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Abstract 

 
Frequentist and Bayesian Meta-Analyses with Dynamic Variance 

Michelle Turitz Mitchell 
Masters, Psychological Sciences 

University of California, Merced 2020 
Committee Chair: Jack Vevea 

 
When conducting a meta-analysis, the analyst uses the included studies' sampling 

variances for estimating the meta-analytic model. For some effect size measures, such as 
correlations and standardized mean differences, the variance depends on the population's 
true effect size, which is likely unknown. This study uses a new “dynamic method” for 
mixed-effects meta-analysis for correlations and standardized mean differences that takes 
this dependence into account. Comparing results using the dynamic method with other 
commonly used meta-analysis methods in the frequentist and Bayesian framework shows 
that the dynamic approach has improved estimation, particularly with correlation effect-
size. Another finding of note is that the incorporation of Hedges bias correction (1981) 
standardized mean differences is shown to increase bias in conventional meta-analytic 
results.   
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General Introduction 
Meta-analysis involves the quantitative synthesis and analysis of results obtained 

from multiple research studies. By combining the standardized effect-size estimates from 
various studies, one can obtain an estimate based on the results of multiple studies rather 
than a single study. However, no two studies are identical, and some studies will show 
greater precision than others. Most meta-analytic techniques (whether fixed effect or 
random effects) apply a weight to the studies with increased weight ascribed to studies 
with higher precision when combining effect-sizes. 

The standard method is to weight studies by the inverse of their variances, 

  𝑤௜ =
1

𝜎ො௜
ଶ, 

(1) 

where 𝜎ො௜
ଶ represents the total variance for study i. The exact calculation for the individual 

study weight differs based on the type of meta-analysis (i.e., random effects, fixed effect). 
For the fixed-effect meta-analytic model the total estimated variance would be equal to 
the within-study conditional variance (𝑣௜). In random-effects meta-analysis 𝜎ො௜

ଶ would be 
the sum of the between-study variance component (𝜏ଶ) and 𝑣௜ . Both the fixed-effect and 
random-effects models 𝜎ො௜

ଶ include 𝑣௜ in the computation, meaning that the conditional 
variance influences the weight of studies for both fixed-effect and random-effects 
models. 

 This study focuses on one problem often overlooked within meta-analyses, 
combining effect size estimates when studies sampling variances are dependent on the 
actual parameter value of the effect size for the study.  While for some measures of effect 
size (e.g., odds ratios, Fisher’s Z transformed correlations) the approximation of the 
standard error is conditional solely on sample size, other common effect types (e.g., 
correlations, standardized mean differences) include a term in their function whereby the 
standard error is dependent on the “true” magnitude of the effect in the population. This 
true population magnitude is unknown; in actuality, it is what we are trying to estimate, 
and this dependence presents a problem.   

One commonly used solution to address this dependence is to substitute the 
individual studies’ effect sizes in place of the population effect size.  In this case, the 
magnitude of the true population effect size remains unknown. The meta-analyst uses the 
individual study estimates in its place, treating them as if they are the known parameter 
value for the effect size. Another solution often used for correlation effect size is to 
transform the effect size estimates to the Fisher Z metric, where the variance does not 
depend on the effect-size parameter.  
Meta-Analysis 

Meta-analysis consists of methods for quantitatively describing, combining, and 
summarizing results across multiple studies. The meta-analytic mean estimate uses the 
synthesized results of multiple studies instead of just a single study. This summary not 
only provides an estimate of the measure of the parameter but can also address the 
inconsistency of results among studies.   

In a meta-analysis, independent study effect sizes (𝑇௜)1 are distributed around a 

 
1Ti represents a general study effect-size estimate and applies to multiple measures of effect 

sze(e.g. standardized mean difference or correlation) 
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mean population effect-size parameter.  The meta-analyst must choose between fixed-
effect and random-effects models.  The decision between fixed- and random-effects 
meta-analysis should depend on the goal of inference (Hedges & Vevea, 1998). It is 
usually the case that people are interested in drawing inferences outside the available 
studies included in the literature, in which case random-effects meta-analysis is the most 
appropriate choice. 

In a fixed-effect meta-analysis, the only source of variation comes from the error 
associated with the sampling of individual units (e.g., persons) into primary studies (vi). 
All study effect sizes are distributed around a fixed parameter (θ)2 for effect-size in the 
population.  If Ti is the effect size for individual study i, Ti~N(θ, vi) where vi is the within-
study sampling variance for study i. The model can also accommodate systematic 
heterogeneity by incorporating moderators of effect size, in which case 
𝑇௜~𝑁(𝑿𝛃, 𝑣௜),  where X is a matrix of known study characteristics and β is a vector of  
regression coefficients, allowing the model to incorporate a conditional mean (μ஘௜ =
β଴ + 𝑥௜ଵβଵ + ⋯ 𝑥௜௣β௣).   

In contrast to the fixed-effect model, random-effects meta-analysis does not 
assume a fixed mean parameter for all studies, allowing for different parameters for each 
study.  Each study effect-size estimate has a corresponding effect size parameter (θi) 
representatively sampled from a distribution of population effect sizes with mean μ஘. The 
random-effects model can be represented as a two-level model. At level one 

 𝑇௜ = θ௜ + 𝑒௜ ,   𝑒௜~𝑁(0, 𝑣௜), (2) 
where vi is the within-study conditional variance of the individual study estimate (𝑇௜) 
around the corresponding population parameter (θi). In the equation for the random-effects 
model,  θ௜ replaces θ from the fixed-effects meta-analyses indicating that instead of a single 
value, each study has a corresponding parameter estimate.  The sampling error between the 
study estimate and its corresponding parameter (𝑒௜) approximates a normal distribution 
with a mean of zero and a variance equal to the conditional variance of the study.  At level 
two,  

𝜃௜ = 𝜇ఏ + 𝑢௜ , 𝑢௜~𝑁(0, 𝜏ଶ),   (3) 
where 𝜇ఏ is an overall mean effect-size parameter and 𝑢௜  is the random variation between 
𝜃௜ and 𝜇ఏ. The between-study variance component 𝜏ଶ represents the variation of the 
study level effect-size parameters (𝜃ଵ … . 𝜃௞) around the overall mean effect-size 
parameter (𝜇ఏ), as illustrated in Figure 1 

Researchers can also incorporate study characteristics into the model with a 
mixed-effects meta-analysis. The model for a mixed-effects meta-analysis is an extension 
of the simple random-effects model described in Equations 2 and Error! Reference 
source not found.. Level one still represents the study estimate around the corresponding 
parameter Error! Reference source not found..  Level two is a regression model 

𝜃௜ = 𝛽଴ + 𝛽ଵ𝑋ଵ … . 𝛽௣𝑋௉ + 𝑢௜ ,  (4) 
where 𝑋௜ … . 𝑋௣ are study characteristics, 𝛽଴ is the intercept, and  𝛽ଵ … 𝛽௣ are regression 
coefficients indicating the predictive influence of study characteristics on effect size. 

 
2 θ here represent a general parameter value for the effect size. For specific notation ρ is often used 

to represent correlation, and δ standardized mean difference. θ indicates that the concept is more general 
and not specific to a single measure of effect size. 



 
 

11 
 

Effect Size Indices 
Two commonly used measures of effect size that have the property of the 

conditional variance being dependent on the effect size parameter for the individual study 
θi are standardized mean differences and correlations3.  There are various expressions for 
the sampling variance of the standardized mean difference; one commonly used one is  

𝑣ఋ௜ =
𝑁௜ଵ + 𝑁௜ଶ

𝑁௜ଵ𝑁௜ଶ
+

𝛿௜
ଶ

2(𝑁௜ଵ + 𝑁௜ଶ − 2)
 , 

(5) 

where δ represents the corresponding population parameter, and N1 and N2 are the sample 
sizes for the conditions.  The sampling variance for correlations is  

𝑣ఘ௜ =
(1 − 𝜌௜

ଶ)ଶ

𝑁௜ − 1
 , 

(6) 

where ρ and N are the corresponding effect size parameter and sample size for study i.4 
The parameter, of course, is unknown, which presents a problem.  One common 

solution for standardized mean difference and correlation estimates is to use the study 
estimate in place of the parameter. This estimate would be treated as a known value, 
although in actuality it is not:  

𝑣ොௗ௜ =
𝑁ଵ௜ + 𝑁ଶ௜

𝑁ଵ௜𝑁ଶ௜
+

𝑑௜
ଶ

2(𝑁௜ଵ + 𝑁௜ଶ − 2)
, 

(7) 

and 

𝑣ො௥௜ =
(1 − 𝑟௜

ଶ)ଶ

𝑁௜ − 1
 . 

(8) 

Another potential solution when combining correlations effect sizes is to do 
Fisher’s r-to-Z variance-stabilizing transformation, which has the benefit of the sampling 
variance not being dependent on the parameter. The approximate sampling variance of 
the Fishers r-to-Z transformed estimate is 

𝜎௭௜
ଶ =

1

𝑁௜ − 3
 , 

(9) 

where N is the sample size. While some researchers recommend this variance-stabilizing 
transformation (Lipsey & Wilson, 2001; Shadish & Haddock, 2009), other research 
points to findings of substantial positive bias using Fishers r-to-Z when heterogeneity is 
high (Field, 2001; Hunter & Schmidt, 2004). Hafdahl (2009) suggested that the bias was 
due to the direct z-to-r transformation and introduced an integral z-to-r transformation 
where 

𝛹఍(𝜇̂఍|𝜏̂఍
ଶ = න tanh(𝜁) 𝑓൫𝜁|𝜇̂఍ , 𝜏̂఍

ଶ൯𝑑𝜁  
ஶ

ିஶ

, 
(10) 

and 𝑓൫𝜁|𝜇̂఍ , 𝜏̂఍
ଶ൯ is the density function for ζ~N(𝜇̂఍ , 𝜏̂఍

ଶ). This integral z-to-r 

 
3θi suggests that each individual study has is associated with a different effect size parameter. This 

is true of random-effects meta-analysis. However, in fixed-effect meta-analysis all studies are assumed to 
come have the same population parameter (θ1=θ2=….=θi). 

4 In equations 5 and 6 we are now using δ to represent the effect size parameter for standardized 
mean difference and ρ for correlation. These equations are specific to a single measure of effect size, and 
the general notation θ will no longer work. 
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transformation is less biased than the direct z-to-r transformation (Hafdahl,2010; Hafdahl, 
2009; Hafdahl & Williams, 2009).  

The magnitudes of the study effect sizes for standardized mean difference and 
correlations are directly related to the calculation of the conditional variance (See 
Equations 7 and 8) and subsequently play an important role in determining the meta-
analytic weight. For correlation effect-size estimates, higher values of effect magnitude 
lead to decreased variances and hence larger weights. For analysis of correlations, if the 
meta-analyst substitutes the study effects, studies that found an extremely high 
correlation have greater weight, even in cases where extreme values are due to the 
vicissitudes of sampling.  In contrast, for standardized mean differences, more substantial 
study effects lead to lower weights in the analysis.  In some cases, the influence of a 
single study with an extreme value can result in biased estimates of the mean effect and 
variance components.  With the dynamic method 𝑣௜ continues to be dynamically 
dependent on the estimate of  𝜇ఏ . The dynamic dependence of the conditional variance on 
𝜇ఏ instead of individual study effect size estimates reduces the influence of extreme 
effect-size estimates obtained from individual studies.   
The Dynamic Method 

In a previous simulation study, Mitchell and Vevea (unpublished, 2016) proposed 
a new “Dynamic” method for meta-analysis of effect sizes for which sampling variances 
are dependent on the effect-size parameter. Results compared dynamic and conventional 
estimates of simple random-effects meta-analyses with correlation and standardized mean 
difference, with the dynamic method found to perform at least as well as or better than 
the other methods in almost all conditions.   

Mixed- and random-effects models estimated by maximum likelihood involve 
iterative procedures.   If we assume that effect sizes are independent and normally 
distributed at both levels of the random-effects model, the joint density function is 

𝑓൫𝐓หμ஘,𝜏
ଶ; 𝐯൯ = ∏ ൤

ଵ

ඥଶగ(𝐯ାதమ)
∗ exp ቀ−

ଵ

ଶ
∗  

(𝐓ିஜಐ)మ

𝐯ାதమ
ቁ൨௞

௜ୀଵ   , (1) 

where T is a vector of effect-size estimates, V is a vector of conditional variances, k is the 
number of effects in the analysis, μ஘ is the population mean of the random-effects 
distribution, and τ2  is the variance component that describes the dispersion of true effects 
in the random-effects distribution. The log-likelihood function is proportional to 

  𝑙𝑜𝑔𝐿൫μ஘,τ
ଶห𝐓; 𝐯) ∝ ෍ ቈlog(𝐯 + τଶ) +

(𝐓 − μ஘)ଶ

𝐯 + τଶ
቉  . 

(2) 

 
The analyst can obtain the maximum-likelihood estimate using an iterative quasi-

Newton optimizer. For the current study, the nlminb optimizer in the base R package is 
used (R Core Team, 2013). The model is converged when the partial derivatives are close 
to 0, and the maximum-likelihood estimates of the mean and variance component change 
between iterations by less than a specified predefined criterion set to be virtually zero.    

As noted before, the within-study sampling variance vi  is conditional on the 
effect-size parameter θ௜. Conventional estimates of vi substitute the study effect size Ti 
for θi, with the estimates treated as if they are a known parameter by the analyst. With the 
dynamic method, estimation of the within-study variances incorporates the current 
maximum-likelihood estimate of the true effect (for fixed-effect models) or mean effect 
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(for random-effects models) at every iteration  
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Current Research 
The purpose of this study is to compare methods of estimation for the dynamic 

method with conventional estimates for mixed-effects meta-analysis for two measures of 
effect size, correlation and standardized mean difference. Both correlation and 
standardized mean difference effect-size estimates have the property of dependency of 
the conditional variance on the true mean effect.  Including study-level predictors in the 
model can account for differences that exist due to study characteristics and analyzing 
how the dynamic method estimates mixed-effects models will be useful for assessing the 
utility of the dynamic method.  

Another area of focus in the current study is the use of the dynamic method within 
the Bayesian framework.   A particular strength of the Bayesian approach is the ability to 
incorporate prior knowledge into the analysis, which is particularly useful when τ² is 
difficult to estimate (Higgins & Thompson, 2002). The dynamic method is easy to 
integrate into the Bayesian framework, which allows for the comparison of Bayesian 
Conventional and Dynamic estimates.   
Correlation 

For correlation effect-size, the current study compares the results using four 
methods of estimation: the conventional approach (Conv)5, the dynamic method 
(Dynamic), Fisher’s r-to-Z back-transformed correlations (DirZtoR),  and an integral z-to-
r transformation (IntZtoR) (Hafdahl, 2009).  The integral back-transformed r-to-z 
developed by Hafdahl (2009) has been found to have less bias then estimation using the 
direct r-to-z method using the hyperbolic tangent6 (Field, 2001; Hafdahl, 2009; Hunter & 
Schmidt, 2004).   
Standardized Mean Difference 

For standardized mean differences, Cohen’s d is the conventional effect-size 
estimate. A  bias-corrected estimate referred to as Hedges’ g was developed by Hedges ( 
1981), to correct for a positive small-sample bias in Cohen’s d.  Both the biased and 
unbiased forms of estimation can be applied using both the conventional and dynamic 
methods.  For the current research, there are four methods of comparison for standardized 
mean difference effect-size estimates: conventional D (ConvD), bias-corrected 
conventional G (ConvG), the uncorrected dynamic estimate (DynD), and the bias-
corrected dynamic estimate (DynG).  For the conventional estimated (ConvD, ConvG), 
the individual study effect size is substituted for the true effect size when computing the 
conditional variance, as shown in Error! Reference source not found.. In contrast, the 
dynamic methods (DynD, DynG) leave the vi dependent on the current estimate of the 
true mean effect μθ.   
Priors for Bayesian Analysis 

A strength of the Bayesian approach is the ability to incorporate prior knowledge, 
but the question remains of where to obtain information about appropriate priors. In this 
study, we investigate the influence of different priors on the 𝜏ଶ, in addition to assessing 
how the dynamic method translates into the Bayesian context. Priors on the variance 

 
5 where the study estimate is used in the formula for the sampling variance 
6 The hyperbolic tangent is what is commonly used to back transform Fisher’s-z 

estimates to the r metric. 
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component are difficult to estimate.  
Priors represent the prior probability assigned to the results and are determined 

based on one’s current knowledge and beliefs about the phenomenon of interest.  When 
there is no previous knowledge to incorporate into the model, vague priors are used, 
letting the data speak for itself. This study mainly focuses on manipulating priors for the 
variance component (precision), which can be challenging to define7. The accuracy of 
priors for the regression coefficients will also impact the outcome, so to alleviate the 
influence of priors for the regression coefficients, these priors are fixed as vague 
normally distributed priors for all conditions (βi ~ N( 0, 10002), where 𝛽௜ represents the 
regression coefficient, 0 is the mean, and 10002 is the variance.  

In the current study, I utilize two different priors on precision for comparison of 
conventional and Dynamic conditions. The first prior used on precision is a flat vague 
uniform prior: 

  
1

𝜏ଶ
~𝑈(0,10). 

(3) 

 
A conjugate prior is one for which the prior distribution is in the same family as the 
posterior distribution. An inverse gamma prior is a conjugate prior for the variance of a 
normal distribution (Cooper, Hedges, & Valentine, 2009; Gelman, 2006). The second 
prior included uses estimates of the variance components reported in the literature of 
published meta-analyses. In a 2017 study, van Erp, Verhagen, Grasman, and 
Wagenmakesr collected data from meta-analyses published in Psychological Bulletin 
between 1990 and 2013, including data on heterogeneity, which is used to create a 
somewhat informative conjugate literature-based prior. To determine the prior, I first 
computed precision from the included published values for correlation and standardized 
mean difference. I then fit a gamma distribution to those values to determine the prior 
(See Appendix 2) and resulted in the following priors:   

Correlation:    
ଵ

ఛమ
= 𝛤(0.2372422, 0.0001740984), (4) 

Standardized Mean Difference:     
ଵ

ఛమ
= 𝛤0.2509973, 0.0004352425). (5) 

 
  

 
7 The variance component is 𝜏ଶ. However, Jags software uses precision which is 

ଵ

ఛమ
. 
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Methods 
Variables in Current Research 

The parameters and variables manipulated in the simulation are the same across 
all methods. Variables manipulated include the five levels for the number of studies, four 
levels for heterogeneity, and five levels for the magnitude of the intercept (5 X 4 X 5) for 
a total of 100 cells each for correlation and standardized mean difference.   
The Number of Studies (k) 

 The simulation considers five different levels for the number of studies: k = 10, 
20, 50, 80, and 150 (where k denotes the number of study effects in the analysis). These 
levels are approximated based on data provided by Coburn, Vevea, & Orrey (personal 
communication) on the number of studies included in published meta-analyses from two 
journals: British Medical Journal and Psychological Bulletin. The quartiles for the British 
Medical Journal (Q1 = 11, Q2 = 21, Q3 = 46) and Psychological Bulletin (Q1 = 47.75, Q2 
= 84.5, Q3 = 152). The third quartile from the British Medical Journal and the first 
quartile from Psychological Bulletin both contain values close to k=50,  resulting in five 
levels, approximating the values of the first, second, and third quartiles from these two 
journals. 
Heterogeneity (τ) 

Heterogeneity is the amount of between-study variation among studies included in 
a meta-analysis that is not associated with sampling individuals in the original studies. 
There are different ways to describe heterogeneity. Different statistics exist for 
characterizing the amount of heterogeneity in a meta-analytic data set. For the current 
study, I use different levels of  τ, defined as the square root of the variance 
component (𝜏ଶ) and representing the standard deviation of the true underlying effects. 
Levels of τ for correlation simulations are 0, .05, .1 and .2. For standardized mean 
difference the levels for τ are 0, .1, .2, and .3.  
Conditional Means 

 It is important to note that the mixed-effects model used in this simulation 
includes two dichotomous categorical study characteristics as predictors (e.g., 
male/female, yes/no). The coding for predictors consists of one or more repetitions of the 
following matrix: 
 

X0    

 

X1 

 

X2 

 1 0 0 
1 0 0 
1 0 1 
1 0 1 
1 0 0 
1 1 1 
1 1 0 
1 1 1 
1 1 0 
1 1 1 
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For all cells in the simulation, the number of studies is a multiple of 10.  Because of this 
property, the design matrix above is easily adaptable to all conditions by repeating the 
matrix the required number of times for the condition.  By using the same base design 
matrix in every condition, this assures that the correlation between the predictors remains 
constant for every condition in the simulation.  The correlation between the predictors 
also remains fixed at r =.2  across all conditions. Experimental studies will often have 
predictors that are correlated, and the inclusion of correlated predictors reflects this in the 
simulation.  

Since there are two dichotomous predictors, there are also four different 
subgroups based on study characteristics: Group 1(𝑋ଵ = 0, 𝑋ଶ = 0), with the conditional 
mean equal to 𝛽଴ . Group 2(𝑋ଵ = 0, 𝑋ଶ = 1),  with the conditional mean equal to 𝛽଴ +
 𝛽ଶ. Group 3 (𝑋ଵ = 1, 𝑋ଶ = 0), with the conditional mean equal to 𝛽଴ +  𝛽ଵ.  Group 4 
(𝑋ଵ = 1, 𝑋ଶ = 1) with the conditional mean equal to 𝛽଴ +  𝛽ଵ + 𝛽ଶ.  (See Figure 2). 
The intercept (β0) 

 Values of β0 for correlations are -0.3, - 0.2, 0,0.1, and 0.4.  Values of β0 for 
standardized mean difference are -0.3, -0.1, 0.2, 0.5, and 0.9. For both correlations and 
standardized mean difference, the slopes for the two predictors β1 and β2 are fixed at 0.2 
and 0.1, respectively.  These values result in effect-size magnitudes for the fourth 
conditional meant, which correspond approximately to effect sizes of no effect, small, 
medium, large, and extreme from the recommended guidelines for power analysis 
provided by (Cohen, 1988). The use of these guidelines for simulation should not be 
construed as condoning the pervasive use of Cohen’s guidelines for interpretation of 
effect sizes.  Cohen constructed those definitions to guide power analysis, and the 
problem of selecting effect sizes for a simulation is analogous to conducting a power 
analysis. The inclusion of an extreme case condition is to address that the normality 
assumption is more likely to be violated when the magnitude of the effect for correlations 
is high due to the restricted range of values (±1).  
Sample size (n) 

Sample sizes are not manipulated in this study but are an integral variable in the 
simulation. Sample sizes in the simulation are randomly generated from an empirical 
distribution (See Appendix 1) modeled from data on sample size collected from 
published meta-analyses in psychological journals.   
Effect Sizes (r,d) 

Study effect sizes use raw data simulated at the individual level. The simulation of 
individual raw data involves a multistep process.  The effect size parameter for each 
study is generated from a distribution based on the set hyperparameters, θi~N( μθi, τ2), 
where θi is the effect size parameter for study i (either ρ or δ) and μθi is the true 
conditional mean for study i.  In each replication, there are k sample sizes generated from 
the empirical n distribution.  For each study, I then generate raw data for nk individuals 
based on the effect size parameter θi.  The calculation of the study effect sizes (Ti) uses 
this simulates raw data. For code on simulating raw data for correlation and standardized 
mean differences, see appendices 2 and 3.  

This process of simulating raw data is atypical of simulating effect sizes for meta-
analytic studies. Often Ti is directly simulated from a distribution based on set parameters 



 
 

18 
 

for θ and σ2.  However, simulating data in this manner misses much of the nuances of 
sampling. For example, effect sizes based on d is known to be positively biased, 
particularly when sample sizes are small. Hedges (1981) developed a commonly used 
bias correction for d, sometimes referred to as Hedges g. In a mini simulation where I 
generated 1,000,000 effect sizes based on the raw data with δ=0 and τ=0.8 Sample sizes 
for this mini simulation come from the empirical n distribution used for the main study.  
Bias for the raw data matched expected values with estimates based on d having upward 
bias (Biasd= 0.0085) and the application of Hedges bias correction results in less overall 
bias (Biasg -0.0001). However, for data simulated directly from the distribution, the trend 
of upward bias for d is not found in the estimates (Biasd= 0.0002). Since Hedges bias 
correction reduces the estimate of d, simulating data this way leads to an increased bias in 
the negative direction when the correction is applied (Biasg -0.0082). 

 
  

 
8 vi for data simulated directly from a distribution is based on the same sample size used to 

generate the raw data. Setting τ=0 makes this model a fixed-effect model.  
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Results 
The results for the current study are divided into three parts for ease of 

interpretation. Part one assesses the performance of dynamic and conventional 
approaches for correlation and standardized mean difference in the context of frequentist 
estimation.  In part two, using the same simulated data, I compare dynamic and 
conventional approaches within the Bayesian framework.  Part three combines the results 
from parts 1 and 2 to compare frequentist and Bayesian modes of estimation. 
Frequentist Mixed-Effects 

I use R statistical software (R Core Team, 2013) to run all statistical analyses. 
Analytic results of the conventional approach and direct z-to-r back-transformed 
correlations utilized the metafor package (Viechtbauer, 2010). For the dynamic method 
and the integral z-to-r transformation (See Appendix 4), functions for estimation had to 
be specially coded.   

Assessment of the performance of the different methods of estimation included 
bias, root-mean-squared error (RMSE), and coverage rate of confidence intervals.  Bias is 
the average difference between the estimate and the true value of a parameter. This 
statistic also provides information regarding the direction of the difference, with negative 
bias indicating a tendency to underestimate the parameter and positive bias showing a 
tendency to overestimate.   

 
where 𝑇௜ represents an estimate of the parameter θ for replication i and reps is the total 
number of replications in the cell.  I also report relative bias, which is bias divided by the 
true value of the estimated parameter.  RMSE represents a total variation of estimates 
about the true parameter value.  It is analogous to a standard deviation and defined as the 
square root of the average squared deviation between the estimate obtained from the 
meta-analysis and the true parameter value, calculated as  
This definition contrasts with the empirical standard error of the estimate (i.e., the 
standard deviation of the parameter estimates) in that it incorporates both the standard 
error and the bias: 

𝑅𝑀𝑆𝐸 = ඥ𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 +  𝑏𝑖𝑎𝑠ଶ    . (7) 

Correlation 
For correlation effect size, dynamic, conventional (Conv), direct-z-to-r 

transformation (DirZtoR), and integral z-to-r- transformation (IntZtoR) are all included 
for comparison.  Estimation results for the four conditional means (See Figures 3, 4, 5,  & 
6) indicate that overall Conv, DirZtoR, and IntZtoR have a trend of increased positive 
bias as effect size and heterogeneity increased, while Dynamic trends toward negative 
bias effect size and heterogeneity increase.  This trend holds in almost every condition 
except for when the correlation is highest and heterogeneity large. In these conditions,  
Conv, DirZtoR, and IntZtoR would shift downward changing direction. This shift is likely 

𝐵𝑖𝑎𝑠 =
Σ(𝑇௜ − θ)

𝑟𝑒𝑝𝑠
  , 

(16) 

𝑅𝑀𝑆𝐸 = ඨ
Σ[(𝑇௜ − 𝜃)ଶ]

𝑟𝑒𝑝𝑠
    . 

(6) 



 
 

20 
 

due to a border condition, as correlations cannot exceed 1.0. 
Conv has a more substantial bias than IntZtoR and Dynamic across all conditions 

for correlation. When compared with DirZtoR, Conv estimates continue to have greater 
bias overall. However, when heterogeneity and effect sizes are extreme, as can be seen in 
the lower right corner of Figures 4, 5, and 6, DirZtoR has the most bias for all the 
conditional means except the first conditional mean (See Figure 3). The value of the first 
conditional mean is equal to the intercept (β0). Because the values for β1  and β2 are 
positive, the first conditional mean will always contain the smallest correlation magnitude 
among the conditional means for each cell.9 Taken together, the results comparing Conv 
and DirZtoR indicate that DirZtoR performs better than Conv but begins to break down 
when effect-size is high.  

Results of estimation with DirZtoR are worse than IntZtoR. When heterogeneity is 
low, DirZtoR and IntZtoR have similar results for bias. However, as heterogeneity 
increased, DirZtoR does worse than the other two methods of estimation.  

Bias for IntZtoR and dynamic estimates are similar when effect sizes are smaller. 
When effect sizes are larger, Dynamic estimates are less biased than IntZtoR for all four 
conditional means.  However, when both heterogeneity and effect size are most extreme, 
IntZtoR estimates are less biased then the Dynamic (See the lower right corner of Figures 
4, 5, & 6).  

Results comparing RMSE for the four conditional means (See Figures 7, 8, 9, & 
10), indicated that Conv estimates are worse than the other three methods. Results 
indicate that the performance of DirZtoR, IntZtoR, and Dynamic are similar when 
assessed with RMSE. Results for all methods have a trend of decreasing RMSE as the 
sample size increased.  

Coverage for all methods is evaluated at the 95% nominal rate. Coverage rates for 
Conv are worse than all other methods across the board but are particularly low as sample 
size increased, and heterogeneity is low (See Figures 13, 14, 15, 16).  IntZtoR has better 
coverage among the methods compared, followed by Dynamic. Similar coverage rates are 
seen for DirZtoR with IntZtoR when heterogeneity and effect size is smaller but has 
worse coverage in conditions where heterogeneity and effect size are largest (See Figures 
14, 15, 16).  

Both Conv and Dynamic trend toward increased positive bias and RMSE of τ as 
the number of studies increased (See Figures 9 & 16).  Bias and RMSE of τ decreased as 
heterogeneity and effect size increased for both Conv and Dynamic. When the number of 
studies is small and heterogeneity high, Conv has less bias and lower RMSE than 
Dynamic. However, when heterogeneity is higher, Dynamic has less bias and RMSE than 
Conv.  Fisher’s Z-estimates of the variance component is not easily back-transformed, 
and DirZtoR and IntZtoR and excluded in the results of the analysis of the variance 
component10.  

 
Standardized Mean Difference 

 
9  This is due to the nature of the predictors in this simulation where both β1 and β2 are fixed 

positive predictors. 
10 DirZtoR and IntZtoR are on the z-metric while Conv and Dynamic are in the correlation metric 
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Conventional bias-corrected F(ConvG) and uncorrected estimates (ConvD) as 
well as Dynamic corrected (DynG) and un-corrected estimates (DynD).  For all methods, 
bias tended to increase as effect size magnitude increased (See Figures 23, 24, 25 & 26). 
The results of the simulation indicate that the bias-corrected dynamic method (DynG) is 
the least biased, followed by ConvD. Results indicated that ConvG has the most bias of 
the four methods compared.  

When the magnitude is low, the conventional methods (ConvD and ConvG) both 
have increased negative bias as the magnitude of the effect size increased. The dynamic 
methods (DynD and DynG) trend in the opposite direction, with bias increasing in the 
positive direction as effect-size magnitude and heterogeneity increases. All methods 
perform similarly based on RMSE (See Figures 30, 31, 32, & 33).  

The results of bias and RMSE for the standardized mean difference effect-size 
indicate that while all methods of estimation have similar precision, DynG obtains the 
same amount of precision with the least amount of bias.  

Coverage rates for the four conditional means, assessed at the 95% nominal rate, 
are similar for all methods (See Figures 39, 40, 41, & 42). When the sample size is small 
and heterogeneity high, coverage rates are below the nominal rate but improved as the 
sample size increased.   

Results for comparing the meta-analytic results for the different methods on τ 
indicated that bias (see Figure 25) and RMSE (See Figure 36) are similar for the four 
methods.  Bias increased as the heterogeneity for the studies increased. Conditions with 
an increased number of studies also have decreased bias. The magnitude of the effect-size 
does not appear to influence bias for estimates of τ.  
Bayesian Mixed-Effects 

In part one of this study, there are 15,000 simulated replications in each cell for 
the frequentist analysis. However, due to the nature of MCMC sampling, Bayesian 
analysis can be time-consuming. Due to time constraints, the Bayesian analysis includes 
only a subset of 1000 of the replications from part one in each cell.  However, the 
parameters for the different cells are identical to the parameters from study one, so we 
can draw comparisons between the frequentist and Bayesian methods. 

Analysis of the Bayesian methods is done with JAGS in R using the ‘R2Jags’ 
package (Su & Yajima, 2015) and the CODA package (Plummer, Best, Cowles, & Vines, 
2006). For each prior, the analysis is conducted with and without the inclusion of the 
dynamic method. The Bayesian analysis for each replication includes three chains of 
length 60,000, after a burn-in of 30,000.  

The three chains each have different starting values. Chain one uses starting 
values below the parameter, chain two starts at the true value of the parameter, and chain 
three has starting values above the parameter value.  

Convergence diagnostics include the Brooks, Gelman, Rubin diagnostic (Gelman 
& Rubin, 1992; 1997) for assessing convergence among parallel chains. The Brooks, 
Gelman, Rubin diagnostic uses a potential scale reduction factor (PSRF) to determine 
convergence within the chains. The chain is converged if the PSRF is near 1.0 (+/- .05).  
Correlation 

Convergence for the Brooks, Gelman, Rubin diagnostic across all cells ranged 
between 86-100%. Convergence for the literature-based gamma prior is 99-100% for the 
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conventional model and 97-100% for the dynamic model. For the vague uniform prior, 
convergence ranged from 95-100% for the conventional model and 86%-100% for the 
dynamic model.  

Both dynamic methods have similar bias and RMSE regardless of the prior 
precision (See Figures 31, 32, 33, & 34).  Conventional models also have similar bias 
RMSE regardless of the prior set on precision (See Figures 35, 36, 37, & 38). This 
finding makes sense, given that the priors for the conditional means are not manipulated, 
therefore identical in all the models, and indicates that the prior put on precision did not 
have a large influence on other estimates. Bayesian analysis incorporating the dynamic 
method has better estimates than those using the dynamic model in almost all conditions. 
However, when heterogeneity and effect size is large, the dynamic methods have more 
bias than conventional methods (See Figure 34).   

For estimation of τ overall, estimates from dynamic methods are better in 
comparison to conventional counterparts, with conventional methods having more bias in 
the positive direction. The estimates incorporating the dynamic method with the 
literature-based gamma prior are better than the conventional approach using the same 
prior, and the dynamic estimates with the uniform prior are better than the conventional 
method using the same prior. However, when the number of studies is small and 
heterogeneity high, estimated from conventional method utilizing the gamma prior is 
better than the dynamic, with the dynamic method showing negative bias (See Figure 39). 
When comparing results on RMSE, the dynamic method performs at least as well or 
better than the conventional method (See Figure 40). The addition of the literature-based 
prior improves the estimation of τ when sample sizes are small but has less influence on 
the estimate as sample sizes increased.  
Standardized Mean Difference 

Convergence for the Brooks, Gelman, Rubin diagnostic across all cells ranged 
between 80-100%. Convergence for the literature-based gamma prior is 100% for the 
conventional model and 99-100% for the dynamic model. For the vague uniform, prior 
convergence ranged from 85-100% for the conventional model and 80%-100% for the 
dynamic model.  

In contrast to the results based on correlation effect-sizes, for standardized mean 
difference, dynamic estimates for all four conditional means are more biased than 
conventional estimates across all conditions (See Figures 41,42,43, & 44).  RMSE for the 
conditional means has a similar pattern, with RMSE being higher for dynamic estimates 
(See Figures 45, 46,47, & 48). 

Results based on the estimation of τ show that the dynamic and conventional 
methods perform similarly regarding bias (See Figure 49) and RMSE (see Figure 50). 
The literature-based gamma prior has improved estimation when the number of studies 
included is small and heterogeneity low.   
Frequentist and Bayesian Mixed Effects 
Correlation 

Comparisons of results for frequentists and Bayesian estimation on correlation 
show that the frequentist approach resulted in less bias than Bayesian methods for 
estimation of the conditional means. The finding of less bias in the frequentist estimates 
is true for both the dynamic and conventional methods (see Figures 51 & 53). For the 
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Dynamic methods, RMSE is similar for Dynamic, Gamma Dyn, and Unif Dyn (see Figure 
52). For the conventional methods, IntZtoR followed by DirZtoR, although DirZtoR does 
worse than the other methods when heterogeneity and effect size is larger (See Figures 52 
& 54).  

Results on τ also indicate that the dynamic frequentist method does better than the 
dynamic methods in the Bayesian framework (Gamma Dyn and Unif Dyn). However, 
when the number of studies is small, dynamic methods became increasingly downward 
biased (See Figures 55 & 56).  

Bias and RMSE of estimates of τ for DirZtoR and IntZtoR are excluded from the 
comparison because the estimates of the variance component are on a different metric. 
The results comparing Conv, Gamma Conv, and Unif Conv indicate that Conv estimates 
are best out of the three methods compared (See Figures 57 & 58).  
Standardized Mean Difference 

For standardized mean difference, frequentist methods continued to do better than 
Bayesian methods of effect-size estimation. Among the dynamic methods for 
standardized mean difference, the method utilizing the bias-corrected effect size estimate 
(DynG) has decreased bias compared to the other dynamic methods DynD, Gamma Dyn, 
and Unif Dyn (See Figure 59). For the conventional methods, ConvD has less bias than 
ConvG, Gamma Conv, and Gamma Unif (See Figure 61).  RMSE results for effect-size 
estimates are similar for both dynamic and conventional methods (see Figures 60 & 62). 

Dynamic estimates of τ based on frequentist methods are less biased than 
Bayesian methods when the number of studies is larger and the variance component 
smaller. When the number of studies is small (K=10, K=20) and the model contains 
heterogeneity, Bayesian estimates are less biased then dynamic.  When the number of 
studies is large and heterogeneity high, all methods have a similar bias and RMSE for 
their estimates (See Figures 63 & 64).  Conventional methods have a similar pattern to 
dynamic for estimates of τ (See Figures 65 & 66).  Bayesian estimates have less bias and 
RMSE for their estimates of τ when the number of studies is low, and heterogeneity is 
high. When heterogeneity is low, and the number of studies high frequentist methods 
have less bias and RMSE then Bayesian. When heterogeneity is higher, and studies are 
large all method have a comparable amount of bias  
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Discussion 
The results of this study provide support for the use of the dynamic model 

improving estimation in comparison to other methods, particularly for correlation, where 
the dynamic method produced less biased estimates than other methods for correlation 
across all conditions. In the Bayesian framework, for correlation, the dynamic method 
tended to do better than estimates with identical priors that did not incorporate the 
dynamic model in most conditions.  

The usefulness of the dynamic method for standardized mean difference effect 
sizes is less clear than with correlation. The two methods with the least biased estimates 
are the bias-corrected dynamic method DynG and the uncorrected ConvD estimate. The 
finding that ConvD is less biased than ConvG is particularly worth noting. This estimate 
introduced by Hedges (1981) is often used because it reduces bias in individual effect-
size estimates.  However, a reduced bias of individual effect-size estimation does not 
necessarily translate to less bias in the meta-analytic estimate. Bias-corrected estimates 
will be smaller than initial estimates of d.  As mentioned in the introduction for 
standardized mean differences, less substantial study effects lead to lower weights given 
to the study in the meta-analysis (See Equation 7).  In instances where bias is low, bias-
corrected estimates may lead to downward bias and inflation of the weight of the 
individual study in the meta-analysis.  Since the dynamic method retains the dependence 
of the estimate of the conditional variance on  μθ DynG has the benefit of incorporating 
the unbiased estimates while reducing the influence of biased estimates on the meta-
analysis.  In the Bayesian framework, the dynamic method did not appear to offer any 
additional benefit to estimation with standardized mean difference, and at times led to 
more biased estimates. 

This study contained several limitations. For frequentist methods, only fixed 
categorical predictors are included in the model. In addition, although the predictors are 
slightly correlated, the interaction between the predictors is not taken into account in the 
model. Future research should look at the influence of varying predictors as well as how 
taking into account the relationship between predictors improves estimation.  

Limitations in the Bayesian framework involved the use of priors. Priors for the 
effect-size estimates are fixed, but incorporating prior knowledge in these estimates may 
offer additional benefits. Also, the literature-based prior did not differentiate between 
areas of research. It is reasonable to assume that the distribution of precision will not be 
the same for all areas of research. Despite this, the general literature-based prior does 
appear to be useful as within this study,  since improved estimation is still found for this 
prior when sample sizes are small is found in multiple conditions for heterogeneity. 
Future research should also look more closely at developing priors looking at specific 
areas of study. It is likely that while they would be less useful as a general prior, they 
would probably be of greater benefit to the particular area of study.  

The pattern that the dynamic method consistently works better when 
heterogeneity is low makes sense. The dynamic method uses the current estimate of μθ for 
determining vi and adjusting the weights. Using the μθ to represent θi  instead of the study 
effect-size estimate lowers the influence of arbitrary effect-size estimates overly weighted 
in the model, leading to biased results. However, when heterogeneity is high μθ will be 
less representative of the true parameter θi for all studies.  Based on the study results, I 
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would recommend using the dynamic method when heterogeneity in the data is not high. 
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Figures 
Figure 1 
Illustration of fixed-effect and random-effects meta-analyses 

 

 
Note. Illustration of fixed-effect and random-effects meta-analyses. The diagram on top 
represents a fixed-effect meta-analysis. The bold line represents the distribution of the 
true effect size, and all studies come from this “fixed” distribution.   The bottom 
diagram represents a random-effects meta-analysis, where the bold line represents the 
distribution of the true mean effect.  Each study has an associated population effect 
size (θ), which varies around the true mean effect. Study effect sizes estimates are 
taken from a distribution around θi 
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Figure 2 
The Design Matrix 

 
Note. The design matrix with the four conditional means indicated. 
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Figure 3 
Bias for the  First Conditional Mean for Correlation Effect Size Estimates: Frequentist 
Analysis 
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Figure 4 
Bias for the Second Conditional Mean for Correlation Effect Size Estimates: 
Frequentist Analysis 

 
Note. The second conditional mean is the sum of intercept and the regression 
coefficient of the second predictor  (𝛽ଶ = .1). 
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Figure 5 
Bias for the Third Conditional Mean for Correlation Effect Size Estimates: Frequentist 
Analysis 

 
Note. The Third conditional mean is the sum of intercept and the regression coefficient 
of the first predictor  (𝛽ଵ = .2). 
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Figure 6 
Bias for the Fourth Conditional Mean for Correlation Effect Size Estimates: 
Frequentist Analysis 

 
Note. The Fourth conditional mean is the sum of intercept and the regression 
coefficients of both predictors  (𝛽ଵ + 𝛽ଶ = .3). 
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Figure 7 
RMSE for the First Conditional Mean for Correlation Effect Size Estimates: 
Frequentist Analysis 
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Figure 8 
RMSE for the Second Conditional Mean for Correlation Effect Size Estimates: 
Frequentist Analysis 

 
Note. The second conditional mean is the sum of intercept and the regression 
coefficient of the second predictor  (𝛽ଶ = .1) 
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Figure 9 
RMSE for the Third Conditional Mean for Correlation Effect Size Estimates: 
Frequentist Analysis 
 

 
 
 
Note. Third conditional mean is the sum of intercept and the regression coefficient of 
the first predictor  (𝛽ଵ = .2). 
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Figure 10 
RMSE for the Fourth Conditional Mean for Correlation Effect Size Estimates: 
Frequentist Analysis 

 

Note. Fourth conditional mean is the sum of intercept and the regression coefficients of 
both predictors  (𝛽ଵ + 𝛽ଶ = .3). 
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Figure 11 
Coverage for the First Conditional Mean for Correlation Effect Size Estimates: 
Frequentist Analysis 

 
 
Note. Coverage rate with 95% Nominal probability. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

K=10 K=20 K=50 K=80 K=150

T
a

u
=

0
T

a
u

=
0

.0
5

T
a

u
=

0
.1

T
a

u
=

0
.2

-0.3-0.2 0 0.2 0.4 -0.3-0.2 0 0.2 0.4 -0.3-0.2 0 0.2 0.4 -0.3-0.2 0 0.2 0.4 -0.3-0.2 0 0.2 0.4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

True Value of Intercept, 0

C
o
v
e
ra
g
e

Conv Dynamic DirZtoR IntZtoR



 
 

38 
 

 
Figure 12 
Coverage for the Second Conditional Mean for Correlation Effect Size Estimates: 
Frequentist Analysis 

 
Note. Coverage rate with 95% Nominal probability. The second conditional mean is 
the sum of intercept and the regression coefficient of the second predictor  (𝛽ଶ = .1) 
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Figure 13 
Coverage for the Third Conditional Mean for Correlation Effect Size Estimates: 
Frequentist Analysis 
 

 
 
Note. Coverage rate with 95% Nominal probability. The Third conditional mean is the 
sum of intercept and the regression coefficient of the first predictor  (𝛽ଵ = .2). 
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Figure 14 
Coverage for the Fourth Conditional Mean for Correlation Effect Size Estimates: 
Frequentist Analysis 

 

 
Note. Coverage rate with 95% Nominal probability. The Fourth conditional mean is the 
sum of intercept and the regression coefficients of both predictors  (𝛽ଵ + 𝛽ଶ = .3). 
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Figure 15 
Bias for Tau for Correlation Effect Size Estimates: Frequentist Analysis 
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Figure 16 
RMSE for Tau for Correlation Effect Size Estimates: Frequentist Analysis 
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Figure 17 
Bias for the First Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Frequentist Analysis 
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Figure 18 
Bias for the Second Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Frequentist Analysis 
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Note. The second conditional mean is the sum of intercept and the regression 
coefficient of the second predictor  (𝛽ଶ = .1) 
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Figure 19 
Bias for the Third Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Frequentist Analysis 

 
 

Note. The Third conditional mean is the sum of intercept and the regression coefficient 
of the first predictor  (𝛽ଵ = .2). 
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Figure 20 
Bias for the Fourth Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Frequentist Analysis 

 
Note. The Fourth conditional mean is the sum of intercept and the regression 
coefficients of both predictors  (𝛽ଵ + 𝛽ଶ = .3). 
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Figure 21 
RMSE for the First Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Frequentist Analysis 
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Figure 22 
RMSE for the Second Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Frequentist Analysis 

 
Note. The second conditional mean is the sum of intercept and the regression 
coefficient of the second predictor  (𝛽ଶ = .1) 
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Figure 23 
RMSE for the Third Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Frequentist Analysis 

 
Note. The Third conditional mean is the sum of intercept and the regression coefficient 
of the first predictor  (𝛽ଵ = .2). 
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Figure 24 
RMSE for the Fourth Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Frequentist Analysis 

 
Note. The Fourth conditional mean is the sum of intercept and the regression 
coefficients of both predictors  (𝛽ଵ + 𝛽ଶ = .3). 
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Figure 25 
Coverage for the First Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Frequentist Analysis 

 
Note. Coverage rate with 95% Nominal probability. 
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Figure 26 
Coverage for the Second Conditional Mean for Standardized Mean Difference Effect 
Size Estimates: Frequentist Analysis 

 
  

Note. Coverage rate with 95% Nominal probability. The second conditional mean is 
the sum of intercept and the regression coefficient of the second predictor  (𝛽ଶ = .1) 
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Figure 27 
Coverage for the Third Conditional Mean for Standardized Mean Difference Effect 
Size Estimates: Frequentist Analysis 

 
Note. Coverage rate with 95% Nominal probability. The Third conditional mean is the 
sum of intercept and the regression coefficient of the first predictor  (𝛽ଵ = .2). 
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Figure 28 
Coverage for the Fourth Conditional Mean for Standardized Mean Difference Effect 
Size Estimates: Frequentist Analysis 

 

Note. Coverage rate with 95% Nominal probability. The Fourth conditional mean is the 
sum of intercept and the regression coefficients of both predictors  (𝛽ଵ + 𝛽ଶ = .3). 
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Figure 29 
Bias for Tau for Standardized Mean Difference Effect Size Estimates: Frequentist 
Analysis 
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Figure 30 
RMSE for Tau for Standardized Mean Difference Effect Size Estimates: Frequentist 
Analysis 
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Figure 31 
Bias for the First Conditional Mean for Correlation Effect Size Estimates: Bayesian 
Analysis 
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Figure 32 
Bias for the Second Conditional Mean for Correlation Effect Size Estimates: Bayesian 
Analysis 

 
Note. The second conditional mean is the sum of intercept and the regression 
coefficient of the second predictor  (𝛽ଶ = .1). 
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Figure 33 
Bias for the Third Conditional Mean for Correlation Effect Size Estimates: Bayesian 
Analysis 

 
Note. The Fourth conditional mean is the sum of intercept and the regression 
coefficients of both predictors  (𝛽ଶ = .2). 
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Figure 34 
Bias for the Fourth Conditional Mean for Correlation Effect Size Estimates: Bayesian 
Analysis 

  
Note. The Fourth conditional mean is the sum of intercept and the regression 
coefficients of both predictors  (𝛽ଵ + 𝛽ଶ = .3). 
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Figure 35 
RMSE for the First Conditional Mean for Correlation Effect Size Estimates: Bayesian 
Analysis 
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Figure 36 
RMSE for the Second Conditional Mean for Correlation Effect Size Estimates: 
Bayesian Analysis 

 
Note. The second conditional mean is the sum of intercept and the regression 
coefficient of the second predictor  (𝛽ଶ = .1). 
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Figure 37 
RMSE for the Third Conditional Mean for Correlation Effect Size Estimates: Bayesian 
Analysis 

 
Note. The Third conditional mean is the sum of intercept and the regression coefficient 
of the first predictor  (𝛽ଵ = .2). 
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Figure 38 
RMSE for the Fourth Conditional Mean for Correlation Effect Size Estimates: 
Bayesian Analysis 
 

 
 Note. The Fourth conditional mean is the sum of intercept and the regression 
coefficients of both predictors  (𝛽ଵ + 𝛽ଶ = .3). 
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Figure 39 
Bias for Tau for Correlation Effect Size Estimates: Bayesian Analysis 
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Figure 40 
RMSE for Tau for Correlation Effect Size Estimates: Bayesian Analysis 
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Figure 41 
Bias for the First Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Bayesian Analysis 
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Figure 42 
Bias for the Second Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Bayesian Analysis 

 
Note. The second conditional mean is the sum of intercept and the regression 
coefficient of the second predictor  (𝛽ଶ = .1). 
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Figure 43 
Bias for the Third Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Bayesian Analysis 

 
Note. The Third conditional mean is the sum of intercept and the regression coefficient 
of the first predictor  (𝛽ଵ = .2). 
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Figure 44 
Bias for the Fourth Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Bayesian Analysis 

 

 
Note. The Fourth conditional mean is the sum of intercept and the regression 
coefficients of both predictors  (𝛽ଵ + 𝛽ଶ = .3). 
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Figure 45 
RMSE for the First Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Bayesian Analysis 
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Figure 46 
RMSE for the Second Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Bayesian Analysis 

 
Note. The second conditional mean is the sum of intercept and the regression 
coefficient of the second predictor  (𝛽ଶ = .1). 
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Figure 47 
RMSE for the Third Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Bayesian Analysis 

 
Note. The Third conditional mean is the sum of intercept and the regression coefficient 
of the first predictor  (𝛽ଵ = .2). 
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Figure 48 
RMSE for the Fourth Conditional Mean for Standardized Mean Difference Effect Size 
Estimates: Bayesian Analysis 

 
Note. The Fourth conditional mean is the sum of intercept and the regression 
coefficients of both predictors  (𝛽ଵ + 𝛽ଶ = .3). 
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Figure 49 
Bias for Tau for Standardized Mean Difference Effect Size Estimates: Bayesian 
Analysis 
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Figure 50 
RMSE for Tau for Standardized Mean Difference Effect Size Estimates: Bayesian 
Analysis 
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Figure 51 
Bias for the Fourth Conditional Mean for Correlation Effect Size: All Dynamic 
Methods 

 
Note. Plots for the second, third, and fourth conditional mean for all dynamic 
correlation methods are not included. Results for the other conditional means followed 
a similar pattern.  
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Figure 52 
RMSE for the Fourth Conditional Mean for Correlation Effect Size: All Dynamic 
Methods 
  
 

 
Note. Plots for the second, third, and fourth conditional mean for all dynamic 
correlation methods are not included. Results for the other conditional means followed 
a similar pattern. 
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Figure 53 
Bias for the Fourth Conditional Mean for Correlation Effect Size: All Conventional 
Methods 

 
Note. Plots for the second, third, and fourth conditional mean for all conventional 
correlation methods are not included. Results for the other conditional means followed 
a similar pattern. 
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Figure 54 
RMSE for the Fourth Conditional Mean for Correlation Effect Size: All Conventional 
Methods 

 

 
Note. Plots for the second, third, and fourth conditional mean for all conventional 
correlation methods are not included. Results for the other conditional means followed 
a similar pattern. 
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Figure 55 
Bias for Tau for Correlation Effect Size: All Dynamic Methods 
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Figure 56 
RMSE for the Tau for Correlation Effect Size: All Dynamic Methods 
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Figure 57 
Bias for Tau for Correlation Effect Size: All Conventional Methods 

 
Note.  DirZtoR and IntZtoR are excluded from this plot. 
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Figure 58 
RMSE for the Tau for Correlation Effect Size: All Conventional Methods 

 
Note. DirZtoR and IntZtoR excluded from this plot. 
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Figure 59 
Bias for the Fourth Conditional Mean for Standardized Mean Difference Effect Size: 
All Dynamic Methods 

 
Note. Plots for the second, third, and fourth conditional mean for all dynamic 
standardized mean difference methods are not included. Results for the other 
conditional means followed a similar pattern. 
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Figure 60 
RMSE for the Fourth Conditional Mean for Standardized Mean Difference Effect Size: 
All Dynamic Methods 

 
Note. Plots for the second, third, and fourth conditional mean for all dynamic 
standardized mean difference methods are not included. Results for the other 
conditional means followed a similar pattern. 
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Figure 61 
Bias for the Fourth Conditional Mean for Standardized Mean Difference Effect Size: 
All Conventional Methods 

 
Note. Plots for the second, third, and fourth conditional mean for all conventional 
standardized mean difference methods are not included. Results for the other 
conditional means followed a similar pattern. 
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Figure 62 
RMSE for the Fourth Conditional Mean for Standardized Mean Difference Effect Size: 
All Conventional Methods 

 
Note. Plots for the second, third, and fourth conditional mean for all conventional 
standardized mean difference methods are not included. Results for the other 
conditional means followed a similar pattern. 
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Figure 63 
Bias for Tau for Standardized Mean Difference Effect Size: All Dynamic Methods 
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Figure 64 
RMSE for the Tau for Standardized Mean Difference Effect Size: All Dynamic Methods 
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Figure 65 
Bias for Tau for Standardized Mean Difference Effect Size: All Conventional Methods 
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Figure 66 
RMSE for the Tau for Standardized Mean Difference Effect Size: All Conventional 
Methods 
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Appendix 1 
Function for Simulating Sample Sizes 

 
function(number){ 
   
  retval = rep(0, number) 
  proportions = c(0.027202073, 0.060880829, 0.036269430, 0.054404145, 

0.059585492, 0.062176166, 
                  0.071243523, 0.038860104, 0.047927461, 0.034974093, 0.042746114, 

0.031088083, 
                  0.034974093, 0.037564767, 0.041450777, 0.031088083, 0.036269430, 

0.032383420, 
                  0.033678756, 0.034974093, 0.031088083, 0.032383420, 0.032383420, 

0.029792746, 
                  0.015544041, 0.005181347, 0.003886010) 
  proportions2<-c(0.02720207, 0.08808290, 0.12435233, 0.17875648, 

0.23834197, 0.30051814, 
                  0.37176166, 0.41062176, 0.45854922,0.49352332, 0.53626943, 

0.56735751, 
                  0.60233161, 0.63989637, 0.68134715, 0.71243523, 0.74870466, 

0.78108808, 
                  0.81476684, 0.84974093, 0.88082901, 0.91321243, 0.94559585, 

0.97538860, 
                  0.99093264, 0.99611399, 1.00000000) 
   
   
  for(i in 1:number){ 
    testvar = runif(1) 
    testvar2 = 0 
     
    if(testvar <= proportions2[27]) testvar2= round(runif(1,500.5,636.4)) 
    if(testvar <= proportions2[26]) testvar2= round(runif(1,350.5,500.4)) 
    if(testvar <= proportions2[25]) testvar2= round(runif(1,250.5,350.4)) 
    if(testvar <= proportions2[24]) testvar2= round(runif(1,145.5,250.4))     
    if(testvar <= proportions2[23]) testvar2= round(runif(1,100.5,145.4)) 
    if(testvar <= proportions2[22]) testvar2= round(runif(1,78.5,100.4)) 
    if(testvar <= proportions2[21]) testvar2= round(runif(1,70.5,78.4)) 
    if(testvar <= proportions2[20]) testvar2= round(runif(1,61.5,70.4)) 
    if(testvar <= proportions2[19]) testvar2= round(runif(1,55.5,61.4)) 
    if(testvar <= proportions2[18]) testvar2= round(runif(1,49.5,55.4)) 
    if(testvar <= proportions2[17]) testvar2= round(runif(1,44.5,49.4)) 
    if(testvar <= proportions2[16]) testvar2= round(runif(1,40.5,44.4)) 
    if(testvar <= proportions2[15]) testvar2= round(runif(1,38.5,40.4)) 
    if(testvar <= proportions2[14]) testvar2= round(runif(1,35.5,38.4)) 
    if(testvar <= proportions2[13]) testvar2= round(runif(1,32.5,35.4)) 
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    if(testvar <= proportions2[12]) testvar2= round(runif(1,30.5,32.4)) 
    if(testvar <= proportions2[11]) testvar2= round(runif(1,28.5,30.4)) 
    if(testvar <= proportions2[10]) testvar2= round(runif(1,25.5,28.4)) 
    if(testvar <= proportions2[9]) testvar2= round(runif(1,23.5,25.4)) 
    if(testvar <= proportions2[8]) testvar2= round(runif(1,21.5,23.4)) 
    if(testvar <= proportions2[7]) testvar2= round(runif(1,19.5,21.4)) 
    if(testvar <= proportions2[6]) testvar2= round(runif(1,17.5,19.4)) 
    if(testvar <= proportions2[5]) testvar2= round(runif(1,15.5,17.4)) 
    if(testvar <= proportions2[4]) testvar2= round(runif(1,13.5,15.4)) 
    if(testvar <= proportions2[3]) testvar2= round(runif(1,11.5,13.4)) 
    if(testvar <= proportions2[2]) testvar2= round(runif(1,9.5,11.4)) 
    if(testvar <= proportions2[1]) testvar2 = round(runif(1,5.5,9.4)) 
    retval[i] <-testvar2} 
   
   
  return(retval) 
} 
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Appendix 2 

Simulation of Effect Sizes for Correlation 
 

n<-samplen(k) #simulating sample sizes of k studies with sampleN function  
Desdat<-

matrix(c(rep(rep(1,10),kt),rep(rep(0,4),kt),rep(rep(1,6),kt),rep(rep(0,3),kt), 
                 rep(rep(1,4),kt),rep(rep(0,3),kt)),ncol=3) #The design matrix 
mu<-X%*%Beta #The study effect size parameter.  
#Beta is a vector including the intercept (B0), the regression term for the frirst 

predictor (B1), and the regression term for the second predictor (B2), 
 
r<-rep(NA,k) ) #placeholder for effect sizes 
 
for(i in 1:k) { 
  repeat{   
    rho <-rnorm(1,mu[i],sqrt(tau2)) #effectsize parameter for study i 
    if (rho<1 && rho>(-1)){ 
      break}  
  } 
   
  cormat <- matrix(c(1,rho,rho,1),2,2) #correlation matrix for parameter 
   
  x <- cbind(rnorm(n[i]),rnorm(n[i]))  
  x <- x%*%chol(cormat)  #simulated correlated raw data 
  r[i] <- cor(x[,1],x[,2]) 
   
} 
 
vr<-(1-r^2)^2 / (n-2) #estimated conditional variance 
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Appendix 3 
Simulation of Effect Sizes for Standardized Mean difference 

n1<-n2<-samplen(k) #simulating sample sizes of k studies with sampleN function 
 Desdat<-

matrix(c(rep(rep(1,10),kt),rep(rep(0,4),kt),rep(rep(1,6),kt),rep(rep(0,3),kt), 
                  rep(rep(1,4),kt),rep(rep(0,3),kt)),ncol=3) #The design matrix 
 mu<-X%*%Beta #The study effect size parameter.  
 #Beta is a vector including the intercept (B0), the regression term for the frirst 

predictor (B1), and the regression term for the second predictor (B2), 
  
  d<-rep(NA,k) #placeholder for effect sizes 
  mui<-rnorm(k,mu,Tau)#Study effect size parameters 
  for (j in 1:k){ 
     
    x1<-rnorm(n[j],0,1) 
    x2<-rnorm(n[j],mui[j],1) 
    m1<-mean(x1) 
    m2<-mean(x2) 
    v1<-var(x1) 
    v2<-var(x2) 
    sp<-sqrt((v1+v2)/2) 
    smd=(m2-m1)/sp 
    d[j]<-smd 
  } 
   
 
   
  vd<-(n1+n2)/(n1*n2) + d^2/(2*(n1+n2)-2) #estimated conditional variance 
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Appendix 4 
R Code for Integral z-to-r Transformation 

   
#Lower Bound for Z 

LB<-Z-1.96*SEz 
#Upper Bound for Z 
     UB<-Z+1.96*SEz 
#Lower Bound for ζ 
  lower <- Z -5*sqrt(t2) 
#Upper Bound for ζ 
    upper <- Z + 5* sqrt(t2)      
 #function for integration  

myf <- function(zest, mu, tau2){ x<-tanh(zest) * dnorm(zest, mean = mu, 
sd = sqrt(tau2)) 
     return(x) 
     } 

zint<-integrate(myf, lower = lower, upper = upper, mu = Z, tau2 = 
t2)$value 
 
 
 
 
 
 
 

 




