0, f = 2Ω, N̄ = 4Ω. The wave generator is placed
at (0, 0, 0) with a frequency s = 3Ω and magnitude A = 3.75× 10−4(Ω2Lx).

we can treat N̄(z) as a constant by using the WKB theory. Therefore, the analytic wave
path equation (2.47) can be modified as

(tan θ)2 = (s2 − f 2)/(N(z)2 − s2). (2.48)

Instead of a straight line for constant N̄ , now the wave path becomes a curve. In addition,
because of N̄ = αz, if the forcing frequency of the wave generator has |s| < |f |, waves can
only propagate in the region that satisfy |s| > |N̄(z)| according to equation (2.46). At the
critical level where |s| = |N(z)|, waves cannot propagate any further and will reflect back.
Figure 2.6 shows simulations of internal waves with N̄ = (z/

√
2.5)Ω, V̄ (y) = 0, f = 2Ω. The

wave generator locates at (0,0,-1) with a forcing frequency s = 1.5Ω. The upper black dash
line at y = 0 shows one branch of the internal wave propagates upward. When it reaches the
critical level N(z) = s, it reflects and continue to propagate downward. The lower black dash
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Figure 2.6: Numerical simulation of inertial gravity waves in a non-shear flow with linear
Brunt-Väisälä frequency N̄(z) = αz. Contour plot: vertical vorticity ωz in a) y − z domain
at x = 0; b) x − y plane at z = 0. The colormap range is from −0.2 to 0.2, with black
being negative (anticyclonic) vorticity and white being positive (cyclonic) vorticity. White
solid line: the critical level where internal wave can not propagate and reflect back. The
height corresponds to N̄ = ±s. Black dash line: analytic solution of the wave path angle
(only showing right branches). The background parameters of the simulation are V̄ (y) = 0,
f = 2Ω, N̄ = (z/

√
2.5)Ω. The wave generator locates at (0, 0,−1), with a frequency s = 1.5Ω

and magnitude A = 9.375× 10−5(Ω2Lx). In x-y plane, the waves show concentric circles.

line at y = 0 shows another branch first propagates downward, then it reflects at the critical
level N(z) = −s and reverses its propagation direction. When it reaches the top critical
height, it reflects again. The numerical results match well with the analytic angle. In x− y
plane at x=0, waves shows pattern of concentric circles. The most inner circle corresponds
to the wave branches propagate upward from the wave generator, while the other circles are
the reflected waves. In 3D they still have conical shapes.

Further, consider the inertial gravity waves in linear stratified flows with background
shear, i.e., periodicized sawtooth shear as showed in Figure 2.1. With shear, the governing
equations are no longer autonomous in y, except for kx = 0 mode. Hence, analytic form of
dispersion relation can only be obtained for waves with kx = 0 mode:

s2 = N̄(z)2(sin θ)2 + f(f − dV̄

dy
)(cos θ)2, (2.49)

where the Coriolis’ frequency is modified by background shear. The propagation angle of
kx = 0 waves is:

(tan θ)2 = [s2 − f(f − dV̄

dy
)]/(N(z)2 − s2). (2.50)
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Figure 2.7: Numerical simulation of kx = 0 inertial gravity waves in a shear flow with linear
Brunt-Väisälä frequency N̄(z) = αz. Contour plot: vertical vorticity ωz in a) y − z domain
at x = 0; b) x − y plane at z = 0. The colormap range is from −0.2 to 0.2, with black
being negative (anticyclonic) vorticity and white being positive (cyclonic) vorticity. White
solid line: the critical level where internal wave can not propagate and reflect back. The
height corresponds to N̄ = ±s. Black dash line: analytic solution of the wave path angle
(only showing right branches). The background parameters of the simulation are sawtooth
type shear shown with its value of constant shear part being −3Ω, f = 4Ω, N̄ = (z/

√
2.5)Ω.

The wave generator only excites kx = 0 waves. It is at (0, 0,−1) with a frequency s = 1.5Ω
and magnitude A = 3.75 × 10−4(Ω2Lx). In x-y plane, the waves are uniform in x direction
showing kx = 0 mode.

This is tested with numerical simulation shown in Figure 2.7. Unlike the previous simula-
tions, which excites a range of wave numbers in each direction, here waves with a range of
wave numbers in y and z but only kx = 0 are excited. It can be seen in Figure 2.7b, the
waves has uniform structure in x direction. In Figure 2.7a, it shows the same path as in Fig-
ure 2.6a. This is because f(f − dV̄ / dy) in Figure 2.7 has the same value as f in Figure 2.6,
therefore they have the same propagation angles. The numerical computed angles agree well
with the analytic ones. The wave beams in Figure 2.7a contain multiple ky and kz modes
but only a single kx = 0 mode, while the wave beams in Figure 2.6a contain multiple kx, ky
and kz as shown in Figure 2.7b and Figure 2.6b.
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2.5 Conclusion

The flows in the protoplanetary disks have three important features: rotation, vertical sta-
ble stratification and intense background shear. In numerical simulations of these flows,
the advection by background shear terms constrain the maximum timestep allowed. In as-
trophysical community, shearing sheet method is commonly used to avoid computing these
terms explicitly by transforming the equation to a Lagrange coordinate system advected
with shear. To be numerically stable, shearing sheet method has to map the sheared grid
back to the Cartesian grid, and so introduces a rezone time scale. This could cause paramet-
ric instability and other unphysical features, especially not good for simulations of internal
inertial-gravity waves within the system.

A semi-analytic method is proposed. It evolves the advection by background shear terms
semi-analytically in the mixed Fourier-Physical-Physical space. It can use a comparable
timestep as the shearing sheet method. The method is first developed for a 2D Euler system
with background shear, where the ideal scheme has been derived and modified by the practi-
cal concerns. It is then generalized to the 3D rotating, vertically stably-stratified Boussinesq
flows with intense background shear by solving the eigenvalue problem of the linear oper-
ator. Periodicized sawtooth shear profile is used to directly impose the periodic boundary
conditions in the cross-stream direction. The whole method is 2nd-order accurate in time
and could use a comparable timestep as the shearing sheet method without introducing any
artificial time scales to the system. Numerical tests show it works well in simulating internal
inertial-gravity waves with or without background shear. It is also used in our anelastic
simulations of PPD flows. Further, it can be generalized to any linear forcing terms.
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Chapter 3

zombie instability and self-replicating
zombie vortices in Stably Stratified
Rotating Shear Flows

3.1 Introduction

For a protostar to accrete gas from its protoplanetary disk (PPD) and form a star, the PPD
must be unstable and transport angular momentum outward [Balbus and Hawley 1998]. This
has led to efforts to find instabilities in PPDs and other rotating flows that satisfy Rayleigh’s
criterion for centrifugal stability, i.e., the absolute value of angular momentum increases with
increasing radius [Rayleigh, Lord 1916]. Numerical studies [Balbus, Hawley, and Stone 1996;
Shen et al. 2006] of PPDs and experimental studies [Ji et al. 2006] of rotating flows where
the velocity obeys Rayleigh’s criterion confirm the stability of these flows (although there
is recent controversy [Avila 2012; Paoletti, van Gils, et al. 2012; Schartman et al. 2012]).
In a PPD where the gas is sufficiently ionized to couple to magnetic fields, the magneto-
rotational instability (MRI) [Balbus and Hawley 1998] operates. However, large regions of
PPDs, known as dead zones, are too cool and un-ionized to have MRI. Other instabilities
[Le Bars and Le Gal 2007; Lovelace et al. 1999] could de-stabilize a PPD, but they require
unrealistic boundaries or continually-forced perturbations. Thus, star formation remains
problematic.

Here we report a new type of finite-amplitude instability that occurs in neutrally-stable
rotating flows that would also satisfy Rayleigh’s stability criterion if their densities were
constant (which was assumed in Rayleigh’s analysis Rayleigh, Lord 1916). These flows
include plane and circular Couette flows, which are used to model flows in PPDs. In this
study, we examine rotating plane Couette flow, which is the canonical test for PPD stability.
In previous studies using ideal gases [Balbus and Hawley 1998; Balbus, Hawley, and Stone
1996; Shen et al. 2006], these plane Couette flow PPD models were stable, but they were
all initialized with no vertical density gradient and no vertical gravity g. In contrast, here



CHAPTER 3. ZOMBIE INSTABILITY AND SELF-REPLICATING ZOMBIE
VORTICES IN STABLY STRATIFIED ROTATING SHEAR FLOWS 24

2

1

0

−1

−2

2

1

0

−1

−2

y

0 1 2 3 0 1 2 3
x

Figure 3.1: Ro ≡ ωz/f of the anticyclonic (blue) vortices and cyclonic (red) vortex layers
in the x-y plane. The initial perturbing vortex at the origin is above the plane shown here
(z = −0.404). The first generation zombie vortices form at at |x| ≤ 1, and sweep outward in
x. The Rossby number Ro of these vortices is ∼ -0.2. (The color is reddest at ωz/f = 0.2,
e.g., near x = 1/3 at the bottom of panel d; bluest at ωz/f = −0.2, e.g., near x = 0.6 in
panel d; and green at ωz/f = 0). f/N̄ = 1 and σ/f = −3/4. The x-y domain is |x| ≤ 4.7124;
|y| ≤ 2.3562, and is larger than shown. a) t = 64/N̄ . b) t = 256/N̄ . c) t = 576/N̄ . d)
t = 2240/N̄ .

we include a stably-stratified initial density ρ with g 6= 0 (as in a PPD). Previously, we
observed, but did not understand, a new finite-amplitude instability in a PPD with an ideal
gas and g 6= 0 [Barranco and Marcus 2005; Marcus, Jiang, et al. 2013], so to simplify the
analysis, here we consider a Boussinesq fluid with constant g. The 3D vortices found here
are unique: a vortex that grows from a single, small-volume, initial perturbation triggers a
1st-generation of vortices nearby. This 1st-generation of vortices grows and triggers a 2nd-
generation. The triggering of subsequent generations continues ad infinitum. The vortices
do not advect in the cross-stream direction, but the front dividing the vortex-populated fluid
from the unperturbed fluid does. (Figure 3.1 and Figure 3.2) Because the vortices grow large
and spawn new generations that march across the domain of a dead zone, we refer to vortices
that self-replicate to fill the domain as zombie vortices.
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Figure 3.2: Zombie vortices sweep outward from the perturbing vortex at the origin in the
x–z plane (at y = 0). Anticyclonic ωz is black (darkest is ω/f = −0.2) and cyclonic is white
(lightest is ω/f = 0.2). This is the same flow as in Fig. 1. The domain has |x| ≤ 4.7124;
|z| ≤ 4.7124, and is larger than shown. a) t = 128/N̄ . Critical layers with s = 0 and
|m| = 1, 2, and 3 are visible. Diagonal lines are ky = 0 internal inertia-gravity waves with
shear, not critical layers. b) t = 480/N̄ . 1st-generation vortices near |x| = 1 and 1/2 have
rolled-up from critical layers with s = 0 and |m| = 1 and 2, respectively. c) t = 1632/N̄ .
2nd-generation |m| = 1 vortices near |x| = 0 and 2 were spawned from the 1st generation
vortices near |x| = 1. Another 2nd-generation of |m| = 1 vortices is near |x| ' 1/2 and 3/2,
which were spawned by the 1st generation near |x| = 1/2. d) t = 3072/N̄ . 1st, 2nd and 3rd

generation vortices.
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The simplest flow that is linearly stable, in which zombie vortices occur is a vertically
stably-stratified Boussinesq fluid in an unbounded plane Couette flow. The unperturbed
velocity of plane Couette flow observed in a frame with angular velocity Ωẑ ≡ f/2ẑ is

v̄ = V̄ (x)ŷ, (3.1)

with
V̄ (x) ≡ σx, (3.2)

where σ is the uniform shear, and x and y are the cross-stream and stream-wise coordinates.
“Hatted” quantities are unit vectors. The unperturbed density is

ρ̄(z) = ρ0(1− N̄2z/g), (3.3)

where ρ0 is constant.
N̄ ≡

√
−g(dρ̄/dz)/ρ0, (3.4)

is the initial unperturbed Brunt-Väisälä frequency. In the rotating frame, the governing
equations are

∇ · v = 0, (3.5)

∂v/∂t = −(v · ∇)v− ∇Π

ρ0

+ fv× ẑ− (ρ− ρ0)g

ρ0

ẑ (3.6)

∂ρ/∂t = −(v · ∇)ρ. (3.7)

(3.8)

where Π is the pressure head.

3.2 Critical Layers

When equations (3.5)–(3.7)) are linearized about V̄ (x) and ρ̄(z), the eigenmodes are pro-
portional to ei(kyy+kzz−st). When the initial density ρ̄ is stably-stratified or constant plane
Couette flow is neutrally linearly stable (i.e., s is real, and eigenmodes neither grow nor
decay).

The eigen-equation for the eigenmodes of equations (3.5)–(3.7) is a generalization of
Rayleigh’s equation [Drazin and Reid 1981a] and is a 2nd-order o.d.e. The coefficient of the
highest-derivative term is

[V̄ (x)− s/ky]{[V̄ (x)− s/ky]2 − (N̄/ky)
2}. (3.9)

It is well known that the eigenmodes of an o.d.e. are singular at locations x∗ where the
coefficient of the highest-derivative term of the eigen-equation becomes zero. At x∗, the
eigenmodes form critical layers [Drazin and Reid 1981a].
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For fluids with constant density (N ≡ 0), critical layers have V̄ (x∗) equal to the phase
speed s/ky of the eigenmode. We refer to these as barotropic critical layers. These are
the classical critical layers and have been well-studied [Maslowe 1986]. Eigenmodes with
barotropic critical layers have singularities in the stream-wise components of their velocities,
but not their other components.

For N̄ 6= 0, equation (3.9) shows that there are eigenmodes with barotropic critical layers,
but they are not of interest to us because our computations show that they are difficult to
excite and never form vortices. However, there is another class of eigenmodes with critical
layers; they have

V̄ (x∗)− s/ky ± N̄/ky = 0, (3.10)

and we call them baroclinic critical layers. Weak baroclinic critical layers were shown to
exist in non-rotating, stratified flows [Boulanger et al. 2007], but we believe that this is the
first study of these layers in flows with f , N and |σ| of the same order (as near the mid-plane
of a PPD). From this point on, we use non-dimensional units with the units of time 1/N̄
and length |(LN̄)/(2πσ)|, where L is the periodicity length in y. Thus, ky in equation (3.10)
is 2πm/L, where m is an integer. Baroclinic critical layers have ky 6= 0, and equation (3.10)
shows that they are at:

x∗ = −(s± 1)/m. (3.11)

Equations (3.5)–(3.7) and their boundary conditions are invariant under translations in y and
z, and also under translation in x by δ when accompanied by a stream-wise boost in velocity
of σδ. The latter symmetry is shift-and-boost symmetry, c.f., [Goldreich and Lynden-Bell
1965; Marcus and Press 1977] and is the basis of the shearing sheet boundary conditions
[Balbus and Hawley 1998; Barranco and Marcus 2006]. Due to the shift-and-boost symmetry,
the origin of the x-axis is not unique, so equation (3.14) has the following meaning: x∗ is
the cross-stream distance between a perturbation and the location of the baroclinic critical
layer that it excites.

Eigenmodes with baroclinic critical layers are neutrally stable (i.e., s is real) and have
singularities are in the vertical z components of their velocities and densities.To show their
singularities , we solve the eigenvalue problem of linearized equations (3.5)–(3.7) in a 3D box
that is periodic in y and z directions with box size L. The eigenfunction g(x) is expanded
in Chebyshev series in x direction. The boundary conditions are v′x = 0 at x = ±Lx/2. We
consider a linear shear velocity with V̄ (x) = σx, where σ = −3/2Ω is constant and corre-
sponding to the Keplerian shear. We set N̄/f = 1 for the background vertical stratification.
Under these parameters, we obtain x∗ of baroclinic critical layers from equation (??):

x∗ =
(s± N̄)L

2π|σ|m
, (3.12)

where the vertical wave number is kz ≡ 2πq/L with q being an integer. Figure 3.3 shows
the singularity in vz and ρ̃ of an eigenmode with m = 1, q = 1 and corresponding to an
eigenvalue s = 0. According to equation (3.12), their singularity is expected to be seen at
x∗ = ±1 shown in Figure 3.3ab.
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Figure 3.3: Plot of a) v′z and b) ρ̃ of a baroclinic critical layer eigenmode along cross-
stream direction. The horizontal axis is x. Solid line: real part of the eigenmode; dash line:
imaginary part of the eigenmode.

Baroclinic critical layers are easily excited by small disturbances in our numerical simu-
lations. They create large-amplitude vortex layers at the critical layers. The z-component
of the curl of equation (3.6) gives

∂ωz/∂t = −(v · ∇)ωz + (ω · ∇)vz + (f + σ)(∂vz/∂z), (3.13)

where ω is the relative vorticity with respect to the equilibrium flow, i.e., ω ≡ ∇ × (v −
V̄ (x) ŷ). equation (3.13) shows that the generalized Coriolis term (f+σ)(∂vz/∂z) is a source
term for ωz. Within the baroclinic critical layer, the z-component of the velocity is nearly
anti-symmetric about x∗; on one side of the layer vz →∞, and on the other side vz → −∞;
thus, the Coriolis term in equation (3.13) creates a large-magnitude vortex layer centered
at x∗ made up of dipolar segments with one side having cyclonic vorticity (ωzf > 0) and
the other with anti-cyclonic vorticity (ωzf > 0) (c.f., Figure 3.1a). In contrast, barotropic
critical layers do not form vortex layers; although their eigenmodes’ vy is singular, vz is finite
everywhere.

3.3 Numerical Simulation

To be relevant to the flows in PPDs, we only consider the case with σ/f = −3/4 and
0.5 ≤ ¯N/f ≤ 1. Note that PPDs have anticyclonic shear and are periodic in their stream-
wise, or azimuthal, direction like the Couette flow studied here. To verify our computations,
flows were computed with two independent codes. One code used shearing sheet method
Barranco and Marcus 2006, which is commonly used in astrophysics community. The other
used semi-analytic method with a periodicized sawtooth shear (described in Chapter 2) and
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enforced an outward-going wave condition by putting sponge layers near x boundaries. These
two codes produced similar results.

Many types of perturbations create zombie vortices. Most relevant to PPDs is a Kol-
mogorov spectrum of noise where the velocity and Rossby number Ro ≡ ωz/f of the initial
eddies scale respectively as l1/3 and l−2/3, where l is the eddy diameter. The smallest eddies
have the largest vorticity and Ro. In our calculations, regardless of how small we make
the amplitude of the initial Kolmogorov spectrum, if the spatial resolution is sufficient, the
smallest eddies will have a sufficiently large Ro to trigger the instability and create zombie
vortices. The details of simulations with initial Kolmogorov noise are discussed in next chap-
ter. Here we focus on the formation and self-replication of the zombie vortices by perturbing
the flows with a single vortex and a vortex pair.

3.4 Single Vortex Perturbation

Consider the flow in Figure 3.1 and Figure 3.1, which is initialized with a single anticyclone
at the origin. It has Ro = −0.31 and volume ∼ 10−4 of the domain. It is embedded in
the unperturbed flow V̄ (x) and ρ̄(z). The velocity perturbation due to the initial vortex
is significant only near the origin and is small, ∼ 10−2σLx, where Lx is the domain size
in x. (Velocity perturbations in PPD studies are considered small when they are less than
∼ 0.1σLx [Balbus, Hawley, and Stone 1996].) Our initial vortex is in quasi-equilibrium as
in [Barranco and Marcus 2005] such that equations (3.5) & (3.6), but not equation (3.7),
are in steady equilibrium. The initial density perturbation is confined to the initial vortex.
Equation (3.7) allows ρ and N(x, y, z, t) to change. Figure 3.1 shows ωz in an x–y plane. The
perturbing vortex is nearly steady, so it excites critical layers with frequencies s = 0. Thus,
equation (3.14) shows that the critical layers are at |x∗| = 1/|m| with no critical layers at
|x| > 1. Figure 3.1a shows vortex layers at these critical layers: ωz appears at x = 1/|m| as
|m| segments of dipolar stripes aligned in the stream-wise y direction for |m| = 1, 2 and 3. A
Fourier analysis shows that the stripes have s = 0. We previously showed [Marcus 1993; 1990]
that in shear flows with fσ < 0, cyclonic vortex layers aligned in the stream-wise direction
are stable, whereas anticyclonic layers are unstable, roll-up into discrete anticyclones, and
merge to form one large anticyclone. This behavior is seen in Figure 3.1b. The anticyclonic
vorticity at x = 1/3 has rolled up and merged into a single anticyclone (near y = 1.5).
The anticyclonic vorticity at x = 1/2 has rolled up into an anticyclone near y = −0.5. In
contrast, the cyclonic ωz near x = 1/2 has formed a continuous, meandering filament. At
later times (Figure 3.1c), the anticyclones near x = 1/3 (and near y = 2) and near x = 1/2
(and near y = −1) have become larger. Figure 3.1c and Figure 3.1d show critical layers
and vortices at |x| > 1, which cannot be created by perturbations at the origin. The layers
at |x| > 1 are due to the self-replication of 1st-generation vortices at |x| ≤ 1. A vortex at
any location will excite critical layers in a manner exactly like the original perturbing vortex
due to the shift-and-boost symmetry (and will have s = 0 when viewed in the frame moving
with the perturbing vortex). Figure 1(c) shows 2nd-generation critical layers at x = 4/3, 3/2,
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2, and 2/3 all with |m| = 1 and excited by 1st-generation vortices at x = 1/3, 1/2, 1, and
−1/3, respectively. Figure 3.1d shows 3rd-generation critical layers at 2 < x ≤ 3, and 4th-
generation critical layers forming at x > 3. At later times the vortices from |m| = 1 critical
layers dominate (Figure 3.1d). At very late times, the vortices have cross-stream diameters
of order unity. (See below.) Within each zombie vortex the density mixes so that it is in
accord with its near hydrostatic and geo-cyclostrophic equilibrium (c.f., [Hassanzadeh et al.
2012]). However, there is horizontal, but very little vertical, mixing of density outside the
vortices, so the background vertical density stratification and N remain within 1% of their
initial unperturbed values. The lack of vertical mixing, despite strong horizontal mixing,
was seen in our earlier simulations [Barranco and Marcus 2005] and laboratory experiments
[Aubert et al. 2012] of vortices in rotating, stratified flows.

Figure 3.2 shows the flow in Figure 3.1 viewed in the x–z plane and illustrates our
main result: at late times the domain fills with anticyclones. Because the initial flow is
homogeneous with uniform σ and N̄ , the vortices form a regular lattice despite the flow’s
turbulence. As time progresses in Figure 3.2, the vortex population spreads out from the
perturbing vortex at the origin. At early times (Figure 3.2a) the flow has 1st-generation
critical layers, with |m| = 1, 2, and 3 being most apparent. In this first generation, and all
subsequent generations, a vortex perturbs the flow and creates four new prominent vortices
at its |m| = 1 critical layers at locations in x that are ±lx distant from itself and at locations
in z that are ±lz distant from itself. (lx is physically set by, and equal to, the distance in x
from a perturbing vortex to the anticyclonic piece of the vortex layer formed by its |m| = 1
critical layer; this distance is slightly greater than unity.) The 2nd-generation m = 1 critical
layers created by the 1st-generation vortices with |m| = 1, 2, and 3 are faintly visible in
Figure 3.2b and much more so in Figure 3.2c. At later times (Figure 3.2d), the |m| = 1
vortices descended from the 1st-generation |m| = 1 vortices dominate and form a lattice of
zombie vortices located at [x = 2j lx, z = 2k lz] and at [x = (2j + 1)lx, z = (2k+ 1)lz], for all
integers j and k.

The characteristic |Ro| of late-time zombie vortices in Figure 3.1 and Figure 3.2 is ∼ 0.2,
consistent with zombie vortices in flows initialized with noise. After a vortex forms, its
|Ro| intensifies to its approximate peak value within a few of its turn-around times, and it
remains near that value indefinitely. To examine the energy of the vortices and discover its
source, we decomposed the flow’s energy into two orthogonal parts: (1) the zonal component
consisting of the kinetic energy of the stream-wise velocity component with Fourier modes
kz = ky = 0 (i.e., the background shearing flow); and (2) the non-zonal component consisting
of everything else. If the initial flow were unperturbed, then the initial energy would be all
zonal. In the flow in Figure 3.1 and Figure 3.2, there is a small initial non-zonal component
due to the initial vortex at the origin. At later times, the non-zonal component represents the
energy of the initial vortex and the zombie vortices (and turbulence and waves). After initial
transients with faster than exponential growth, the non-zonal energy increases approximately
exponentially with an e-folding time of ∼ 1000 from just after the time of Figure 3.2a to
times later than that in Figure 3.2d . The non-zonal energy in Figure 3.2d is more than
400 times larger than its initial value. The energy is supplied by the zonal energy. This is
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proved in detail in Chapter 6. If the self-replication were self-similar, we would expect the
perimeter of the front between the vortex-populated flow and unperturbed flow in each x-z
plane to grow as t and the number of vortices to increase as t2, which is consistent with our
calculations.

3.5 Waves and Vortex Pair Perturbation

Our numerical simulations with wave generator show that they can excite critical layers and
form vortex lattices by breaking and producing closely-spaced pairs of anticyclones, which
in turn excite critical layers. This is showed in Figure 3.4ab. The 4 pairs of critical layers
in Figure 3.4b are created by the vortex pair near the origin. They are growthing in time
and roll up into vortices at time later than Figure 3.4b. The energy supplies their growth
is extracted from the background shear by the vortex pair instead of the wave generator.
This has been seen in the earlier time of the simulation: those 4 pairs of critical layers are
produced once the vortex pair forms. It is also proved by the designed numerical simulation
in the next chapter.

To better understand how vortex pairs self-replicate. we performed numerical simulation
with an initial condition consisting of the equilibrium V̄ (x) superposed with a pair of small
volume, almost spherical anticyclones near the origin separated in x by a small distance ∆.
Figure 3.5abcd illustrates how vortex pair self-replicate and form vortex lattices. The main
difference between this flow and the one initialized with single vortex perturbation is that
s 6= 0 because the two initial anticyclones advect in opposite stream-wise directions with
an approximate relative speed between them of |σ∆|. Because the stream-wise direction
has a periodicity length of Ly, this advection perturbs the flow with temporal frequencies
(2πσ∆)/(pLy), where p is a non-zero integer. Fourier analysis confirms that the baroclinic
critical layers are excited with s = (2πσ∆)/(pL) (as observed in any frame), and, in accord
with equation (3.13), the layers are at

x∗ = ±(1/m)±∆/(pm), (3.14)

where the two ± terms in this expression are independent. It is less ambiguous and more
insightful (when ∆ � 1, as is the case here) to think of the critical layers as forming in
pairs with the pairs centrally located at X = ±1/m, and with the two critical layers in each
pair separated from each other by a distance in x of ∆′ = 2∆/|pm| (i.e., x∗ = X ± ∆′/2).
Each critical layer within a pair rolls up to form anticyclones at z ' ±X and such that the
vortices within each pair are separated from each other in x by ∆′. The new anticyclones
advect past each other and excite new critical layers in the same manner that the original
pair of vortices did. If |pm| = 2, then ∆′ ≡ ∆, and due to the shift-and-boost symmetry,
the self-replication of the vortex pairs and critical layers is self-similar. A Fourier analysis
of the flow in Figure 3.5abcd shows that the strong critical layers have |pm| = 2, and in
Figure 3.5d the layers with |p| = 2, |m| = 1 are the strongest. These values of p and m
create a face-centered lattice of anticyclone pairs.
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Figure 3.4: Wave generator excites strong layers by producing vortex pairs. The backgroud
flow has σ/f = −3/4, N̄/f = 1. The computational domain is a cubic box with size
L = 2.3562. The wave generator placed at origin has frequency s = 0.75N̄ and magnitude
A = 3.75×10−4(Ω2L). Anticyclonic ωz is blue and cyclonic ωz is red, with the color is bluest
at ωz/f = −0.1 and reddest at ωz/f = −0.1. a) t = 607.37, x− y plane at z=0. The wave
generator under the effect of background shear creates a pair anticyclonic vortices with a
small separation distance ∆ = 0.3314 in the cross stream direction. b) t = 670.21, x − z
plane at y=0. 4 pairs of critical layers with m = 1 and separation distance ∆ are produced
centered at |X| = 1 by the counter moving vortices near origin. 4 weak pairs of m = 2
critical layers can also be seen near the |X| = 1/2. The wave generator is at origin. The
diagonal line emitted from the origin are the m = 0 internal inertial-gravity waves. The 4
curved lines come from the wave generator are m = 1 internal inertial-gravity waves with
the forcing frequency of the wave generator.
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Figure 3.5: Zombie vortices sweep outward from the perturbing vortex pair at the origin in
the x–z plane (at y = 0). Anticyclonic ωz is black (darkest is ω/f = −0.2) and cyclonic is
white (lightest is ω/f = 0.2). f/N̄ = 1 and σ/N̄ = −3/4. The x−z domain has |x| ≤ 4.7124;
|z| ≤ 4.7124, and is larger than the region shown. a) t = 160/N̄ . 1st-generation critical layers
with |m| = 1, 2 are visible at |X| = 1 and 1/2. Diagonal lines are ky = 0 internal inertia-
gravity waves with shear, not critical layers. Initial vortex pair can also be seen near x = 0.
b) t = 576. 1st-generation vortex pairs with central location of the pair at |X| = 1 and 1/2,
roll-up from the critical layers with |m| = 1 and 2 in panel a, respectively. c) t = 1856.
2nd-generation vortex pairs with |X| = 0 and 2 spawned from the 1st-generation pairs near
|X| = 1, and a weaker 2nd generation with |X| = 1/2 and 3/2 spawned by the weak 1st

generation with |X| = 1/2. d) t = 3200. 1st, 2nd and 3rd generation vortex pairs. The lattice
spacing of the pairs in the x direction is approximately unity, and the dominant critical
layers all have |p| = 2, |m| = 1.



CHAPTER 3. ZOMBIE INSTABILITY AND SELF-REPLICATING ZOMBIE
VORTICES IN STABLY STRATIFIED ROTATING SHEAR FLOWS 34

3.6 Energy and Saturation of Zombie Instability

Energy Analysis of Single Vortex

We present energy analysis of flow initialized with a single vortex perturbation to show the
energy that supports the instability is extracted from the background zonal flow. The initial
vortex here has Gaussian vorticity profile in all three directions and has a maximum Ro
the same as the one in Chapter 3. In our numerical simulations, we use the decomposition
v = V̄ (x)ŷ + v′. However, this is not a good way to define zonal and non-zonal components
of the flow because V̄ (x)ŷ and v′ are not orthogonal to each other. The cross term

∫
V̄ v′y dV

exists when computing the components of total kinetic energy. Here we use a decomposition
that results in two orthogonal components of the total kinetic energy. To do that, we
decompose the total velocity v as

v = ¯̄V (x, t)ŷ + v̂(x, y, z, t), (3.15)

where ¯̄V is the zonal velocity and v̂ is the non-zonal velocity. Note the difference between this
decomposition and and the one used in the simulation are only in the stream-wise component
of the velocity. The two decompositions are related as

¯̄V (x, t) = V̄ (x)+ < v′x(x, y, z, t) >yz (3.16)

v̂y = v′y− < v′y(x, y, z, t) >yz (3.17)

v̂x = v′x (3.18)

v̂z = v′z, (3.19)

where <>yz denotes the spacial average in stream-wise and vertical directions. With the new
decomposition, there is no cross term when computing the total kinetic energy resulting in
two orthogonal parts: zonal kinetic energy KEZ and non-zonal kinetic energy KEN . The
total energy E of the Boussinesq flow can be written as E ≡ KEZ + KEN + PE, where
PE denotes the perturbed potential energy. Each component of the energy are defined as

KEZ ≡
∫

1

2
¯̄V 2 dV − Eref (3.20)

KEN ≡
∫

1

2
|v̂|2 dV (3.21)

PE ≡
∫
ρ̃gz dV (3.22)

where ρ̃ = (ρ − ρ0 − ρ̄)/ρ0, and all integrals are taken over the computational volume V :
−Lx/2 ≤ x ≤ Lx/2, −Ly/2 ≤ y ≤ Ly/2, −Lz/2 ≤ z ≤ Lz/2. In equation (3.20), we
subtracts a constant reference energy Eref ≡

∫
1
2
V̄ (x)2 dV , which does not change with

time. For linear shear V̄ (x) = σx, we can derive the energy evolution equation for each
components. The Boussinesq equations written in zonal and non-zonal velocities are

∇ · v̂ = 0, (3.23)
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∂ ¯̄V

∂t
ŷ +

∂v̂

∂t
= − ¯̄V

∂v̂

∂y
− (v̂ · ∇)v̂ − v̂x

∂ ¯̄V

∂x
ŷ + v̂× f ẑ −∇p̃− f( ¯̄V − V̄ )x̂. (3.24)

∂ρ̃

∂t
= − ¯̄V

∂ρ̃

∂y
− (v̂ · ∇)ρ̃+

N̄2

g
v̂z. (3.25)

We obtain evolution equations of KEZ and KEN by multiplying equation (3.24) by ¯̄V ŷ
and v̂ respectively, and then integrate over V . Similarly, we obtain evolution equation of
PE by multiplying equation (3.25) by gz and integrate over V . Note all the variables are
periodic in x and y, except terms including ¯̄V (x, t), which are not periodic in x because they
contain σx. In vertical direction, variables are expanded in Chebyshev series and we have
v̂z = 0 at z = ±Lz/2. Many of the resulting terms can be written as perfect divergences
which will integrate to zero with periodicity in x and y and the vertical boundary conditions.
The leftover terms are the source/sink terms of the energy including the damping terms due
to hyperviscosity:

∂

∂t
(KEZ) = S1 + S2 +H

KEZ
, (3.26)

∂

∂t
(KEN) = −S2 + S3 +H

KEN
, (3.27)

∂

∂t
(PE) = −S3 +H

PE
. (3.28)

The total energy evolution equation can be written:

∂

∂t
E = S1 +H

KEZ
+H

KEN
+H

PE
. (3.29)

where the source/sink terms are defined:

S1 ≡ −
∫
x=Lx/2

σLx(v̂y + ¯̄V − V̄ )v̂x dy dz, (3.30)

S2 ≡
∫
σv̂xv̂y dV −

∫
fv̂x

¯̄V dV , (3.31)

S3 ≡ −
∫
ρ̃gv̂z dV . (3.32)

S1 is the source/sink term of the total energy. This term is due to the fact that shear
velocity is linear function of x but the boundary conditions of x are periodic. This inconsis-
tency results in a surface integral term on the cross-stream boundaries that does not vanish.
Physically, it represents the flow of energy into and out of the edges of the domain in the
cross-stream direction. S2 and S3 are the source/sink terms that exchange energy between
KEZ and KEN , KEN and PE. In equation (3.31), the first term on the right-hand-
side is the dominant term of S2. The second term can be written in a divergence form as∫
∇ · [f v̂B] dV , where B(x) =

∫ x
0

¯̄V (x′) dx′. In general, B(x) may not be periodic in x and
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Figure 3.6: Time evolution of energy for single vortex simulation. Time is normalized
by 1/N̄ . Left panel: total energy. Right panel: energy components based on zonal and
non-zonal decomposition. Solid thin line: KEZ; solid bold line: KEN ; dash line: PE.

this term is not zero. However, throughout simulations, it is of several order of magnitude
smaller than the first term. H

KEZ
, H

KEN
and H

PE
are hyperviscosity damping terms of the

corresponding energy components.
Left panel of Figure 3.6 shows the total energy of the system decreases due to the hy-

perviscosity damping. The right panel shows the zonal kinetic energy decreases while the
non-zonal kinetic energy and potential energy increase. By adding equations (3.27) & (3.28)
together, only one source term −S2 exists. Therefore, the energy increase of non-zonal ki-
netic energy and potential energy must be due to energy transfered from the zonal flow. It
is even more clear to look at the plots of right-hand-side terms of equations (3.26)–(3.28).

Figure 3.7 shows the right-hand-side terms of KEZ evolution equation (3.26). The
dominant term is S2 (solid bold line), which is a sink term extracting huge amount of energy
from zonal flow. As more zombie vortices are produced, the term grows dramatically in
magnitude, indicating more energy are extracted from the zonal flow. S1 (dash line) is the
source/sink term due to the shearing sheet boundary condition. It is very small during
the simulation. This is because it is a surface integral term evaluated on the cross-stream
boundaries. We intended to use a large domain in the cross-stream direction. So unless
zombie vortices are close to the cross-stream boundaries, the effect of this term can be
negligible comparing to S2. The hyperviscity term H

KEZ
(solid thin line) is also negligible.

Figure 3.8 shows the right-hand-side terms of KEN evolution equation (3.27). Here the
source term is −S2 (solid bold line), which is a source term that transfers kinetic energy from
zonal to the non-zonal component. It is this amount of energy that supplies the instability to
grow. S3 (dash line) is a sink term that transfers part of the income energy to the potential
energy. H

KEN
(solid thin line) is the hyperviscosity damping of the non-zonal kinetic energy.

It is not a small term and increases with time. The reason is hyperviscosity acts like a
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Figure 3.7: Source/sink terms of zonal kinetic energy KEZ. The original data oscillate
dramatically in time. A moving average with a window size of 127(1/N̄) is used for better
visualization. Dash line: S1; solid bold line: S2; solid thin line: H

KEZ
. (The dash line and

the solid thin line almost lie on each other.)

low-pass filter in space. As more zombie vortices are produced, the flow becomes more
turbulent and produces lots of small scale structures which are damped by the hyperviscosity.
During the instability, the source term −S2 is greater than the summation of the two sink
terms resulting in a net increase of non-zonal kinetic energy as showed in the right panel of
Figure 3.6 (solid bold line).

Figure 3.9 shows the right-hand-side terms of PE evolution equation (3.27). −S3 (solid
bold line) is a source term that transfers energy from non-zonal kinetic energy to potential
energy. H

PE
(solid thin line) is the hyperviscosity damping of potential energy, which is

very small. The potential energy increase showed in right panel of Figure 3.6 (dash line)
is almost purely due to the energy transfered from the non-zonal flow, which is part of the
total amount of energy transfered from the zonal flow.

From above analysis, we conclude during the growth of the instability, energy that sup-
ports the instability is extracted from the zonal kinetic energy and transferred to the non-
zonal kinetic energy. This amount of energy is divided into three parts. One part becomes
the energy source to supply non-zonal kinetic energy growth, one part is continue transferred
to the potential energy; the leftover part is damped by the hyperviscosity. The direction of
energy transfer is from KEZ to KEN , then to PE. Once the instability begins, as more
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dramatically in time. A moving average with a window size of 127(1/N̄) is used for better
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zombie vortices are produced, more energy is extracted from the zonal flow.

Energy Extracted From Shear by Vortex Pair

In Chapter 4, we make the statement the energy that supplies the growth of the 4 pairs of
critical layers (c.f. Figure 3.4b) is extracted from the background shear rather than provided
by the wave generator. This can be proved by the following numerical experiment: at time
showed in Figure 3.4b, we stop the wave generator forcing and let the flow continue to evolve
in time. The 4 pair critical layers still grow and subsequently roll-up into 4 pairs of vortex,
which generate new critical layers. This is because although the external forcing disappears,
the vortex pair near origin still exist and continue extracting energy from the background
shear to supply the instability to grow. The results are shown in Figure 3.10ab. Figure 3.10a
shows the time evolution of non-zonal kintic energy KEN after turning off the wave gener-
ator forcing. The growth of KEN indicates energy is continuously supplied by zonal flows
through KEN source term −S2. Figure 3.10also shows a well-defined frequency. This fre-
quency corresponds to the paasing-by frequency of the vortex pair at the origin 2π∆/|σ|L.
Equation (3.21) indicates KEN contains the first harmonic of the first fundamental fre-
quency of the flow. The fundamental frequency of the flow is π∆/|σ|L, which is also the
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frequency associated with critical layers centered at |X| = 1, confirmed by Fourier analysis.
The anticyclonic vortex layer pairs intensify and later roll up into vortex pairs centered at
|X| = 1, which in turn excite next generation critical layer pairs centered at X = 0 as shown
in Figure 3.10b.

Saturation of Zombie Instability

The exponential growth of the instability is due to the fact that vortices in the vortex-
populated region grow exponentially in size, and not due to a long-term exponential increase
of the velocity of each zombie vortex. Therefore, instability is expected to be saturated
when the vortices fill the domain. Based on several numerical experiments, it appears that
the late-time status of zombie vortices depend on the background parameters, N̄ , f and σ
rather than on properties of the initial perturbation. In all simulations, σ/f = −3/4 are
chosen to be relevant to PPDs, the saturated states of the flows only depend on N̄/f . This
is showed in Figure 3.11 by plotting the long time evolution of non-Keplerian kinetic energy
KE ≡

∫
1
2
|v′|2 dV of several different initial conditions including single vortex at different

cross-stream locations, vortex pair, 2D and 3D noise with Kolmogorov spectrum but different
initial kinetic energy. In these simulations, we have f/N̄ = 1/2. All the simulations use
Fourier series in horizontal direction and Chebyshev series in vertical direction, except for
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Figure 3.10: Energy supplied is extracted from background shear. All the parameters are
the same as Figure 3.4 except the wave generator forcing is stopped at t = 670.21. The
backgroud flow has σ/f = −3/4, N̄/f = 1. The computational domain is a cubic box with
size L = 2.3562. a) Non-zonal kinetic energy KEN evolution in time. b) t = 1340.41, x− z
plane at y=0. Anticyclonic ωz is blue and cyclonic ωz is red, with the color is bluest at
ωz/f = −0.1 and reddest at ωz/f = −0.1. 4 pairs of critical layers in Figure 3.4b roll up
into 4 pairs of vortex centered at |X| = 1. 2nd generation of critical layer pairs are excited
centered at X = 0.

the one with blue dot dash line, which use Fourier series in all directions. Despite their
differences, when zombie instability saturate, they all have the same level of KE as shown
in Figure 3.11.

Their flows look very similar, whose cross-stream direction are filled with 7 zombie vor-
tices. For instance, the late time results of the flows initialized with a single vortex at origin
are shown in Figure 3.12ab. The reason that there are only 7 zombie vortices rather than 9
(Analytically, the flow will contain 9 critical layers in the cross-stream direciton.) is because
each of these well-developed vortices could have their cross-stream diameters slightly larger
than 1. This is confirmed by the plot of non-Keplerian kinetic energy spectrum as a function
of corss-stream Fourier mode, shown in Figure 3.13. All the data in the plot are taken when
the flows saturate. A peak can be seen for all the spectrum at |n| = 7, which confirms the
cross-stream flow structures shown in Figure 3.12ab. It is showed energy is extracted from
background zonal flow to non-zonal flow, the peak shows this amount of energy is injected to
the non-zonal flow at a cross-stream length scale corresponding to |n| = 7, the cross-stream
length scale of zombie vortices. This implies zombie vortices are responsible for energy ex-
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Figure 3.11: Long time non-Keplerian kinetic energy evolution. A moving average with a
window size of 127(1/N̄) is used for better visualization. All the simulation have background
parameters σ/f = −3/4 and f/N̄ = 1/2, and are performed in a cubic box with size
L = 4.7124. Lines represents different initial conditions. Black solid line:a single Gaussian
vortex at x = 0, y = 0 and z = 0; Black dash line: a single Gaussian vortex at x = 3.7699,
y = 0 and z = 0; Black dot dash line: pair of Gaussian vortex with their center at x = 0,
y = 0 and z = 0, and their separation distance ∆ = 0.8247. Blue solid line: 2D noise with
Kolmogorov spectrum, KE0 = 4.1× 10−5(ΩL)2; Blue dash line: 3D noise with Kolmogorov
spectrum, KE0 = 9.2×10−5(ΩL)2; Blue dot dash line: 3D noise with Kolmogorov spectrum,
KE0 = 5.9× 10−3(ΩL)2.

traction. The spectrums have slope of −5/3 from the peak downwards to high wave number
modes, indicating these zombie vortices are surrounded by turbulent flows. All the spectrum
collapse to nearly a single curve at scles smaller than the charactertistic cross-stream length
scale of zombie vortices, despite their huge different initial condtions.

3.7 Conclusion

We have shown that linearly, neutrally stable plane Couette flow becomes finite-amplitude
unstable when it is vertically stably-stratified. In the examples here, baroclinic critical
layers are excited by a small vortex or a vortex pair, but our calculations show that a variety
of small-volume, small-energy perturbations cause critical layers to grow and roll-up into
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Figure 3.12: Well-developed zombie vortices fill the domain at late time t = 19200. The
background flow has σ/f = −3/4, N̄/f = 1/2. The initial condition is a single Gaussian
vortex placed at the origin with a maximum Ro = −0.3125. Anticyclonic ωz is blue and
cyclonic ωz is red, with the color is bluest at ωz/f = −0.25 and reddest at ωz/f = −0.25.
a) x − y plane at z = 0. There are 7 zombie vortices filled in the cross-stream direction.
b) x − z plane at y = 0. Vertical boundary damping are used in this simulation. Here the
damping regions are cropped for better visualization.

large-volume, large-energy vortices. In general, this instability self-replicates with each new
vortex exciting new layers that roll-up until the domain fills with compact 3D (i.e., not Taylor
columns) vortices. The robustness of zombie vortices is evident from the fact that survive
indefinitely even though they are embedded in a turbulent flow at late times. They survive
by drawing energy from the background shear flow. For constant N̄ and σ, the unperturbed
flow is homogeneous, and vortex self-replication is self-similar with zombie vortices forming a
regular lattice. The regularity of the lattice allows for reinforcement: each vortex re-excites
four other vortices in the lattice, and each vortex in the lattice is continually re-excited
by four other vortices. Zombie vortices occur frequently in our simulations of Boussinesq,
anelastic and fully-compressible fluids, so they pose a paradox: if they are so common, why
have they not been reported earlier? We believe the reasons are as following:

One reason that our instability was not discovered previously is that we use a spectral,
rather than a finite-difference or finite-volume numerical method. Spectral methods can
resolve features that are approximately 1216 times smaller (in each spatial dimension) than
a second-order finite-difference calculation with the same number of computational elements.
Our instability is 3D, and to be simulated, it requires a 3D code with radial resolution of
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Figure 3.13: Kinetic energy spectrum as function of cross-stream Fourier mode |n|, where
kx ≡ 2πn/Lx with n being an integer. Background parameters and legend are the same as
Figure 3.11. All the spectrum data are at time t = 19200 except for blue dash dot line (the
last in the legend) has data at t = 17600. Thin solid line: |n|−5/3; Vertical thin dot line:
n = 7.

the PPD that is better than H = 10, where H is the vertical pressure scale height. Most
previous PPD calculations did not have the required resolution.

A more fundamental reason that our new instability was not previously discovered is that
much of the PPD literature used constant-density fluids, c.f., [3] or ideal gases in which the
initial density was uniform in the vertical direction, rather than stably stratified. Rayleighs
criterion for centrifugal stability applies only to fluids with constant density and therefore
is not relevant to PPDs where the density falls off approximately like a Gaussian away from
the midplane. Instabilities have not been systematically sought in stratified Couette flows
[Le Bars and Le Gal 2007]. With few exceptions [Tevzadze, Chagelishvili, and Zahn 2008],
stability studies of ideal gases in PPDs were carried out with no initial vertical stratification.
For instance, one stability study of PPDs [Balbus, Hawley, and Stone 1996] argues that
the stability of a PPD is governed by Rayleighs centrifugal criterion (i.e., PPDs are both
linearly and nonlinearly stable), and another initial-value study of PPDs [Shen et al. 2006]
with a very high spatial resolution did not show our new instability. However, both studies
initialized the flow with constant density even though they both used an ideal gas equation
of state. We can only speculate on why non-onstant density flows have been overlooked
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in previous stability analyses of PPDs, but there appears to be a belief that if a fluid flow
with a constant density is stable, then the same flow with a density that is vertically stably-
stratified is even more stable. This belief is not true, and zombie instability requires stable
vertical stratification. These omissions eliminate baroclinic instabilities.

Zombie vortices occur in our calculations of the dead zones of protoplanetary disks,
which suggests that they may have an important role in star and planet formation[Barranco
and Marcus 2005]. In addition, zombie vortices should be observable in laboratory circular
Couette flows with stratified salt water for parameter values where the flow is linearly stable
with respect to centrifugal instability [Drazin and Reid 1981a], SRI [Le Bars and Le Gal 2007;
Molemaker et al. 2001; Yavneh et al. 2001] and other instabilities [Le Dizés and Billant 2009].
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Chapter 4

The Dead Zones of PPDs Are Not
Dead

4.1 Introduction

Angular momentum transport plays an important role in the structure and evolution of an
accretion disk. Collisional viscosity is thought to be very inefficient at angular momentum
transport; thus, one must appeal to transport by a turbulent viscosity [Shakura and Sun-
yaev 1973]. In magnetized accretion disks, this turbulence is thought to be generated and
sustained by the magnetorotational instability (MRI) [Balbus and Hawley 1991], first pro-
posed by [Chandrasekhar 1960; Velikhov 1959]. However, some regions of the disks around
a protostar (protoplanetary disk, or PPD) are too cold and neutral to effectively couple to
a magnetic field [Gammie 1996]. These regions are stable to MRI, and are thus referred to
as “dead zones.” However, angular momentum must somehow be transported through the
dead zone in order for protostars to accrete and become stars.

There has been substantial effort to determine whether or not a Keplerian shear flow
is hydrodynamically stable or unstable. Such a shear flow is linearly stable, as its angular
momentum increases with radius [Rayleigh, Lord 1916]. There have been some claims that a
Keplerian shear flow may be nonlinearly unstable, by analogy with non-rotating shear flows
such as Taylor-Couette flow and Pouseuille flow. However, sustained turbulence has not
be observed in numerical simulations ([Balbus, Hawley, and Stone 1996], hereafter BHS96;
[Shen et al. 2006], hereafter SSG06;) or laboratory experiments ([Ji et al. 2006]; though
see [Balbus 2011; Paoletti and Lathrop 2011; Schartman et al. 2012] for some recent con-
troversy). Because the Keplerian shear flow appears to be hydrodynamically stable, many
have investigated whether additional physics can render the flow unstable [Klahr and Bo-
denheimer 2003; Lesur and Papaloizou 2010; Lovelace et al. 1999; Molemaker et al. 2001;
Yavneh et al. 2001]. We find these instability mechanisms unsatisfying, as they either require
subtle conditions or rely on unphysical initial and boundary conditions.

In this chapter, we study the effects of vertical stratification on a Keplerian shear flow,
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building on the work of [Barranco and Marcus 2005][hereafter BM05], [Barranco and Marcus
2006][hereafter BM06], and [Marcus, Pei, et al. 2013][hereafter MPJH13]. A thin, isothermal
accretion disk in hydrostatic equilibrium is stably stratified, and has a buoyancy (Brunt-
Väisälä) frequency N which increases linearly from the mid-plane. We show that in sim-
ulations of a uniformly, stably stratified, small amplitude random noise is unstable to the
formation of large, coherent vortices. We ran simulations using our anelastic pseudo-spectral
code (BM06), as well as the Athena code [Gardiner and Stone 2008; Stone, Gardiner, et al.
2008], which solves the fully compressible equations. The instability is present in both codes,
and has similar characteristics.

The linear evolution of vertically stratified Keplerian shear flows has been studied ex-
tensively [Salhi and Cambon 2010; Salhi, Lehner, et al. 2013; Tevzadze, Chagelishvili, and
Zahn 2008; Tevzadze, Chagelishvili, Zahn, et al. 2003; Volponi 2010]. These papers study
the transient amplification of leading vortex modes via shearing, which can then couple to
long-living spiral-density waves. However, they do not provide any (nonlinear) mechanism
by which the spiral-density waves could regenerate the leading vortex modes. This style of
analysis also neglects any instability of the shearing vortex modes, such as Kelvin-Helmholtz
instabilities (e.g., SSG06), which inhibit transient amplification.

In addition, several groups have simulated the fully nonlinear evolution of vertically strat-
ified Keplerian shear flows [Fleming and Stone 2003; Fromang and Papaloizou 2006; Oishi
and Mac Low 2009]. These three papers describe simulations of accretion disks composed
of magnetized plasma whose magnetic resistivity becomes large near the mid-plane. Al-
though the MRI is present far from the mid-plane, the large magnetic resistivity prevents
the plasma from efficiently coupling to the magnetic field near the mid-plane. Thus, an
MRI-stable “dead zone” forms near the mid-plane.

These simulations show no sign of a hydrodynamic instability of the dead zone. This is
completely consistent with our results, which show that the instability is only present for
simulations with at least 128 grid points or modes in the radial direction per pressure scale
height. [Fromang and Papaloizou 2006] uses a resolution of 30 radial points per pressure
scale height, and [Fleming and Stone 2003; Oishi and Mac Low 2009] use at most 64. Fur-
thermore, the growth time of the instability is hundreds of orbits, whereas previous studies
only integrated for at most one hundred orbits.

In this chapter, we focus on flows with constant vertical stratifications. We show that the
amplitude threshold for zombie instability is vorticity rather than velocity. We propose that
in the limit of very small dissipation (as the flows in PPDs), zombie instability is effetively
an linear instability. Only extremely small initial perturbations would be required to seed
it. How zombie instability will affect the angular momentum transport in PPDs is also
discussed. Finally, we speculate there might not be laminar Keplerian disks at all. The disk
are essentially turbulent.
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4.2 Equations for the Fluid Motion in Local PPD

Approximation

The stability of flows in protoplanetary disks have been examined using a variety of approx-
imations to the equations of motion Here, we limit ourselves to approximations in which the
curvature of the disk is ignored and in which the unperturbed azimuthal flow is expanded
locally around a fiducial cylindrical radius R0. Hill [Hill 1878] was the first to carry out this
type of expansion. We consider only fluid that with no dissipation and no radiative transfer.

Ideal, fully compressible flow

Consider a disk in which the unperturbed steady flow is only in the azimuthal direction with
an angular velocity Ω(R) such that

Ω(R) ∝ R−q. (4.1)

In the local Cartesian approximation around R0, Euler’s equation for an observer in a frame
rotating with angular velocity Ω0 ≡ Ω(R0) around the z-axis is:

∂v

∂t
+ (v ·∇)v = −1

ρ
∇P

− 2Ω0 ẑ× v + 2qΩ2
0 x x̂− g(z) ẑ, (4.2)

where v(x, y, z) is the gas velocity written in the Cartesian approximation, where P and
ρ are the gas pressure and density, −2Ω0 ẑ × v is the Coriolis term, 2qΩ2

0 x is the tidal
acceleration that arises from the difference between the centrifugal acceleration −RΩ2(R)
and the quantityR0Ω2(R0), −g(z) is the acceleration of gravity in the z direction, and where a
“hat” above a coordinate means the unit vector in that coordinate’s direction. The Cartesian
approximation in eq. (4.2) uses x� R0, where the Cartesian x coordinate corresponds to the
cylindrical radial direction with x ≡ R − R0, where the Cartesian y coordinate corresponds
to the azimuthal φ coordinate with y ≡ −R0φ, and where z is identical in the Cartesian and
cylindrical coordinate systems. Using the same local Cartesian approximation, the continuity
equation becomes

∂ρ

∂t
+∇ · (ρv) = 0, (4.3)

and the energy equation becomes

∂ρε

∂t
= −∇ · (ρεv)− P (∇ · v), (4.4)

where ε is the internal energy of the gas. Following BHS96, we write ε ≡ (3/2)RT , where R
is the gas constant, T is the gas temperature, and the ideal gas equation of state is

P = (γ − 1)ρε = RρT, (4.5)
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where γ is the ratio of the specific heats at constant pressure and constant volume and set to
5/3. The steady, unperturbed equilibrium velocity (written with an overbar) that satisfies
eqs. (4.2) – (4.5) is

v̄x = v̄z = 0 (4.6)

v̄y = −qΩ0 x. (4.7)

The steady equilibrium pressure and density, that satisfy eqs. (4.2) – (4.5) are functions of
z only and obey the hydrostatic equation:

dP̄ (z)/dz = −ρ̄(z)g(z). (4.8)

The steady equilibrium internal energy and temperature are also functions of z only and
satisfy the equation of state: ε̄(z) = (3/2)P̄ (z)/ρ̄(z) and T̄ (z) = P̄ (z)/[Rρ̄(z)].

Because there is no thermal radiation, diffusion, or dissipation in equations (4.2) – (4.5),
there is a degeneracy of the allowable steady equilibrium thermodynamic solution. In general,
one thermodynamic quantity, P̄ (z), T̄ (z), ρ̄(z), or ε̄(z) can be arbitrarily specified (but see
the one exception to this degeneracy explained in the next paragraph). Once that quantity
is specified the others follow uniquely (up to a constant of integration) from the hydrostatic
equation and the equation of state.

In the Cartesian approximation of a Keplerian disk in which the self-gravity of the gas
is ignored, but the vertical z component of the gravity from the central object is included,
g(z) = −Ω2

0 z, where z = 0 is the mid-plane of the disk. This vertical gravity was used in
our anelastic calculations in BM05 and BM06 along with the choice that T̄ (z) is constant
(motivated by models such as [Chiang and Goldreich 1997]). This calculation produced
zombie vortices. In contrast, the disk stability studies in BHS96, and in SSG06 use equations
eqs. (4.2) – (4.5) with g(z) ≡ 0, and, as we show in § 6, the latter approximation prohibits the
zombie instability. When g = 0, the steady state equilibrium pressure corresponding to the
steady velocity in eqs. (4.6) – (4.7) must be constant, and therefore cannot be an arbitrary
function of z. However, T̄ (z) or ρ̄(z) or ε̄(z) can still be arbitrarily specified. In the stability
calculations in BHS96, and in SGS06 with g = 0, the steady equilibrium internal energy,
temperature and density were all chosen to be constants (see § 3), so that the unperturbed
disk flow is barotropic (see [Kundu 1990] and below for definition).

Anelastic flows

The anelastic approximation to eqs. (4.2) – (4.5) is commonly used in atmospheric flows
[Peter R Bannon 1996; Gough 1969; Ogura and Phillips 1962], where there is a reference
density or steady equilibrium density ρ̄(z) that varies with z. In the anelastic approximation
ρ̄(z) can be an arbitrary function of z, and the changes in ρ̄(z) with respect to z can be
arbitrarily large. However, the anelastic approximation has two requirements for all locations
and for all time: (1)

∣∣ρ(x, y, z, t) − ρ̄(z)
∣∣ � ρ̄(z), and (2)

∣∣v| must be much less than the

isothermal speed of sound Cs ≡
√
RT (or that the Mach number Ma must be small). The
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latter requirement is not satisfied in many astrophysical flows, so the anelastic equations are
not commonly used in astrophysics. However, it should be noted that both requirements are
fulfilled in the computations of disk stability in BHS96, BM05, and in SSG06.

One computational nicety of using the anelastic approximation in an initial-value code
is that at every time step conditions (1) and (2) can be examined, and it can be determined
if the approximations required by the anelastic equations are still satisfied. For example,
in BM05 we used the anelastic approximation to study the evolution of an initial vortex
in the mid-plane of a protoplanetary disk and the subsequent formation of zombie vortices
off the mid-plane. At no time in our calculations did the Mach number exceed 0.1 or∣∣ρ(x, y, z, t)− ρ(z)

∣∣/ρ̄(z) exceed 0.2.
The anelastic equations are usually written in terms of the steady equilibrium density ρ̄(z)

and pressure P̄ (z), where P̄ (z) and ρ̄(z) satisfy the hydrostatic equation (4.8). The anelastic
equations for disk flow were derived in BM06 from eqs. (4.2) – (4.5) by expanding in powers
of
∣∣ρ(x, y, z, t) − ρ̄(z)

∣∣/ρ̄(z). For a disk in which the angular velocity of the unperturbed
steady equilibrium flow is proportional to R−q, the anelastic version of the local Cartesian
Euler equation (4.2) in the rotating frame becomes:

∂v

∂t
+ (v ·∇)v = − 1

ρ̄(z)
∇[P (x, y, z, t)− P̄ (z)]

− 2Ω0 ẑ× v + 2qΩ2
0 x x̂− ρ(x, y, z, t)− ρ̄(z)

ρ̄(z)
g(z) ẑ. (4.9)

Using the anelastic approximation, the continuity equation (4.3)) becomes

∇ · [ρ̄(z)v] = 0, (4.10)

The equation of state and energy equation are most conveniently written in terms of the
potential temperature (see BM05 and BM06). However, for the study presented here, we
need not complicate the equations with potential temperature. The dissipationless anelastic
equations, like the dissipationless fully compressible equations, have a degeneracy in the
steady equilibrium thermodynamic solution so that the equilibrium temperature T̄ (z) is
arbitrary. Here, as in BM05, BHS96, and SSG96, we choose a constant T̄ (z) = T0. For
T̄ (z) = T0, eq. (4.9) reduces to (see BM06):

∂v

∂t
+ (v ·∇)v = −∇P (x, y, z, t)− P̄ (z)

ρ̄(z)
−

2Ω0 ẑ× v + 2qΩ2
0 x x̂ +

T (x, y, z, t)− T0

T0

g(z) ẑ. (4.11)

For T̄ (z) = T0, we still use the continuity equation (4.10). Energy equation (4.4) and the
equation of state (4.5) become

∂T (x, y, z, t)

∂t
= −(v ·∇)T − TwzN2(z)/g(z), (4.12)
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and

P (x, y, z, t)− P̄ (z)

P̄ (z)
=

ρ(x, y, z, t)− ρ̄(z)

ρ̄(z)
+
T (x, y, z, t)− T0

T0

, (4.13)

where N(z) ≡
√
g(z) [(1/γ)(d lnP̄ /dz)− d lnρ̄/dz is the Brunt-Väisälä frequency of the un-

perturbed steady equilibrium flow [Kundu 1990; Schwartzchild 1958]. For T̄ (z) = T0,

N(z) =
√

(1/γ − 1) g(z) (d lnρ̄/dz) (4.14)

Equations (4.10) – (4.14) are the governing anelastic equations for constant T̄ (z). Note
that the steady equilibrium solution to eqs. (4.10) – (4.14) is the same as the steady equilib-
rium solution to the fully compressible equations where v is given by eqs. (4.6) – (4.7), and
the relation between P̄ (z) and ρ̄(z) is given by the hydrostatic equation (4.8), and T̄ = T0.

For T̄ = T0 and K eplerian vertical gravity g(z) = Ω2
0 z, P̄ (z) and ρ̄(z) are Gaussian

functions of z with

P̄ (z) = P0 exp
[
−z2/(2H2)

]
, (4.15)

ρ̄(z) = ρ0 exp
[
−z2/(2H2)

]
, (4.16)

where ρ0 ≡ ρ̄(z = 0) and where P0 ≡ P̄ (z = 0) = R ρ0 T0, and H ≡
√
RT0/Ω0, where H

is the defined as the fiducial vertical pressure scale height (equal to the actual vertical scale
height only at z = H). Note that

Cs = H Ω0 = (g/Ω0)(H/z), (4.17)

where Cs ≡
√
RT0 is the isothermal sound speed. In this case, the Brunt-Väisälä frequency

is linear in z with N(z) = Ω2
0 z/
√
RT0γ/(γ − 1) = (Ω2

0 z/Cs)
√

1− 1/γ.
For T̄ = T0 and constant gravity g(z) = g0, P̄ (z) and ρ̄(z) are exponential functions of z

with

P̄ (z) = P0 exp (−z/H), (4.18)

ρ̄(z) = ρ0 exp (−z/H), (4.19)

where ρ0 ≡ ρ̄(z = 0) and where P0 ≡ P̄ (z = 0) = R ρ0 T0, and H ≡ RT0/g0 = C2
s/g0 is

the vertical pressure scale height. In this case the Brunt-Väisälä frequency is constant N =
N0 = g0/

√
RT0γ/(γ − 1) = (g0/Cs)

√
1− 1/γ. For the anelastic equations with constant

gravity, it is useful to define the dimensionless constant

β ≡ g0/(H Ω2
0), (4.20)

so that
Cs = β1/2H Ω0 = β−1/2(g0/Ω0). (4.21)



CHAPTER 4. THE DEAD ZONES OF PPDS ARE NOT DEAD 51

When β is unity, Cs = H Ω0, as in eq. (4.17), the case for Keplerian gravity. In this paper,
all of the equations are solved in a Cartesian domain of size Lx×Ly×Lz. The dimensionless
equations for anelastic flow (and for fully compressible flow) with constant T and constant
gravity contain four dimensionless numbers: γ (which is always 5/3 in this paper), q (which
is the negative of the shear of the steady equilibrium flow in eqs. (4.6) – (4.7) in units of Ω0),
H/Lx (which we set to unity throughout this chapter), and β (which is equal to γN2

0/(γ−1)
in units of Ω2

0 and is therefore a dimensionless measure of the vertical stratification), that is

N0/Ω0 =
√
β(γ − 1)/γ. (4.22)

In addition, two dimensionless number describe the size of the computational domain: Ly/Lx
and Lz/Lx. Unless otherwise specified in this paper Ly/Lx = Lz/Lx = 1.

The anelastic approximation removes acoustic and sound waves from their solutions. For
numerically computing weather in the Earth’s atmosphere (which has low Mach numbers
and which was the motivation for the development of the anelastic equations), the filtering
has been shown, in general, to have no deleterious effects on the computation of atmospheric
instabilities, eddies, thermal convection, and other large scale flows, nor does the anelas-
tic approximation have an adverse effect on computing Rossby, inertial, internal-gravity, or
Poincaré waves. The anelastic approximation has also been used successfully in computing
thermal convection and other low-Mach number flows in stars. As discussed in our Conclu-
sions, the anelastic approximation prevents turbulence created by the zombie instability from
launching acoustic waves. Because acoustic waves are efficient in transporting momentum
and have been considered by many authors as the main mechanism for transporting angular
momentum outward in PPDs. the anelastic equations are not suitable for computing angular
momentum transport rates and α in disks, even if they are suitable for computing zombie
instabilities.

Boussinesq flows

The Boussinesq equations are another commonly used approximation for vertically stratified
flows. These are frequently used as the governing equations for the oceans and for laboratory
flows in which there are vertical density stratifications either due to the fluid temperature or
salt [Kundu 1990]. The Boussinesq equations are commonly used in the study of laboratory
convection [Chandrasekhar 1981] and often for models of convection in stars [Spiegel 1971].
The Boussinesq equations are valid when there is an average density ρ0 such that for all space
and time

∣∣ρ(x, y, z, t) − ρ0

∣∣ � ρ0. Here, we consider the case where the density variations
in the fluid are due only to compositional changes (say, for example the density of salt
dissolved in water) and not due to temperature. The Boussinesq equations for disk flow can
be obtained from eqs. (4.2) – (4.5) by expanding in powers of

∣∣ρ(x, y, z, t) − ρ0

∣∣/ρ0. For a
disk in which the angular velocity of the unperturbed steady equilibrium flow is proportional
to R−q, the Boussinesq version of the local Cartesian Euler equation (4.2) in the rotating
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frame becomes:

∂v

∂t
+ (v ·∇)v = −∇P (x, y, z, t)− P̄ (z)

ρ0

−

2 Ω0 ẑ× v + 2qΩ2
0 x x̂− ρ(x, y, z, t)− ρ̄(z)

ρ0

g(z) ẑ, (4.23)

where the steady equilibrium pressure P̄ (z) and steady equilibrium density ρ̄(z) satisfy the
hydrostatic equation (4.8). The Boussinesq version of the continuity equation (4.3) is

∇ · v = 0, (4.24)

and the Boussinesq version of the fully compressible energy equation (4.4) or anelastic energy
equation (4.12) is

∂ρ(x, y, z, t)

∂t
= −(v ·∇)ρ (4.25)

= − (v ·∇)[ρ(x, y, z, t)− ρ̄(z)]

+ ρ0wzN
2(z)/g(z), (4.26)

where the Boussinesq Brunt-Väisälä frequency of the steady equilibrium flow is defined as

N(z) =
√
−g(z)(dρ̄/dz)/ρ0 (4.27)

Equation (4.25) is the diffusionless advection equation for the total density ρ. Due to the
fact that this equation has no diffusion, there is a degeneracy in the steady equilibrium
thermodynamic solution, and in this Boussinesq case this means that ρ̄(z) is an arbitrary
function of z. Notice that the Boussinesq equations (4.23) – (4.24) and (4.26) – (4.27)
do not include T and that there is no equation of state. The steady velocity equilibrium
solution to these Boussinesq equations is the same as the steady equilibrium solution to the
fully compressible equations and to the anelastic equations given by eqs. (4.6) – (4.7) and
hydrostatic equilibrium (4.8).

For constant N(z) = N0 and for constant gravity g(z) = g0, ρ̄(z) is linear in z, and
eq. (4.27) is often used to parameterize the steady equilibrium density:

ρ̄(z) = ρ0(1−N2
0 z/g0). (4.28)

In the case of constant gravity and N , the dimensionless Boussinesq equations of motion
depend on only two dimensionless numbers: q (which, as in the anelastic equations, is the
negative of the shear of the steady equilibrium flow in units of Ω0), and N0/Ω0. As we
did with the anelastic equations, we set the two dimensionless numbers that describe the
computational domain, Ly/Lx and Lz/Lx equal to unity.

For the case in which g = 0, the Brunt-Väisälä frequency N is also equal to zero, P̄ (z) =
P0 is constant, but ρ̄(z) is still an arbitrary (and dynamically unimportant) function of z.



CHAPTER 4. THE DEAD ZONES OF PPDS ARE NOT DEAD 53

For the case g = 0 and ρ̄(z) = ρ0 is constant, the Boussinesq and anelastic equations become
identical.

In most laboratory experiments, the diffusion time of salt is very long compared to
any other physically relevant time, so the equations of motion effectively have no diffusion.
The degeneracy in ρ̄(z) is frequently exploited in laboratory experiments, and experiments
are often initialized with a steady equilibrium in which ρ̄(z) is chosen arbitrarily to suit
the experimenter’s needs (c.f., Aubert et al. 2012). Note that the inclusion of the tidal
acceleration term 2qΩ2

0 x x̂ in eq.(4.23) is somewhat misleading because the equation can be
re-written without it by defining the pressure head Π ≡ [P (x, y, z, t)− P̄ (z)]/ρ0 − qΩ2

0 x
2 as

∂v

∂t
+ (v ·∇)v = − ∇Π− 2Ω0 ẑ× v

− ρ(x, y, z, t)− ρ̄(z)

ρ0

g(z) ẑ, (4.29)

indicating that dropping the tidal acceleration does not effect the velocity v (but it does
change the value of the pressure P ). Thus, the Boussinesq equations (4.24) and (4.26) –
(4.29) govern the velocity and density of rotating, salt-stratified laboratory flows in which
the rotation axis, gravity and the equilibrium density gradients are aligned in the z direction
and in flows in which viscosity and salt diffusion can be ignored. Those flows include channel
flows or unbounded flows in which the unperturbed equilibrium is v̄x = v̄z = 0 and v̄y(x)
is an arbitrary function of x. An example of the latter is plane Couette flow, for which
v̄y(x) ≡ qΩ0x is a linear function of x, and thus the Boussinesq equations that govern plane
Couette flow are the same as those that govern Boussinesq disk flow. Unbounded, rotating
plane Couette flows with constant Brunt-Väisälä frequency N0 make up a two-parameter
family of flows, with dimensionless parameters q and N0/Ω0. These plane Couette flows are
all thought to be linearly neutrally stable meaning that if the equations are linearized about
the steady equilibrium Couette flow in hydrostatic equilibrium the eigenmodes neither grow
nor decay exponentially in time.

4.3 Evidence of Instability in Protoplanetary Disks

and Channels with Vertical Gravity

Temporal growth and decay of an initial energy fluctuation

One of the most cited pieces of evidence that protoplanetary disks are stable to purely
hydrodynamic instabilities is given by Figure 1 in BHS96, which we reproduce below. This
figure shows the growth/decay of the kinetic energy fluctuations of the flow as a function
of time and q, where q is defined in eq. (4.1) and where the kinetic energy fluctuations is
defined as [v(x, y, z, t)− v̄y ŷ]2/2, where v̄y ŷ is the steady equilibrium flow in eq. (4.7). For
q = 3/2, the energy fluctuation would be the non-Keplerian component of the flow. The
initial-value calculation that produced Figure 4.1 used the fully compressible equations (4.2)
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Figure 4.1: This is Figure 1 from BHS96, which shows the temporal evolution of the
fluctuation kinetic energy per unit mass, defined in § 4.3, where time is in units of “years”
(2π/Ω0) and the kinetic energy per unit mass is in units of (LxΩ0)2. The time evolutions
are for different values of q as defined by eq. (4.1). These are fully-compressible simulations
with g = 0, N = 0, γ = 5/3. The size of the computational domain is Lx = Ly = Lz. The
numerical code was ZEUS with a spatial grid of 643 points. The initial fluctuation kinetic
energy per unit mass is KE0 = 5.9×10−3, corresponding to an initial fluctuation rms velocity
of ∼ 0.1(Ω0Lx). The initial spectrum of the noise was homogeneous, isotropic, and Gaussian
in wavenumber k. The initial unperturbed equilibrium flow had uniform pressure, density,
and temperature. The curve labeled with “shr” in Figure 4.1 corresponds to the case with
q = 3/2 and with the Coriolis and tidal acceleration terms dropped from eq. (4.2) The growth
and decay of the fluctuation kinetic energy as a function of q supports Rayleigh’s theorem
that the flow is stable for q < 2 for f lows with constant density.

– (4.5) starting with the steady equilibrium flow in eqs. (4.6) – (4.8) perturbed with small-
amplitude noise. The initial value of the noise’s rms velocity was ∼ 0.1 Lx Ω0. The gravity
g was set equal to zero in this problem and the values of steady equilibrium temperature,
density and pressure were all chosen to be constants; T̄ (z) = T0; ρ̄(z) = ρ0; P̄ (z) = P0.
The equations were solved with periodic boundary conditions in y and z and shearing box
boundaries in y [Goldreich and Lynden-Bell 1965; Marcus and Press 1977].

Because the energy fluctuations all increase in time for q ≥ 2 and decrease in time for
q < 2, Figure 4.1 is used to support the hypothesis that the flow is stable (unstable) to all
perturbations when the angular momentum per unit mass of the flow, R2 Ω(R) ∝ R(2−q),
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Figure 4.2: Time evolution of the fluctuation kinetic energy per unit mass with different q
as in Figure 4.1 and with the same parameter values and units as in Figure 4.1, but using
the anelastic equations, which are identical to the Boussinesq equations when g ≡ 0, as is
the case here. Unlike the flows in Figure 4.1, the flows here were initialized with a smaller
energy fluctuation (see text for details) of 3 × 10−4 (which is the value of the energy that
all of the curves in Figure 4.1 plummet to almost immediately). The initial 3D spectrum
of the energy fluctuations used in this figure was homogeneous and isotropic, but unlike the
initialization in Figure 4.1, was Kolmogorov, rather than Gaussian (see § 4 for details). The
Boussinesq/anelastic simulations used g = 0, N = 0. The spatial resolution of the spectral
calculations used 1283 Fourier modes. The stability of the anelastic and computed flows as
a function of q are the same as shown in Figure 4.1.

increases (decreases) in the radially outward direction. This hypothesis is consistent with the
Rayleigh’s centrifugal stability theorem; however, it must be noted that Rayleigh’s theorem
was proved only for the case of constant density fluids [Rayleigh, Lord 1916] and therefore
may not be applicable to astrophysical flows in disks. The curve labeled with “shr” in
Figure 4.1 corresponds to the case with q = 3/2 and with the Coriolis and tidal acceleration
terms dropped from eq. (4.2), which would be appropriate for fully compressible flow in a
channel with cross-stream shear, but no rotation. We have reproduced Figure 4.1 using the
ATHENA code.

Figure 4.2 shows a nearly identical set curves as those in Figure 4.1, but in Figure 4.2, the
flow is computed with a spectral numerical code (BM06) using the anelastic equations (4.10)
– (4.14). Similar boundary conditions were used as were used in Figure 4.1, and the flow
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was initialized as in Figure 4.1 with noise added to the steady equilibrium flow in eqs. (4.6)
– (4.8). (See Section 4 for details of the initial noise.) The initial value of the noise’s rms
velocity in Figure 4.2 is ∼ 0.04 Lx Ω0, or equivalently, with an initial average kinetic energy
per unit mass (see caption for definition) in the fluctuations of 3.0×10−4 (Lx Ω0)2. We chose
the energy in the initial fluctuation to be smaller than that in Figure 4.1; there is an initial
precipitous decay in the fluctuating energy for all of the curves in Figure 4.1 from its initial
value of 5.9 × 10−3 (Lx Ω0)2 to the smaller value of ∼ 3.0 × 10−4 ( Lx Ω0)2, which is the
value that we initialized the fluctuating energies to in Figure 4.2. As in Figure 4.1, the flows
in Figure 4.2 were computed with the gravity g = 0 and T̄ (z) = T0; ρ̄(z) = ρ0; P̄ (z) = P0.
We remind the reader that the Boussinesq and anelastic equations become identical when
g = 0 and T̄ (z) = T0; ρ̄(z) = ρ0; P̄ (z) = P0, so Figure 4.2 would be the same if we had used
the Boussinesq rather than the anelastic equations.

Figure 4.3 is similar to Figure 4.1 and Figure 4.2, but the three curves shown here
are all for the Keplerian case with q = 3/2. The broken black curve is the same as the
curve in Figure 4.2 for q = 3/2, but plotted for a much longer time. The blue solid curve is
computed with the anelastic equations (4.10) – (4.14). The black curve is computed with the
Boussinesq equations (4.24) – (4.27). The blue and black curves are both computed using the
same boundary and initial conditions as in Figure 4.2but with one important difference. In
Figure 4.3, the blue and black curves were computed with g = g0 6= 0 and N = N0 6= 0. The
initial steady flow for the stratified anelastic calculation constantN0/Ω0 = 2 (or, equivalently,
β = 10) with P̄ and ρ̄ given by eqs. (4.18) and (4.19), has T̄ = T0, and pressure scale
height H = Lx. For the Boussinesq flow, N0/Ω0 = 2, and ρ̄ is given by eq.(4.28). To
emphasize instability of the flows with non-zero gravity and with non-zero initial vertical
density stratification (i.e., dρ̄(z)dz 6= 0), we initialized both flows in Figure 3 with a small
perturbing fluctuation kinetic energy. It is 9.2 × 10−5 (Lx Ω0)2, approximately 1/64th used
in Figure 1 by BHS96. (See the next section for how small we can make the initial kinetic
fluctuation and still make the flow go unstable.)
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Figure 4.3: Time evolution of the fluctuation kinetic energy per unit mass (which in this
case is the non-Keplerian kinetic energy) for anelastic and Boussinesq flows for q ≡ 3//2.
Blue solid line - anelastic calculation with vertical density stratification. Black solid line –
Boussinesq with vertical density stratification. Black dash line - Boussinesq/anelastic flow
with g = 0 and N = 0, which is the same calculation as shown in Figure 4.2 labeled with
“1.5”, but integrated for a much longer time. The figure shows that with vertical density
stratification, flows with q = 3/2 are unstable. In the two density stratified simulations, we
set H = Lx = Ly = Lz and N0/Ω0 = 2 or β = 10. Note that the Brunt-Väisälä frequencies,
gravity are spatially uniform in the stratified flow. The spatial resolution is 2563 Fourier
modes. To guide the eye, and to remove fast oscillations in the energy that are due to the
shearing box boundary conditions, the due energies in this figure and in Figure are moving-
averages-in-time, with a window size of 10 yrs. The anelastic simulation has an initial rms
Mach number Ma0 = 4.3× 10−3 based on the isothermal sound speed. The initial anelastic
flows are isothermal, and all three flows were initially perturbed with Kolmogorov noise as
in Figure 4.2 with an initial fluctuation kinetic energy of 9.2×10−5 (see Figure 4.1 for units),
which is 1/64 of the initial fluctuation kinetic energy used in Figure 4.1. The time evolution
of kinetic energy can be divided into 3 parts. The first part is from t = 0 ∼ 50 yr, in
which the flow adjusts from the initial condition with most of the initial vorticity destroyed
by hyper-viscosity. This causes the initial fast decrease in the fluctuation kinetic energy.
After the time that the fluctuation kinetic energy reaches its minimum to t =∼ 250 yr,
the fluctuation kinetic energy increases approximately exponentially. During this time, the
critical layers are strongly excited (see § 5), turn into vortex layers, and roll-up into zombie
vortices. In third part, from t = 250 yr onward, the fluctuation energy growth is slower as
the flow reaches a statistically steady equilibrium. The fluctuation kinetic energy asymptotes
at late times to a value of ∼ 3 × 10−4.
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The dashed curve in Figure 4.3 shows the fluctuating or non-Keplerian energy per unit
mass as a function of time using the same parameters values, boundary conditions, and initial
conditions as the anelastic flow in Figure 4.3 (with the exception that the initial fluctuating
non-Keplerian energy is approximately two times larger). Also plotted in Figure 4 is the
fluctuating energy per unit mass of the same flow, but computed with the fully compressible
equations (4.2) – (4.5) using ATHENA, rather than the anelastic equations. Figure 4.3 also
differs from Figure 4.2 and Figure 4.3 in that the flows are integrated forward in time for only
200 years rather than 1200 years because ATHENA is much more computer resource intensive
than the spectral codes. None the less, Figure 4.3 clear shows that the full compressible flow
with q = 3/2 is also unstable. In fact for the first 200 years, the compressible flow grows
faster than the anelastic flow. This is due to the vertical boundary conditions used in the
anelastic spectral code, which are highly dissipative. At late times, i.e., at 1000 yrs the
non-Keplerian fluctuating energy of the flow anelastic flow in Figure 4.3 is approximately
the same as the late-time anelastic flow in Figure 4.3. The fact that the late-time anelastic
flows in Figure 4.3 and Figure 4.3 are similar despite the fact that they were initialized with
different magnitude perturbation is one of many numerical indications that after a flow goes
unstable to the zombie instability, it evolves to an attracting turbulent solution whose gross
properties are independent of the details of the initial conditions.

The vertical vorticity of the zombie instability

The growth of the non-Keplerian kinetic energies in Figure 4.3 and Figure 4.3 is evidence
of instability, but spatial plots of the relative vorticity of the flow, defined as ω ≡ ∇ ×
(v − v̄) = ∇ × v + qΩ0 ẑ are more useful in illustrating the zombie instability’s strength
and ubiquitousness throughout the computational domain. In particular, the point-wise
Rossby number, defined in terms of the relative vertical vorticity as Ro(x, y, z, t) ≡ [ẑ ·
ω(x, y, z, t)]/(2Ω0) will be shown in § 4 and § 5 to be much more indicative of the zombie
instability than, say, the Mach number, because the threshold for instability depends on
Ro, and the late-time zombie turbulence has a characteristic |Ro| of 0.25, regardless of the
values of the parameters of the flow such as q, β, H/Lx, and γ. The nature of the zombie
instability is best shown in plots of Ro(x, y, z, t) as functions of time and space when the
initial perturbation of the steady equilibrium flow v̄ is a single, isolated vortex. However,
that type of perturbation is not relevant to protoplanetary disks, so we defer a study of those
types of perturbations to § 5. The focus of this section is to show how Ro(x, y, z, t) develops
in a Keplerian flow (q = 3/2) when the initial perturbation is Kolmogorov noise. Even with
an initial perturbation of noise, plots of Ro(x, y, z, ) reveal some of the more salient features
of the zombie instability.

Figure 4.5 show Ro(x, y, z, t) for an anelastic flow in the x–z plane at four different
times and at an arbitrary stream-wise location in y. (Because the equations, boundary
conditions and initial conditions are invariant under translation in y, the flow in all x–z
planes is statistically the same for all time.) Figure 4.6 shows Ro(x, y, z, t) in the x–y plane
for the same flow at z = 0, which is midway between the upper and lower boundaries.
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Figure 4.4: As in Figure 4.3 with β = 10, but with both of the plotted flows having an initial
fluctuating energy per unit mass of 1.9 × 10−4, which is approximately twice that of the
blue curve in Figure 4.3, and both flows have β = 10. The dashed curve is computed with
the anelastic equations, and the solid curve computed with the fully compressible equations
using ATHENA. The reason why the anelastic kinetic energy is relatively small is due to the
anelastic code’s vertical boundary damping.

The parameter values, initial conditions and boundary conditions of the flow in Figure 4.5
and Figure 4.6 are identical to the stratified anelastic flow shown in Figure 4.3 with the
exception that N0/Ω0 = 1, rather than 2, or, equivalently, with β = 2.5, rather than 10.
Note that the initial perturbing velocity has a Kolmogorov energy spectrum in which the
velocity phases are random, so there are no coherent features of any kind in the initial flow.
As discussed in § 4.1, the relative vorticity field ω(x, y, z, t) and Ro(x, y, z, t) of Kolmogorov
noise is dominated by the Fourier modes with the smallest length scales, so Figure 4.5a and
Figure 4.6a are dominated by the smallest scales, and in fact, the sizes of the patches in
the panels are equal to the spatial resolution of the calculation, which is Lx/256 in each
direction. Figure 4.5a and Figure 4.6a look the same because the initial perturbation of
noise is homogeneous and isotropic. Very quickly after t = 0, much of the initial vorticity
in Figure 4.5a and Figure 4.6a is destroyed by the numerical code’s hyper-viscosity, which
is largest at the smallest length scales in the numerical calculations. By time t = 2.5 yrs
(Figure 4.5b and Figure 4.6b) most of the surviving initial vorticity has inverse-cascaded
to larger length scales and the initial v̄ has smeared out the vorticity in the stream-wise y
direction to form elongated vortical structures. At time t = 2.5 yrs, the asymmetry between
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cyclonic and anticyclonic vorticity ωz – one of the signatures of the zombie instability – is
apparent. Relative vorticity is defined as cyclonic [anticyclonic] when ωz and Ω0 have the
same [opposite] signs, or equivalently, when Ro(x, y, z, t) > 0 [Ro(x, y, z, t) < 0]. In all of
the figures in this paper, cyclonic [anticyclonic] vorticity is shown as red [blue] in color-plots
and as white [black] in grey-scale plots. As we shall elaborate in § 5, “stripes” or layers of
cyclonic vorticity aligned in the stream-wise direction are linearly stable. In contrast, stripes
or layers of anticyclonic vorticity aligned in the stream-wise direction are linearly unstable;
the anticyclonic vortex layers roll-up into stable anticyclonic vortices. The instability of
the anticyclonic vortex layers is primarily cause of the cyclone/anticyclone asymmetry in
Figures 5 and 6.

By 50.9 yrs, the zombie instability is well underway. As shown in § 5, one of the first
signatures of the instability is the excitation of critical layers (defined and reviewed in § 5)
and their accompanying dipolar vortex layers, which are easily identified because they occur
as a pair of “stripes” in the x-y plane with a layer of cyclonic relative vorticity immediately
adjacent to a layer of anticyclonic relative vorticity. A dipolar vortex layer aligned in the
stream-wise direction can be seen in Figure 4.6c at x = 0.44/Lx. It is unusual, especially
with initial perturbation consisting of noise, to find dipolar vortex layers at late times due
to the fast instability of the anticyclonic component of the dipolar layer. At the time of
Figure 4.6c, the critical layer at x = 0.44/Lx has only just recently been excited and formed
a dipolar vortex layer. Shortly after the time shown in Figure 4.6c, the anticyclonic part of
the dipolar vortex layer became unstable and rolled up into an anticyclonic vortex. (See § 5.)
At late times, t = 1370 yrs in Figure 4.5d and Figure 4.6d , the flow has reached a statisti-
cally steady state of zombie turbulence. Here the flow has formed a pattern that appears to
have cross-stream or x wavenumber of 6 or 7. This pattern is especially clear in Figure 4.6d .
The relative vorticity, although very turbulent, has developed some spatial coherence. The
cyclonic vorticity has formed approximately 2D layers that are approximately aligned in the
y-z planes. Between these planes are approximately ellipsoidally-shaped turbulent anticy-
clones. The aspect ratio χ (defined as the stream-wise diameter of an anticyclone in the y
direction divided by its cross-stream diameter in x) is approximately the same as the laminar
vortices studied by [Moore and Saffman 1971].

− ωz
qΩ0

≡ −2Ro

q
=
χ+ 1

χ− 1

1

χ
(4.30)

The Moore-Saffman relation was derived for a two-dimensional vortex with uniform relative
vorticity embedded in flow with uniform shear. Many vortices have aspect ratios similar to
that in eq. (4.30) because the relation is the quantification of the fact that a large relative
vorticity tends to make a vortex “round” and a large background shear tends to elongate a
vortex is its stream-wise direction. In Figure 4.6d , the approximate vorticity of the vortex is
ωz and the background shear is (−qΩ0). Note that because at late times the characteristic
magnitude of Ro of the anticyclones in zombie turbulence is always ∼ -0.25, regardless of
the parameters of the flow, and because q = 3/2 for a Keplerian disk, the aspect ratios χ of
all of the zombie vortices in all of our calculations, regardless of the values of β and H/Lx,
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are the same and between 4 and 5, consistent with the Moore-Saffman relation. The general
vortex patterns in Figure 4.5d and Figure 4.6d with a quasi-periodicity in the x direction is
a signature of zombie turbulence and the periodicity’s wavenumber is a predictable property
of the flow and derived in § 5. Figure 4.5d and Figure 4.6d are highly turbulent, but the
magnitudes of the Rossby numbers of the anticyclonic vortices and cyclonic layers persist
indefinitely. We have carried out several sets of initial-value calculations in which zombie
turbulence is created in fully compressible flows (Figure 4.7), anelastic, and Boussinesq for
a wide variety of parameters and the Ro(x, y, z, t) of the late-time flows always look like
Figure 4.5d and Figure 4.6d .
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Figure 4.5: figure 5 caption see next page
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caption for Figure 4.5 Time evolution of point-wise Rossby number Ro(x, y, z, t) in the
x− z plane. The figure has been cropped in the z direction so it does not show the damping
regions at the vertical boundaries. The unperturbed anelastic flow has q = 3/2 and N0/Ω0 =
1, or β = 2.5. The initial noise has a Kolmogorov (k−5/3) spectrum, and the initial fluctuation
kinetic energy is 9 × 10−5. The color-map ranges from −0.25 to 0.25, with blue [red] for
anticyclones [cyclones] with Ro < 0 [Ro < 0]. Green corresponds to Ro = 0. (In grey-scale
plots, the blackest pixels have Ro = −0.25 and whitest have Ro = 0.25.) Left column x− z
(radial-vertical) plane at y = 0. a) t = 0yr. Relative vorticity dominated by the smallest
lengthscale, so the image is pixelated at the resolution length. The color and grey scales
are over-saturated in this panel with the minimum Ro of this initial condition being 2.3
and maximum being 2.4. b) t = 2.5yrs. Decay of much of the initial relative vorticity
and stretching in the stream-wise direction by the Keplerian shear. c) t = 50.9yrs. Inverse
cascading to large scales and asymmetry between cyclonic and anticyclonic relative vorticity.
d) t = 1370.0 yrs. Zombie turbulence with zombie vortices filling up the whole domain with
Ro ' −0.3. The near spatial periodicity, here with wavenumber between 6 and 7, of the
turbulent flow in the x direction is one of the signatures that makes zombie turbulence easy
to identify.
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Space-filling properties of the zombie turbulence

Figure 4.8 – Figure 4.10 show how the rms Mach numbers (based on the isothermal sound
speed) Marms(t) and rms Rossby numbers Rorms(t) evolve in time for three anelastic flows.
For all three flows the values of Marms(t) and rms Rossby numbers Rorms(t) initially plum-
met due to the dissipation, but then grow after the zombie instability sets in. All of our
calculations with zombie turbulence have late-time values of Rorms(t) between 0.2 and 0.3.
A comparison of Figure 4.9 and Figure 4.10, for which the flows have the same values of β
(or N0/Ω0), γ, H/Lx and q, but have different initial conditions, shows that the statistical
properties of the late-time flows are independent of the intimal conditions.

To understand how the rms Mach Marms(t) and Rossby Rorms(t) numbers evolve at late
times, it is first necessary to show that their values are not independent. The rms Rossby
number is approximately

Rorms ' veddy(Lω)/(Lω Ω0), (4.31)

where Lω is the characteristic length scale in the flow where the vorticity has its maximum
value and veddy(L) is the characteristic velocity of a turbulent eddy of diameter L (rigorously
defined in § 4.1). The rms Mach number is approximately

Marms ' veddy(Lv)/Cs = veddy(Lv)/(β
1/2HΩ0)

= Rorms β
−1/2 veddy(Lv)

veddy(Lω)

Lω
Lx

Lx
H
, (4.32)

where we used eq. (4.21). For the flow in Figure 4.8 with β = 2.5, (Lx/H) = 1, with
(Lx/Lω) ' 9 (i.e., where there are quasi-periodicity in the x direction has wavenumber 9),
and with veddy(Lv) ' veddy(Lω) (which is obtained by assuming that at late times the energy,
as well as the enstrophy, are dominated by the length scales that are approximately equal
to the radii of the late-time coherent vortices), we see that Marms ' 0.07Rorms, which is
consistent between Figure 4.8a and Figure 4.8b. For the flows in Figure 4.9 and Figure 4.10,
with β = 10, (Lx/H) = 1, and with (Lx/Lω) ' 6, we see that Marms ' 0.045Rorms, which is
consistent between Figure 4.9a and Figure 4.9b, and between Figure 4.10a and Figure 4.10b.

The fact that Figure 4.9 and Figure 4.10 show that the values of Rorms(t) have plateaued
at late times, but that the values of Marms(t) suggests that the flow has not yet reached a
statistically steady state. However, eq. (4.32) implies that the only way in which Marms(t)
can grow while keeping Rorms(t) fixed is if veddy(Lv)/veddy(Lω) is still growing, and the latter
is indicative that the inverse cascade of energy is still continuing at late times in the flows
in Figure 4.9 and Figure 4.10.

Of special importance to flows in protoplanetary disks in which the steady equilibrium
vertical temperature is independent of height z, so that the gravity g(z) is linear in z and
β ≡ 1 (see eqs. (4.17) and (4.21)), is that eq.(4.32) shows that at late times Marms =
Rorms [veddy(Lv)/veddy(Lω)]Lω/H. If, as we argue in the Conclusion and that other have
argued independently, that the turbulent flow in a disk inverse cascades until the length
scale of the vortices is equal to H, then

Marms ' Rorms, (4.33)



CHAPTER 4. THE DEAD ZONES OF PPDS ARE NOT DEAD 65

4

2

0

−2

−4

4

2

0

−2

−4

y

−4 −2 0 2 4 −4 −2 0 2 4
x

Figure 4.6: Same as Figure 5 but in the x-y plane at z = 0. Panel a looks like Figure 5a
because the initial noise is isotropic and homogeneous.
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Figure 4.7: a) As in Figure 4.5d , b) as in Figure 4.6d , but for the flow computed with the
fully compressible equations using ATHENA in Figure 4.3 with an initial fluctuation kinetic
energy per unit mass of 1.9 × 10−4, β = 10, or equivalently, with N0/Ω0 = 2. No damping
at the vertical boundaries is used in this simulation. The flow is shown at t = 190 yrs.
Although the zombie instability is well underway, the turbulence is not fully developed. The
pattern is still evolving and the fluctuation kinetic energy is still growing.

which would have a profound effect on the rate of angular momentum transport in a disk.
Figure 11 demonstrates that the zombie fills the computational domain at late times

and is not confined to a few spatial locations. This property was illustrated in Figure 4.5d ,
Figure 4.6d , and Figure 4.7. We quantify the space-filling property by defining a spatial
filling factor for the turbulent vorticity: fRo(δ, t) is defined to be the volume fraction of the
computational domain that has |Ro(x, y, z, t)| ≥ δ. We further quantify the space-filling
property by defining a spatial filling factor for the turbulent velocity: fMa(δ, t) is defined to
be the volume fraction of the computational domain that has Ma(x, y, z, t) ≥ δ. Figure 4.11
shows that for the anelastic flow in Figure 4.3 and Figure 4.9 that approximately 10 %
of the flow is filled with vortices with Rossby numbers with magnitudes greater than 0.3;
30 % with magnitudes greater than 0.2; and almost 60 % with magnitudes greater than
0.1. Figure 4.12 demonstrates the space-filling property of the turbulent velocity in terms of
fMa(δ, t). The filling factors in Figure 4.11 and Figure 4.12 are representative of all of our
anelastic calculations.
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Figure 4.8: Time evolution of the rms Mach number (based on the isothermal sound
speed) Marms(t) (panel a) and Rorms(t) (panel b) for the anelastic flow in Figure 4.5 and
Figure 4.6 with an initial fluctuation kinetic energy per unit mass of 9 × 10−5, N0/Ω0 = 1
or β = 2.5. The initial rms velocity is vrms = 0.0136(Ω0Lx), which is 1/8th of the value of
the flows in Figure 4.1. The initial rms Mach numbers and Rossby numbers are 8.6× 10−3

and Rorms = 0.4267, respectively. Both values rapidly plummet due to the dissipation, but
grow after the zombie instability sets in and eventually plateau. All of our calculations with
zombie turbulence have late-time values of Rorms(t) between 0.2 and 0.3 At late times, the
value of Marms(t) is slaved to the value of Rorms(t) – § 3.3 for details.

4.4 Threshold for finite amplitude instability

Initial Perturbations: coherent vortices and random noise

Our first study of the zombie instability (MPJH13) was focussed on initial perturbations of
steady equilibrium flows perturbed by a single vortex, and it determined that the instability
was not linear, but required a finite amplitude to trigger it. We found that that the amplitude
of the perturbing vortex was set by its vorticity or Rossby number, rather than its velocity.
For Boussinesq flows with q = 3/2, the necessary initial |Ro| was ∼ 0.3. Here, to be relevant
to protoplanetary disks, we examine the amplitude of three-dimensional noise that is needed
to trigger the zombie instability in anelastic flows with q = 3/2. We designed three sets of
numerical experiments to determine whether the necessary amplitude of the initial noise to
trigger instability depended upon its Rossby number, Mach number, energy or some other
property of the noise.
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Figure 4.9: Time evolution of Marms and Rorms as plotted in Figure 4.8, but for the anelastic
flow in Figure 4.3 so this flow has the same initial fluctuation kinetic energy per unit mass
of 9× 10−5 as the flow in Figure 4.9 but β = 10 rather than 2.5 (or N0/Ω0 = 2, rather than
unity). The initial rms Mach and Rossby numbers are 4.3 × 10−3 and 0.4267, respectively.
The late-time Rorms is slightly smaller than that in Figure 4.8. The flow at t = 100 yrs is
not yet in equilibrium as indicated by the fact that Marms(t) is still increasing at that time.
However, the fact that Rorms(t) has reached a plateau at that time shows that the inverse
cascade of energy is still active.

Review of Turbulent spectra, eddy velocities, eddy vorticities, and
Fourier modes

To help understand the analysis of the instability created by noise, we briefly review the
nomenclature used in describing homogeneous, isotropic turbulence (which is how define
initial “noise” in this paper). We consider the differential kinetic energy spectrum per unit
mass E(k) as a function of spatial wave number k ≡ |k| =

√
k2
x + k2

y + k2
z . Often, the

spectrum has a power-law dependence on k so E(k) = E0 k
−a, where a is the spectral index

and E0 is a constant. For example, Kolmogorov turbulence has a = 5/3. To simplify our
analysis, we consider a constant (unity) density fluid (which is reasonable approximation
for lengthscales in a disk that are less than the disk’s vertical pressure scale height). The
turbulence has a total kinetic energy of E =

∫∞
0

E(k) dk, an rms velocity equal to
√

2E =

CsMarms, and Rorms = [
∫∞

0
E(k) k2 dk]1/2.

It is useful to break up the turbulent velocity into a sequence of eddies, with each eddy
half the size of the preceding eddy in the sequence. An eddy with wavenumber k and
lengthscale l ≡ 2π/k has kinetic energy

∫ 2k

k
E(k′) dk′ and and an rms eddy velocity of



CHAPTER 4. THE DEAD ZONES OF PPDS ARE NOT DEAD 69

a
0 200 400 600 800 1000 1200

10
−3

10
−2

b
0 200 400 600 800 1000 1200

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
a
r
m
s
(t

)

t
R
o r
m
s
(t

)
t

Figure 4.10: As in Figure 4.9 for an anelastic flow with same values of β = 10 (and
N0/Ω0 = 2) as in Figure 4.9, but with an initial fluctuation kinetic energy per unit mass
of 4 × 10−5, which is 4/9th of the value in Figure 4.9. After t ' 500 yrs, the statistical
properties of the flows in Figure 4.9 and Figure 4.10 are nearly the same, which shows that
the flows are drawn to at attractor that is independent of the details of the initial conditions.

Veddy(l) = [2
∫ 2k

k
E(k′) dk′]1/2. For an E(k) with spectral index a:

Veddy(l) = Veddy(L) (l/L)(a−1)/2, (4.34)

where L is the largest lengthscale of the flow.
We define the Rossby number R̃o(k) and the Mach number M̃a(k) of the eddy with

wavenumber k = 2π/l as:

2Ω0 l R̃o(k) ≡ Cs M̃a(k) ≡ Veddy(l), (4.35)

so

M̃a(k) ∝ k(1−a)/2

R̃o(k) ∝ k(3−a)/2 (4.36)

In particular, for the Kolmogorov spectrum with a = 5/3,

Veddy(l) = Veddy(L) (l/L)1/3 (4.37)

M̃a(k) ∝ k−1/3 (4.38)

R̃o(k) ∝ k2/3 (4.39)
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Figure 4.11: Time evolution of the spatial filling factor fRo(δ, t) of |Ro| for the anelastic
flow in Figure 4.3 and Figure 4.9 with an initial fluctuation kinetic energy per unit mass of
9.2×10−5 and with β = 10 orN0/Ω0 = 2. fRo(δ, t) is the volume fraction of the computational
domain that has |Ro(x, y, z, t)| ≥ δ. Dotted line for δ = 0.1; dashed line for δ = 0.2; solid
line for δ = 0.3. These filling factors are typical of all of our anelastic calculations.

For turbulence with spectral index 1 < a < 3, equations (4.36) show that an eddy’s ki-
netic energy and velocity decrease with decreasing lengthscale l, while its vorticity increases.
Equivalently, with increasing k, R̃o(k) increases and M̃a(k) decreases. The implication of
this is that most of the energy is at the large lengthscales, while most of the enstrophy is
at the smallest. The largest lengthscale eddies contribute the most to the rms Mach num-
ber, while the smallest eddies contribute most to the rms Rossby number. For a turbulent
spectrum with a large inertial range (i.e., where the ratio of its largest wavenumber to its
smallest is large), the ratio of the rms velocity of the largest lengthscale eddy to the rms
velocity of the total flow is

[1− (1/2)(a−1)]1/2, (4.40)

so for Kolmogorov turbulence, the rms Mach number of the largest eddy is 61% that of the
rms Mach number of the total flow.

If the smallest lengthscale of the turbulence is determined by viscous dissipation, then
that length lν is such that lν Veddy(lν) = ν, where ν is the kinematic viscosity, and eq. (4.34)
shows that

lν/L = Re−2/(1+a), (4.41)

where Re ≡ (LVeddy(L))/ν is the Reynolds number of the flow. For Kolmogorov turbulence
with a = 5/3, lν is called the Kolmogorov length and is equal to LRe−3/4.
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Figure 4.12: Filling factor for the flow in Figure 4.11, but for the Mach number where
fMa(δ, t) is the volume fraction of the computational domain that has Ma(x, y, z, t) ≥ δ.
Dotted line for δ = 0.1; dashed line for δ = 0.2; solid line for δ = 0.3. At late times, the
values of fMa(δ, t) are slaved to the values of fRo(δ, t). As shown in the text, for a fully
compressible protoplanetary disk, we expect that the Mach and Rossby numbers, along with
their filling factors, have the sames, with the values of the Rossby numbers and filling factors
similar to those in Figure 4.8 – Figure 4.11.

We caution the reader that an eddy is not equivalent to a Fourier mode ṽk of the velocity,
but rather it is the sum or integral of a band of Fourier modes with different wavenumbers
centered around wavenumber |k|. Unfortunately, there have been some confusion in the
literature incorrectly stating that |ṽk| scales with k the same way as Veddy(2π/k) scales. If a
turbulent velocity with spectral index a is written as a discrete sum of Fourier modes,

v(x) =
∑
kx

∑
ky

∑
kx

ṽk e
ik·x, (4.42)

then
|ṽk| ∝ k−(a+2)/2 (4.43)

because there are [7 (4π/3)|k|3 Fourier modes in an eddy of wavenumber k made of Fourier
modes between k and 2k, so the energy of an eddy of wavenumber k is 2Veddy(2π/k)2 =
2|ṽk|2 [7 (4π/3)k3]. The velocity of the turbulent initial noise used in the calculations in this
paper were created using eqs. (4.42) and (4.43) where the ṽk have random phases.

Figure 4.13 and Figure 4.14 illustrate how the spectral index a affects the spatial pattern
and lengthscales of the vertical velocity and vertical vorticity of the initial noise in our
calculations. Figure 4.13 is computed with Kolmogorov noise with a = −5/3 and shows
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Figure 4.13: Vertical velocity (panel a) and vertical vorticity (panel b), shown in the x-y
plane, of Kolmogorov noise with a spectral index a = 5/3. The largest lengthscales dominant
the velocity, while the smallest lengthscales dominate the vorticity.
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Figure 4.14: As in Figure 4.13 but with a = 5. Both the velocity and vorticity are dominated
by the largest lengthscales.

the general behavior of turbulence with 1 < a < 3: the velocity is gathered into large scale
features, while the vorticity is dominated by the smallest scales (as also shown inFigure 4.5a

and Figure 4.6a). In Figure 4.14, a = 5, so in accord with eqs. (4.36), R̃o(k) and M̃a(k)
both decrease with increasing k, and the velocity and the vorticity are gathered into large
scale features.

Threshold for the zombie instability

We have found that initial perturbations of noise can trigger the zombie instability in anelas-
tic and fully compressible flows with a wide range of flow parameters. To determine the
necessary threshold amplitude of the initial noise to trigger instability in an anelastic flow
with q = 3/2, with uniform gravity g0, and β = 10 or N0/Ω0 = 2, we carried out three sets
of numerical experiments in which we varied the properties of the initial noise. The dashed
line in Figure 4.15a shows the initial spectrum R̃o(k) of the Kolmogorov noise that we used
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in a numerical experiment that did not produce zombie turbulence, but in which the initial
non-Keplerian kinetic energy decayed. Because the initial noise has a Kolmogorov energy
spectrum, R̃o(k) increases with wavenumber as k2/3 (i.e., with a slope in this semi-log plot of

2/3); while M̃a(k) (not plotted) decreases as k−1/3. The vertical dotted line in Figure 4.15a
is the resolution wavenumber kres of the calculation, i.e., wavenumbers with k > kres are
specifically not included in the numerical calculation. In Figure 4.15a kres = 256 (2π/Lx).
To find a flow that was stable, rather than unstable, to the zombie instability, we began
with the Kolmogorov noise that destabilized the anelastic flow shown in Figure 4.3. We
then carried out a sequence of runs in which we steadily decreased the amplitude of the
noise, while keeping all of the flow parameters and computational parameters fixed until we
found a sufficiently low amplitude that the flow was not destabilized. Then, we carried out
a binary-chop search on the amplitude of the initial noise to find the minimum threshold
amplitude of the initial noise that triggered the zombie instability. Figure 4.15a illustrates
the search. The flow with the unbroken curve in Figure 4.15a is the R̃o(k) of an initial Kol-

mogorov noise (i.e., with slope 2/3) that destabilized the flow. Therefore, the R̃o(k) of the
noise with the minimum value for instability is bracketed between the broken and unbroken
curves in Figure 4.15a. By carrying out the other two sets of numerical experiments (dis-
cussed below), we concluded that the criterion for instability is set by the maximum value

of R̃o(k) of the initial noise, and for β = 10 and q = 3/2, we determined that the minimum

value R̃o
∗

of R̃o(k) needed to destabilize the flow is ∼ 0.19. The horizontal broken lines in

all three panels of Figure 4.15 show R̃o
∗
. Because R̃o(k) increases with k in all of the curves

shown in Figure 4.15, the maximum value of the initial R̃o(k) is R̃o(kres). Therefore, R̃o
∗

is

bracketed by the two values of R̃o(kres) shown in Figure 4.15a.

To convince ourselves that the maximum value of the initial R̃o(k) is what determines

whether the noise destabilizes the flow and that R̃o
∗
' 0.19, we carried out a second series of

numerical experiments for an anelastic flow with β = 10, q = 3/2. In these experiments, the
kinetic energy of the initial noise was held fixed along with all of the flow and computational
parameters. We chose the value of the kinetic energy of the initial noise to be the same as
in the dashed curve in Figure 4.15a, which failed to destabilize the flow. In this new set of
experiments, the only quantity that was varied was the spectral index a of the initial noise.
In Figure 4.15b, the dashed curve is identical to the dashed curve in Figure 4.15a, which has
a Kolmogorov spectral index of a = 5/3. The solid curve is R̃o(k) for the initial noise with

a = 1 < 5/3, (and therefore R̃o(k) has a steeper slope of (3 − a)/21 > 2/3). This initial
noise of the solid curve destabilized the flow. By carrying out a binary-chop on the minimum
value a∗ of 1 < a < 5/3, we determined its threshold value needed to destabilize the flow.
However, it is not the value of a∗ that is important; its value is an artifact of the numerical
resolution and initial energy of the noise – see below). What is important is that when a is

equal to a∗, we find that R̃o(kres) is equal to R̃o
∗
. In Figure 4.15b, R̃o

∗
is bracketed by the

values of R̃o(kres) of the noise that destabilizes the flow (solid line) and the noise that fails
to destabilize it (dashed line). These experiments support (but do not prove) our hypothesis
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that it is the maximum value of R̃o(k) that determines whether the noise triggers the zombie

instability and that R̃o
∗
' 0.19 for flows with β− 10, q = 3/2. However, because the values

of the initial noise’s kinetic energy and rms Mach number are the same in all of the runs in
this second set of experiments, these experiments prove that neither the amplitude of the
energy nor the rms Mach number of the initial noise determine whether the noise triggers
the instability.

The third set of numerical experiments that we carried out to show that stability is de-

termined by the maximum value of R̃o(k) and that R̃o
∗
' 0.19 is illustrated in Figure 4.15c.

The flows in this set of experiments have β = 10, q = 3/2, and initial noise in all of the
runs is Kolmogorov with identical energy spectra, E(k) = E0 k

−5/3, where the value of E0

is the same in all of the experiments. Because E0 is held fixed, the largest lengthscale ed-
dies in the initial noise have the same Mach numbers and same Rossby numbers in all of
our experiments. Equivalently, for k → 0, the R̃o(k) and M̃a(k) of the initial noise is the
same in all of the experiments. What changes in these experiments is the value of kres. In
Figure 4.15c the initial Kolmogorov noise represented by the dashed curve is the same as in
in Figure 4.15ab. This calculation has kres = 256 (2π/Lx), and the noise failed to destabilize
the flow. The initial Kolmogorov noise corresponding to the solid curve in Figure 4.15c has
kres = 384 (2π/Lx). and it destabilizes the flow. By carrying out a binary chop search on
kres, we found that the minimum value k∗res of kres that destabilizes the flow. However, it is
the value of k∗res that is important; its value is an artifact of the spectral index and energy of

the initial noise. What is important is that when kres = k∗res, we find that R̃o(kres) = R̃o
∗
. In

Figure 4.15c, R̃o
∗

bracketed by the values of R̃o(kres) for the noise that destabilizes the flow
(solid line) and for the noise that fails to destabilize it (dashed line). These experiments adds
further support (but still do not rigorously prove) our hypothesis that it is the maximum

value of R̃o(k) that determines whether the noise triggers the zombie instability and that

R̃o
∗
' 0.19 for flows with β − 10, q = 3/2. However, because the values the Mach numbers

and Rossby numbers of the initial noise’s largest lengthscale eddies are the same in all of the
runs in this third set of experiments, the experiments prove that neither the Mach number
or Rossby number of largest eddies in the initial noise determines whether the noise triggers
the instability. Although the values of the kinetic energy of the initial is not held fixed in
this series of numerical experiments, for all practical purposes it is: the difference in its value

for two experiments with resolutions of kres and k′res is
∫ k′res
kres

E0 k
−5/3 dk, which is negligible

compared to the total energy of the initial noise,
∫ k′res

2π/L
E0 k

−5/3 dk.

This third set of experiments has important implications for astrophysical flows. Gen-
erally, l inear instabilities are viewed as more “reliable” in destabilizing a flow than a finite-
amplitude instability because the threshold for the latter might be too large. For example,
in a protoplanetary disk, it may be that the initial noise does not have sufficient energy or
the initial noise does not have a sufficiently high Mach number to trigger a finite-amplitude
instability. For the zombie instability this is not a problem. Three properties of protoplan-
etary disks and turbulence conspire to make the energies and Mach numbers of the needed
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noise to trigger the zombie instability in a protoplanetary disk extraordinarily small: (1) the
trigger for zombie instability depends on the maximum value of the Rossby number of the
eddies in the noise, (2) in turbulence with a spectral index with 1 < a < 3 the Mach numbers
and the and kinetic energies of eddies decrease with increasing wavenumber k, while their
Rossby numbers increases with k, and (3) the viscosity of the fluid is relatively small. If the

the requirement to trigger instability is that for some k, R̃o(k) ≥ R̃o
∗
, and if a < 3, then

this requirement becomes

R̃o(k>) > R̃o
∗
, (4.44)

where k> is the largest wavenumber in the flow (which in a numerical calculation would be
kres, and in a viscously damped flow would be 2π/lν). Using eq. (4.36), eq. (4.44) becomes[

Lk>
2π

] 3−a
2

R̃o

(
L

2π

)
> R̃o

∗
, (4.45)

and using eq. (4.35), eq. (4.45) becomes[
2Ω0 L

Cs

][
Lk>
2π

] 3−a
2

M̃a

(
L

2π

)
> R̃o

∗
. (4.46)

Using eq. (4.40), eq. (4.46) becomes

[1− (1/2)(a−1)]1/2

[
2Ω0 L

Cs

][
Lk>
2π

] 3−a
2

Marms > R̃o
∗
. (4.47)

For Kolmogorov turbulence and with k> = 2π/lν , eq. (4.47) becomes

Marms > 0.8 β1/2

[
H

L

]
R̃o
∗
Re−1/2, (4.48)

where we used eq. (4.21) to eliminate Cs. For fully compressible flows β = 1. Many authors
have argued (c.f., BM05) that due to the shear in a protoplanetary disk, it is difficult for
coherent objects to have L much greater than H and that vortices will merge and inverse
cascade their energies until L ' H. Therefore, in a protoplanetary disk, eq. (4.48) shows
that the condition for Kolmogorov noise to have a sufficiently large amplitude to trigger the
zombie instability is

Marms > Re−1/2. (4.49)

Typical Reynolds numbers Re of the noise in protoplanetary disks are ∼ 1012, so the disks
will go unstable if Marms > 10−6. Thus, although the zombie instability is formally a
linear instability and requires a finite-sized perturbation to trigger it, the requirement on the
amplitude of the noise is so small that for all practical purposes it can be considered to be
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like a linear instability. Another way of showing how small the amplitude is that is needed
to trigger the instability is to re-write eq. (4.49) as

Marms >
ν

LCs
' Λ

L
, (4.50)

where we have used the definitions of the Mach and Reynolds numbers to obtain the first
part of eq.(4.50), and the fact that for most ideal gases ν ' ΛCs to obtain the second part,
where Λ is the mean free path of the gas.

Note that if the energy spectrum E(k) of the initial turbulence is so steep that R̃o(k)
decreases, rather than increases, with k, then the noise must have a much larger Mach

number, of order R̃o
∗
, to destabilize the flow. Thus if the spectral index a of the initial

turbulent noise were greater than 3, then the noise must have a significant Mach number
to destabilize the flow. In Figure 4.1, BHS96 used initial noise with a spectrum of E(k) ∝
k2 e−k

2
, which is so steep that R̃o(k) decreases with k. Thus, even if vertical gravity and

density stratification had been included in their calculations, the initial Mach number would
have had to been 6 orders of magnitude large than 10−6 to trigger the zombie instability,
which argues that future tests of disk instability should be carried out with physically relevant
energy spectra.
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Caption for Figure 4.15 : Plot of R̃o(k) for three sets of experiments. All of the un-
perturbed steady equilibrium flows in the figures are anelastic with β = 10, or N0/Ω0 = 2,
and with Lx = Ly = Lz = H. In all three panels, the thin broken horizontal dash line

is R̃o
∗

= 0.1913, which corresponds to the lowest Rossby number of the initial noise that
destabilizes the flow. The thin vertical dotted line is k = 256 (2π/Lx), which is the spatial
resolution of the calculations in panels (a) and (b). For all the calculations shown here, the

largest value of R̃o(k) occurs when k = kres, the largest wavenumber of the computed flow.

In all three panels, the thick broken straight line with slope 2/3 is the R̃o(k) of a calculation
that has initial Kolmogorov turbulence with an amplitude that is a little too weak to desta-

bilize the flow, and that initial noise has R̃o(kres) < R̃o
∗
. a) The thick unbroken straight

line is the R̃o(k) of initial Kolmogorov turbulence with an amplitude that is large enough

to destabilize the flow. That line has R̃o(kres) > R̃o
∗
. b) The thick unbroken straight line

is the R̃o(k) of initial turbulence with a spectral index a = 1. This noise destabilizes the
flow. The kinetic energies of the initial noise represented by the thick solid and broken lines

are equal, but the thick unbroken curve has R̃o(kres) > R̃o
∗
. c) The thick unbroken straight

line is the R̃o(k) of initial Kolmogorov turbulence that destabilizes the flow. This initial
turbulence has an energy spectrum E(k) = E0 k

−5/3 that is identical to the spectrum of the
thick broken line (which is plotted with slight vertical displacement so that it is not covered
by the thick solid line). However, the flow with the initial noise represented by the thick
solid line was computed with a kres that was greater than the resolution of the calculation

represented by the thick broken curve. The thick unbroken line has R̃o(kres) > R̃o
∗
.
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Figure 4.15: caption for figure 15 on next page
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4.5 Review of the Physics of the Zombie Instability

The zombie instability is due to the excitation of a neutrally stable, eigenmode followed
by the linear instability of a vortex layer. It is most easily analyzed using the Boussinesq
equations (4.24) – (4.29) with a spatially uniform gravity g0 and Brunt-Väisälä frequency
N0 and with an unperturbed, steady, equilibrium density that is linear in z as in eq. (4.28).
The analysis is the same in anelastic and fully compressible flows and with flows in which
g and N are not uniform, but these cases require a WKB expansion [Mathews and Walker
1970].

Neutrally stable linear eigenmodes and critical layers

When eqs. (4.24), (4.26), and (4.29) are linearized about a steady equilibrium velocity v̄(x)
and pressure P̄ and ρ̄(z) in eq. (4.28), with g = g0 and N = N0, the eigenmodes are
proportional to ei(kyy+kzz−st). The eigen-equation for the eigenmodes of this linearization is
a generalization of Rayleigh’s equation [Drazin and Reid 1981b] and is a 2nd-order o.d.e in
which the coefficient of the highest-derivative term is

[v̄y(x)− s/ky]{[v̄y(x)− s/ky]2 − (N0/ky)
2}. (4.51)

It should be noted that any velocity field v̄y(x) for any function of x is a steady equilibrium
solution of the Boussinesq equations (4.24), (4.26), and (4.29) for vy = vx = 0 and for ρ̄(z)
given by eq. (4.28) with an appropriate P̄ . The coefficient given by expression (4.51) is valid
not only for v̄y = qΩ0 x, but also for arbitrary vy(x). When the initial steady equilibrium
density ρ̄(z) is stably-stratified or constant and when v̄ = 3/2 Ω0 ŷ (i.e., Keplerian flow),
the flow is neutrally linearly stable (i.e., s is real, and eigenmodes neither grow nor decay).
Eigenmodes of an o.d.e. are singular at locations x∗ where the coefficient of the highest-
derivative term of the eigen-equation is zero [Mathews and Walker 1970] and at x∗ create
critical layers [Drazin and Reid 1981b]. Although these eigenmodes are singular, they are
not just mathematical curiosities but are relevant to flows in protoplanetary disks and in
the laboratory: in fluids with viscosity ν, the “infinities” in the eigenmodes are replaced by
terms proportional to ν−1/3. For neutrally stable fluids with uniform density ρ0, eq. (4.51)
shows that locations x∗ of the critical layers obey v̄y(x

∗) = s/ky. We refer to these as
barotropic critical layers. Laboratory experiments and numerical computations show that
neutrally stable eigenmodes with barotropic critical layers are difficult to excite, and, with
the exception of contrived conditions in boundary layers, never form vortices. However,
eq. (4.51) shows that there is another class of neutrally stable eigenmodes with critical layers
that have v̄y(x

∗)− s/ky ±N0/ky = 0, and we call them baroclinic critical layers. [Boulanger
et al. 2007] created weak baroclinic critical layers in a non-rotating, stratified flow in the
laboratory. From MPJH13, we now know that those laboratory experiments could not
produce strong critical layers and create zombie vortices due to the lack of rotation in the
experiments. Rotation’s important role in creating vertical vorticity is seen by taking the
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curl of eq. (4.29):

∂ωz/∂t = −(v · ∇)ωz + (ω · ∇)vz + (2− q) Ω0 (∂vz/∂z), (4.52)

where for now and the remainder of this section we restrict ourselves to linearly neutrally
stable flows v̄y(x) = qΩ0. Vortex layers form at baroclinic critical layers because vz, the
z-component of the velocity eigenmode, and (∂vz/∂z) are large (in fact, singular) there.
Equation (4.52) shows that the generalized Coriolis term (2− q) Ω0 (∂vz/∂z) creates ωz. In
contrast, barotropic critical layers do not create vortex layers because the y, rather than the
z, component of their velocity eigenmodes are singular, and the eigenmodes’ (∂vz/∂z) are
finite and too weak to create vorticity via the Coriolis term.

Within a baroclinic critical layer, the singular ∂vz/∂z is nearly anti-symmetric about
x = x∗; on one side of the layer ∂vz/∂z → ∞, and on the other ∂vz/∂z → −∞; thus, the
last term in Eq. (4.52) creates a large-amplitude vortex layer centered at x∗ that is made of
dipolar segments with one side cyclonic (ωz/Ω0 > 0) and the other anticyclonic (ωz/Ω0 < 0)
(c.f., Figure 4.16a). Vortex layers that are embedded in a background shearing flow, like
those in a protoplanetary disk are, in general, linearly stable [unstable] when the relative
vertical vorticity of the layer ωz has the opposite [same] sign as the vertical vorticity of the
background shearing flow. For a vortex layer embedded in a Keplerian disk, this means that
a vortex layer with cyclonic ωz is stable, while the anticyclonic layer is unstable. The linear
instability of vortex layers is a generalization of the study of Kelvin-Helmholtz instability
and are amenable to the same type of analyses [Drazin and Reid 1981b]. We examined
the instabilities of embedded vortex layers that were aligned in the stream-wise direction of
background shearing flows when we carried out studies to determine the conditions under
which the Jovian zonal (east-west) flows become linearly unstable and create Great-Red-
Spot-like vortices [Marcus 1993]. When a vortex layer goes unstable, its edges become wavy,
the waves amplify, the layer breaks up into a stream-wise series of vortices, and eventually
the vortices usually merge together into one, Moore-Saffman-like vortex [Marcus 1988; 1990].
An analysis of vortex layer stability and subsequent roll-up that was nearly identical to our
study was carried out later by [Lovelace et al. 1999] in the context of the Rossby wave
instability in accretion disks.

Vortex spacing

Figures 16 and 17 show how a linearly neutrally stable baroclinic critical layer forms a vortex
layer and how the layer produces zombie vortices. However, one of the most important pieces
of physics shown in these two figures is how the near-periodic behavior develops in the cross-
stream x direction. In expression (4.51) ky ≡ 2πm/Ly is the wavenumber in the stream-wise
direction, where m is an integer and Ly is the domain size in y (which in a protoplanetary
disk would be its circumference). Baroclinic critical layers have ky 6= 0, and expression (4.51)
shows that the locations of the critical layers are

x∗ = −[(s± 1)/m] ∆, (4.53)
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where ∆ ≡ (LyN0)/(2πqΩ0). Eq. (4.53) should not be misunderstood. It does not mean that
x∗ is the radius in a protoplanetary disk where critical layers form, rather, x∗ is the is the
radial distance or distance in x between a perturbation and the location of the critical layer
that it excites. The governing equations (4.24), (4.26), and (4.29) and their shearing box
boundary conditions are invariant under translations in y and z, and also under translation
in x by δ when accompanied by a stream-wise boost in velocity of (qΩ0)δ. The latter symme-
try is shift-and-boost symmetry (c.f., [Goldreich and Lynden-Bell 1965; Marcus and Press
1977]) and is the symmetry that is exploited that allows the use of shearing box boundary
conditions. Due to the shift-and-boost symmetry, the origin of the x-axis is not unique, so in
eq. (4.53) x∗ must be the relative distance between two features, in this case, a perturbation
and the critical layer it excites. To demonstrate that this is the correct interpretation of
x∗, we simulated flows in which the flow was perturbed by either a compact wave generator
or by a single compact vortex. When we used a vortex as the initial perturbation, it was
“shielded” and consisted of an anticyclone (with a shape given by the Moore-Saffman equa-
tion (4.30)) surrounded by an outer layer of cyclonic vorticity so that the total vorticity (i.e.,
its circulation) was zero [Hassanzadeh et al. 2012]. We shielded the vortex so that its velocity
had only a short range effect compared to an unshielded vortex in which the velocity falls off
slowly as the inverse distance from the vortex and has a more global effect. Figure 16 shows
ωz(x, y, z, t) in the x–y plane for z 6= 0 at four times where the initial shielded anticyclone is
at the origin, so it lies in a plane distinct from the one shown in the figure. The initial density
perturbation to the flow is confined to the interior of the shielded vortex at the origin. Note
that the governing equations of motion allow ρ as well as the velocity and pressure to change
in time. The perturbing vortex is nearly in a steady equilibrium with background flow v̄ ,
so it primarily excites critical layers with frequencies s = 0. (This is confirmed by taking a
time series of the velocity at locations inside the critical layer and determining its temporal
Fourier components with a minimum entropy method.) The critical layers in Fig. 16(a)
are at |x∗|/∆ = 1/|m| for |m| = 1, 2 and 3, and with no critical layers at |x|/∆ > 1, in
accord with the fact that the perturbation is at x = 0 and with eq. (4.53). Each critical
layer has produced a dipolar vortex layer aligned in the stream-wise direction, and the ωz
x/∆ = 1/|m| appears as |m| segments (i.e. dominated by ky = 2π|m|/Ly) of dipolar stripes
in the stream-wise y direction. Figure 4.16b shows cyclonic vortex layers that are wavy
but that are more-or-less continuous and aligned in the stream-wise direction, indicating
that they are stable; whereas the anticyclonic layers are clearly unstable, have roll-up into
discrete anticyclones, and are starting to merge into one large anticyclone at each critical
layer. In particular, the anticyclonic vorticity at x/∆ = 1/3 has rolled up and merged into
a single anticyclone (near y/∆ = 1.5). The anticyclonic vorticity at x/∆ = 1/2 has rolled
up into an anticyclone near y/∆ = −0.5. In contrast, the cyclonic ωz near x/∆ = 1/2 has
formed a continuous, meandering filament. At later times (Figure 4.16c) the anticyclones
near x/∆ = 1/3 (and near y/∆ = 2) and near x/∆ = 1/2 (and near y/∆ = −1) have become
larger. The x–y plane in Figure 4.16 is at a z where the |m| = 2 anticyclones are strongest,
so the |m| = 3 and 1 anticyclones appear artificially weak. Figure 4.16c and Figure 4.16d
show critical layers and vortices at |x|/∆ > 1, which according to eq.(4.53) cannot be cre-
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ated by a perturbations at x = 0. The layers at |x|/∆ > 1 are due to the self-replication
of 1st-generation vortices at |x|/∆ ≤ 1. A vortex at any location will excite critical layers
in a manner exactly like the original perturbing vortex due to the shift-and-boost symmetry
(and will have s = 0 when viewed in the frame moving with the perturbing vortex). Fig-
ure 4.16c shows 2nd-generation critical layers at 1 < |x|/∆ ≤ 2 all with |m| = 1 and excited
by 1st-generation vortices at |x|/∆ ≤ 1. Figure 4.16d shows 3rd-generation critical layers
at 2 < |x|/∆ ≤ 3, and 4th-generation critical layers forming at |x|/∆ > 3. At later times
the vortices from |m| = 1 critical layers dominate. At very late times, the vortices have
cross-stream diameters of order unity. (See below.) Within each zombie vortex the density
mixes so that it is in accord with its near hydrostatic and geo-cyclostrophic equilibrium (c.f.,
[Hassanzadeh et al. 2012]). However, there is horizontal, but very little vertical, mixing of
density outside the vortices, so the background vertical density stratification and N remain
within 1% of their initial unperturbed values. The lack of vertical mixing, despite strong
horizontal mixing, was seen in our earlier simulations (BM06) and also in our laboratory
experiments [Aubert et al. 2012] of vortices in rotating, stratified flows.

Figure 4.16 shows that each generation of vortices excites new critical layers in an adjacent
unperturbed region, which spawn the next generation of vortices. The spawning of new
generations of new critical layers from old critical layers, the self-replication of the vortices,
the eventual takeover of the entire domain by the vortices, and the fact that the vortices are
created in a “dead” zone, were the traits that led us in MPJH13 to naming them zombie
vortices.

Figure 4.17 shows the same flow as in Figure 4.16 but viewed in the x–z plane at y = 0.
At late times the domain fills with anticyclones. Because the initial flow is homogeneous
with uniform shear and N , the vortices form a regular lattice despite the flow’s turbulence.
As time progresses in Figure 4.16, the vortex population spreads out from the perturbing
vortex at the origin. At early times (Figure 4.17a) the flow has 1st-generation critical layers,
with |m| = 1, 2, and 3 being most apparent. In this first generation, and all subsequent
generations, a vortex perturbs the flow and creates four new prominent vortices at its |m| = 1
critical layers at locations in x that are ±lx distant from itself and at locations in z that
are ±lz distant from itself. (lx is physically set by, and equal to, the distance in x from
a perturbing vortex to the anticyclonic piece of the vortex layer formed by its |m| = 1
critical layer; this distance is slightly greater than ∆.) The 2nd-generation m = 1 critical
layers created by the 1st-generation vortices with |m| = 1, 2, and 3 are faintly visible in
Figure 4.17b and much more so in Figure 4.17c. At later times (Figure 4.17d), the |m| = 1
vortices descended from the 1st-generation |m| = 1 vortices dominate and form a lattice of
zombie vortices located at [x = 2n lx, z = 2j lz] and at [x = (2n + 1)lx, z = (2j + 1)lz], for
all integers n and j.

The creation of a lattice of zombie vortices in an artifact of having one localized ini-
tial perturbation, and lattices do not form from initial noise. With noise, perturbations at
random locations excite critical layers, and the vortices spawned from the different critical
layers interact with each other, merge and inverse cascade their energies to larger length-
scales. None the less, the spacing ∆ in x between a perturbation and the fundamental critical
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Figure 4.16: Boussinesq with constant gravity and Brunt-Väisälä frequency withN0/Ω0 = 2.
ωz of the anticyclonic (blue) vortices and cyclonic (red) vortex layers in the x-y plane. The
initial perturbing vortex at the origin is above the plane shown here (z/∆ = −0.4). The first
generation zombie vortices form at |x|/∆ ≤ 1, and sweep outward in x. The Rossby number
Ro of these vortices is ∼ -0.2. (The color is reddest at ωz/Ω0 = 0.4, bluest at ωz/Ω0 = −0.4,
and green at ωz = 0). Ω0/N0 = 0.5 and q = 3/2. The x-y domain is |x|/∆ ≤ 4.7124;
|y|/∆ ≤ 2.3562, and is larger than shown. a) t = 64/N0. b) t = 256/N0. c) t = 576/N0. d)
t = 2240/N0.

layer it excites with m = 1 is evident in the temporal evolution of zombie turbulence created
from initial noise. This spacing ∆ is what give the turbulence a near periodicity in x at late
times in Figure 4.5, Figure 4.6 and Figure 4.7.

4.6 Conclusion and future work

Zombie instability shows in Boussinesq, anelastic and fully compressible simulations with
our spectral code as well as the ATHENA code. It is not subtle and should be reproduced
by various codes used in the astrophysical community. The reasons that previous study with
fully-compressible simulations couldn’t see it are: 1) insufficient resolution. The instability
is due to baroclinic critical layers, which has near logarithm singularity in the cross-stream
direction. Certain resolution is required to resolve the critical layers as we pointed out in
[Marcus, Jiang, et al. 2013; Marcus, Pei, et al. 2013]. Even the initial Rorms reaches the
critical value for the instability, the flow will not be destabilized if the critical layers are under
resolved due to lack of resolution. Therefore, to trigger the instability, numerical simulations
need to have high resolution and low dissipation to resolve critical layers, which is not
attained in most of previous studies. 2) no gravity or vertical stratification missing. Most
previous studies do not include gravity and initialize constant density flows, even though
their initial Kolmogorov noises have Ma close to 1. In their simulations, they eliminates
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Figure 4.17: Zombie vortices sweep outward from the perturbing vortex at the origin in
the x–z plane (at y = 0). Anticyclonic ωz is black (darkest is ωz/Ω0 = −0.4) and cyclonic
is white (lightest is ωz/Ω0 = 0.4). This is the same flow as in Figure 4.16. The domain
has |z|/∆ ≤ 4.7124 and is larger than shown. a) t = 128/N0. Critical layers and young
zombie vortices with s = 0 and |m| = 1, 2, and 3 are visible. Diagonal lines are internal
inertia-gravity waves with shear, not critical layers. b) t = 480/N0. 1st-generation vortices
near |x|/∆ = 1 and 1/2 have rolled-up from critical layers with s = 0 and |m| = 1 and 2,
respectively. c) t = 1632/N0. 2nd-generation vortices have spawned from the 1st generation
vortices. d) t = 3072/N0. 1st, 2nd and 3rd generation vortices.

the baroclinic effect which is required in zombie instability. 3) improper initial spectrum.
From above analysis, only the spectrum with index 1 < a < 3, has its Ro increase toward
small scales. With improper spectrum, increasing resolution might either requires a very
large Ma initial perturbation (a < 1) to trigger the instability or obtains a small Ro that
cannot trigger the instability. 4) not wait enough time. Zombie instability in our simulations
typically needs tens or hundreds of orbital periods to develop, depending on the magnitude
of the initial perturbations. Short time evolution will not see it.

We have proved by our numerical simulations zombie instability is a finite amplitude
instability. The threshold of the instability is set by the initial vorticity rather than velocity.
Zombie instability happens with a very small initial Ma. There exists a critical value of rms
vorticity such that if the initial noise has a rms vorticity larger than the critical value, the
zombie instability will be triggered. For initial noise that has a spectrum Ek(k) ∼ ka with
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1 < a < 3, the smallest scale dominates the rms Rossby number. If the length of inertial
range is long enough down to small scale such that it could reach the critical length scale at
which the rms Rossby number is larger than the critical value, zombie instability will happen.
Zombie instability can be seen as an effectively linear instability in PPDs. A infinitesimal
velocity perturbation could have an infinite vorticity to trigger the zombie instability. For
example, consider a star with mass of one solar nebular, based on the local sound speed and
viscosity at 10AU, the Reynolds number will be 1010, which provides a favorable condition
for the zombie instability to happen.

The instability will saturates when the whole domain is filled with zombie vortices. These
vortices have a Rossby number of −0.3. The filling factor of the zombie vortices is about
30%. In anelastic approximation we filter out the acoustic waves. However, acoustic waves
play an key role in angular momentum transport [Johnson and Gammie 2005b; Lesur and
Papaloizou 2010; Lyra and Klahr 2011; Raettig et al. 2013; Shen et al. 2006]. If we run the
fully compressible simulation in a large enough domain, such that all the acoustic waves are
allow to developed. Then based on our scaling analysis, α ≺ Ma2 and Ma ' Ro, we will
have an α ∼ 10−2.

As (BM05, [Lesur and Papaloizou 2009]) pointed out, no stable mid-plane vortex has
been found in the protoplanetary disk. Our numerical simulation here has its computational
domain corresponding to an box above mid-plane. One may think even if it provides enough
angular momentum transport with the zombie instability in our simulation, the effective
transport at the mid-plane could still be a problem. This is another reason we need to go to
the fully compressible simulation. For a fully developed compressible turbulence filed, there
exists equi-partition of the kinetic energy between the solenoidal (toroidal and poloidal)
parts and the dilatational part of the velocity [Kritsuk et al. 2007; Lemaster and Stone
2009]. In our anelastic simulation we have already showed zombie instability could produce
large amount solenoidal energy from rotational turbulence. Based on equi-partition of kinetic
energy, it is expected to also produce large amount of dilatational energy in terms of acoustic
waves. Although the zombie vortices is not at the mid-plane, acoustic wave can propagate to
the mid-plane thus provide enough angular momentum transport at the mid-plane to help
star and planetesimal formations.

We have showed in Chapter 3, the saturation of instability only depends on background
parameters rather than the initial conditions. We speculate zombie instability provide an-
other equilibrium flow to the PPD in contrast to the laminar Keplerian flow. It is well
known that pipe flow has two equilibrium solution. One is the laminar time-independent
Poiseuille flow, while the other is a statistically steady turbulent flow that occurs at large
Reynolds number. Both of the solutions are attractors to the pipe flow. At high Reynolds
number, flows are most likely to be the turbulent flow rather than the laminar Poiseuille
flow. By analogy, the turbulent flows created by the zombie instability could be the same as
the turbulent flow solution in a pipe. Because PPDs have large Reynolds number, it is much
more likely the flows are steady state turbulence rather than laminar Keplerian flows. Note
most of the instability study of PPDs start from perturbing the laminar Keplerian flow. We
argue that once PPD is created from a collapsing gas cloud, the flow will not be Keplerian,
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but rather be the turbulent flows. Further, it could be the turbulent flows filled with zombie
vortices.
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Appendix: Wave Generator

Wave generator produces a 3D vector field changing with time added as external force term
to the momentum equations. We define A, s, φ0 to be the amplitude, frequency and the
initial phase of the wave generator; xWG, yWG, zWG to be the center of the wave generator;
hx, hy, hz to be the size of the wave generator in each direction. We use F as the force
produced by the wave generator. F(x, y, z, t) is pure toroidal in space and can be written as:

F = [∇×∇× (ψẑ)] sin (st+ φ0), (4.54)

where ψ is a 3D scalor function that varies as a Gaussian function in all three directions

ψ = A exp [−(x− xWG)2

2h2
x

− (y − yWG)2

2h2
y

− (z − zWG)2

2h2
z

]. (4.55)

For all the cases, the wave generator has an initial phase φ0 = 0. Its size is set to be
hx = Lx/64, hy = Ly/64, hz = Lz/32. Note since the wave generator is purely toroidal in
space, it doesn’t produce any vertical vorticity.
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