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ABSTRACT 

This paper extends the Stahl-Rubinstein model of bilateral bargaining to incorporate many 
players and multidimensional issue spaces. A central feature of our framewodc is that in each 
round of negotiations, a proposer is selected randomly. Our bargaining model consists of a 
sequence of finite-horizon games, in which the horizon increases without bound. A solution to 
our model is a limit of equilibrium outcomes for the finite-horizon games. A necessary 
condition for existence of a deterministic solution is that the limit outcome belongs to the core 
of the underlying bargaining problem. Solutions, if they exist, are generically unique. Two 
sets of sufficiency conditions for existence are presented. The paper concludes with examples 
and applications. In particular, we consider bipolar negotiations between two factions, and 
show that there is a positive relationship between the cohesiveness of one faction relative to 
the other and its effectiveness in securing the common goals to its members. 



Tltis paper proposes a noncooperative model of multilateral bargaining. Our framework can be viewed as an 
extemion of the classical StaId-Rubinstein bargaining game in which two players take turns proposing a division of 
a "pie:' I After one player has proposed a division, the other can accept or reject the proposal. If the proposal is 
accepted, the ganle ends and the division is adopted; if it is rejected, the second player then makes a proposal, 
which the first player then accepts or rejects. And so on. In StaId's fonnulation, the game continues for a finile 
number of rounds; in Rubinstein's extension. the number of rounds is infinite. We propose a generalization of this 
framework to incorporale multiple players and multidimensional issne spaces. We consider a sequence of games 
with finite bargaining horizons, and study the limit points of the equilibrium outcomes as the horizon is extended 
without bound. Departing from the classicul approach, we assume that the proposer is chosen randomly "by nature" 
in each round of bargaining, according to a prespecified vector of "access probabilities. "2 

The paper focuses on collective decision-making problems. In contrast to the related political science 
literature, which explicitly mndels decision-making in fonnal institutions such as legislatures and committees, our 
framework is intended to represent in a very stylized way the infonnal, unstructured negotiations and debates that 
frequently precede and accompany the fonnal legislative process. Consider, for example, the current discussions 
among the fonnerly Soviet Republies over the fate of the Soviet Union, or the recent negotiations in Canada leading 
up to the Meech Lake Accord.3 Alternatively, consider negotiatiom hetween regional interests within Califonaia 
over, say, the location of a new hydroelectric facility, or hetween memhers of an agricultural cooperative over the 
location of a new processing plant, 

Inlagine the activity within the White House staff prior to the selection of a nominee for a senior appointtnenl 
(such as a Supreme Court judgeship). The following scenatio might unfold: a numher of different senior staff 
memhers, including, perhaps, the President himself, are concurrently lobbying each other, each attempting to build 
support for one particular candidate; somehow, one of the names under consideration is singled out from the others 
and, in a plenary meeting of the White House staff, attention is focussed exclusively on this candidate. If sufficient 
support has been generated, the White House will adopt the candidate as its official nominee. Otherwise, the 
lobbying process will begin again, until agreement is finally reached. 

The fonnalism of our framework confonns rather closely to this infonnal negotiating process. One aspect of 
it, however, is difficult to descrihe analytically: how is one staffer's proposal singled out from the others? In our 
framework, this problematic issue is "black boxed:" we sinlply assert that nature selects a player to he the 
"proposer" in a random way. Presumably, however, there is some relationship hetween a staffer's status within the 
organization and tile likelihood that her proposal will he singled out for consideration. We operationalize this 
relationship by assuming that nature's random choice is governed by an exogenously specified vector of access 
probabilities. Players' access probabilities are interpreted as measures of their relative political "effectiveness:" the 
higller a player's access weight, the more likely it is that she will "seize the initiative" in the negotiations. A 
player's high access might reflect the extent of her political power within the organization, or, perhaps, a talent for 
fonnulating issues in ways that can lead to workable compromises. 

The scenario spelled out above is intended to he suggestive, but should not he taken too literally. There are 
several different stories that are comistent, to some degree, with the framework. Alternatively, the framework can 
he viewed as reduced fonn of a complicated structural process. In any case, the ultimate usefulness of the 
framework will he detennined by the intuitive "feel" of its predictions and comparative staties properties rather than 
the extent to which it faithfully mirrors the details of some actual negotiating process. 

The paper is organized as follows. Section I introduces the model. The fOffilal presentation is contained in 
sections 2 and 3. Section 4 contains examples and applications. In Appendix A we discuss an inlportant class of 
problems to which our theorems do not apply. Proofs are gathered together in Appendix B. 

t Stahl [1972, 19771 and Rubinstdn (1982). 

1 Th~ idea of a random proposn has been explored in several other papers, including Dinmore [1987] and Baron-Ferejolut [1989). 

3 [II Raus5er-SimOll [t9921, we use the framework developed in this paper as a basis for studying the process of privatization in Eastern 

Europe. 
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SECTION 1. INTRODUCTION. 

Outline of the Framework. 
Our game consists of a finite nwnber of negotiating rounds. The pUI]lose of negotiations is to select a policy 

from some set of possible alternatives. In odd-numbered rounds, each player chooses a proposal, which is a policy, 
paired with an admissible coalition. Between the odd- and even-nwnbered rounds, one of the players is selected at 
random to be the proposer, according to the prespecified vector of access probabilities. In the even-numbered 
rounds, each member of the proposer's coalition decides wbether to accept or reject the proposer's policy.4 The 
game ends as soon as all coalition members accept a policy. If one member rejects a proposed policy, the players 
proceed to the next round. If the last round of the game is reached aod the players still fail to agree, then the game 
ends and a prespecified disagreement outcome is implemented 

An important parameter of our framework is the set of admissible coalitions. An admissible coalition is 
inteI]lreted as a subset of the players that has the authority to impose a policy choice on the whole group. For 
example, in a majority rule bargaining game, a coalition is admissible if aod only if it contains a majority of 
players. More generally, the set of admissible coalitions ntight have a variety of structures. In particnIar, we will 
sometimes impose the restriction that at least one player belongs to every admissible coalition. Any such player 
will be referred to as essential. 

Our equilibrium concept is a refinement of subgame perfection (Selten [1975]). For a bargaining game with a 
fixed number of bargaining rounds, an equilibriwn outcome is a probability distribution over the policies that are 
implemented when players play equilibrium strategies. A solution to our model is a limit of equilibrium outcomes, 
as the number of negotiating rounds increases without bouod. The main results in this paper concern the existence 
of a deterministic solution, which is a limit outcome assigning probability one to a single policy. A necessary 
condition for a policy to be a solution is that the policy belongs to the core of the underlying bargaining game, i.e., 
there exists no admissible coalition whose members all prefer some other policy. Weak conditions guarantee that if 
a solution exists, it will be unique for generic specifications of players' preferences. We identify two sets of 
sufficient conditions for existence. If all players are risk averse, then every majority rule bargaining game with a 
one-dimensional space of policies has a deterntinistic solution. Alternatively, a deterministic solution exists in 
general if at least one player is essential. In particular, the latter restriction is satisfied by unanimity games, in 
which the only admissible coalition is the grand coalition, so that each player is essential.5 

A striking feature of our framework is that even when the bargaining problem is quite complex, the 
(generically unique) equilibrium solution can easily be computed numerically. Monte Carlo methnds can then be 
applied to investigate the comparative statics properties of the problem. Specifically, our model is solved 
recursively, by computing a sequence of solutions to straightforward single-person decision problems, until ao 
acceptable degree of convergence has been obtained. Because of its computational tractability, our framework 
provides a useful analytical approach to examining a wide variety of collective decision-making problems. 

Modeling Issues. 
A major modeling issue relates to the sufficiency condition tllat some player be essential. In the abstract, this 

condition is quite restrictive. For example, it clearly conflicts with the formal institutional procedure of decision
making by majority rule. However, in a wide variety of collective decision-making contexts, the condition is 
satisfied de facto, even when it is explicitly violated de jure. For example, it is difficnlt to imagine that a candidate 
could emerge as the White House nominee for a major political appointment without at least the tacit approval of 
the President That is, in negotiations with the White House staff, the President would be an essential player. 
Similarly, in the current negotiations over the future of the Soviet Union, essential status ntight be conferred upon 
either Mr Gorbachev, Mr Yeltsin or both. More generally, whenever a group of negotiators has a clearly identified 
"leader," it may be appropriate w model this player as essential.6 Fmally, a player might be deemed essential by 

.( We could have formulated the framework more sparsely, allowing the proposer's coalition to be determined endogenously. Our reasons 
for requiring players to specify coalitions explicitly are explained in section 2 below. 

:; 111e framework as presently formulated hM been strip~d to its barest essentials. It eM be extended in numerous of ways without great~ 
Iy affecting our major condusioos. For example, if players have positive time-discount factors, our sufficiency conditions witt no looger 
guarantee deterministic solutions, though "almost detenninistic" solution:,> wi!! exist if players are sufficiently patient. Another natural way to 
extend the framework would be to endogenize the determination of access probabilities, by allowing players to "invest in access" during a 
CoumoHype pregame. This extension would enhance the realism and applicability of the framework, but at the cost of a considerable loss in 
computational simplicity. 

1> Conversely, in the absence of leadership, one might expect certain kinds of negotiations to become bogged down; a formal counterpart of 
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virtue of her role in executing the decisions resulting from the negotiations. For example, in faculty meetings of 
university departments, the ChaiIperson will typically have no special voting privileges. Presumably, however, 
there are certain kinds of policy decisions that will rarely be taken in the face of explicit opposition from the Chair, 
as the Chair must bear the ultimate responsibility for implementing the policy. 

Confusion frequently arises over the relationship between "essentiality" and "access." While essential players 
will tend iu general to have relatively high access probabilities. there is no necessary correlation between these two 
facets of political power. Czechoslovakia's President Havel provides a striking illustration of the distinction. 
During his country's velvet revolution, Havel's access weight was very high. In the post-revolutionary era, he has 
acquired essential status, but his "empirical" access probability has undoubtediy declined. Similarly, while President 
Reagan was clearly an essential player within the Reagan White House, his "revealed" access probability was qnite 
low in the sense that he rarely initiated policy proposals. More generally, in almost every political process, there 
are many groups that have considerable access but do not participate in the formal decision-making process. In our 
framewodc, these participants would be assigned positive access probabilities but wonid not belong to any 
admissible coalition. Familiar examples from national politics are "intellectual lobby groups" such as the Brookings 
Institution, whose access is derived from its members' individual relationships with policy makers, or, in university 
politics, radical student groups, whose access ntight be measured by their ability to influence the general climate of 
opinion. 

A second modeling issue arises from our treatment of the time horizou. Since Rubinstein [1982], it has 
become customary in bargairting theory to assume that the time horizon is infinite. We depart from this custom, 
and assume that the bargaining horizon is finite but arbitrarily long. A pragmatic justification for this assumption is 
that the infinite-horizon version of our model has no predictive power: any outcome can he supported as an 
equilibrium.7 More significantly, there are in some circumstances sound modeling grounds for presuming that the 
horizon is finite. In collective decision-making contexts, impending deadiines can provide a dramatic impetus to 
compromise: witness the frequency of last-minute resolutions of Congressional deadlocks, and of post-midnight 
compromises in wage negotiations when strikes are threatened for the following mortting. Since finite horizon 
models are solved by backward induction, attention is inevitably drawn to these "eleventh hour" effects. 8 

Conversely, of course, in an infinite horizon model there is no endgame. Our final argument in support of a finite 
horizon is again pragmatic. Our model exhibits certain properties that are intnitively appealing and correspond to 
well-known stylized facts about actual negotiating situations. (See Rausser-Simon [1991] and section 4 below for a 
preview.) Whatever the "true" explanations are for these facts, the explanations for the properties of our model that 
mimic them can be traced to players' behavior in the final rounds of negotiations. Thus, our finite horizon 
assumption can be justified on the grounds that it captures the spirit of some interesting but not well understood 
phenomena that might otherwise escape attention. 

Related Literature. 
Until recently, the topic of multilateral bargairting has received surprisingly littie attention by noncooperative 

game theorists. The few papers that have heen written focus almost exclusively on various versions of the 
alternating-offer modeL Biumore [1985) considers several alternative extensions of Rubinstein's analysis to the 
problem of "three player and three cakes:" each pair of players exercises control over the division of a different 
cake, oniy one of which can he divided. In unpublisbed wodc,9 Sbaked observed that in any infinite-horizon, 
alternating-offer, multilateral pure-division problem, if the consent of three players is required for agreement, and if 
they are not extremely impatient, then any divi,ion of the pie can he implemented by subgame perfect equilibrium 
strategies. The proof follows easily from the following observation: suppose one player proposes an off-the
equilibrium-path division ti,at gives her a positive share of the pie. If players are not too impatient, then at least 
one of the other two players can be induced to reject tius division by the promise of tlle whole pie in the subgame 
that will follow if she does so. 

this tendency would he an e;o::jstence failure in OU( framework. 

1 TIle proof of this assertion is sketched in the "Related Literature" subsection below. 

II III general, the profession is justifiably skeptical of arguments that involve long and intricate inductive chain,"". In many instances, how~ 
ever, the problem is mitigated somewhat in our framework because the b3Sic "shapeH of the solution is more or less detennined after only a 
few rounds of induction. (111is will become clear when we discuss examples in Section 4 ~Iow.) This fact may also rea-;:sure experimental
ists, since {here is abundant evidence that experimental subjects seem unable to backward induct much beyond three period... (See Neelin et. 
:11. {1988] and Spiegel et. at {1990]. See, h(lwever, Harrison-McCabe (l992J fOf a dissenting opinion. and Harris(ln [1991] for a survey.) 

9 Shaked's result is discussed in Sulton [t986j and Osborne-Rubinstein [1990}. 
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An interesting variant of the alternating-offer model, called the "Proposal-Making Model," has been advanced 
by Selten [1981]. A player is selected by nature to make the first proposal She proposes a utility vector, a 
coalition and a "responder." The responder either accepts or rejects. If she rejects, the responder then proposes a 
new utility vector, a new coalition and a new responder. If she accepts, the responder designates another member 
of the coalition as the next responder, and so on until all members of a coalition have agreed to some proposal. 
This model has been studied extensively in Cbattetjee et. al. (1987) and by Bennett and coauthors.1O 

Baron-Ferejobu [1989] study a symmetric problem in which n players must divide up a pie, using majority 
rule. One variant of their model is strikingly similar to ours, yet draws quite different conclusions; players propose 
divisions of the pie in odd-numbered rounds; nature chooses one of the proposals at random and votiug foUows in 
even-numbered rounds. In the two-round version of this model, each proposer keeps slightly more than half of the 
pie for herself, and distributes a small portion to enough others to obtain a m,yority vote. In the infinite-horizon 
version of the game, as usual, virtually any division can be supported as an equilibrium. The two-period outcome, 
however, is identified as the unique outcome that can be supported by stationary strategies. II The most important 
difference between our framework and theirs is that we focus on the limit of finite-horizon outcomes. For generic 
specifications of players' utilities, the problem posed by Baron-Ferejobu has no solution in our model. 12 

SECll0N 2. THE T·ROUND MULllLATERAL BARGAINING GAME. 

In our formal presentation, we distiuguish between multilateral bargaining problems, games and models. A 
multilateral bargaining problem is, essentially, a game in the sense used by cooperative game theorists. Each 
bargaining problem gives rise to a family of noncooperative, finite extensive form multilateral bargaining games 
that are identical except for the number of negotiating rounds. A multilateral bargaining model consists of a 
sequence of T ·round bargaining games derived from a common bargaining problem, in which T increases without 
bouod. 

The Underlying Multilateral Bargaining Problem. 
There is a finite set of players, denoted by I = (1, ... ,il. The representative player wili be denoted by i. 

The players meet together to select a policy from some set, X, of possible alternatives. 

Assumption AI: X is a convex, compact subset of I-dimensional Euclidean space. 

If the policy vector x is selected, player i receives the payoff Ui (x). Of tlle assumptions we impose on Ui, the oniy 
significant one is strict concavity (i.e., players are globally risk averse). In particular, we assume that payoffs are 
independent of time. 13 ' 

Assumption A2: For each i, Ui(') is contiuuous and strictly concave on X· and satisfies the 

von-Neumann Morgenstern axioms. 14 

To avoid degenerate special cases, we assume that there is a minimal amount of diversity in players' preferences: 

Asswnption A3: For i ;L j, the maximizers of UiO and UjO on X are distiuct. 

There is in addition to X a distinguished vector, X
df1t

, which is called the disagreement outcome .15 If players 

10 Bennett[1991a, 1991b]. Bennett at1 van Damme [19911 Bennett and Houba [1991). 

11 Banm-Kalai [1991] show that it can also be isolated by invoking a cQmputational simplicity criterion. 

12 Because of its symmetry, their problem is nongenerk. 

13 It is straightforward but not pMticularly illuminating to incorporate time-<liscounting into the model. 

T4 For mAAy applications, the requirement of strict concavity is too su-ong. For example, if X is the unit simplex, representing players' 
shares of a dollar, then we would naturally want to allow player i to be indifferent between any two share vectors whose i'th components are 
the same. To allow for such preferences, we could assume that for each i, there is some subspace Xi of X such that i is indifferent between 
any two vectors th:H differ only Oil X - Xi, and globally risk~averse on Xi. All of the results in the paper hold if Assumption A2 is weak-
eoed in this way. 

15 It is convenient to bolate {xdffl J from the set X, For example, we can assign x·flt a payoff of negative infinity without violating COIl-

, , 
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cannot reach an agreement during the negotiation process then the vector X
dflr will be imposed by default. Once 

again we avoid degenerate special cases by assuming thaI there is some a negotiable settlement which Pareto 
dominates the disagreement outcome: 

Assumption A4: There exists x E X such that for each i, Ui (x) > Ui (X
dflt

), 

Denote by X· the set X IJ (xdll<}. We will rerer to the vect~r-valued function, u = (Ui lie, defined on X· as the 
payoff fUnction for the problem. (Throughout the paper, vectors will be denoted by boldface lelters.) Assuming 
that all other parameters have implicitly been specified, we will denote by r(u) the bargaining problem with payoff 
function u. 

Tbe examples discussed in this paper all belong to a class known as spatial problems, in which tile policy 
space, X, consists of alternative locations. For example, a location could be a site for a public good. More 
abstractly, a location could be a point in characteristics space, representing, perhaps, tile attributes of a candidate for 
some office. Each player has a most preferred location in X, called ber ideal point. The vector of players' ideal 
points will be denoted by «= (<<;)iel. Letting d(x, y) denote the Euclidean distance between x and y, player i's 
utility from a policy x will be a declining function of d (x, o;i). [6 In all of the computational examples, player i's 
utility function is assumed to be of the form: 

Ui(X) = (y, -d(x,o;,»'-Pi; Ui(xdll,) = - , (2.1) 

where Yi is a positive constant and p, E (0, 1) is player i 's risk aversion coefficient. 
The specification of a multilateral bargaining problem includes a list of admissible coalitions, <C, with 

representative element C. An admissible coalition is interpreted as a subset of the players that can impose a policy 
decision on the group as a whole. For example, in mlljority rule decision-making, a coalition is defined to be 
admissible if and only if it contains a majority of tbe group. More generally, the set of adnrissible coalitions may 
have a variety of SltUctures. In particolar, we will sometimes impose the restriction that one or more players 
belongs to every admissible coalition. In this case, we shall say that the bargaining problem has an essential player. 

The core of a multilateral bargaining problem is defined in the usual way. A policy x can be blocked by a 
coalition C if there exists an alternative policy y such that each member of C strictly prefers y to x. The core is 
the set of policies that cannot be blocked by any admissible coalition. 

The T Round Multilateral Bargaining Game. 
A bargaining game is derived from a bargaining problem by superimposing upon it a "negotiation process." 

We will denote by r(u, T) the T -rouod bargaining game derived from r(u). We disthtguish between odd
numbered rounds of negotiarions, called offer rounds, and even-numbered rounds, called response rounds. In offer 
rounds, players choose proposals, consisting of policies from X ";d coalitions from <C. 10 response rounds, they 
specify acceptance sets, indicating which vectors they will accept if invited to join a coalition in that rouod. 

For t E (1, 3, .... , T -I}, let (Xi." Ci .,) denote player i's proposal in offer rouod t, and A i•H , represent ber 
acceptance set in tbe following response round. We impose tlte restriction that acceptance se~ must be closed. A 

strategy for player i is a collection of proposals and acceptance sets, Sj = [<Xi t. C; t), Ai t+l . Let Sj 
• • • t=J,3.'-',T-I 

denote the set of strategies available to player i. For expositional purposes, we restrict strategies to be history 
independent. That is, players' decisions in round t are independent of the history of moves by nature, and of the 
history of proposals rejected in previous rounds. As will become apparent below, for generic specifications of 
players' payoffs titis is no more than a notational convenience; for these specifications, all of our results are 
unchanged, and their proofS are identical, when strategies arc history-depeodent l7 Of greater consequence is our 
requirement that acceptance sets ,can be conditioned neither on the identity of the proposer nor on the composition 
of tile proposed coalition. IS Both restrictions could he relaxed without affecthtg tile main results, although certain 

tinuity. , 
t6 If Xc RI. then dfx, y) "" ( L(Xk ~ .vd1 }v" 

.1:",1 

n Of course, thi~ statement would not be true if information were incompiele, in which case, information could be revealed as histories 

unfolded. 

H! 1l1is last assumption is unlikely to cause serious COf1t:e01 10 economists, who tend to insist that the variables in question should not 

matter. To other socia! sckntisLs and the world at large, however, this assumption might be regarded as too restrictive. In a model of Middle 
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equilibrium properties would be affected. A strategy profile is a list of strategies, one for each player. Let S 
denote the set of strategy profiles. A list of strategies for all but one player will be called a subprofile. Let 
S.i = I1 Sj denote the set of subprofiles that omit player i, with representative element s -i' 

i*i 
Each profile of strategies uniquely identiJies an outcome, which is a random variable defined on 

X*, = X U Ix"f" J. The mapping from strategies to outcomes will be referred to as the outcome Junction for the 
game. In our informal outline of tile framework. nature moved between each offer and response round. From a 
Jonnal standpoint. however. the actual sequencing of nature's moves is immaterial. since playeri' strategies are 
independent of these moves. Nature simply selects a proposer sequence, which is a list of players. one for each 
offer round. denoted by 1 = (1(1). 1(3) ••... , I(T -1» E FI2. An heruistic inteIpretation of t is that for 
t E {I, 3 ..... T -1 J, if negotiations have not already been concluded by the time round t is reached. nature declares 
that player t(I)'S round I proposal will be voted upon in round 1+1 by the coalition she specifies. For each I. t(l) 
is an i.i.d. random variable, distributed acconfing to the exogenously specified vector of access probabilities, 
W = (Wi liEf > O. (Recall that the magnitude of Wi is inteIpreted as a measure of player i's relative "political" or 
"bargaining power.") Thus. the proposal sequence t is selected with probability Ol{t) = W.(I)XW.(3)X ••• XW.(T_I)' 

The outcome function is a map X from strategy profiles and "proposer sequences" to policies. Specifically. fix 
a strategy profile s. where Si = (Xi,,, Ci,n A i ,+I)<=1.3, .. '.T+ For each t E [Tn, a unique policy X(t. s) is defined as 
follows. If the policy X,(I),1 is an element of A j ,2. for every j in C ,(1).1> then this vector is accepted and negotiations 
do not proceed beyond the second round. Now suppose that for 1 E {3. 5 ...... T -lJ. the policies proposed in 
previous offer rounds have all been rejected. If x,(t)" is an element of Ajl+1> for every j in the coalition C,(t),,, 

then this vector is accepted and negotiations do not proceed beyond the 1+1 'th round. If agreement is not reacbed 
by round T. then the vector x df

" is selected by default. 19 

The procedure just described defines a finite-support random variable on X*, Given a profile s. we deuote by 
EUi(S) player i's expected payoff from the random profile generated by s. That is. Eu;(s) = L Ol{t)Ui(X(l. s». 

telTn 

Similarly. for t E {3 ...... T+IJ. EUi(sl t) denotes player i's expected payoff if the profile s is played out starting 
from round t. We will refer to EUj(sl t) as player i's reservation utility in round t-l, since this is indeed her 
expected utility conditional on failure to reach agreement in round I-I. 

The standard solution concept for these games is subgame perfection, Informally. a strategy profile s is 
subgame perfect if starting from each round of the game. the remaining portion of Si is optimal for player i. given 
that players other than i are playing the remaining portions of s -i' 10 the present context. this concept bas no 
predictive power: for any game in which at least two players are required for agreement. any policy that is weakly 
preferred by all players to tile default outcome can be implemented with certainty as a subgame perfect equilibrium 
outcome. For example. the following strategies implement the policy X with certainty. In each offer round, each 
player proposes x and an arbitrary coalition; in each response rouud, each player accepts X and no other policy. If 
x is preferred by all players to X

dflt
• then these strategies are clearly subgame perfect and x is implemented with 

probability one. 
The equillbria just described. violate a natural rationality criteriou and can be eliminated by a number of 

equilibrium refinements. Trembliog hand perfection is not sufficiently strong. for the fantiliar reason that this 
criterion does not impose sufficient disciplioe off the equilibrium path. A stronger criterion, such as Myerson's 
[1978] properness. is needed. In infinite games. however. this criterion involves considerable tecbnicalities.20 To 
avoid these. we invoke a simpler refinemeut. which we will call tlte SEDS criterioll (Sequential Elimination of 
Dominated Strategies)21 Variants of this criterion are regularly invoked to deal with essentially the same problem 
as the one that faces us. '12 

East negotiations. for example. it would be unfortunate if Israelis were obliged to respond in the same way to any given proposal. regardless 
of whether it was issued by. say, the U.S: or the P.L.O. 

19 As noted above, there is an equivalent, apparently simpler. specification of tlv! model. Rather that require each player to specify a coa'~ 
ilion explicitly, we could endogenize the coalition selection problem by allowing the outcome function to simply count votes. Either way, 
however. the selection of an optimal coalition is all inescapable task for the proposer. as she solves her maximization problem, 11IUS, the is
sue is no more than a notational one and the obvious arguments in favor of explicitness seem to us to justify the additional notational burden. 

20 See Simon and Stinchcombe (l991J. 

21 TIlis criterion naturally extends to sequential games the criterion known a') Dominance Solvability (Moulin (1979)). 

21 See. for example, Baron~r'erejohn [l989J, Salant-Goldstein {1990J and Baron~Kalai {1991]. For a rather diffen::nt application of the 

.'lame criterion,.'lee SimoH-Slinchcombe {l989). 
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Infonnally, the procedure begins by eliminating strategies that involve inadmissible (Le., weakly dominated) 
play in the final response round. Next, we eliminate strategies that involve inadmissible play in the penultimate 
round. considering only strategies that survive the first round of elimination. And so on. To define the criterion 
fonnally, first declare every strategy for i to be admissible from round T +1. Now ftx 1 :s; T and assume that for 
each i, there is an identified set of strategies that are admissible from round t+1. Define Si to be admissible from 
round t if (i) it is admissible from round 1+1 and if there exist":' no alternative strategy (Ii such that: (ii) OJ agrees 
with S; before t, (iii) cr; does at least as well as Si against any subproille S...; that is admissible from round l+l; and 
(iv) cri does strictly better than Si against some such subproille. Flllally, say that a proille s satisftes the SEDS 
crilerion if for each i, Si is admissible from round one. If s satisftes the SEDS criterion for some bargaining game, 
we say that s is an equilibrium for that game. We will refer to the outcome generated by s as an equilibrium 
outcome. 

Results for T-Round Bargaining Games. 
Proposition I below characterizes the set of strategy proilles that satisfy the SEDS criterion. Indeed, the 

characterization theorem provides the basis for our computer algorithm for solving bargaining games numerically. 
In each round of the game, after strategies that are inadmissible from later rounds have been eliminated, each player 
is left with a straightforward single-pelS on decision problem. In a respunse round, a player will accept a proposed 
policy if and only if it generates at least as much utility as ber reservation utility in that round.23 In an offer round 
I, a player is faced with a two-part problem. For each admissible coalltion, she maxintizes her utility subject to the 
constraint that other coalition membelS must receive at least their reservation utilities in round 1+1. She then 
selects a utility-maximal policy from among these maximizers. 

Proposition 1: Let nu) be a bargaining problem satisfying Assumptions AI-A4. Then s is an 

eqUilibrium for the bargaining game nu, T) if and only if for each and each 

t E (1,3, .... , T-I): 

(i) Ai,'+! = (x E X: Ui(X) ;,:EUi(sl t+2)). 

(li) Xi,! E Aj,t> for all j E Ci,t and Xi,t maximizes Uj (.) on the set 

un (x EX: Uj(X);': EUj(sl 1+2)). 
CeQ.': jEC 

The proof of this Proposition depends on two independently useful properties of eqUilibria, stated in the 
Lemma below. FilSt, at least two distinct offelS are proposed in every offer round. Second, in every offer round 
there is some policy that yields each player strictly more utility than her reservation utility in the following round. 

Lemma I: Let nu) be a bargaining problem satisfying Assumptions AI-A4 and let s be an equili

brium for the bargaining game r(u, T). Then for 1 E 1=1,3, ... , T -I, 

(a) TIlere are at least two distinct playelS i and j such that Xj,' ¢' Xi," 

(b) There exists x E X such that for all i, u,-(.x) > EUi(sl 1+2). 

An obvious corollary of Proposition I (indeed, of Lemma I(b)) is that in every game, agreement is reached 
immediately with probability one. We can exploit this fact to obtain a convenient, simplifted repre.,entation of 
equilibrium outcomes. Given an equilibrium strategy proille s, we denote by ,,(s) = (Xi(S))iel the vector consisting 
of the policies proposed by each player in the ftlSt round of negotiations. As we have noted, each of these 
proposals is necessarily accepted. Therefore, x(s) is a representation of the outcome generated by s. For tlris 
rea')on, we will refer to xes) as an equilibriwn outcome vector. The original outcome can be recovered by 
combining x(s) with the access probability vector, w: for each i, -<i(S) is realized "dth probability L{j~;<'F,;(,)I Wj. 

Another corollary of Proposition I is that we can without loss of generality restrict attention to bargaining 
problems in which the set of coalitions is minimal in the following sense. Say that a coalition C is minimal with 
respect to player i if there exists no strict subset, C' of C such that the coalition C' U {i} is admissible. 24 

23 By assllming th3.t a<:<:ept<ln<:e sets are closed, we finesse the indeterminxy that arises when a player is indifferent between accepting and 

rejecting a proposal. 

2A TTli~ critnlol1 is ;-;trktly more st:ringent than the simpler criterion of (unqualified) minimality, which would be satisfied by any coalition 
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Corollary I below shows that that player i's opportunity set is unaffected by the restriction that she must enoose 
only coalitions which are minimal with respect to i. In other words, we lose no generality by assuming that i 
always chooses coalitions that include hetself wbenever possible, and exclude as many other playets as possible. 
This fact is of considerable practical value, because when we analyze games numerically, it is obviously important 
to minimize the number of coalitions for which calculations must be made. 

Corollary to Proposition I: Let nu) be a bargaining problem satisfying Assumptions AI-A4 and 

let s be an equilibrium for the bargaining game nu, T). Then there is an equilibrium profile (J 

for this game whien is identical to s with the (possible) exception that in each round, each player i 

specifies a coalition that is minimal with respect to i. 

An immediate implication of Proposition I is that an equilibrium always exists. The pivotal, and by far lbe 
most difficult result in the paper is that for generic problems, the equilibrium outcomes for games derived from 
these problems are unique. Specifically, let lID denote the set of payoff functions on X satisfying Assumptions 
A2-A4 and endow lID with the sup norm metric.25 

Theorem II: Let nu) be a bargxioing problem satisfying Assumptions AI-A4. Then for every 

even integer T, the derived game nu, T) has an equilibrium. Moreover, there is an open, dense 

subset, lID', of lID such that for each u' E lID' and every T, the equilibrium outcome for 

r(u', T) is unique. 

The arguments we use to prove uniqueness also imply that in all but exceptional games, all of the above results 
apply whe!ber or not we restrict strategies to be hlstory independent The argument is transparent. In each round 
of any game, playets' payoffs and strategic opportunities are independent of anylbing that has happened in previous 
rounds. Also, because !bere is no uncertainty about playets' types in !be mndel, there is no payoff-relevant 
infomlation to be revealed as history unfolds. Now if a player has a unique optimal choice, and this choice is 
independent of hlstory, the player must act in the same way, regardless of the past history. Finally, in the present 
context it is generically the case that players' oplimal choices are unique in every round. 

SECTION 3. THE MULTILATERAL BARGAINING MODEL. 

A multilateral bargaining model is a sequence of T-round bargaining games, '(r(u, T»)r=2,4.. in which T 
increases without bound. The games in the sequence are all derived from the same underlying bargxioing problem. 
The only difference between them is the number of negotiating rounds. 

We define a solution to be a limit of a sequence of equilibrium outcomes for the games in the sequence. 
Since these outcomes are random variables, the natural notion of closeness is the weak-star topology. However, 
because our sequences of equilibrium outcomes have a special structure, we can simplify mattets considerably. It is 
sufficient simply to identify the pointwise limit;> of sequences of equilibrium outcome vectors. Specifically, suppose 
that for ~ = (2, 4, ... ,J, s' is an equilibrium strategy profile for nu,~) and that ji' = (Xi),€[ is a pointwise limit of 
the sequence (X(S'»",,2,4 .... , . We will refer to ji' as a limit outcome vector. From our earlier discussion (p. 7), the 
outcomes generated by (S')",,2.4. . have the following weak-star limit: for each i, Xi is realized with probability 

LU~f.""-t.l Wj. 
J ' 
A solution will be called detenninistic if the limit outcome has singleton support, or, equivalently. if the 

elements of the limit outcome 'vector are all identical. The policy to which a detenninistic solution assigns 
probability one will be referred to as the solution PO/iL)'. Solutions that are not deterministic will be called 
stochastic. When a solution exists, it is interpreted as a proxy for the equilibrium outcome of a bargaining game in 
which the number of negotiation rounds is finite but arbitrarily large. 

ren<kred in.wmhsible by the omission of 311y player. For c,;:ampk, in a majority ruk bargaining problem with five players, the coalition 
{2, 3, 4 J is admissible, but is not admissible with respect to player # I. since II, J, 4) is admissible. 

2S In the sup norm metric, the distance between two functions is the supremum, taken over aU points.x in the domain, of the absolute 
value of the difference between the evaluations of the functions at .x. 
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An approximate solution is a sequence of outcome vectors that almost converges. More precisely, the model 
derived from r(u) has au €-solution if there exists a policy vector x and an even integer T such that for each player 
i and each even ~ > T, the distance between X; the policies proposed by i in the first round of I\u, ~) is no greater 
than e. Like all approximate equilibrium concepts, the interpretation of approximate solutions in the present context 
is somewhat problematic from a theoretical standpoint. (For one tlring, what constitntes a "good" approximation?) 
For practical purposes" however, approximate solutions can be virtually as useful as exact solutions as Sources of 
testable hypotheses in tl,e analysis of practical applications. In particular, approximate solutio", provide rough
and-ready predictors of the location in policy space of a negotiated agreemenl. Moreover, since generically this 
prediction wili be unique (more or less), sensible comparative statics questions can be posed. On the other hand, if 
a "reasonably exact" solution does not exist, then the predicted outcome of negotiations will depend in a nontrivial 
way on the number of negotiation rounds. In this event, little positive or prescriptive significance can be attached 
to the model's predictions. Nonetheless, existence failures are interesting in the negative sense of indicating 
inherent instabilities in the negotiating environment. In Appendix A we investigate the kinds of stochastic and 
approximate solutions that arise in a frunily of two-dimensional spatial problems. 

Results for the Bargairting ModeL 
A necessary condition for existence of a detenninistic solution is that the underlying bargairting problem has a 

nonempty core. 

PropOSition III: Let I\u) be a multilateral bargaining problem satisfying assumptions AI-A4. If 

the multilateral bargaining model derived from this problem has a detenninistic solution, then the 

solution policy belongs to the core of I\U). 

Proof of Proposition III: Assume that x is the solution policy but that there is some policy y and some 
admissible coalition C such that each memher of C strictly prefers y to x. Then there exists e > 0 such that all 
members of C strictly prefer y to any policy in the ball B (x, E). For't = 2, 4, ... , let s' be an eqUilibrium profile 
for r(u, 't). For ~ sufficiently large, each component of the equilibrium outcome vector x(s') must be contained in 
B (x, c). Thus we have Uj(y) > Uj(Xj(s')) > EUj(s/1 3), for every j E C. (The second inequality follows from 
combirting Proposition I(ii) and Lemma I(b).) But this is a contradiction, since by Proposition I(ii), x;(s') must a 

maximizer of u;(·) 00 the set nIx EX: u/x)zEUj(s'13)}. 0 
jeC 

Theorems IV and V below identify two sets of sufficient conditions for existence of a detenninistic solutiolL 
The first is that the space of policies for the underlying problem is one-dimensional and that decisions are made by 
majority rule. . 

Theorem IV: Let r(u) be a multilateral bargairting model satisfying assumptions AI-A4. 'If (i) 

the space of admissible policies, X, is a subset of R I and (ii) a coalition is admissible if and ouly 

if it contains strictly more than half of the players in [, then the multilateral bargaining model 

derived from this problem has a detenninistic solution. 

When the policy space is multidimensional, it is much more difficult to guarantee convergence. At an 
abstract level, the task is to identify global stability conditions for a relatively complex, noulinear stochastic 
dynamical system. One relatively straightforward way to proceed is to restrict attention to problems in which there 
is at least one essential player, Le., a player who is a member of every admissible coalition. The interpretation of 
tllls assumption is discussed in detail above (pp. 2-3). 

Theorem V: Let r(u) be a multilateral bargairting problem satisfying assumptions AI-A4. If the 

problem has at least one essenlial player, then the multilateral bargaining model derived from this 

problem has a detemlinistic solution. 

Note that Theorem V is applicable to every problem in which unanimity is required for agreement. 
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Our final result follows immediately from Theorem II. Solutions, when they exist, are generically unique. 
Assume that X satisfies assumption Al and, once again, let 1IlJ denote the set of payoff functions on X satisfying 
Assumptions A2-A4. 

Corollary to TIleorem II: 1bere is an open, dense subset, 1lJJ " of 1lJJ such that for each 

n' E 1lJJ', if the model derived from the problem ren') has a solution, then tins solution is unique. 

Proof of the Corollary: Suppose that for some u E 1IlJ, the model derived from reu) has more than one 
solution. TI1en necessarily there exists T (in fact, infinitely many T's) such that the bargaining game ren, T) has at 
least two distinct equilibrium outcomes. But from Theorem II, it follows tltat the set of all such u's is contained in 

the complement of an open, dense subset of 1lJJ. D. 

Multilateral Bargaining and the Nash Program. 
Nash [1953) urged that strategic models and axiomatically derived solution concepts should be studied in 

conjunction, because "each helps to justify and clarify the other (p. 129)." 'This dual approach has become known 
as the "Nash Program." Pursning tills program, Binmore, Rubinstein and Wolinsky [1986] study two strategic 
models with alternating offers and in each case establish a close relationship hetween their perfect equilibria and the 
Nash bargaining solution of tile corresponding cooperative game. 

More recently, Krishna-Serrano [1991) have extended tlte Nash Program to tbe n-player case. Their point of 
departure is Lensberg's [1988] alternative axiomatization of tlte multilateral Nash bargaining solution, in which 
Nash's Independence of Irrelevant Alternatives (IIA) axiom is replaced by Multilateral Stability (MS).26 
Oversimplifying slightly, the MS axiom can he parapbrased as follows: if in the solution to a multilateral pie
division problem, player i receives a share of tlte pie x;, tlten in tlte problem constructed by excluding player i and 
depleting tlte total size of tbe pie by x;, tlte remaining players should receive exactly tlte sarne portions as tltey 
received when i was present. Krishna-Serrano incorporate this axiom into their model in a ratlter direct way, by 
allowing individual players to exit from tlte bargaining table, taking witlt tltem the shares of tlte pie tltat they have 
negotiated for themselves. In this way, tltey are able to reconcile the strategic and axiomatic approaches to 
multilateral bargaining. 

While tlte two strategic models mentioned above lend plausibility to Nash's axiomatic solution concept, our 
model presents a challenge to Nash's approacb. Specifically, our model violates botlt the rIA and tlte MS 
axioms.27 To see that I1A is violated, compare tlte solutions to our model when two risk neutral players with equal 
access are bargaining over tlte two-dimensional policy spaces X = {(x E 'RJ: x, + X2 = I) versus 

{

£X' +X2 = 213(1+£) ifx, S; 113 
Y = {x EX: + _ 1 'f > 1/3 I. Assume that in each case, X

dfl
' = (0,0) while u;(x) =X;, 

Xl Xz- lXl_ 

witlt u;(X
dfl

') = O. By symmetry, tlte solution in the first case is (Y" 'h); for £ " 0, tlte solution in the second is 
approximately (7/12, 5112). The explanation for the difference is transparent. In tlte last round of offers, player #2 
will propose (0, 1), when the set of alternatives is X, and (0, 213(1+£» when it is Y. Thns in tlte "eleventh hour" of 
negotiations, player #2's bargaining position is weaker when bargaining over Y than over X, and tills relative 
weakness is reflected in tlte corresponding solutions to our model. Thus, in tlte bargaining environment tltat we 
have formulated, tlte alternatives contained in X but not in Y are by no means strategically irrelevant. It is 
important to emphasize tltat the above exarnple bas nothing whatever to do tlte fact tltat players are bargaining over 
policies ratlter titan utilities: we could, obviously, have defined the spaces X and Y to consist of utility vectors 
ratlter than two-dimensional policies. 

The violation of MS is of particular interest because, in contrast to the violation of IIA, this axiom is 
inherently multilateral in nature. Essentially, tlte MS axiom declares tltat tltere can he no "bargaining synergies" 
between players: the relative bargaining strengths of players j and k must be independent of wbetlter or not player 

is present at tlte bargaining table. In our model, however, such synergies ulmost always arise, except when the 

26 Consider a n-player bargaining problem in which the sel of feasible utility vectors,is U. Assume that all players receive zero utility in 
Ihe event of disagreement. TIle unique utility vector satisfying Na-;h's four axion\ .. --scaie invariance, Pareto optimality, symmetry and in-. . 
dependence of irrelevant alternatives--is u, defined by 11 If; ;:: 1111;, fOf all II E u_ 

27 The lIA axiom can be loosely pafaphrased a5 follows: suppose that the solution to the bargaining problem is x when the universe of 
bargaining outcomes is X. For any subset Y thal does not contain .x. x must ~ the solution when players are bargaining over X - Y _ 
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universe of possible bargaining outcomes is symmetric. 28 To see this, consider the three-player unarumlly 
3 

bargaining game in which players are bargaining over the "truncated pie" V = {n E R2: Lu; = 1 and U3:5 u, J. 
;=[ 

As before, assume thaI the disagreement utilily veclor is zero and that all three players' bargaining attributes are 
identical. In this asymmetric problem, player # I appears to have a "natural ally" in player #3 and this is reflected 
in the equilibrium oulcome of the game. In the last round of offers, player #3 proposes the vector (V" 0, Vz), 
favoring #1 at the expense of player #2. Thus, once again, in the "eleventh hour" player #3 's presence at the 
bargaining table places #2 at a strategic disadvantage relative to #1, and this weakness is reflected in the solution to 
the model. 29 On the other band, if #3 were to leave the bargaining table, along with ber equilibrium sbare of the 
pie, then our model predicts that players #1 aod #2 would equally divide the remainder of the pie. 

In the study of multilateral bargaining in collective decision-making environments, it is natural to expect 
bargaining synergies to arise between different players. What are the sources of bargaining synergies? What 
compromises will emerge as alliances are forged between parties whose interests are interrelated but not coincident? 
How effective will these alliances be in furthering the common interests of their members? What is the relationship 
between the Ifintemal" alignment of interests within a given alliance and its "external" effectiveness as it negotiates 
with otber alliances?30 Since bargaining synergies are axiomatized out of existence by the MS criterion, these 
questions can only be addressed in a model that violates MS. 

SECTION 4. APPLICATIONS 

The main pUlpose of this section is to illustrate certain properties of our framework and to indicate some 
problems to which it might be applied. The discussion in this section will be heuristic and informal. For a more 
systematic and formal approach to comparative statics issues see Rausser-Simon [1991]. We discuss five classes of 
bargaining problems, labeled A fhiough E. Problem E is a pure-exchange economy. Problems A through D are 
spatial problems, in which players' preferences satisfy equation (2.1). For expositional purposes, we shall interpret 
these problems as political in nature, and describe the players as members of some political party. Players whose 
ideal points lie to tbe left (resp. right) of tbe origin will be referred to as the left-wing (resp. rigbt-wing) faction of 
the party. Locations further along the borizontal axis from the origin denote more extreme political orientations. 

Problem A: X c R'; 2n + 1 players; majority rule. 
In this problem, there is an odd number of players, whose ideal points are located along the real line. A 

coalition is admissible if it contains at least n+l players. It is straightforward to verify that the core is a singleton 
set consisting of the median player's ideal point. From theorems IT and IV, there is a unique, deterministic solution 
to the derived model; the solution policy is tbe unique element of the core. There is a striking resemblance 
between this result and the familiar "median voter theorem" from the political science literature. This theorem 
states that in a two-candidate election with a one-dimensional issue space, both candidates will locate at the median 
voter's ideal point. Our result states that a committee consisting of the voters themselves will select the same point. 

Problem B: X c R'; 2n players; strict majority rule. 
This problem is identical to the previous one, except that there is an even number of players, of which strictly 

more than balf are required for agreement. Once again, theorem IV guarantees the existence of a deterministic 
solution. In this case, tile core of the underlying problem is the segment of the real line joining the two median 
players' ideal points and the solution policy can lie anywhere along this segment. In contrast to tbe preceding 
problem, the solution policy is sensitive to all of the parameters in tbe model, so that interesting comparative statics 
issues do arise. We will discuss Qoe of the more subtle issues in some detail. 

18 A set U c: Rr is symmetric if for every U E U, and every t, obtair)Cd by peonuting the order of the element,> in If then \' E U. 

29 TI)e properties of the model we have been considering in this and the preceding example a~ clearly driVen by the finitene.<;;s of the bar

gaining horizon. 

3Q Some of these questions will be addressed in section 4 below, when we consider particular examples. They are the primary focus of 

Rausser-Simon (1991). 
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The effect of a shift to the right in tbe ideal point of the most right-wing player is investigated. Intuitively, 
tills shift can be interpreted as au increase in political extremism. To simplify the analysis, we will impose ti,e 
following restrictions on the parameter set: (i) all players are equally risk averse; (ti) all members of ti,e same 
factioll have the same access probabilities; (iii) player's ideal points are symmetrically dislributed about the origin; 
(iv) players' ideal points are all distinct. We assign labels to players so that their ideal point' are monotone 
increasing. Thus restriction (ill) states that for 1 $ i :.:; n, UJn+l-i = -«; > o. 

TIle increase in <X:2n has two effects, w~ch we will call the access effect and the risk aversion effect. The 
access effect benefits the faction that has greater access; the risk aversion effect benefits the faction containing the 
extreme player whose ideal point has shifted. For utility functions that satisfy equation (2.1), tile latter effect is 
always very weak relative to the former. Hence if the left-wing of the party has even slightly more access thau the 
the right wing, ti,e solution policy will shift to the left. If the distribution of access is virtually uniform, however, 
the policy will shift to the rigbt. 

The reasooing outlined below applies to any problem in tbe class identified above. For expositional purposes, 
bowever, we will present the arguments in the context of a pair of numerical examples illustrating the two effects. 
The examples both bave six players. In case (i), access is uniformly dislributed; in case (ti), it is akewed in favor 
of the left-wing. The parameters for the simulations are displayed below. 

Problem B: Shifting Player #6's Ideal Point to the Rigbt (See Tables 4B). 

Player #1 Player #2 Player #3 Player #4 Player #5 Player #6 

Initial Location: ",,=-4 ,,:>=-3 ",,=-2 <4=2 "'5=3 0:.;=4 

Perturbed Location: ",,=-4 ,,:>=-3 ",,=-2 <4=2 ",,=3 0:.;=4.4 

Access-Case (i): w,=0.166 w2=0.166 w,=0.166 w4=0.166 w5=O.166 w6=0.166 

Access-Case (ti): w, =0.188 w2=0.188 w,=0.188 w4=0.144 w5=O.I44 w6=0.144 

Risk aversion: p,=0.2 pz=O.2 P3=0.2 p,=0.2 P5=0.2 P6=0.2 

Constant: 1,=100 12=100 1,= 100 1,=100 15= 100 16= 100 

Table 4B-(i) compares the last five round, of negotiations for Case (i). In the last ofrer round (T -I), tbe shift to 
the rigbt in player #6's ideal point reduces the other players' reservation utilities in round T -2. Because players are 
all equally risk averse, the effect of this shift is greater for players wbose ideal points are further away from 0:.;. 
Now consider the penultimate offer round (round T -3). Because admissible coalitions contain at least n+1 
members, eacb left-winger (resp. right-winger) must induce one rigbt-winger (resp. left-winger) to accept her 
proposal. It cau be sbown that in round T -3, the left-wingers all choose player #4 and the right-wingers all choose 
#3. But as we have seen, player #3's reservation utility in round T -2 is lowered more by the shift in 0:.; than is 
player #4's. Therefore, while each left-wing proposal in round T -3 shifts to the left, the corresponding rightward 
shifts in the right-wing proposals are larger. It follows that in round T -4, each left-winger's reservation utility is 
reduced relative to its level in the original model, while each right-wing's reservation utility is eitllcr reduced by a 
lesser amount or, possibly, is increased. The effects of tbese changes are apparent in Table 4B-(i): compare 
players' reservation utilities in round T -4, and their offers in round T -5, of tbe original and perturbed models. The 
relative weakness of the left-wing in round T -5 is transmitted via backward induction to the first round of 
negotiation'), resulting in a shlft to the right in the solution policy. 

In Case (ti), tbe access probabilities of the left-wingers are slightly greater than tbose of the right-wingers. 
Table 4B-(ii) illustrates the effects of the shift in 0:.; in this case. In round T -3, the qualitative effects are the same 
as in Case (i): the left-wing proposals shift to the left, while the right-wing proposals shift to the right by a greater 
amount. However, when the asymmetry in access is sufficiently great, the smaller, but more heavily weighted 
leftward shift dominates the larger but less heavily weighted rightward shifts in ti,e computation of players' 
expected utilities. Once again, the effects of these changes are apparent in Table 4B-(ii): compare players' 
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Table 4B-(i): Effect of Shifting Player #6's Ideal Point to the Right in Problem B. 
Left and Right Wings Have Equal Access 

Rnd Prpr .'f I u,O uzO u30 u.O u,O U60 

#1 -4.000 6.310 5.800 5.278 3.031 2.408 1.741 
#2 -3.000 5.800 6.310 5.800 3.624 3.031 2.408 

T-I 
#3 -2.000 5.278 5.800 6.310 4.193 3.624 3.031 
#4 2.000 3.031 3.624 4.193 6.310 5.800 5.278 
#5 3.000 2.408 3.031 3.624 5.800 6.310 5.800 
#6 4.000 1.741 2.408 3.031 5.278 5.800 6.310 

T-2 Eu 4.095 4.495 4.706 4.706 4.495 4.095 

#1 -1.069 4.781 5.314 5.835 4.706' 4.154 3.584 
#2 -1.069 4.781 5.314 5.835 4.706' 4.154 3.584 

T-3 
#3 -1.069 4.781 5.314 5.835 4.706' 4.154 3.584 
#4 1.069 3.584 4.154 4.706' 5.835 5.314 4.781 
#5 1.069 3.584 4.154 4.706' 5.835 5.314 4.781 
#6 1.069 3.584 4.154 4.706' 5.835 5.314 4.781 

T-4 Eu 4.182 4.734 5.270 5.270 4.734 4.182 

#1 -0.019 4.204 4.754 5.288 5.268 4.733 4.182' 
#2 -0.019 4.204 4.754 5.288 5.268 4.733 4.182' 

T-5 
#3 -0.019 4.204 4.754 5.288 5.268 4.733 4.182' 
#4 0.019 4.182' 4.733 5.268 5.288 4.754 4.204 
#5 0.019 4.182' 4.733 5.268 5.288 4.754 4.204 
#6 0.019 4.182' 4.733 5.268 5.288 4.754 4.204 

Perturbed Location Configuration. 

#1 -4.000 6.310 5.800 5.278 3.031 2.408 1.456 
#2 -3.000 5.800 6.310 5.800 3.624 3.031 2.148 

T-l 
#3 -2.000 5.278 5.800 6.310 4.193 3.624 2.786 
#4 2.000 3.031 3.624 4.193 6.310 5.800 5.066 
#5 3.000 2.408 3.031 3.624 5.800 6.310 5.592 
#6 4.400 1.456 2.148 2.786 5.066 5.592 6.310 

T-2 Eu 4.047 4.452 4.665 4.671 4.461 3.893 

#1 -1.134 4.816 5.349 5.868 4.671' 4.118 3.311 
#2 -1.134 4.816 5.349 5.868 4.671' 4.118 3.311 

T-3 
#3 -1.134 4.816 5.349 5.868 4.671' 4.118 3.311 
#4 1.144 3.540 4.112 4.665' 5.874 5.354 4.604 
#5 1.144 3.540 4.112 4.665' 5.874 5.354 4.604 
#6 1.144 3.540 4.112 4.665' 5.874 5.354 4.604 

T-4 Eu 4.178 4.730 5.267 5.272 4.736 3.957 

#1 -0.018 4.203 4.753 5.288 5.268 4.733 3.957' 
#2 -0.018 

, 
4.203 4.753 5.288 5.268 4.733 3.957' 

#3 -0.018 4.203 4.753 5.288 5.268 4.733 3.957' 
T-5 

#4 0.027 4.178' 4.729 5.264 5.292 4.758 3.983 
#5 0.027 4.178' 4.729 5.264 5.292 4.758 3.983 
#6 0.027 4.178' 4.729 5.264 5.292 4.758 3.983 
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Table 4B-(ii): Effect of Shifting Player #6's Ideal Point to the Right in Problem B. 
Left Wing Has Greater Access 

Rnd PIJJf Xl UIO UzO u,O uk) usO u.O 

#1 -4.000 6.310 5.800 5.278 3.031 2.408 1.741 
#2 -3.000 5.800 6.310 5.800 3.624 3.031 2,408 

T-l #3 -2.000 5.278 5.800 6.310 4.193 3.624 3.031 
#4 2.000 3.031 3.624 4.193 6.310 5.800 5.278 
#5 3.000 2.408 3.031 3.624 5.800 6.310 5.800 
#6 4.000 1.741 2.408 3.031 5.278 5.800 6.310 

T-2 Eu 4.317 4.688 4.848 4.564 4.303 3.873 

#1 -1.330 4.921 5.451 5.%9 4.564' 4.008 3.432 
#2 -1.330 4.921 5.451 5.%9 4.564' 4.008 3.432 

T-3 
#3 -1.330 4.921 5.451 5.969 4.564' 4.008 3.432 
#4 0.806 3.736 4.301 4.848' 5.699 5.175 4.638 
#5 0.806 3.736 4.301 4.848' 5.699 5.175 4.638 
#6 0.806 3.736 4.301 4.848' 5.699 5.175 4.638 

T-4 En 4.406 4.951 5.482 5.058 4.515 3.956 

#1 -0.421 4.427 4.970 5.499 5.055 4.514 3.956-
#2 -0.421 4.427 4.970 5.499 5.055 4.514 3.956' 

T-5 
#3 -0.421 4.427 4.970 5.499 5.055 4.514 3.956' 
#4 -0.383 4.406' 4.950 5.479 5.075 4.534 3.977 
#5 -0.383 4.406' 4.950 5.479 5.075 4.534 3.977 
#6 -0.383 4.406* 4.950 5.479 5.075 4.534 3.977 

Perturbed Location Configuration. 

#1 -4.000 6.310 5.800 5.278 3.031 2,408 1.456 
#2 -3.000 5.800 6.310 5.800 3.624 3.031 2.148 

T-l 
#3 -2.000 5.278 5.800 6.310 4.193 3.624 2.786 
#4 2.000 3.031 3.624 4.193 6.310 . 5.800 5.066 
#5 3.000 2.408 3.031 3.624 5.800 6.310 5.592 
#6 4.400 1.456 2.148 2.786 5.066 5.592 6.310 

T-2 En 4.275 4.650 4.813 4.533 4.273 3.663 

#1 -1.386 4.951 5.481 5.998 4.533' 3.976 3.161 
#2 -1.386 4.951 5.481 5.998 4.533- 3.976 3.161 

T-3 
#3 -1.386 4.951 5.481 5.998 4.533* 3.976 3.161 
#4 0.872 3.698 4.264 4.813* 5.733 5.210 4.455 
#5 0.872 3.698 4.264 4.813* 5.733 5.210 4,455 
#6 0.872 3.698 4.264 4.813* 5.733 5.210 4.455 

T-4 En 4.406 4.952 5.482 5.055 4.513 3.723 

#1 -0.428 4.431 4.974 5.503 5.051 4.510 3.723-
#2 -0.428 4.431 4.974 5.503 5.051 4.510 3.723-

T-5 
#3 -0.428 4.431 4.974 5.503 5.051 4.510 3.723-
#4 -0.384 4.406- 4.950 5.480 5.074 4.534 3.749 
ItS -0.384 4.406- 4.950 5.480 5.074 4.534 3.749 
#6 -0.384 4.406' 4.950 5,480 5.074 4.534 3.749 
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reservation utilities in round T -4, and their offers in round 1'-5, of the original and perturbed models. In this case, 
the right-wingeTs' reservation utilities fall, willie the left-wingers' stay virtually the same. Thi.') time, the relative 
weakness of the right-wing is transmitted to the first round, and the increase in right-wing extremism results in a 
shift to U,e left of U,e solution policy. 

Problem C: X c R2; 2n players; strict majority rule. 
A stylized fact about bipolar negotiations between two factions is that either one of tlie factions will be more 

effective in it<; pursuit of U,e common objectives of it<; members, the greater the degree of cohesiveness among it<; 
membership. As this example demonstrates, the predictions of our mndel are consistent WiU, this observation. In 
spatial problems, a natura! measure of the cohesiveness of a faction is the proximity of its members' ideal points to 
each other. We will show tbat as the distance between the right-wingers' ideal points is increased, tbe solution 
vector shifts to the left. 

When the space of policies is two-dimensional, detenllinistic solutions do not exist in general. However, 
Theorem IV can be extended to gnarantee existence provided that agent<;' ideal points are confined to an "almost" 
one-dimensional set. Once again, we illustrate the discussion by a pair of six-player examples, whose parameters 
are specified below. 

Problem C: Reducing the Cohesiveness of the Right-Wing Faction (See Table 4C). 

Player #1 Player #2 Player #3 Player #4 Player #5 Player #6 

Initial Location: ",=(-9,-1) ",=(-9,0) «,=(-9,+1) ",=(9,-1) u,=(9,0) u,=(9,+1) 

Perturbed Location: Q,=(-9,-I) 0:,=(-9,0) «,=(-9,+1) 0:,=(9,-1) 0:,=(9,0) <X,;=(9,+1) 

Access: w, =0.166 w,=O.I66 ",,=0.166 )1/4=0.166 w,=0.166 w,=0.166 

Risk aversion: p,=0.5 p,=O.5 p,=0.5 p,=0.5 p,=0.5 p,=O.2 

Constant: ,),,=100 ,),,= 100 ,),,=100 ,),,= 100 ,),,=100 ,),,= 100 

Table 4C compares the last four rounds of negotiations for the initial and perturbed locations. In this case, tbe 
argnment is quite straIgbtforwanl. In round T -I, each player proposes ber ideal point. When the ideal point<; of 
the rigbt-wingers are dispersed, there is a significant loss in utility for eacb of them. On the other band, the vertical 
shifts in the right-wing proposals are so small relative to (he gap between the left- and right-wing locations that the 
dispersion barely affects the left-wingers at all. (Intuitively, imagine beated disputes between conservatives about 
tbe fine details of tbeir ideology whicb radicals perceive as no more than arcane hair-splitting.) As a result, right
wingers' reservation utilities in round 1'-2 fall, while left-winger's remain almost the sanle. Tbe effect of this 
difference, once again, is to shift the solution policy to tbe left. 

Problem D: l1rree players, X c R2, variable coalltion configurations. 
In the three preceding problems we assumed tbat decisions were made by majority rule. In this problem we 

consider alternative coalition structures. In partiCUlar, we consider the effects of declaring one or more players to 
be essential. The ideal points of the three players are, respectively, (x, = (-1,0), (X2 = (+1,0) and (/'3 = (0,1), 

First assume that any coalition of two players is admissible, so that no player is essentiaL In this case, the 
core of the underlying bargaining problem is clearly empty, so that the model cannot have a detenninistic solution. 
Not surprisingly, the sequence of equilibrium outcomes settles into a cyclic pattern, for reasons very similar to those 
discussed on p. above. Now assume that player #1 is essentiaL From Theorem V, tills model has a detcrlllirllstic 
solution. Since the cor<: of the underlying problem contains exactly one point--player #I's ideal point--it follows 
from 111corem II that tills point is the unique solution policy. Next, coru;ider the unanimity version of this problem, 
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I Table 4C: Reducing U,e Cohesiveness of the Right Wing in Problem B. 
Initial Location Configuration I 

-

Rnd PIpr Xl X2 lilO li20 u,o u.O u,o U60 

#1 -9.000 -1.000 10.000 9.950 9.899 9.055 9.054 9.049 
#2 -9.000 0.000 9.950 10.000 9.950 9.054 9.055 9.054 

T-l 
#3 -9.000 1.000 9.899 9.950 10.000 9.049 9.054 9.055 
#4 9.000 -1.000 9.055 9.054 9.049 10.000 9.950 9.899 
#5 9.000 0.000 9.054 9.055 9.054 9.950 10.000 9.950 
#6 9.000 1.000 9.049 9.054 9.055 9.899 9.950 10.000 

T-2 Eu 9.501 9.510 9.501 9.501 9.510 9.501 

#1 -0.725 -1.000 9.577 9.574 9.565 9.501' 9.499 9.491 
#2 -0.710 0.461 9.570 9.576 9.576 9.496 9.502 9.501* 

T-3 
#3 -0.725 1.000 9.565 9.574 9.577 9.491 9.499 9.501* 
#4 0.725 -1.000 9.501' 9.499 9.491 9.577 9.574 9.565 
#5 0.710 0.461 9.496 9.502 9.501* 9.570 9.576 9.576 
#6 0.725 1.000 9.491 9.499 9.501* 9.565 9.574 9.577 

T-4 Eu 9.533 9.537 9.535 9.533 9.537 9.535 

Perturbed Location Configuration. 

#1 -9.000 -1.000 10.000 9.950 9.899 9.055 9.054 9.046 
#2 -9.000 0.000 9.950 10.000 9.950 9.052 9.055 9.052 

T-! #3 -9.000 1.000 9.899 9.950 10.000 9.046 9.054 9.055 
#4 9.000 -1.500 9.055 9.052 9.046 10.000 9.925 9.849 
#5 9.000 0.000 9.054 9.055 9.054 9.925 10.000 9.925 
#6 9.000 1.500 9.046 9.052 9.055 9.849 9.925 10.000 

T-2 En 9.501 9.510 9.501 9.488 9.502 9.488 

#1 -0.979 -1.223 9.590 9.586 9.575 9.488* 9.484 9.469 
#2 -0.949 0.671 9.580 9.588 9.589 9.477 9.488 9.488* 

T-3 
#3 -0.979 1.223 9.575 9.586 9.590 9.469 9.484 9.488' 
#4 0.733 -1.270 9.501' 9.497 9.487 9.578 9.573 9.554 
#5 0.722 0.460 9.496 9.501 9.501* 9.565 9.577 9.574 
#6 0.733 1.270 9.487 9.497 9.501* 9.554 9.573 9.578 

T-4 En 9.538 9.542 9.540 9.522 9.530 9.525 

o 
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in which all three players are essential. In this case, the core consists of the convex hull of the three players' ideal 
points. The solution to the model derived from tbis problem depends on the entire distribution of bargaining 
attributes among the three players. The comparative statics properties are predictable. If one player's access 
probability increa.<;ed or her ri")k aversion coefficient decreases, the solution shifts in the direction of that player's 
ideal point. Finally, suppose that players #1 and #2 are both essential, so that the admissible coalitions are (1,2) 
and (1,2,3). In this case, the core of the underlying game b the "contract curve" joining the esseutial players' 
ideal points, i.e., the line segment {(~,O): ~ E (-I, Ill. If the two essential players have equal access, the solution 
outcome will he the midpoint of this line, i.e., the origin. 

It is instructive to investigate the role that player #3 plays in this configuration. Though players #1 and #2 
never invite her to join a coalition, player #3 's presence affects the outcome of negotiations, provided her access 
probability b positive. (Think of #3 as representing a group that is peripheral to the dccbion-making process, but 
has the capacity to capture the attention of the general public, and thereby influence the nature of the debate 
hetwcen the major players (cf. our discussion of essentiality and access on pp. 3-3». To illustrate thb, we simulate 
the effect of a leftward shift in #3's ideal point. The parameters for the illustration are displayed below. 

Problem D: Shifting Player #3's Ideal Point to the Left (See Table 4D). 

Player #1 Player #2 Player #3 

Initial Location: (1., =(-1,0) «t = (+1,0) (1.3=(0,1) 

Perturbed Location: (1., =(-1,0) «t=(+l,0) «, = (0,-Q.05) 

Access: w,=0.333 w2=0.333 w3=0.333 

Risk aversion: p, =0.2 1'2=0.2 1'3=0.2 

Constant: 1, =100 12= 100 13= 100 

Table 4D compares the last six rounds of negotiations for the initial and perturhed locations. In the final offer 
round (T -1), the shift in player #3's proposal benefits player #1 at the expense of #2. In the preceding response 
round (T -2), therefore, #1's reservation utility is higher than initially, while #2's b lower. In the penultimate offer 
round (T -3), there are three changes. Player #1's proposal is closer to (1." hecause #2's reservation utility is lower. 
Player #2's proposal is further from «t, hecause #1's reservation utility b higber. FInally, player #3's proposal is 
closer to (1., and further from «t, both because her own ideal point is now closer to (1.t and hecause of the shifts in 
the other two players' reservation utilities. AIl three of these changes henefit #1 at the expense of #2, so that in 
round T -4, #I's reservation utility b higher than initially, while #2's is lower. The effects of these changes are 
transmitted via backward induction to the first round of negotiations, resulting in a shift to the left in the solution 
policy. 

Problem E: A two-good pure exchange economy with four players. 
In this fmal problem we extend our framework to model negotiations hetween agents in a pure exchange 

economy. While the problem is very simple, it extends the preceding analysb in three respects. Ftrst, it 
demonstrates that our framework can be applied a wider class of problems than the ones we have considered thus 
far. Second, a deterministic solution is obtained even though there is no essential player and the policy space is 
high dimensional. Third, it extends one of the basic assumptions of the paper, by allowing players' policy choices 
to depend on the coaliti.ons they select. 

There are two commodities and four players. Any subset of these players forms an admissible coalition. 
Each player has equal access. Players #1 and #2 are each endowed with two units of the first commodity while 
players #3 and #4 are each endowed with two units of the second. A policy is an allocation x::::; (Xi 1> Xi2)~1 

4 

satisfying, for k = 1, 2, Xik 2: 0 and Lx" = 4. If a player proposes the coalition C, she can propose any allocation 

in which tile players excluded from C are all assigned their initial endowments. Player i's utility is the Cobb-
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. 

Table 4D: Effect of Shifting Player #3 's Ideal Point to the Left in Problem D. 
Initial Location Configuration 

Rnd Prpr x, X2 U,O U20 U30 

#1 -1.000 0.000 66.289 66.056 66.124 
T-I #2 1.000 0.000 66.056 66.289 66.124 

#3 0.000 1.000 66.124 66.124 66.289 

T-2 Eu 66.156 66.156 66.179 

#1 -0.138 0.000 66.189 66.156' 66.171 
T-3 #2 0.138 0.000 66.156' 66.189 66.171 

#3 0.000 0.543 66.156' 66.156' 66.236 

T-4 Eu 66.167 66.167 66.193 

#1 -0.046 0.000 66.178 66.167' 66.172 
T-5 #2 0.046 0.000 66.167' 66.178 66.172 

#3 0.000 0.307 66.167' 66.167' 66.208 

T-6 Eu 66.171 66.171 66.184 

Perturbed Location Configuration 

#1 -1.000 0.000 66.289 66.056 66.128 
T-l #2 1.000 0.000 66.056 66.289 66.120 

#3 -0.050 1.000 66.128 66.120 66.289 

T-2 Eu 66.158 66.155 66.179 

#1 -0.150 0.000 66.190 66.155' 66.172 
T-3 #2 0.126 0.000 66.158' 66.187 66.171 

#3 -0.013 0.544 66.158' 66.155' 66.236 

T-4 Eu 66.169 66.166 66.193 

#1 -0.057 0.000 66.179 66.166' 66.173 
T-5 #2 0.034 0.000 66.169' 66.177 66.172 

113 -0.012 0.307 66.169' 66.166' 66.208 

T-6 Eu 66.172 66.169 66.184 
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Douglas function u;(x) = (XdX;Z)P, wifu P < Yi. 
TI,e model derived from fuis problem has a unique detelministic solution. Not sutprisingly, since the model 

is completely symmetric, the solution policy is the syrnmetIic allocation in which each player receives one unit of 
each commodity. The proof is extremely simple. To reduce notation we set p=O.25. It can be established that ill 
each response round, each player has the same reservation utility_ For each even integer t, let Ur denote this 
common reservation utility. 

III round 1'-1, each player proposes fue grand coalition and selects the allocation in which she receives fue 
the aggregate endowment vector (4,4). TIlUS, <Jq--z = '1.(16)°·25 = \I,. Now fix an odd integer I, and assume fuat 
players' reservation utilities in round 1+1 are all equal to «'+1 < 1. We will show that in round I, each player 
selects fue grand coalition and, modulo relabeling, the same allocation. Moreover, we will show fuat fue common 
reservation utility in round I-I is «'_1 E (\4(1+3«'+1),1). Consider fue options facing player i in round t. Her 
opportunities in any two-player coalition are clearly dominated by her opportunities in fue grand coalition. 
Moreover, it is straightforward to verify that if she selects any furee-player coalition, fue best trade sbe can achieve 
is (2 - ,j2«,2+1) uniL' of the scarce commodity and 2(2 - ,j2«,2+1) of fue ofuer.3! If sbe selects fue grand coalition, 
the best trade she can achieve is (4 - 3«."+1) of each commodity. Since «'+1 < I, the latter trade yields a higher 
utility fuan fue former. 32 We have fuus verified fuat in round I, each player selects fue grand coalition and, modulo 
relabeling, fue same allocation. When player j "" i makes a proposal, player i receives the utility level «,+,; wben 
i herself proposes, her utility is (4 - 3«,2+1)0.25 > 1. It follows that «'-1 > \4(1 + 3«'+1)' FInally, players' 
reservation utilities obviously cannot all exceed unity. We have established, fuerefore, fuat «'_1 E (\4(1 + 3«'+1)' 1). 
This completes our verification of fue ioductive hypofuesis. It follows fuat for every positive 6, if l' is sufficiently 
large then players' common reservation utility in fue second round of fue l' -round game must exceed (l - E). But 
in fuis case, fue policies proposed by each player in the first round must be arbitratily close to fue allocation in 
which each player receives one unit of each commodity. 

31 Without loss of generality, consider player #1'$ opportunitks if she seled,,; the coalition C:::: 11. 2, 31. '111e aggregate endowm5-nt is 

(4,2). A necessary condition for an optimal allocation is that for i E C, Xit ::: 2xi). For i :::: 2, 3, (2x;~}O.25:: ('(H!' so that Xi'l:::: ..J2C1-?+1· 

Player #1 takes what remains of the second commodity, i.e. 2 ~ 212a/,q, and twice as much of the first commodity. 

32 Since 2(2 - ..J2XJ}+,)1 < {15(2 - "2a}+,)}2, it is sufficient to check that (3 - ..J4.S{J}+1) < (4 - 3o}+\), i.e., that {3 - 14.5)a/+1 < I. TIllS 

inequality clearly holds whenever (J. < 1. 
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APPENDIX A: TWO·DIMENSIONAL SPATIAL PROBLEMS. 

There are. of course. bargaining problems for which neither Theorem IV nor Theorem V applies, either 
because the policy space i, multidimensional or because there is no essential player. This is true of a class of 
problems that has played an extremely important role in political science theory.33 TIlese are spatial problems in 
which the policy space is two-dimensional. The infonllal discussion below summarizes what can be inferred about 
this class of problems by applying numerical simulation techniques. 

First, for every problem that bas a nonempty core, we have been able to compute a deterministic solution for 
the model derived from that problem. For example, the core is nonempty for every four-person two-dimensional 
problem with strict majority rule and we have computed solutions to bundreds of corresponding models. Second, 
the closer a problem is to one with a nonempty core, the more likely it is that the model derived from it will bave 
an exact solution. 34 Moreover, if a solution is not exact, it is more likely to be almost exact. Finally, the 
outcomes implemented by these exact or approximate solutions are more likely to be close to the core of the 
neigbboring problem. 

To demonstrate the relationship between the structural characteristics of bargaining problems and the 
frequency of different solution types for the corresponding models, we report 00 three Monte Carlo experiments, 
referred to as experiments A, B and C. In each experiment we sample one bundred bargaining problems. The 
sample spaces are three increasingly general, parameterized families of five-person spatial problems, ranging from a 
family in which the core is always "almost nonempty" to one in which ooly minimal restrictions are imposed. In 
all three experiments, access probabilities are sampled from the four-dimensional unit simplex, and players' risk 
aversion coefficients lie on the unit interval. TIle sample spaces for players' ideal points are displayed in the table 
below, with (1.; = «1.;t,(1.;z) denoting player i's ideal point. In experiments A and B, ouly (1., is selected randomly 
wbile in expennent C, all five (1.;'S are randomly cbosen. 

Sample Spaces for Players' Ideal Points in Experiments A-C. 

Player #1 Player #2 Player #3 Player #4 Player #5 

A: 0:, =(-1,0) 0:,=(+1,0) (-.05,-.05) S 0:, S (.05,.05) (4=(0,-1) 0:, =(0,+1) 

B: 0:, =(-1,0) 0:,=(+1,0) (-0.5,-0.5) S 0:, S (0.5,0.5) 0:4=(0,-1) 0:, =(0,+1) 

C: (-1.-1) S 0:, s(I,I) (-1,-1) S 0:, S (1,1) (-1,-1) S 0:, S (1,1) (-1,-1) s(4s(I,I) (-1,-1) so:, S (1,1) 

It is well known tbat in experiments A and B, tbe core is nonempty if and only if player #3's ideal point is located 
at the origin35 

Tbe results of the three experiments are summarized in the three histograms presented in Table 5.1. In each 
case, the leftmost column reports the frequency of exact stocbastic equilibria. The other columns indicate the 
frequency of approximate equilibria with different degrees of inexactness: specifically, the height of the bar labelled 
"from a to b" represents the frequency with which we computed an €-equilibrium witb E E (a, b]. The 
experimental results are consistent with tbe qualltative remarks offered above. In particular, in experiment A the 
likelihood of an exact eqnilibrium is very high, wbile virtually all of the approximate equilibria are almost exact. 
As tbe class of problems is expanded, the Iikelibood of an exact equilibrium declines, and the likelibood of a quite 
inexact solution increases. Of course, because of the methodology used here, these statistics are necessarily subject 
to cet1ain caveats. In particular, ·wbile we bave observed stable cycles over thousands of rounds, and inferred from 
these cycles the existence of approximate solutions, the existence of inftnite stable cycles cannot, obviously, be 
guaranteed by numetical methods. Equally obviously, numerical methods cannot guarantee the existence of exact 

33 The seminal p,,-pers in thh literature are Davis and Hinkh {l9661 and Plott {1%7]. For surveys of the literature, see EndQw and Hin~ 

jell [1984J an<l Orde~lH)ok {l986]. 

3.t Because Otl! sample spaces arc aU finite--dimensional. the notion of "do~e" here is the stau<lard one. Also, the sample spaces in the fol
lowing discussion are all endowed with Lebesgue measure, and terms stich as ~mofe likely" have precise meanings in tenus of this measure. 

35 See ~ection 4.7 of OrdesllOok [19861, and Fiodna-Plott [1978]. 
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Table 5.1: Histograms for Experiments A-C 
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stochastic solutions.36 

Our third observation is that in villually all of the bargaining problems for which an exact solution was not 
obtained, the sequence of outcomes settled into a cyclic pattern. It is instructive to investigate the nature of these 
cycles. Essentially, they arise because as one player alternates between different coalitions, selecting those 
members wllose participation can be obtained most "cheaply," otller players' participation "prices" change in 
response, generating a stable oscillatory pattern of optimal coalition choices. To illustrate this cyclic phenomenon, 
consider a problem drawn at random in experiment B with the following parameters: 

Parameters for the Simulation Displayed in Table 5.2. 

Player #1 Player #2 Player #3 Player #4 Player #5 

Location: «, =(-1,0) u,=(+l,0) «,=(-0.193,0.202) a., = (0,-1) a, = (O,+l) 

Access: "" =0.152 w2=0.222 w,=0.216 ",,=0.183 ",,=0.227 

Risk aversion: p, =0.860 P2=0.706 p,=O.2oo p,=0.892 p,=0.746 

Constant: 'Yl =60 'Y2=60 'Y, =60 'Y4=60 'Y,=60 

In Table 5.2, tile relevant computations for selected rounds of tile 2000 round game are displayed in reverse 
order37 Clearly, the sequence of offer vectors settles into a two-period limit cycle.38 For tile odd-numhered 
(offer) rouuds, column 2 lists tile proposer and column 3 lists tile members (in addition to herself) tIlat tile proposer 
invites to fonn a coalition. Columns 4 and 5 list the policies proposed by each player and 6 tIlrough 10 display tile 
utilities that each player derives from each of the proposed policies. An asterisk in a column indicates tIlat tile 
player's participation constraint is binding for tile proposer. For tile even-numhered (response) rounds, columns 6 
tIlrough 10 display players' reservation utilities, which are, identically, tIleir expected utilities conditional on 
reaching tile following offer round. Entries that are central to tile following discussion are emboldened. 

Observe that except for tile first component of player #5's proposal, tile offers remain relatively similar from 
round to round. In tim fiM round, player #5 proposes tile policy (-Q.20, 0.52) and tile coalition (5, I, 3). Player 
#1's participation constraint is binding, while player #2's utility from this proposal falls short of her reservation 
utility in tile sixth round. Consequently, #2's reservation utility is [ower in tile fonrili round tIlan in tile sixth, while 
for #1 the ordering is reversed. Thus in tile tlnrd and fifth rounds, the configuration of "participation prices" 
confronting player #5 is slightly different: in tile third, tile price of securing #2's agreement is slightly lower 
relative to the price of securing #1' s agreement. The difference is enough to tilt the balance in favor of player #2, 
and so in tile third round, player #5 proposes the policy (-Q.05, 0.48) and tile coalition (5, 2, 3). Player #2's 
participation constraint is now binding, while player #1 's utility from #5's proposal falls short of her reservation 
utility in the fourth round. Consequently #2's reservation utility is higher in tile second ronnd than in tile fourili, 
while for #1 the ordering is again reversed. In tile first round, tile relative prices facing #5 are virtually tile same as 
in tile fifth round,39 and she chooses player #1 in preference to #2. 

In parameterized families of problems witll empty cores, we should not expect to identify conditions that can 
distinguish models with exact stochastic solutions from tIlose witll only approximate solutions. Cyclic patterns arise 
because the negotiating problem facing players is inherently discontinuous: each player must choose from a finite 
set of coalitions and as one player switches coalitions, otller players' payoffs change discontinuously. Our 
simulations indicate that exact solutions result whenever players' optimal coalition choices are unchanged from 
round to round. Conversely, a cyclic pattern emerges whenever at least one player's optimal coalition choice 
regularly change.,. Clearly, it wili be extremely difficult to ensure tllat players' optimal coalition choices remain 

36 TIle exad stocha1>tic solutions that we report lire indeed e;O;:;K{ l<;t the the timit:< of machine precision, but the toleran<:-es of our computa
tional algorithm are relatively coarse (approximately 10-f.). 

31 Because the sequence of offers is uniquely determined, the offers made in round #3 of the T -round game are, identically, the initial 
offers in the T -2-round game, etc. 

3!1 In fact. the cyclic pattern i.<: not quite exact. There (Ire ~light difference.~ between the offers in round" t and t+4 d1al M(: obscured by 
rounding. 



- 23 -

Table 5.2: A Two-period Limit Cycle. I 

Rnd Prpr Coal XI X2 " 10 "20 "30 "40 U,O 

1000 Eu 1.77076 3.31871 26.29755 1.55071 2.82409 

#1 {3,41 -0.479479 0.078169 1.77245 3.31335 26.29755' 1.55071' 2.82227 
#2 {4,5 I 0.263466 0.150188 1.76932 3.32546 26.24555 1.55071' 2.82409' 

999 #3 {1.5 I -0.193165 0.201892 1.77117 3.31787 26.40391 1.55060 2.82492 
#4 {1,2 I -0.120128 -0.300296 1.77076' 3.31871' 26.22866 1.55204 2.81902 
#5 {2.3 I -0.054990 0.481519 1.77021 3.31871' 26.29755' 1.54985 2.82856 

998 Etl 1.77066 3.31921 26.29644 1.55073 2.82408 

#1 {3,4 I -0.478789 0.068909 1.77245 3.31337 26.29644' 1.55073* 2.82218 
#2 {4,51 0.248006 0.144683 1.76939 3.32523 26.25072 1.55073' 2.82408* 

997 #3 {1,5 I -0.193165 0.201892 1.77117 3.31787 26.40391 1.55060 2.82492 
#4 { 1,21 -0.091547 -0.289190 1.77066' 3.31921' 26.23077 1.55202 2.81918 
#5 P,3 I -0.198921 0.516905 1.77066' 3.31628 26.29644' 1.54971 2.82855 

6 Eu 1.77066 3.31921 26.29644 1.55073 2.82408 

#1 {3,41 -0.478789 0.068909 1.77245 3.31337 26.29644* 1.55073* 2.82218 
#2 {4,5 I 0.248006 0.144683 1.76939 3.32523 26.25072 1.55073* 2.82408* 

5 #3 { 1,5} -0.193165 0.201892 1.77117 3.31787 26.40391 1.55060 2.82492 
#4 {1,2 I -0.091547 -0.289190 1.77066' 3.31921* 26.23077 1.55202 2.81918 
#5 {l,3 I -0.198921 0.516905 1.77066' 3.31628 26.29644' 1.54971 2.82855 

4 Eu 1.77076 3.31871 . 26.29755 1.55071 2.82409 

#1 {3,4 I -0.479479 0.078169 1.77245 3.31335 26.29755* 1.55071* 2.82227 
#2 {4,5} 0.263466 0.150188 1.76932 3.32546 26.24555 1.55071 * 2.82409' 

3 #3 (1,5 I -0.193165 0.201892 1.77117 3.31787 26.40391 1.55060 2.82492 
#4 ( 1,21 -0.120128 -0.300296 1.77076' 3.31871' 26.22866 1.55204 2.81902 
#5 (2,3 I -0.054990 0.481519 1.77021 3.31871' 26.29755' 1.54985 2.82856 

2 Eu 1.77066 3.31921 26.29644 1.55073 2.82408 

#1 (3,41 -0.478,789 0.068909 1.77245 3.31337 26.29644' 1.55073' 2.82218 
#2 (4,51 0.248006 0.144683 1.76939 3.32523 26.25072 1.55073* 2.82408' 

t #3 (1,5) -0.193165 0.201892 1.77117 3.31787 26.40391 1.55060 2.82492 
#4 {l,21 -0.091547 -0.289190 I 1.77066' 3.31921* 26.23077 1.55202 2.81918 
#5 { 1,3} -0.198921 Q.516905 1.77066' 3.31628 26.29644* 1.54971 2.82855 

--
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constant, and hence to guarantee existence of an exact stochastic solution. On the other hand, our Monte Carlo 
experiments do suggest that there is a predictable relationship between the structure of a given family of problems 
and the relative likelihood of exact, almost exact and inexact solutions for $e corresponding models. 

The preceding discussion raises a wide variety of questions such as: What is the precise relationship between 
the dynrunical system we have been investigating and static concepts such as the core? Is there an necessary 
relationship between the -likelihood of a nonempty approximate core and the frequency of an exact or almost exact 
solution; conversely, are there families of problems for which even approximate cores are usually empty, yet exact 
or approximate solutions to the corresponding models arise as frequently, say, as in experiment A? Why are the 
cyclic patterns we have observed so prevalent, rather than, say, some kind of chaotic behavior? To what extent are 
the various observations reported above robust with respect to alternative functional forms? 
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APPENlllX A: TWO-DIMENSIONAL SPATIAL PROBLEMS. 

There are, of course, bargaining problems for which neither Theorem IV nor 'Illeorem V applies, either 
because the policy space is multidimensional or because there is no essential player. This is true of a clac;s of 
problems that has played an extremely important role in palitical science theory.33 'Ill.cs.e are spatial problems in 
which the policy space is two-dimensional. 'TIle informal discussion below summarizes what can be inferred about 
this class of problems by applying numerical simulation techniques. 

First. for every problem that has a nonempty core, we have been able to compute a deterministic solution for 
the model derived from that problem. For example, the core is nonempty for every four-person two-dimensional 
problem with strict majority rule and we have computed solutions to hundreds of corresponding models. Second, 
the closer a problem is to one with a nonempty core, the more likely it is that the model derived from it will have 
an exact solution.34 Moreover, if a solution is not exact, it is mOre likely to be almost exaCL Finally, the 
outcomes implemented by these exact or approximate solutions are more likely to be close to the core of the 
neighboring problem. 

To demonstrate the relationship between the structural characteristics of bargaining problems and the 
frequency of different solution types for the corresponding models, we report on three Monic Carlo experiments, 
referred to as experiments A, B and C. In each experiment we sample one hundred bargaining problems. The 
sample spaces are three increasingly general, parameterized families of five-person spatial problems, ranging from a 
family in which the core is always "almost nonempty" to one in which only minimal restrictions are imposed. In 
all three experiments, access probabilities are sampled from Ule four-dimensional unit simplex, and players' risk 
aversion coefficients lie on the unit interval. The sample spaces for players' ideal points are displayed in the table 
below, with ai = (a., " 0.,0 denoting player i's ideal point. In experiments A and B, only 0.3 is selected randomly 
while in experrnent C, all five ai's are randomly chosen. 

Sample Spaces for Players' Ideal Points in Experiments A-C. 

Player Itl Player #2 Player #3 Player #4 Player #5 

A: at =(-1,0) a,=(+I,O) (-.05,-.05):; a3:; (.05,.05) ,"-<=(0,-1) a,=(O,+I) 

B: (Xl =(-1,0) a,=(+1.0) (--0.5.--0.5):; a3:; (0.5,0.5) ,"-<=(0.-1) a,=(O,+l) 

C: (-t,-I):; at:; 0,1) (-1,-1):; a," (1,1) (-1,-1)" (X3:; (1,1) (-1.-1):; (X,:; (1.1) (-1,-1)" a,,, 0,1) 

It is well known that in experiments A and B, the corc is nonempty if and only if player #3' s ideal point is located 
at the origin_ 35 

The results of the three experiments are summarized in Ule three histograms presented in Table 5. L In each 
ease, the leftmost column reports the frequency of exact stochastic equilibria. TIle other columns indicate the 
frequency of approximate equilibria with different degrees of inexactness: specifically, the height of the bar labelled 
"from a to b" represents ule frequency with which we computed an £-equilibrium WiUl I: E (a, b J. TIle 
experimental results are consistent with the qualitative remarks offered above. In particular, in experiment A the 
likelihood of an exact equilibrium is very high, while virtually all of the approximate equilibria are almost exact. 
As the class of problems is expanded, the likelihood of an exact equilibrium declines, and the likelihood of a quite 
inexact solution increases. Of course, because of the methodology used here, these statistics are necessarily subject 
to certain caveats. In particular, while we have observed stable cycles over thousands of rounds, and inferred from 

33 The seminal papers :in this liter.ature are Davis and Hinich {l966} and Plott [1967]. For surveys of the literature. see 
Endow and Hinich [1984J and Ordeshook [1986J. 

34 Because our sample spaces are all finilc-dimensional. the notion of "closc" here is {he standard one, Also, the sample 
spaces in the following discussion are aU endowed with Lebesgue measure, and terms such as "more likely" have precise 
meanings in temlS of this measure, 

35 Sec section 4.7 of Ordcshook [1986]. and Gonna-Plou [1978}. 
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Table 5.2: A l\vo~p'c:riod Limit Cycle. 

... .~""-~"-- ,----------""-- - _.- --------- . 

Rnd Prpr l. Coal II x, X2 II u,O U20 U3{-) U40 u,O 
- c= • 

1000 Eu 1.77076 3.3187l 26.29755 1.55071 2.82409 I 

#1 (3,4 ) -0.479479 0.078169 1.77245 331335 26.29755* 1.55071* 2.82227 
#2 (4,5) 0.263466 0.150188 1.76932 3.32546 26.24555 1.55071' 2.82409' 

999 #3 ( 1,5) -0.193165 0.201892 1.77117 3.31787 26.40391 1.55060 2.82492 
#4 ( 1,2) -0.120128 -0.300296 1.77076* 3.31871* 26.22866 1.55204 2.81902 
#5 (2,3) -0.054990 0.481519 1.77021 3.31871' 26.29755* 1.54985 2.82856 

998 Eu 1.77066 331921 26.29644 1.55073 2.82408 

#1 (3,4) -0.478789 0.068909 1.77245 331337 26.29644' 1.55073' 2.82218 
#2 (4,5) 0.248006 0.144683 1.76939 332523 26.25072 1.55073' 2.82408* 

997 #3 ( 1,5) -0.193165 0.201892 1.77117 331787 26.40391 1.55060 2.82492 
#4 ( 1,2) -0.091547 -0.289190 1.77066* 3.31921* 26.23077 1.55202 2.81918 
#5 (1,3 ) -0.198921 0.516905 1.77066' 3.31628 26.29644' 1.54971 2.82855 

6 Eu 1.77066 3.31921 26.29644 1.55073 2.82408 

#1 (3,4 ) -0.478789 0.068909 1.77245 3.31337 26.29644* 1.55073' 2.82218 
#2 (4,5) 0.248006 0.144683 1.76939 3.32523 26.25072 1.55073' 2.82408* 

5 #3 (l,5) -0.193165 0.201892 1.77117 3.31787 26.40391 1.55060 2.82492 
#4 (l,2) -0.091547 -0.289190 1.77066* 3.31921' 26.23077 1.55202 2.81918 
#5 P,3) -0.198921 0.516905 1.77066* 3.31628 26.29644' 1.54971 2.82855 

4 Eu 1.77076 3.31871 26.29755 1.55071 2.82409 

#1 (3,4 ) -0.479479 0.078169 1.77245 331335 26.29755* 1.55071* 2.82227 
#2 (4,5) 0.263466 0.150188 1.76932 3.32546 26.24555 1.55071' 2.82409* 

3 #3 (1,5) -0.193165 0.201892 1.77117 331787 26.40391 1.55060 2.82492 
#4 (1,2) -0.120128 -0.300296 1.77076' 3.31871' 26.22866 1.55204 2.81902 
#5 (2,3) -0.054990 0.481519 1.77021 3.31871' 26.29755* 1.54985 2.82856 

2 Eu 1.77066 3.31921 26.29644 1.55073 2.82408 

#1 (3,4 ) -0.478789 0.068909 1.77245 331337 26.29644' 1.55073' 2.82218 
#2 (4,5J 0.248006 0.144683 1.76939 332523 26.25072 1.55073* 2.82408* 

1 #3 ( 1,5 J -0.193165 0.201892 1.77117 3.31787 26.40391 1.55060 2.82492 
#4 (1,2) -0.091547 -0.289190 1.77066* 3.31921* 26.23077 1.55202 2.81918 
#5 (1,3 J -0.198921 0.516905 1.77066* 3.31628 26.29644' 1.54971 2.82855 



round to round, Conversely, a cyclic pattern emerges whenever at least one player's optimal coalition choice 
regularly changes. Clearly, it will be extremely difficult to ensure th'-tt players' optimal coalition choices remain 
constant, and hence to guarantee existence of an exact stochastic solution. On the other hand, our lv10nte Carlo 
experiments do suggest Ula! there is a predictable relationship between the structure of a given family of problems 
and the relative likelihood of exact, almost exact and inexact solutions for the corresponding models. 

The preceding discussion 1discs a wide variety of questions such as: \Vhat is the precise relaticmship between 
the dynamical system we have been investigating and static concepts such as the core? Is there an necessary 
relationship between the likelihood of a nonempty approximate core and the frequency of an exact or almost exact 
solution; conversely, arc there families of problems for which even approximate cores arc usually empty, yet exact 
or approximale solutions to the corresponding models arise as frequently, say, as in experiment A? Why arc the 
cyclic patterns we have observed so prevalent .. rather than, say, some kind of chaotic behavior? To what exlent are 
the various observations reported above robust with respect to alternative functional [onus? 
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APPENDIX B: PROOFS. 

Proof of Proposition I and Lemma I: 111C proofs of Proposition 1 and Lemma I arc interwoven. \Ve fnst 

eSL.1.blish part (i) of the proposition for l :::::: T. Consider a policy vector x c X such that Ui(X) < u,_(X dfl!). Clearly. 

if (I) round 1'-1 is reached, (2) some player proposes x and (3) i has the deciding vote, then i docs strictly worse 

if she accepts x than if she rejccts it. Similarly, for x such that uJx) > Ui(xdfll ). i docs strictly worSC if she rejects 

x tllan if she accepts iL Moreover, in either case, conditions (1)-(3) arc indeed satisfied if each j '" i plays as 

follows: Aj •T ~X; Xj.T_l ~x; and for each IE (2,4, .... , 1'-2), Aj " ~ 0. This establishes that if S; E S;.T, then 

j's acceptance set in tile last period must contain tl,e set (x E X: u;(x) > U;(X
d
/

I'») and exclude the sel 

{x E X: u;(x) < Ui(X d/ I,»). To complete the proof of part (i), observe tl,al acccptance sets are required to be 

closed. 

We now prove parts (a) and (b) of tllC Lemma, for I ~ 1'-1. Let J ~ U E I: Xi,T_l E iJAj ,T_rl.40 If J is 

empty, then X;,T_l E interior( (l Aj,T-l) and part (a) follows immediately from Assumption A3. Assume 
jecj:r_l 

therefore, that J is nonempty. We will show that for all j E J, Xj,T-I '" Xi,T-l' It follows from part (i) of 

Proposition I tl,at for all j E J, Uj(Xi.T-l) ~ Uj(X
d
/

I
,). From assumption A4, however, tllere exists x such tilat 

uf(x) > uf(xd[I'), for aliI E I. Since any coalition of players must accept x if it is proposed, it follows that for 

any player j E J, Uj(Xj,T_l).<: Uj(x) > Uj(Xi,T_l), verifying that as daimed,xi.T_l '" Xj.T-l' 

For I ~ T -1, part (b) of tile Lemma is an immediate implication of Assumption A4. As noted above, for 

every player i, tile vector X identified by Assumption A4 will be accepted by all players and yields i a strictly 

higher payoff than EUi(S1 1'). 

We now return to tile proposition, (0 prove part (ii) for I ~ 1'-1. After elimination of weaJjy dominated 

strategies in round T. player j is left with a unique admissible choice in round T: the acceptance set 

(x E X: Uj(x) <: u/xd[I'»). Part (ii) now follows immediately from this fact and part (b) of the Lemma with 

~ 1'-1. 

Now fix 1 ~ {2,4 , ... , 1'-2) and assume that part (i) of the Proposition has been proved for round 1+2 

while part (ii) of tl,e Proposition and parts (a) and (b) of tile Lemma have been proved for round 1+1. Part (i) of 

the Proposition can now be proved for I. using exactly the same argument as we used for ( = T. Now consider 

parts (a) and (b) of tl,e Lemma, for round 1-1. If round 1+1 of the game is reached, then the vector of offers 

(Xi.t+l)iel will be proposed and accepted. Let EXr+l =- LWiXj.t+l' Because the offers in this round arc not all 
iel 

identical, it follows from the strict concavity payoffs tilat uf(Ex'+l) > Eur(S1 1+2), for every / E [. Now repeat 

the argument proving parts (a) and (b) for 1 ~ 1'-1, but replace x with with Ex,+!. Finally, part (ii) o[ tile 

proposition for round /-1 can be proved by exactly tl,C same argument that was used to prove part (ii) for round 

1'-1. D. 

--.---
40 Given a set X. [he symbol "ax" denotes the boundary of x. 
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Prcx)f of the Corol~ to Theorem I: Let ~ (S;)..:-/ be an equilibrium profile for the game r(lI, T), 

where Si :::::; (Xi,t. Ci,t, A;,t-tl)t=1,3, .... T~l' Suppose that for some i and t E {It 3,' .. , T~-1}, C'i,t is not minimal 

with respect to i. Then there c.xiSL<; C' c C'j ,I' C' t· ('j,l' such thal C' U {i J is admissible. T!lU~, 

n Aj,HI c n Aj,l+l while by Proposition I, m3...x{4,('): xc: n Aj,f-td ;::-: max{ui('): x E 

jEe;; lEe jcC'1 

n Aj,f+d. 
jEe 

Since 

Ui(-) is strictly concave, the maximizers on the two constraint sets must coincide. Moreover, from Lemma I(b) and 

Proposition I. Ui(j:j,t) E interior(Ai ,t+l), so that Xi,t is also a maximizer on n ..1;,1+1< TItuS the profile s remains 
IEC'V{i} 

an equilibrium after substituting the coalition C' for C;.t. D. 

Proof of Theorem II: While the existence result is immediate, the proof of uniqueness is extremely intricate. 

Accordingly, we precede it with an heuristic guide. Recall that in each offer round, player i solves a two-part 

maximization problem. She first considers each admissible coalition in tum and maximizes her utility subject to Ule 

condition that aU members of thal coalition must accept her choice. For each coalition, our strict concavity 

conditions guarantee a unique optimal choice. She then chooses a utility-maximal policy from among these 

maximizers. To guarantee that a game has a unique equilibrium, it is sufficient to ensure tllat for each player in 

each round, ulerc is a unique solution to tlle second stage of her maximization problem. As usual, we start from the 

end of the game and. work backwards. In round T -I, we accomplish this for generic games simply by increasing 

slightly each player's utility on a small neighborhood of one of her optimal choices. In round I-I, for I < T, 

however, the problem is much more delicate; to obtain uniqueness in this round, we must locally perturb player's 

utilities without interfering with any of ule adjustments we have already made. Our approach is to arrange ulings, 

whenever possible, in round 1+1 so that the offers players make in round (-I arc distinct from all of the offers uley 

make in later rounds. When things can be arranged in this way, we can simply perturb players' utilities on 

neighborhoods of their I -1 round offers, without affecting any of our previous perturbations. It is not always 

possble, however, to ensure thal offers in different rounds· are always distinct: there is an open set of utility 

functions for which at least one player rcpeatedly proposes ncr ideal point. This fact dramatically complicates the 

proof. Fortunately, however, Illere are only fmiteIy many exceptional cases that must be dealt willl; because we 

have a continuum of degrees of freedom, we can take care of these cases through an intricate process of 

"anticipatory planning: 

Definitions: Fix a twice continuously differentiable function v E lllT. Let a(v) = (a;(v)};El denote the vector of 

players' ideal points; Ilmt is, for each i, a;(v) globally maximizes v;(') on X. When confusion will not result, we 

will use boldface lowercase letters to denote both vectors and the sets corresponding to these vectors.41 For i E f 

and x EX, let Hv;(x) denote Il,e Hessian matrix of V; evaluated at x. Since X is compact. and v is strictly 

concave, there exists 'l(v) > 0 such that for all i and all unit length vectors ~ E R i , Wllv;(xW < -'l(v). Now. for 

each pair of vectors Y E Xi and £ E JZ!, and scalar Ii > 0, define 

41 For example, a(v} will sometimes denote the set Uo...(v). and sometimes the ordered [-tuplc {a,(v)}'d_ 
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for all x c X and all unit length vectors fl c E'. p'II\j1(x)[l < Tj(v) 

if Ci ~ 0 then \jIi (-) " 0; 

\jI,(') ~ 0 on X - B(y, oj}. 

Observe that for all 'V E '{"(-, -, .), V+ 'V E lIlJ _ For the remainder of the proof, we will assume without further 

commment that the symbols I, T and -r denote even integers. For each I ,; T, define the set V (T) as follows. 

V (I) ~ (v E lIlJ: 'IT E [I, T), 

each player has a unique optimal policy choice in round HI of r(v, T») 

In the definitions that follow, we always presume that v E V(t). Let z(v, T +1) ~ (x d
[", ••• , x d

[") and for 

-r E [I, T), let z(v,1:+1) denote the vector of optimal choices for players in round HI of r(v, T). Let 

Z(v, I) ~ u z(v, -r+1). (Observe that for all v, Z(v, T) = 0). Let :r(v, -r) ~ LWjv(Zj(v, HI» denote the vector 
'tEif.T] j 

of players' reservation utilities in round -r. For each i and -r E [I, T], let Li(v, -r) ~ (y EX: vi (y) ~ :r;(v, 10») 

denote the "lower" boundary of player i's acceptance set in round -r of r(v, T). Let A (v, -r) ~ (\ U co(L/v, -r» 
jEeeEll'.. 

denote the set of policies that will bo accepted hy some coalition in round 10.42 For each i, let 

M,(v, I-I) ~ (y EX: y maximizes ViO on A(v, I»). Observe Il,at for v E V(I), M,(v, I-I) is necessarily a finite 

set, but in general may contain more than one element. Also, observe that 

for all Y E M,(v, I-I), either y = a, (v) or 1l1ere exists j '" i such that Y E Lj(v, I). (B.Il.l) 

To see that (B,ILl) is true, recall that as an immediate implication of Lemma I(b), each player's optimal offer must 

yield her more utility than her reservation utility in the following round. Thus, M,(v, I-I) ('\ L,(v, I) must be 

empty. Therefore, if Y E M;(v, 1-1) but y " ULj(v, I), then y must be an interior point of A(v, I) and hence a 

global maximizer of v,(-) on X. For ( <: I, v' E V(I) and Y( E V(t'), we will say that v' and v( are slralegically 

equivalent from ( if the following three conditions are satisfied: (a) u(v') ~ u(v(); and for all -r <: (, (b) 

z(v', 1:+1) ~ z(v(, 1:+1); and (c) v'(z(v', HI») ~ V( (z(v', 1:+1»). Observe that strategic equivalence is transitive in 

the following sense: if for I < ( < (', v( and v(' are strategically equivalent from (' while v' and Y( are 

strategically equivalent from ( , then v' and v" are strategically equivalent from ('. 

The construction that follows relates to the "intricate process of anticipatory planning" referred to above. Let 

[--i denote the set! - (i). For each'1l: E Rand nonempty sell E [--i, define the affine function ei (:r, J) by 

O,(rr, J) ~ (w,v,(U,(V» + L w,v,(tx.(v»l + L w,:r_ 
t~Jv{i} J lEl 

Now, for each scalar :r > O. define P,o(v,:r) ~ (:r) and for each even integer k > 0, define 

42 "co(Y)" denotes the convex. hull of Y . 
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riev, n) = U U O,(rr', f). Obviously, 

for any fmile set ncR, the set of 1['$ for which rt-(v, It) n u;(Q) t:- 0 is finite; (1l.11.2a) 

Also, since I: w, E (0, 1), for all 0 '" f c 1-" it follows that for all even k, n' E pr~2(v, n) n P,'(v, IT) only if n' 
KJ 

is a fixed poim one of some member of a fixed finite set of affine functions, each of which has at most one fixed 

point. Hence, 

for all even 1( > k ;0, 0, the set of n's for which pt(v, n) n P;'(v, n) '" 0 is finite. (BJL2b) 

Now for each even integer k E [0, t], let rrNv, t) = Ptcv, n,cv, I». rrNv, I) has the following interpretation. For 

each 't E (I -k , I], suppose that in round 't-l, player i proposes her ideal point, at least one player j '" i proposes a 

policy that yields i her reservation utility in round 't, and the remaining players propose their ideal points. In this 

event, player i's reservation utility in round l-k must belong to the finite set rrtev, I). The relevance of this 

arcane fact will eventually become apparent. For now, we will simply assert that the following fact plays a critical 

role in the prooL 

For all v E V(t-2), either for cach k E [0, t-2], rrt(v, t-2) c nr'(v, I). (B.U.3) 

or z(v, I-I) = a(v) 

or there exists t ' E I and t2 ", i S.t. z,,(v, 1-1) E L,,(v, I) - LoCv, I) 

To See that (B.II.3) is true, observe first that from (B.IL 1), if neither the second nor third conditions are satisfied, 

then, necessarily, ti(V, 1-1) = ai(v), while for some 0 "'" J c I -', t,(v, 1-1) E Li(v, I), for t E f, and otherwise, 

z,(v, 1-1) = a,(v). In this case, player i's reservation utility in round 1-2, 

ni(v, 1-2) = ei(ni(v, 1),1) E np(v, 1-2) c nr(v, I). 

some k E (0,1-2]. then nt(v, 1-2) c nf+2(v, I). 

Moreover, by conslfUction, if nt~2(v, 1-2) c rrtev, I), for 

Finally, let D c R be an arbitrary finite set and define the set V (t; D) as follows; 

V(I; D) = (v E 1UJ: for all i and all k E [0, tl, rrf(v, I) r. vieD) = 0;43 

for all even 1( E (k, I], rrt(v, I) r. nr(v, I) = 0) 

Observe thar D' c D implies V (I; D) c V (I; D). Also observe that that 

D' cD implies V(I; D) c V(I; D'). 

for allvE V(I;Z(v,I»and alii E I,Li (V,I)r.Z(V,I)=0. 

(BJL4a) 

(BJL4b) 

(B.UAa) is immediate. (BJL4b) is' equivalent to the statement that np(v, I) r. Vi(Z(V, I» = 0. An immediate 

consequence of (RILl) and (B.lL4) is ulat for any finite set 0 that contains Z(v, f), 

for all v E U(I; 0), if Y E Mi(v, 1-1) and y '" a,(v), then y d Z(v, I). (Il.U.5) 

43 For a real-valued function f. "/ (Y)" denotes the image of Ole set Y under the map f. i.c .. (f (y) E R: Y E Y}. 
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\Vc now presenl thrcc lemmas, from which tIle proof of the Theorem will fol!mv (relatively) ea<;iIy. 

Lemma ILl: Fix I :; T. x c X' and v E, V(I)!l U(I; n). for some finite set 0 that contains Z(v. I) v a(vl. 

There exists I) > 0 and y> 0 such tilat for all Ii E (0. I» if C E B (0. y) with Ii = 0 whenever Xi E n. then for all 

'l' E 'l"(x. E, Ii), v and v + Ijf arc strategically equivalent from I. 

Proof of Lemma ILl: Pick I) > 0 suffrciently small tirat for all i: (8-i) for all i such that Xi <i. 2(V.I), 

B (Xi. Ii) r. B (Z(V.I). 8) = 0 and (8-ii) for all , 2: I. Xi <i. A (v, ,) implies B (Xi. is) r. A (v, ,) = 0. Pick Y > 0 such 

that: (y-i) for all 1: > I and all i such that Xi <i. Z(v, I), Xi E A(v, ,) implies that vi(B (Xi, 8)) < Vi (Zi (v. 1:-1» - y 

and (y-ii) for all E E B (0, y), '¥'(x, E, is) is nonempty.44 Now pick Ii E (0, I) and E E B (0, y) with Ei > 0 

whenever Xi <i. Z(v, t) and pick 'l' E '£"(x. E, is). Observe that by definition 

z(v. T +1) '" z(v+'l', T +1) EO (xdfl' • ...• x df") and, by assumption, Ijf(xdfl') = 'l'(a(v» = O. Hence v and v + 'l' arc 

strategically equivalent from T. Now fix 1: E (I. T] and assume that v and v + 'l' are strategically equivalent from 

1:. We will show that uley arc strategically equivalent from 1:-2. 

Fix i E I. Togeuler with our assumption urat Xj <i. 2(v, I) whenever Ej > 0 condition (Ii-ti) implies timt 

there exists a nM Ni of Zi(V, ,-I) such urat for each j. IjfA) = 0 on N i • Moreover, since strategic equivalence 

from 1: implies that Ijf(z(v, HI» = 0, we have :I1:(v+'l', 1:) = :I1:(v, ,). Thus, for each j and Y E N i • Vj(y) 2: :I1:j(v. 1:) 

if and only if (Vj+ljfj)(Y) 2: "'j(v+ljf. ,). It follows that A (v+ljf. ,) r. Ni = A(v, ,) r. Ni and so 

Zi(V, ,-I) E A (v+ljf, ,). Moreover, since 1jf0 is nonnegative it follows tirat for all j and all yEA (v, ,), 

(Vj+ljfj)(y) 2: 1Cj(V,,)=1Cj(V+Ijf, ,). Thus A(v+Ijf,,) cA(v,')' We now have two cases to consider. First, 

suppose that Xi E A (v, ,). In this case, condition (S-ii) implies that B (Xi, 8) r. A (v, T) = 0 so that 'l'iO = 0 on 

A(v, T). Second, suppose that Xi E A(v, T). In this case. Ijf;(') = 0 on tile set A (v+ljf, T) - B(Xi, 8), while 

condition (y-i) and the definition of Ijfi imply urat for all y E B(Xi, Ii). v,(zi(V, ,-I» - vi(Y) > y> Ijfi(y)' lllis 

establishes that for all zi(v, ,-I)) 7' y E,A(v+Ijf, ,), (vi+~r;)(zi(v, ,-I» > (Vi+Ijf;)(y) and proves tirat 

Zi(V+Ijf, ,-1» = z,(v, 1:-1)). It now follows immediately from the definition of 8 Ulatljf(z(v, ,-2» = O. D. 

Lemma 11.2: Fix 1 :; T and v E V(I) n U(I; 0), for some finite Set Q urat contains Z(v, I) v a(v). Fix 

x E Xi such that for each i, Xi E Mi(V, 1-1). lllere exists y> 0 and S> 0 such that for all I) E (0, S) if 

E E B (0, y) with Ei = 0 whenever Xi = a;(v), then for all Ijf E 'l"(x, E, is), v and v + 'V are strategically equivalent 

from I and v+1jf E V(I-2). 

Proof of Lemma 11.2: 

(I, v, x, Y ,I). We can 

addition: (o-iii) for 

B (Xi, Ii) c co(L;(v, I». 

Pick Y > G and S > 0 sufficiently small tllat the conclusion of Lemma ILl holds for 

assume w.l.o.g. that I) is sufficiently small tilat the following conditions are satisfied in 

all Xj" Xi, B (xj, 0) r. B (Xi, Ii) = 0; and (o-iv) if Xi E int(co(L;(v, I »), then 

Pick Ii E (0, I) and E E B (0, y) witir Ei = 0 whenever Xi = Ii; (v) and pick 

44 A r satisfying (y-O exists because by lL<;sumption. zi(v. -r-l) I"- x,. is the unique maximizer of v,(·) on A (v. 't).) 
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'V c \.pV(x, C, 0). \Vc first establish that the h)1X}tbcsi~' in Lemma IL I is satisfied. From (B.IL 1), if [i > () then 

there cxiSL') j 1'-i such that Xi c Lj(V,l), i.c., v/x£) 1tj(V,l)C n?(v,[). Since vc: U(t; Z(v, l», 

nJ(\'. I) n Vj(Z(v. I» ~ 0. 111crcfore. Xi rt Z(\'. I). It now follows from Lemma ILl that for each 

'V E 'l"(x. c. 8) v and v + 'V are strategically equivalent from I. 

We nexl establish t.hat for each i E I. Xi E A(v+o/,t). Since Xi E Mj(v, 1-1). there exists a coalition 

C; E ([: such that Xi E nco(Lj(v.I». Suppose that for j E C. Xj =Xi' It follows from Lemma l(b) that 
iEe 

Xi E int(co(L/v, I»); condition (o-iv) now implies that '¥j(L/v. I) = O. Thus. L/v. I) = Lj(v+'V, I), and so 

Xi E co(L/v+'V». Now suppose that for j E C. Xj '" Xi' In this case. condition (o-iii) implies that '¥jO = 0 on a 

nbd N j of Xi' TI1erefore. Lj(v+'¥, I) n N j ='L/v,l) n N j . We have established. therefore. that 

Xi E nco(Lj(v+'V.I» cA(v+'V, I). We now show that Xi is the unique eIement of M;(v+'V.I-I). Since '1'0 is 
jEG 

nonnegative. (Vj+'Vj)(y);" "i(v, I) = ,,/v+'I'. I), for all j and all Y E A(v. I). Thus A (v+'I'. I) c A(v, I). First 

suppose that.xi c:F ((i(V). In this case 'Vi(-) attains a unique maximum at Xj. Moreover, Xi maximizes Vi(') on 

A (v, I). Therefore, (Vi+'I'i)(') attains a unique maximum on A (v+'V. I) at Xi. If Xi = a,(v). then Xi is the unique 

global maximizer of Vi (-) and 'Vi (-) ;2 O. Once again. therefore. (Vi+'!'i)O attains a unique maximum on A (v+'V. I) 

atxi. This completes the proof that v+'¥ E V(I-2) 0 

Lemma 11.3: Fix I ,; T and v E V(I-2) n U(I; 0), for some finite set 0 that contains Z(v. I) u a(v). If 

z(v, 1-1) '" a(v). then for all y> O. there exists x E Xi. Y E (0. y). C E B (0. y). 8 > 0 and <l> E rex. C. 0) such that 

v and v + <l> are strategically equivalent from I. z(v. 1-1) = z(v+<!>. 1-1) and 

v + <l> E V(I-2) n U(I-2; Ouz(v. 1-1» c U(I-2; Z(v+<l>. 1-2)ua(v+<l»), 

Proof of Lemma 11.3: Define 7 as follows: 

1= [i E I: there exists,' E I and ,2 '" i S.L 2,1(V. I-I) E L,2(V. I) - L;(v, I)J. 

For each i E 7. pick ,'(i) and ,2(i) such 11,at Z,l{i)(V, 1-1) E L,'<i/V. I) - L;(v. I). (Note that. possibly. ,'(i) = i.) 

Define x E Xi a, follows: for i E 7, Xi = Z"{i)(v, 1-1); oUlCrwise. pick Xi arbitrarily. Pick 0 > 0 sufficiently small 

that: (o-iii) for all i and all Xj '" Zi(V, 1-1). B(xj, 0) n B(Zi(V, 1-1). 0) = 0; and (8-1V) if Xj E int(co(Lj(v, I»)), 

then B (Xj. 0) c co(L/v. I». Pick y E (0. y) sufficiently small that (y-ii) 'I'(x. c. 0) is nonempty, for all 

£E B(O.y) and (y·iii) if Xi ",z,(V.I-1). then vi(B(Xi,O» < V;(Zi(V, I-I»-y. (Such a y>O exists because. by 

assumption. Xi = Z"{i)(V, 1-1) E A(v,I), while Zi(V. 1-1) ~-Xi is the unique maximizer of Vi(') on A(v. I).) 

Finally, pick C E B (0, y) as follows: for i rt 1. set Ci = 0; For i E 7. define qi(C;) = rri(v, I )+Ci :z:; w, and pick 
{l:Xt",,"xi 1 

Ci E (0. y) such that for all even k E [0.1-2]. pt(v. qi(Ci» n Vi(Z(V, 1-2) u a(v» = 0, while for all even 

K E (k, 1-2]. pf(v. qi(Ci» n r:(v, qi(Ci» = 0. 

satisfied for all but finitcIy many 

Statements (BJLla) and (BJL2b) imply that these conditions are 

Cis. Since VE U(I;O) and 0 contains Z(V,I). 

V,'<i)(Xi) = ll:{l(i)(V, I) rt V,'<i)(Z(V. I»). SO that Xi rt Z(v. I). for each i such that Ci > O. It follows from Lemma ILl 

that when y and 0 arc sufficiently small. thcn for cach <l> E '1"(x. c. 0), v and v + <l> arc strategically equivalent from 



I. \VC \vill a')sumc that 'Yanel 0 arc indeed sufficicntly small and pick ¢ c '-If''{x, £, 8)_ 

We first establish that v-+¢ c V(t--2), with z(v-t¢, £-1) 'l(v, t~l)_ 'J11C argument replicates almost exactly 

the correslxmding argument in thc proof of Lemma 11.2. We begin by si1c)\ving that [or each i E I, 

z;(v.I-I)E A (v+¢. I). Pick C ,,(f such that z;(V.t-I)E (\co(Lj(v.t» and consider i ,.j E C. If j <! 1. 
, jEC 

then $jO ,,0. so that. trivially. z;(v. I-I) E co(Lj(v+$. I». Assume. therefore. dlat j E 1. If Xj = z;(v. I-I). tllen 

by construction Xj = z,'(j)(v, I-I) d. Lj(v. 1-1). 11lcreforc. zi(V. I-I) E int(co(Lj(v. I))) and condition (S·iv) 

implies that $j(Lj(v. I» = O. 111erefore. Lj(v. I) = Lj(v+$. I). so d,at z;(v. I-I) E co(Lj(v+$». If Xj "z;(v. I-I). 

then condition (o-iii) implies d,at $jO = 0 on a nbd Nj of z;(v. I-I). 

so that once again z,(v. I-I) E co(Lj(v+$». We 

Xi E (lco(L/v+$. I» cA(v+$. I). 
fEe 

Therefore. L j (v-t'4>. I) n Nj = Lj(v, I) n Nj , 

have established. therefore, that 

We now show that zi(V. I-I) is the unique element of Mi(V+$. I-I). Replicate the reasoning in the proof of 

Lemma 1l.2 to establish that A (v+$. I) cA(v./). If Zi(V. 1-1)=Xi. then Xi is the unique maximizer of both Vi(') 

and $iO A(v+$. I). If Xi "Zi(V.I-I). then $i(')=O on the set A (v+$, 1)-B(Xi' 0), while condition (y-iii) and 

the definition of $i imply that for all Y E B (Xi, 0). Vi (Zi (v, I-I)) - Vi (y) > y> $i (y). This establishes that for all 

Zi(V, I-I»" Y E A (v+</>. I), (Vi+$i)(Zi(V. I-I» > (Vi-t'4>i)(Y) and proves that Zi(V+$. I-I» = Zi(V, I-I». 

To establish that v + </> E U(/-2; Z(v+</>, 1-2)ua(v+$». we must show that for each i and all k E [0,1-2]. 

n[(V-t'4>. 1-2) n v,(U(/-2; Z(v+$. t:"'2)ua(v+$» = 0; 

and for all even K E (k. 1-2]. nf(v+$. 1-2) n n[(v+$. 1-2) = 0. 

(B.rr.6a) 

(B.ll.6b) 

First, note that as a consequence of (o-iii). $;(Xj) = O. for all j such that Xj "Xi = Z,'ti)(V, I-I). Therefore. for 

each i: 

1ti(V+<I>. t-2» "' LW,(Vi+$i)(Zi(V+$. I-I» = LW,(Vi+$;)(Zi(V. I-I» 

LW,V,(Zi(V. 1-·1» + Li' L W, 

(t:x~""xi ) 

1ti(V.I-2)+£i L W, 

{t:;,;~""xi 1 

Thus for all i, nf(v+<I>. 1-2)", Pf(q;(£i». For i E 1, conditious (B.Il.6a) and (B.Il.6b) hold by construction of Li' 

For i E 1, £i = 0 so that "i(v+$, 1-2)) = qi(£i) = 1t,(v, 1-2). Applying statement (B.IU) and the fact that 

z(v, 1-1) "a(v), n!-2(v+$. 1-2) "' fl[-2(V, 1-2) c nf(v. I). for each k E [2,/l. Because v E U (I; Q) and Q 

contains Z(v, I)ua(v»). it follows that for all even k and K E (k, 1-2]. nf(v+$, 1-2) n n{(v+</>. 1-2) = 0 and 

n}(v+</>, 1-2) n Vi (Z(v, I)ua(v» ~ 0. To establish that v+$ E U(I-2; Z(v+</>, 1-2)ua(v+$), the only 

remaining condition to check is that ' 

for all k E [0,1-2]. nf(v+</>. 1-2) n v;(z(v. I-I» = 0. (B.lL7) 

Observe that for all i <t 1, Zi(v, I-I) = ai(v), while for j "i. eilher Zj(v. I-I) E Li(V. I), in which case 

Vi(Z/V, I-I)) = 1t;(v. t) E n?(v. I). or Zj(v. I-I) = aj(v), In the first instance. (B.lL7) follows from the fact that 

for k E [2, I]. n!-\v+$, /-2) n fliO(v. I) c nf(v, I) n fliO(v. I) = 0. In the second instance. (B.lL7) 
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follows from the fact lilat for k c (2, Ij, 11:~2(y,<p, 1-2) n vi(aCy» c ntcy, I) n vi(a(y» 0.0 

\Ve can now prove Theorem II. Define the set U· a~ follows 

u· = {u :::0 (Ui)icl c lOJ: there exists T, an equilibrium s for r(u, T), i c land x -:t- x'such that 

for some 1 ;; I ;; 1', both x and x' maximize uro on U (\ (y EX: uJ(y) 2. EuJ(sl 1+2»), 
Cc4:: jcC 

To prove Theorem II, it is sufficient to show that the closure of U· has an empty interior. Pick u· E cl(U') and a 

sequence (uA
) in U· such that (or every n, uA E B (u·, n-'). We will construct a sequence of conLinuous 

functions, (VA), such that for every n, v" E B (uA
, n-'), so that (VA) converges to u·, We will show tI,at for 

sufficiently large n, the VA'S satisfy assumptions A2~A4 and so belong to 1lJJ, but do not belong to U·. The 

existence of such a sequence will establish that the closure of U· has an empty interior. We now fix n, drop the n 

superscript, and replace it with aT, so that uA becomes uT • TI,ere are two cases to consider 

Case I: o:(uT) E A (uT, 1'), In this case, clearly, z(uT , 1'-1) = o:(uT), so tI,at uT E V(T-2), For each i E I, 

define qi(Ci) = Lw,UF<ai(UT» + Ci L w, and pick Ci E (0, (nT)-t) such that for all even k E [0, 1'-2], 
(t:<:ll.(uT)\~i(UT» 

Pf<uT, qi(Ci» n uT(O:(UT» = 0, while for all even K E (k,I-21, PieuT, q;(Ci» n P;'(uT, qi(Ci» = 0. Now 

define <jlO E e and uT-2 = UT+$T. Since Z(UT-2, T-2) = o:(uT- 2), it (ollows that 

uT- 2 E V(T-2) (\ U(T-2; Z(uT- 2, T-2)uo:(uT- 2». Now fix t < T and assume tllat u' has been defined such 

that u' and u'+2 are strategically equivalent from t+2, while u' E V(I) (\ U(t; Z(u', I)UO:(U'» (ThLs condition is 

certainly satisfied for I = T-2.) We will construct U'-2 E B(u', 2(nTr') such that u,-2 and u' are strategically 

equivalent from I while u'-2 E V(I-2) (\ U(I-2; Z(U'-2, 1-2)ua(u,-2». There are two cases to consider. 

Case I(a): For some i, o.i(U) <i. A(u,I). Pick x E X' such that [or each i, Xi E Mi(u', 1-1). Applying 

Lemma II.2, there exists Ii > 0, C E B (0, (nT)-') with Li = 0 whenever Xi ~ fJ.; (u') and 'V' E 'l.'u' (x, c, 6) such that 

u' and u'+'V' are strategically equivalent from t and u'+'V' E V(t-2). From Lemma II.3, tllere exists x EX', 

Y E (0, nI'), E E B (0, y), 6 > 0 and <p' E 'J!u'+'I" (x, c, 6) such that u' +'V' and u' +'V' +$' arc strategically 

equivalent from I and u' + 'V' + $' E V (1-2) n U (1-2; Z(u', 1-2)uo.(u'». Set u,-2 = U' + 'V' + $' and observe 

that indeed u' E B (U'+2, 2(nTr'), while u,-2 and u' are strategically equivalent from I. 

Case I(b): o:(u') c A (u', I), In this case, set U'-2 = u'. Because strategic equivalence is transitive in tile 

sense defined above, z(u,-2, I-I) = o:(u'-2) ~ O:(UT- 2) = z(uT- t , T -I) and K(U'-2, 1-2) = ,,(uT- 2, T -2). Clearly, in 

this case, we can set u'-< ~ u', for each k E [4,1], and observe that z(u'-' , l-k+l) = z(uT-t, T-k+l). 

In either case (a) or (b), we can now define v" = uo, Observe that v" E B(u, n-') (\ V(O), so tllat VA <i. U·. Let 

B ~ Z(vA
, 0). 

Case II: a(uT ) <t A (uT , T). In this case, set vT = uT
• We first pick C E B (0, (nTr') such tllat [or even 

cach k E (0, TJ. r[(vT (Xdfl')+c) n vreB U O:(VT» ~ 0, while for all even K E (k, T-2]. 

p/(vT(xdfl,)+c) n r(vT(xdf")+c) ~ 0. Now define $T by $T (X) ~ 0, while $T (X dfl') = c. Define "T-2 = uT + $T 

and proceed exactly as in case I, with the following exceptions: everywhere replace u's with v's; replace 



u ({; Z(u l
, t )va(u l » wilh U (t; DuZ C,,,r, t )ua(vl »; if case (b applies [or some (, then define VI~-2 :=:- \J and 

observe that z(v t --2, [--1) a(vl-2)~: a(uT~2) = Z(uT- 2, 1'-1) and 1t(u t
--

2, [-2) 0-____ n:(vT- 2• 1'--2). Once again, In this 

case, we can set Vh~ v t
• for each k c (4, tJ. and observe that z(v l

--
t , t-k---!-l) = z(uT-k.. T-k---!-l) D. 

Proof of Theorem IV: \Ve begin by introducing some further nOlation. Define the mappings Gi () ~md 

on R by, for each G,(x) ~ (y E R: Ui (y) ;> min u;(Xj)) and 
J 

Ui(X) ~ (y E R: Ui(y);> L;WjUi(Xj))' Given a closed set Y c H, let I(Y) and heY) denote, respectively, Ole 
j 

minimal and maximal elements of Y. (Treating x as a set, we will sometimes refer to I(x) and h(x).) Finally, for 

""ch i and proposal profile x, let !3.i(X) = I (Gi (x)) and ili(X) = h(Gi(x)). The proof relies on the following Lemma. 

Lemma IV.I: For each £ > 0, there exists 0 > 0 such that for every i E I and x = (Xi bl eX: 

if h (x)-I (x) > £ and either (a) a, = Xi or (b) a, it (l (x), h (x)), then 

Ui(X)) C [/(Gi(x)) + 0, h(Gi(x)) - 0]. 

Proof of Lemma IV.I: If the Lemma were false, we could find £ > 0, and for every n, a vector x" in X 

and i E I such that either condition (a) or (b) above is satisfied for i while 

Ui (x")) <!: [I (Gi (x")) + n-l , h (Gi(x")) - n-l]. Pick a convergent subsequence of the x" 's, again indexed by n, 

such that for some fixed player i, either condition (a) is satisfied for every n or condition (b) is satisfied for every 

n. Let x be the limit of the subsequence. Clearly h (G,(X)) - I (GJ50) ;> £ while there exists y E UJ50 such that 

either y,; I(G;(x)) or y;> I(G;(ii)). Since Ui is stricuy concave, it follows that u;(y),; minui(ij). 
J 

First assume that for the identified player i, condition (b) holds for every n. We can assume without loss of 

generality that for every n, a,;> h (x") so ulat (Xi ~ II (X). Because Ui is stricuy concave, 

ui(h(X)) > L;Wju;(Xj) > ui(I(X)). But by assumption, u;(y)'; Ui(l(X)), contradicting ule fact U13ty E Ui(X). Next, 
j 

assume that for tilis i, condition (a) holds for every n, so tilat (Xi =x,. If ui(h(X)) * Ui (I (X)) then the preceding 

argument can be applied again. Assume therefore that ui(h(X)) = u;(I(X)). By strict concavity, ui(I(X)) < u;(y), for 

""eh Y E (I (X), h (X)). Moreover. by assumption 

Ui(yj S; ui(I(X)) < L;WjUi(ij), contradicting the fact that Y E 

j 

rx; = ii E (I (X) , h (X)). 

Ui(X). O. 
ll1erefore, once again, 

We can now proceed with the proof of the theorem. The concavity of Ui implies that uj(Ex) > LWjUj(Xj), 
j 

for every i, so that for cvery policy vector x, n Ui(x) is nonempty. It follows immediately tilat un Ui(x) is a 
iEI Cc€ iEG 

convex set 

Fix a particular equilibrium profile s, and for 1 E (l, 3," . ,1'-1). let x, denote the profile of policy vectors 

proposed in round I. Note that from 11lCorem II, player i's acceptance set in round 1 E (2,4,··· ,1'-2) must be 

Ui(X,.,). 111US, in round t E (1,3,' .. ,1'-3). the set of policy vectors that will be acccptable to some coalition in 

round 1 is given by U n U;(x",). Since this set is convex, it follows Ulat if (Xi E (I (x,+,), h (x,d), for some i, 
CEil: iEe 

then if i proposes (Xi. it will be accepted by some coalition. \Ve have established, then, that for each i, 



so that the hypothesis of Lemma IV.1 is satisfied. 

Let ~(t, .) and T(l • . ) be alternative enumerations of I such that for 1 ::; k < 1.45 Q\(t, k)(X r ) ::; fh(f.l.~liXt), 

while 0({r,1/Xt ):2: ~f(!.J-.+l)(x!). Next, define T to be the small~<;t integer strictly larger than TI2 and define 

£, ~ (,,(I, I)) , ... ,,,(I, I) J and I, ~ (L(I, I)) , ... , "l(t , I) J. Observe Ihal for each I, £, n I, ,,0 and for each 

1: etc I, £, n I, etc 0. Set J}J ~ 1\(,. ;)(x,) and ~, ~ ~,. ;)(x,). Thus, a policy vector y is contained in [~, ~,J if and 

only if for a strict majority of the players in I, Y is' weakly preferred to the feasl preferred element of x,. 

Specifically, every y E frr" Ex,], is weakly preferred to hex,) by every iE£', while every y E [Ex" ~,], is 

weakly preferred to I (x,) by every i E 1,. 

We are now ready to proceed with illC proof of the theorem. For I E (I, 3, ... ,T -3), it is clearly true that 

x, c u n Vi (X,+,) 
CeQ: iEC 

(B.lV.I) 

Now, fix E > 0 and choose 8> 0 for which the conclusion of Lemma IV.I applies. We will show that if f is 

sufficiently large, then for T > f, the solution for the T -round game will be contained in an interval of length no 

greater than £. Specifically, we have shown (B.IV.I) that for each I, x, C [1l'+2' ~,d. We will show that when 

h (x,+,) - I (xH,) exceeds E, the interval [Il" ~,l will be contained in frr'+2' ~,d, but its length will be shorter by at 

least 8. This facl will establish the theorem. 

It follows from the first inclusion of B.N.I tllal for all i, there are at least I players j such tllat 

Xi., E Uj(x,+,). If h(x,d -I(x,d > E, then, Lemma IV.I implies that Xi., > 1l'+2 + 8 while Xi.' < 1lt+2 - 0. 

Summarizing, we have established t1lat for each I E (1,3,'" ,T -3) 

if h (x,+,) - I (x,+,) > E, then x, c frrH2 + 0, fI'+2 - oj. (B.lV.2) 

The next step in the proof is to show illat for each I E (1,3,' .. ,T -I]. 

either Il, ~ I (x,) or fI, ~ h (x, ). (B.IV.3) 

To see this, observe that for each i, lli(X,) sl(x,) while ~i(X,)? hex,). Moreover, because payoffs arc concave, at 

mOst one of these inequalities can be strict for any i. 111US if J}.(x,) s Il, < I (x,), for each i E £" then 

fli(X,) ~ fI, ~ h(x,), for i E £, n 1,. Since £, n I, is nonempty, this establishes t1lat (B.!V.3) is true. We will now 

assume (willIont loss of generality) that fI, ~ h (x,), and rewrite B.IV.2 as 

(B.IV.2') 

To complete the proof of the theorem. we need to show that fl.( ~ l}H-2' To see this, observe nrst that for each 

iE£', 

(B.IVA) 

The second inequality holds because fI, ~ hex,); the t1Iird because flt+2 > fI,. We now ha.ve two cases to consider. 

First assume that ~t+2 = h (Xl+2J. In this case, B.IVA implies that ~( E GJXt +2), for i E fJ-f2' so that, immediately, 

45 Recall that the set of players { has r elements. 
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{it "2: Ilr .. 2. Second assume that Ilr-i2 (~ [(x I +?). In this ca~, uJf3r+?) 2 uiCBi(Xt-t2)):2: ui(llr+2> for i C !i+2- But from 

B.IV .4. Ui (Ill) > Ui (FI+2) , for each i c !J. Since£, (\ £'+2 is noncmpty, there ex 15(S i such that 

Since Ui is concave and P"t+2 > ~r+2' it now follows that Q.( > 1ir+2' O. 

Proof of Theorem V: The proof uses the following lemma repeatedly. 

Lemma V.I: Fix £ > O. an integer k. and a strictly positive probability vector p E Lik -
I
• There exists 8> 0 

such that for each i and y = (YJ~, eX, diam(y):?: E implies u,(p·y) - D.u,(YJ :?: o. , 
Proof of Lemma V.I: If the Lemma were false, then we could find E > 0, i E I and a sequence of vectors, 

(y") in X, such that for each Ii, diam(y"):?: E and u,(pf) - D.u,(y~) < ,,-'. Since X is compact the , 
sequence (y") has a convergent subsequence. Let Y be the limit of this subsequence. Since u, is continuous, 

u, (p.y) :0; D .u;ls J. Moreover, the diameter of Y is at least E. However, since the vector p is strictly positive, 

p.y is contained in the relative interior of the convex hull of y. But this contradicts the assumption that Ui is 

strictly eoncave. D. 

We now proceed with the proof of the theorem. Let (xT) denote the sequence of outcomes corresponding to 

a nested sequence of equilibrium strategy profiles for the T -round games. Assume that player # 1 is an essential 

player. For each T, let OT = Eu ,(xT
). 

Step #1: TIle sequence (OT) is a strictly increasing, Cauchy sequence. 

Proof of Step #1: Fix an even integer T. Since player #1 is essential, each playcr's policy proposal in 

round #1 of the T+2-round game must yield player #1 a payoff of at least ST. Morcover, from Lemma J(a) player 

#l's own proposal yields a payoff strictly exceeding OT. TI,is establishes tllat the sequence is strictly increasing. 

Because u, is continuous and X is compact, u;(·) is bounded on X. Hence the sequence is Cauchy. 

Step #2: For all positive £, there exists a f such that for each T > f, diam(xT) < £. 

Proof of Step #2: Suppose to the contrary that ulere exists a subsequence, (x"), of (xT) such that for each 

n , diam(x"):?: E. From Lemma V.l, tl,ere exists Ii > 0 such tlmt for each n, and each 

Ui(W·X") - LWjU,(xl) :?: o. It follows that for each n, player #I's own proposal in round #1 of the n+2-round 
jEl 

game must yield a payoff that exceeds e" by at least o. Thus, for each n, 8"+2:?: en + w,o. But this contradicts 

Step #1. 

Step #3: TIle limit of any convergent subsequence of (xT) is a singleton profile (f) such that 

u,(y) ~ 0 = limOT. Moreover, a convergent subsequence exists. 
T 



ProoL.9! Sten #3: lllC first statement follows immediately from Steps # J and /;2. 'I1le second f01lmvs fro"m 

the fact that X is cornpacL 

Step #4: If {y} is the limit of a convergent subsequence of (x T
). then y oclongs to U1C corc of Ule 

underlying game. Moreover. there arc at most I distinct limit') of convergent subsequences. 

Proof of Step #4: TIle first sentence follows from an argument identical to the proof of Theorem II. 

Assume that there are k distinct limits of convergent subsequences, (y I, ... ,y. J. From Step #3, U ,ey ") = 0, for 

each K, so that for any k >' K, :hy< + :hy' yields player #1 a strictly higher payoff than either. Moreover, for each 

K~ since y K belongs to the core. it cannot be Pareto dominated; thus, there must exist i (K) > 1 such Uut 

U'(K)(Y")r. UI(Y") has an empty interior. Suppose that i(K)=i(k)=i, for K>'k. Since u, and U, are both 

strictly concave, tl,en :hy < + :hy' must yield player i a higher payoff tllan either y < or y'. But this means tlmt 

either U,(Y") r. U ,ey ") or U,(y') r. U ley') has a nonempty interior. We have established, then, that K >' k implies 

i(K) >' i(k) and hence that k,; i. 

Step #5: For every e > 0 there exists T such that for T > T, diam(xT+2 u xT ) < e. 

Proof of Step #5: Suppose to the contrary that there exists £ > 0 and a subsequence (x7"):=" such tl,at for 

each n, diam(xT"+2 u xT") > 3£. From Step #2, we can pick n sufficiently large that for T > T A
, the diameter of 

xT is less tllan c. Clearly, for such T, tlle distance betwcen any point in the convex hull of x T and any point in the 

convex hull of xT+2 must be at least E. Pick 8> 0 such that the conclusion of Lemma V.I holds for this E, with 

k = 2, p = (Ih, Ih) and 0 = 38; Thus, for T > Tn, we have for each player i, 

u,(:hw'(xT + XT+2) - 'lz2,Wj(u,(xJ" + Ui(XJ"+2) ;:, 38. 
j 

(B.Y.I) 

Nex~ using Step I and, once again, Step 2, pick f! > n sufficiently large that for each i OT"+2 - Or" < delta 2 and 

[or each T ;:, T", diam(u,(xT» < 8. Let x = :hw'(xT" + xT"+2). Now, in the first round of U,e (T"+2)-round game, 

player #1 proposes Xj"+2 to some coalition C. We claim that x will be accepted by each player in C and is 

strictly preferred by player # 1 to xr+2. This contradicts the hypothesis that xr+2 is player #1 's best altemative at 

this point of the game, and hence establishes Step #5. For i E C, we have 

(B.V.2) 
j j 

The ftrst ineqUality follows from our choice of Trt; the second uses the condition for acceptance by i of X["+2. 

Combining (B.V.l) and (B.V.2) yields Ui(X) > 2,WjUi(XJ") + 20, for each i E C. On the other hand for player #1, 
j 

we have 

(B.V.3) 
j j 

Both inequalities follow from our choice of T". Combining (B.V.l) and (B.V.3) yields u,(i) > Ui(xf"+2) + Ii 

which establishes the claim above. 
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Step #6: 111c sequence (xT) 113.<:: a (unique) limit point. 

Proof of Slep #6: Let Y denote the intersection of u i'i (0) and the COfe. From Stcp #-1, Y is a finite set. If 

Y is a singleton sct, then Step #6 follmvs immediately. Assume, therefore. that Y conL1.ins two distinct clements 

and choose c > 0 such that any two clements of Yare separated by at lea.5t 3r. From Step, #4, we can pick f such 

that for every T ;> T, xT E B (Y, £)_ 'l1lUS, tilere is a unique policy Y E Y such that xi' E B (y, £), Moreover, 

from Step #5, tilere exists T > T such that for every T > T, XT +2 
C B(xT

, £)_ It now follows from the two 

previous sentences that for every T > T, xT E B (y, c)_ This establishes Step #6 and completes the proof of tile 

Theorem, D, 




