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A New Design of Differential Space-Time Block Code
Allowing Symbol-Wise Decoding

Yu Chang, Yingbo Hua, Fellow, IEEE, and Brian M. Sadler, Fellow, IEEE

Abstract— For four (or more) transmitters, a new design of
differential space-time block code allowing symbol-wise decoding
is presented in this letter. The new design not only has the
minimum (symbol-wise) decoding complexity as that by Yuen,
Guan and Tjhung (YGT) but also yields a lower error rate. While
the YGT code uses a specially designed symbol constellation, the
new code uses a conventional QAM with a rotation. At a high
data rate such as 3bps/Hz, the new design with symbol-wise
decoding complexity can even yield a lower error rate than the
code by Zhu and Jafarkhani that has the pair-wise decoding
complexity.

Index Terms— Coding-gain, differential space-time code,
symbol-wise decoding.

I. INTRODUCTION

D IFFERENTIAL space-time block codes (DSTBC) are
useful for wireless communications with multiple trans-

mitting antennas. With DSTBC, the channel state information
(CSI) is not required either at the transmitters or at the
receivers, which is important for applications where the CSI
changes too fast to be estimated and utilized. The design of
DSTBC has attracted the attention of many researchers in
recent years. For two transmitters, the design of DSTBC is
well established because of the existence of full rate complex
orthogonal code. But for more than two transmitters, the
design of DSTBC is still an active area of research. For
practical use, there is a strong interest to reduce the decoding
complexity of DSTBC with as little loss of coding gain as
possible. Consider a system of four transmitters with a full
diversity DSTBC operating at the data rate (i.e., spectral
efficiency) r bps/Hz. A conventional decoder requires a size-
24r search, a pair-wise decoder requires a size-22r search, and
a symbol-wise decoder needs only a size-2r search. Although
a pair-wise decoder reduces the complexity significantly from
a conventional decoder, the complexity difference between a
pair-wise decoder and a symbol-wise decoder is still large. For
four transmitters, while many designs of pair-wise decodable
DSTBC are now available in the literature such as the codes by
Zhu and Jafarkhani (ZJ) [1] and Calderbank et al [2], the code

Manuscript received March 19, 2006; revised July 9, 2006; accepted
September 11, 2006. The associate editor coordinating the review of this letter
and approving it for publication was P. Martin. This work was supported
in part by the U. S. Army Research Laboratory under the Collaborative
Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011,
and the U. S. National Science Foundation under Grant No. ECS-0401310.

Y. Chang was with the Department of Electrical Engineering, University
of California, Riverside, CA, 92521, and is now with Rambus Inc., 4440 El
Camino Real, Los Altos, CA, 94022 USA (e-mail: yu.ychang@gmail.com).

Y. Hua is with the Department of Electrical Engineering, University of
California, Riverside, CA, 92521 USA (e-mail: yhua@ee.ucr.edu).

B. M. Sadler is with the Army Research Laboratory, 2800 Powder Mill
Road, Adelphi, MD 20783-1197 USA. (e-mail: bsadler@arl.army.mil).

Digital Object Identifier 10.1109/TWC.2007.06030041.

by Yuen, Guan and Tjhung (YGT) [3] seems the only reported
DSTBC that is of full rate, full diversity, allows symbol-wise
decoding, and suffers no major loss of coding gain from the
pair-wise decodable counterparts.

In this letter, we present a new design of DSTBC that
allows symbol-wise decoding. The new design differs from
the YGT code in the following ways. The YGT code forces
the symbol constellation to be constructed in such a way that
a symbol-wise decoder becomes near optimal with respect to
the given encoder. The resulting symbol constellation consists
of symbols falling on the real and imaginary axes, and the
constellation spread along one axis is wider than that along
the other. See Fig. 3 in [3]. The new design utilizes a conven-
tional QAM constellation and applies a rotation to optimize
a “pseudo coding gain (PCD)" governed by the encoder. The
decoder of the new design is forced to be symbol-wise in
an approximate maximum likelihood fashion. Although the
decoder of the new design is not optimal with respect to
its given encoder, the higher PCD of the encoder allows
the loss of the suboptimal decoder to be more than enough
compensated. As shown by simulation, the error rate of the
new design is significantly smaller than that of the YGT code
at moderately high SNR. While the idea of the new design
is simple which innovatively combines those of YGT and ZJ,
the new design also shows the highest coding gain among
all known DSTBC that allow symbol-wise decoding for four
transmitters.

Next, we show the details of the new design as well as its
connections to the YGT and ZJ codes. The simulation results
are illustrated in Section III.

II. THE NEW DESIGN

WE start with a constellation set S = {si, i =
1, 2, ..., M} in the complex plane where M = 2r .

We assume that there are 2l transmitting antennas where l is
an integer-power of 2.

If the actual number a of transmitting antennas satisfies
2q < a < 2q+1 , one should treat the number of transmitting
antennas to be 2q+1 . The difference 2q+1 − a can be treated
as the number of channels that have zero gain among total
2q+1 nominal channels. The transmit diversity factor remains
to be a.

During the kth time block of 2l time slots, we collect 2m
symbols randomly from S . This process should be governed
by an outer layer code that is not discussed here. These
symbols are denoted by Sk = {sk,i, i = 1, 2, ..., 2m} where
m ≤ l .

1536-1276/07$25.00 c© 2007 IEEE
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A. First Step of Encoding

We construct a 2m × 1 symbol vector xk as follows:

xk =
[

xT
k,1 xT

k,2

]T
xk,1 =

[
xk,1 ... xk,m

]T
xk,2 =

[
xk,m+1 ... xk,2m

]T
xk,i = �(sk,i) + j�(sk,i+m)

xk,i+m = −�(sk,i) + j�(sk,i+m)

and i = 1, 2, ..., m . The mapping from Sk to xk is the same
as a part of the YGT encoder. See the entries in the quasi-
orthogonal matrix in Equation (8) in [3].

A key property of the YGT code is also governed by a
quasi-orthogonal code first shown in [4]. It is shown in [5]
that the quasi-orthogonal code shown in [4] is a member of a
large family that all hinge on the 2 × 2 orthogonal code first
shown in [6].

B. Second Step of Encoding

We now construct a 2l×2l code matrix Xk that is partitioned
into four l × l submatrices:

(Xk)1,1 = Yk,1; (Xk)1,2 = Yk,2;
(Xk)2,1 = Yk,2; (Xk)2,2 = Yk,1

where Yk,1 = (Ak,1 + Ak,2)/2 and Yk,2 = (Ak,1 − Ak,2)/2.
The matrices Ak,1 and Ak,2 are encoded differentially as
follows:

Ak,1 =
1√

αk−1,1
Mk,1Ak−1,1

Ak,2 =
1√

αk−1,2
Mk,2Ak−1,2

where αk−1,i = det(AH
k−1,iAk−1,i) , Mk,1 is an orthogonal

matrix M(zk,1) of the symbol vector zk,1 = xk,1 + xk,2, and
Mk,2 is an orthogonal matrix M(zk,2) of the symbol vector
zk,2 = xk,1 − xk,2. At the beginning of each frame that is
comprised of multiple blocks, we set A0,1 = A0,2 = I with I
being the identity matrix. This part of the encoder resembles
the differential encoder by ZJ: see (28)-(31) in [1].

C. A Combined Effect

We limit M(z) to be a linear matrix function of the vector z
and of the property: MH(z)M(z) = ‖z‖2I with ‖z‖2 being the
squared norm of z. For l = 2, M(z) can be a full-rate Alamouti

matrix M(z) =
[

z1 z2

−z∗2 z∗1

]
, for which l = m = 2 . In this

case, there are four transmitters as 2l = 4, and the rate of
symbols per time slot is one (i.e., full rate). When l > 2 ,
there are more than four antennas as 2l > 4, and we have to
use fractional-rate (i.e., l > m ) orthogonal matrices as shown
in [7] and the references therein.

It is easy to verify that

AH
k,1Ak,1 = MH

k,1Mk,1 = ‖zk,1‖2I

AH
k,2Ak,2 = MH

k,2Mk,2 = ‖zk,2‖2I

Therefore, we can also write

αk,i = det(AH
k,iAk,i) = det(MH

k,iMk,i) = ‖zk,i‖2l

After a substitution of the encoder described earlier, it follows
that

αk,1 =(
m∑

i=1

(
(�(sk,i) −�(sk,i))

2

+ (�(sk,i+m) + �(sk,i+m))2

])l

(1)

αk,2 =(
m∑

i=1

(
(�(sk,i) + �(sk,i))

2

+ (�(sk,i+m) −�(sk,i+m))2

])l

(2)

It is important to note that (αk,i)1/l for i = 1, 2 is a
linear superposition of such terms: (�(sk,t) ±�(sk,t))

2 for
t = 1, 2, ..., 2m . This property is critical for symbol-wise
decoding as shown later.

D. The Channel Model

It is our convention that each column of the code matrix
Xk contains symbols transmitted from one antenna, and each
row of the code matrix Xk contains symbols transmitted during
one time slot. We assume a single receiver while the multiple-
receivers case can be easily handled as mentioned later. Then,
the received signal vector rk during the kth time block can be
written as: rk = Xkh + nn where h is the channel response
vector from 2l transmitters to a single receiver, and nk is the
noise vector that is assumed to be white, Gaussian, and have
the variance σ2 . We assume that h is quasi-static, i.e., the
change of h from one time block to the next is negligible.
However, h does not need to be constant during a whole time
frame in order for the differential code to be used, although
our simulation shown later assumes a constant h during each
frame for the purpose of comparison to other codes. We also
assume that all elements in h are independent and identically
distributed complex Gaussian random variables that change
independently from frame to frame.

E. Pseudo Coding Gain

We partition the received vector rk into two l×1 subvectors:
rk,1 and rk,2 . Similarly, h is partitioned into: h1 and h2 ,and
nk into nk,1 and nk,2. Then, using the definition of the code
matrix Xk, it is easy to verify that

qk,1
.= rk,1 + rk,2 = Ak,1(h1 + h2) + nk,1 + nk,2

qk,2
.= rk,1 − rk,2 = Ak,2(h1 − h2) + nk,1 − nk,2

Note that qk,1 and qk,2 are sufficient statistics of the un-
known symbols as they are a unitary (up to the factor

√
2

) transformation of the original observations rk,1 and rk,2 . If
the channel response vector h is available at the receiver, the
matrix Ak

.= diag(Ak,1, Ak,2) serves as an equivalent code
matrix. Hence, the minimum value of the following:(

det
(
ΔAH

k Ak

)) 1
2l

=
(
det
(
ΔAH

k,1Ak,1

)
det
(
ΔAH

k,2Ak,2

)) 1
2l

= (Δαk,1Δαk,2)
1
2l (3)
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with respect to the differential symbol set ΔSk = {sk,i −
sk,j �= 0; i = 1, 2, ..., 2m; j = 1, 2, ..., 2m} , would be the
coding gain of an optimal coherent decoder. Here, the operator
Δ implies the use of differential symbols. For example, given
that Ak is a function of the symbol set Sk , ΔAk is the (same)
function of the differential symbol set ΔSk . For this reason,
we define a pseudo coding gain as

G
.= minkmin sk,i − sk,j ∈ ΔSk

1 ≤ j ≤ m
1 ≤ i ≤ m

(Δαk,1Δαk,2)
1
2l

= minΔs∈ΔS

∣∣∣[�(Δs)]2 − [�(Δs)]2
∣∣∣

for which the symbol constellation is normalized to have
unit variance. The pseudo coding gain becomes the exact
coding gain of a differential decoder under some conditions
as discussed later.

F. The Decoder

To derive a symbol-wise differential decoder, we need to
exploit the recursion of Ak,1 and Ak,2 in qk,1 and qk,2 , which
leads to

qk,1 =
1√

αk−1,1
Mk,1qk−1,1 + wk,1

qk,2 =
1√

αk−1,2
Mk,2qk−1,2 + wk,2 (4)

where

wk,1 = − 1√
αk−1,1

Mk,1(nk−1,1 + nk−1,2) + (nk,1 + nk,2)

wk,2 = − 1√
αk−1,2

Mk,2(nk−1,1 − nk−1,2) + (nk,1 − nk,2)

It can be shown that the composite noise vectors wk,1 and
wk,2 are each white, Gaussian and have variances

σ2
k,1 = 2σ2

(
1 +

αk,1

αk−1,1

)

σ2
k,2 = 2σ2

(
1 +

αk,2

αk−1,2

)
(5)

respectively. Furthermore, wk,1 and wk,2 are independent of
each other under the Gaussian assumption of nk .

If αk,1 = αk,2 = const hence σ2
k,1 = σ2

k,2 = const, the
optimal (i.e., maximum likelihood) differential decoder of the
kth block is given by

minSk
J

.= minSk
(J1 + J2)

where

Ji = ‖qk,i −
1√

αk−1,i
Mk,iqk−1,i‖2

for i = 1, 2 . In this case, the pseudo coding gain G becomes
the exact coding gain [8]. If αk,1 = αk,2 �= const (i.e., they
are dependent on the symbols in the kth block), the above
detection is near optimal, and G may be treated as a near
coding gain. In fact, under the YGT constellation [3], αk,1 =

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

θ

Fig. 1. A 4-QAM constellation with a rotation angle.

αk,2 �= const and the above detection becomes equivalent to
the YGT decoder.

If αk,1 �= αk,2 , then minSk
(J1 + J2) is only an approxi-

mation of the maximum likelihood detection, and G becomes
only a guide of the actual coding gain. Unfortunately, the
maximum of G over all possible constellations is achieved
when αk,1 �= αk,2 . This implies the existence of tradeoff
between the value of G and the optimality of minSk

(J1 +J2)
. The best tradeoff should yield the highest actual coding gain.
The YGT code in [3] chooses one extreme of the tradeoff
where minSk

(J1 + J2) is forced to be optimal conditionally
upon a chosen set of constellations. This penalizes the value
of G. The best value of G under αk,1 = αk,2 �= const can be
shown to be 1.33 for 2 bps/Hz and 0.49 for 3 bps/Hz, which
is consistent with Fig. 2 in [3]. But for the 4-QAM and 8-
QAM constellations (see Figs. 1 and 2) with the rotation angle
θ

.= 0.5tan−1(0.5) ≈ 13.28◦ , the G values can be shown to
be 1.79 for 2 bps/Hz and 0.60 for 3 bps/Hz. These values are
significantly larger than those for the YGT constellation. The
rotation angle 13.28◦ is optimal in maximizing G under the
QAM constellation, which is also shown in [9]. For example,
referring to Fig. 2, one can verify that at θ

.= 0.5tan−1(0.5) ,

G =
∣∣∣(�(ΔsAB))2 − (�(ΔsAB))2

∣∣∣
=

∣∣∣(�(ΔsBD))2 − (�(ΔsBD))2
∣∣∣

=
∣∣∣(�(ΔsCD))2 − (�(ΔsCD))2

∣∣∣
≈ 0.60

The square-shaped 8-QAM constellation shown in Fig. 2 is
not the only 8-QAM constellation that achieves G = 0.60 . In
fact, a rectangular-shaped 8-QAM that has 8 symbols on the
corners of 3 consecutive squares also has the same G value
under the rotation angle 13.28◦ . But the corresponding αk,1

and αk,2 are statistically less close to each other, which makes
minSk

(J1 +J2) less optimal. Consequently, the actual coding
gain using the rectangular-shaped 8-QAM is not as good as
using the square-shaped 8-QAM, which has been confirmed
by our simulation.

Note that in general, αk,1 and αk,2 are random variables
under different k. One way to characterize the difference
between them is to use statistical distributions. It can be
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−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

θ

A

B

A

C

D

Fig. 2. An 8-QAM constellation with a rotation angle. Here, A, B, C and
D indicate the locations of four symbols. The difference between the two
symbols at A and B is denoted by ΔsAB .

shown that under a random selection of symbols of zero
mean, αk,1 and αk,2 have the same distribution. But what
is more important for the optimality of minSk

(J1 + J2)
is the difference between σ2

k,1 and σ2
k,2 . This difference

would be small if αk,1 and αk,2 do not change much as k
changes. From the expressions of αk,1 and αk,2 in terms of
the original symbols, we can see that if m is large then αk,1

and αk,2 should be stable and hence σ2
k,1 and σ2

k,2 should
be close to each other. In our simulation, we have observed
that even for m = 2 , the distributions of σ2

k,1 and σ2
k,2

tend to concentrate toward a common constant. This makes
minSk

(J1 + J2) not a bad approximation of the maximum
likelihood detection. However, it is worth stressing that the
optimality minSk

(J1 + J2) always depends on the symbol
constellation.

It is critical to show that regardless of its optimality,
minSk

(J1 + J2) can be always decomposed into independent
symbol-wise decoders. Recall

Ji = ‖qk,i −
1√

αk−1,i
Mk,iqk−1,i‖2

for i = 1, 2. Then, it follows that for i = 1, 2:

Ji = ‖qk,i‖2 − 2√
αk−1,i

� (Mk,iqk−1,iq
H
k,i

)
+

(αk,i)1/l

αk−1,i
‖qk−1,i‖2 (6)

From (1) and (2), we know that α
1/l
k,i is a linear superposition

of such terms of (�(sk,t) ±�(sk,t))
2 for t = 1, 2, ..., 2m. We

also know that Mk,i is also a linear superposition of terms of
individual symbols sk,t for t = 1, 2, ..., 2m . Therefore, J1+J2

can be straightforwardly decomposed into a sum of symbol-
wise cost functions, and each cost function can be minimized
independently.

If there are multiple receiving antennas, there is a cost
function J1 + J2 for each receiving antenna, and the sum
of all these cost functions is then equivalent to (exactly if
αk,1 = αk,2 = const , nearly if αk,1 = αk,2 �= const ,
or approximately if αk,1 �= αk,2 ) the likelihood function of
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"Clairvoyant" YGT
Proposed code
"Clairvoyant" proposed
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"Clairvoyant" ZJ code
SP(2)

Fig. 3. Block error rates for 2 bps/Hz. In descending order of error rates at
SNR=25dB, shown here are the YGT code, clairvoyant YGT, proposed code,
its clairvoyant version, the ZJ code, clairvoyant ZJ, and the SP(2) code. The
difference between the proposed code and the ZJ code is almost negligible.
Note that SP(2) uses a search of size-256, the ZJ code uses a search of size-16,
and the proposed code and the YGT code use a search of size-4.

the total received signals. The total cost can be similarly de-
composed into symbol-wise cost functions. The total diversity
becomes the product of the number of transmitters and the
number of receivers.

III. SIMULATION

We assume four transmitting antennas and one receiving
antenna. Each frame consists of 64 blocks and each block
has 4 symbols. The channel response (fading) factors are
constant during each frame but vary from frame to frame as
independent complex Gaussian random variables. The noise is
white Gaussian. The SNR of the received signals is computed
by E

(‖Xkh‖2
)
/E
(‖nk‖2

)
.

Fig. 3 shows the block error rates of four codes versus SNR
for 2 bps/Hz. The first is the YGT code and its clairvoyant
version. The clairvoyant version is such that the symbols at
block k − 1 are perfectly known when the symbols at block
k are detected. The second is the proposed code and its
clairvoyant version. Both the YGT code and the proposed code
are decoded in the symbol-wise fashion. The constellation
used for the proposed code is the rotated 4-QAM as shown
in Fig. 1 with θ = 13.28◦ . The third code is the ZJ code
and its clairvoyant version. This code uses pair-wise decoder.
The fourth code is the SP(2) code that is decoded by a
program provided by authors of [10]. For the 2bps/Hz case,
the SP(2) code requires a size-256 search, the ZJ code needs
a size-16 search, and both the YGT code and the proposed
code need only a size-4 search. But the difference among the
coding gains of the four codes, even with different decoding
complexities, is not very large. It is important to note however
that the proposed code has a consistently better coding gain
than the YGT code.

We now consider the quaternion code by Calderbank et al
shown in [2]. This code requires size-16 search for 2bps/Hz.
The block error rate of the code is not available in [2], but
is shown in Fig. 4 for 2bps/Hz - courtesy of S. Das of [2].
We see that when SNR=20dB, the block error rate is about
9×10−4 which is better than all above codes except the SP(2).
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Fig. 4. Bit error rate and block error rate of the quaternion code by
Calderbank et al for 2 bps/Hz - Courtesy of S. Das of [2].
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Fig. 5. Block error rates for 3 bps/Hz. The proposed code and the YGT
code use a search of size-8, and the ZJ code uses a search of size-64. In this
case, the proposed code outperforms both the YGT code and the ZJ code by
a significant margin at high SNR.

But when SNR=25dB, the block error rate is about 4 × 10−5

which is nearly the same as the YGT code but worse than all
other codes. It appears that the slope of the error curve of the
quaternion code is not as steep as others.

Fig. 5 compares the block error rates of the proposed code,
the YGT code and the ZJ code for the 3bps/Hz case. For
3bps/Hz, both the proposed code and the YGT code use a
size-8 search, and the ZJ code requires a size-64 search. The
constellation used for the proposed code is shown in Fig. 2
with the rotation angle θ = 13.28◦ . The constellation used for
the ZJ code is the same as Fig. 2 but with θ = π/4 - courtesy
of Y. Zhu of [1]. The ZJ code with θ = 13.28◦ did not perform
as well as with θ = π/4 . The 8-PSK-constellation was also
considered for the ZJ code. But it yielded poorer results. We

see that the block error rate of the proposed code is about
one third of that of the YGT code at SNR=25dB. We also see
that the ZJ code becomes even worse than the YGT code at
SNR=25dB. This is somehow different from the result shown
in Fig. 5 in [3].

Finally, we note that only at 1 bps/Hz, the ZJ decoder was

shown to be the exact maximum likelihood decoder. For this
reason, it seems no surprise that at a higher data rate such as
3 bps/Hz, the ZJ code can perform worse than the proposed
code and the YGT code. A bit error rate comparison of the ZJ
code and the proposed code was also conducted at 3 bps/Hz,
which yielded a similar conclusion.

IV. CONCLUSION

Symbol-wise decodable DSTBC (differential space-time
block codes) are important for practical applications in wire-
less communications with multiple transmitters. For four trans-
mitters, the YGT code [3] is symbol-wise decodable and has
a coding gain close to the ZJ code [1] that requires pair-wise
decoding [1]. The code proposed in this paper is also symbol-
wise decodable and outperforms the YGT code by a significant
margin. The new code results from a fusion of the YGT code
and the ZJ code.

ACKNOWLEDGMENT

We thank the reviewers and the editor for their comments
and suggestions. We also thank the authors of [2] for providing
Fig. 4 and a discussion of the quaternion code.

REFERENCES

[1] Y. Zhu and H. Jafarkhani, “Differential modulation based on quasi-
orthogonal codes,” IEEE Trans. Wireless Commun., vol. 4, no. 6, pp.
3018–3030, Nov. 2005.

[2] R. Calderbank, S. Das, N. Al-Dhahir, and S. Diggavi, “Construction and
analysis of a new quaternionic space-time code for 4 transmit antennas,”
Commun. Inform. Syst., vol. 5, no. 1, pp. 1–26, 2005.

[3] C. Yuen, Y. L. Guan, and T. T. Tjhung, “Single symbol decodable
differential space-time modulation based on QO-STBC,” in Proc. IEEE
ICASSP, Mar. 2005, vol. 3, pp. 1069–1073.

[4] H. Jafarkhani, “A quasi-orthogonal space-time block code,” IEEE Trans.
Commun., vol. 49, no. 1, pp. 1–4, Jan 2001.

[5] Y. Chang, Y. Hua, X.-G. Xia, and B. M. Sadler, “An insight into space-
time block codes using Hurwitz-Radon families of matrices,” to be
published.

[6] S. M. Alamouti, “A simple transmit diversity technique for wireless
communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp.
1451–1458, Oct. 1998.

[7] X.-B. Liang, “Orthogonal designs with maximal rates,” IEEE Trans.
Inform. Theory, vol. 49, no. 10, pp. 2468–2503, Oct. 2003.

[8] B. L. Hughes, “Differential space-time modulation,” IEEE Trans.
Inform. Theory, vol. 46, no. 7, pp. 2567–2578, Nov. 2000.

[9] C. Yuen, Y. L. Guan, and T. T. Tjhung, “Quasi-orthogonal STBC with
minimum decoding complexity,” IEEE Trans. Wireless Commun., vol.
4, no. 5, pp. 2089–2094, Sep. 2005.

[10] Y. Jing and B. Hassibi, “Design of fully-diverse multi-antenna codes
based on SP(2),” in Proc. IEEE ICASSP, Apr. 2003, vol. 4, pp. 33–36.




