
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
AUTOMATIC PROGRAM TIMING PROFILES WITH FTN4

Permalink
https://escholarship.org/uc/item/8cj24604

Author
Friedman, Richard.

Publication Date
1980-09-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8cj24604
https://escholarship.org
http://www.cdlib.org/


C'\ I-!.' .. ' 
j c: 

I 

I • 
I 

LBL-11290c, d~ 

La rence Berj[®ll®y lL~fo)~!r~¥ 
UN IVERSITY OF CALI FORN IA BERKr::LEYLABORATORY 

Engineering & Technical 
Services Division 

LIBRARY AND 
DOCUMENTS SECTION 

Presented at the VIM-33/ECODU-30 Control Data User Group 
Joint Conference, University of Manchester, Manchester, 
England, September 22-25, 1980 

AUTOMATIC PROGRAM TIMING PROFILES WITH FTN4 

Ri chard Fri edman 

September 1980 

TWO-WEEK LOAN COpy 

This is a library Circulatin9 Copy 
which may be borrowed for two weeks. 
For a personal retention copy, call 
Tech. Info. Diuision, Ext. 6782 

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 

C;l, 
( \ 



Automatic Program Timing Profiles 

With FTN4 ----

Richard Friedman 

Computer Center 
Lawrence Berkeley Laboratory 

University of California 

Presented at the VIM-33/ECODU-30 
CONTROL DATA User Group Joint Conference 

September 22-25, 1980 

University of Manchester 
Manchester, England 

ABSTRACT 

LBL-1l290 

Design of a scheme for producing execution timing profiles of FOR­
TRAN programs automatically is proposed with a recommendation to im­
plement it as an option to the compiler. An experimental imp lemen­
t~tion on the LBL 7600 is also described. 

Prepared for the U.S. Department of Energy 
under contract W-1405-ENG-48 





Automatic Program Timing Profiles 
With FTN4 

Richard Friedman 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 

September, 1980 

LBL-11290 

Finding where a program is spending most of its time is the very first step 

in any attempt at optimization. Unfortunatly, this information is not 

always available or even predictable. Rather than waste programmer time 

optimizing parts of a program that are relatively less time consuming than 

others, FORTRAN source-level optimization is better directed when an accu-

rate execution timing profile of the program is available. This paper 

speculates on how such timing profiles could be produced by optional 

compiler-generated code, and describes an experimental implementation using 

the FTN4 compiler on the BKY 7600. It concludes with a suggestion to CDC to 

consider implementation of a program timing option for their current com-

pilers. 

1. Profile Definition and Requirements: 

By "automatic program timing profile" we are referring to a process whereby 

a program in execution is clocked in such a manner that on program termina-

tion a report can be generated that gives information about the time spent 

in various parts of the program. A requirement is that this be done 
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automatically, without any changes to the source program; e.g. by compiler 

option. 

In this paper we will be considering timing profile methods that measure the 

time spent in subprogram units, possibly including library routines. In a 

later section, we will discuss an extension to blocks of statements within 

subprograms. 

Currently, the only method available to the CDC FORTRAN programmer using 

FTN4 or FTNS to obtain timing information about particular program has been 

manual insertion of explicit calls to the library routine SECOND. In many 

cases, especially with very large source codes, this is too problematic, and 

already assumes knowlege of the behavior of the program. An automatic 

method, where the compiler inserts the necessary timing apparatus directly 

into the object code, is much more reasonable than manual, selective, pro­

gram modification. 

The basic scheme were are considering here, then, is one where the program 

is compiled with a special "profile" option selected, the resulting object 

binary executed, and, on program termination, a report generated automati­

cally by a library routine giving, for each subprogram called: 

o number of times called 

o total time accumulated in that subprogram, expressed both in seconds, 

and as a percent of the total program execution time 

o average time per call in that subprogram 

In addition, there might be some estimation of the overhead involved in 

doing the timing, and other statistics. Figure 1 shows the output from our 

experimental profile procedure currently running with the FTN 4.8 compiler 
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on the 7600 at the Lawrence Berkeley Laboratory (BKY). 

2. Design Considerations: 

Some of the basic design considerations are: 

o No changes to the source code (e.g. calling a special library routine) 

are needed. 

o The overhead involved in the timing process is minimized. 

o Running with the "profile" option selected does not impose any serious 

restrictions and works with OVERLAY as well as with segmented programs. 

We will now speculate on the mechanics of the program execution profile. 

Basic Scheme: 

With the profile option selected, the compiler generates a bit more ela­

borate code for each subroutine CALL, FUNCTION reference, and library call 

made via the RJT -- Return Jump with Traceback -- FTNMAC macro. Before a 

subprogram is called, the new code must "turn off" the "clock" for the cal­

ling routine, and "turn on" the "clock" for the called routine. Then the 

usual RJT is issued. On return the code then turns off the called routine's 

clock, and turns back on the calling routine's clock. 

By "clocking" external references in this way we can get an accurate picture 

of program's timing profile. The timing results are disjoint since at any 

one Uloment only one clock can be running. Also, by clocking at the RJT 

rather than at the ENTRY and RETURN points, we can time calls to routines 

not compiled with the profile option selected -- e.g. library routines, in 

particular I/O library routines. (There are some sticky problems here, to 

be discussed later.) 
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First we must define what a "clock" is, and how they get turned "on" and 

"off". 

Clocks and Clocking: 

For every routine that gets called in this manner there is an entry in a 

clock table. The clock table resides in the main program and is fixed 

length, though an option should be available to set its size. The clock 

table origin is an entry point in the main program, to make access to the 

table direct. Each clock entry is four words: 

word 1 - subprogram name 
word 2 - call count 
word 3 - accumulated time 
word 4 - start time -or- zero 

The first time a routine is called an entry is established for that routine 

in the clock table. Turning on a clock consists of setting the start time 

and incrementing the call count. Turning off a clock consists of computing 

elapsed time (time now minus start time) and adding this to the accumulated 

time, and clearing the start time. A clock is considered "running" if word 

4 is non-zero. 

On program termination, the FORTRAN library resident (FORSYS) calls a report 

generator that reads the clock table and produces the profile table. Rou-

tines that are not called during the execution of the program will not have 

entries in the clock table, and therefore will not appear in the profile. 

Likewise, routines not called via the RJT macro (such as the math routines 

SIN, COS, etc., which are called by an RJ without traceback and have very 

fragile contexts) will not be timed separately. Their execution timings 

will appear as part of the timing for the calling routine. 
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The CALL Statement 

Now we can fill in some of the details on how a CALL statement would be com-

piled with the profile option selected. (Note that although we will be dis-

cussing the CALL. statement throughout, what follows also applies to FUNCTION 

references, and to implicit library references such as READ, BUFFERIN, etc. 

that utilize the RJT macro.) 

The CALL statement breaks down into the following steps: 

1. Get the current elapsed time. 
2. Get pointer to caller's clock. 
3. Turn off caller's clock. 
4. Get pointer to called's clock. 
5. Turn on called's clock. 
6. Now issue RJT to called routine. 
7. (Return) Get the current elapsed time. 
8. Get pointer to called's clock. 
9. Turn off called's clock. 
10. Get pointer to caller's clock. 
11. Turn on caller's clock. 

The pointers to the calling and called routines' clocks can be allocated by 

the compiler. For example, CALL SUBR would define (once) a symbol >SUBR in 

a special USE block in the calling routine reserved for clock pointers. 

Initially these pointers would be zero. There would also be a pointer for 

the calling routine's clock. The "get pointer to clock" operation would 

th~n consist of: 

1. Fetch >name 
2. If zero, call clock-table manager with~. Return with address 
of clock for ~ and store in pointer >name 

The table manager would be called with the name of the routine whose clock 

address we need. This library routine would search the clock table for a 

match on the name. If found, the address of the entry is returned. If the 

entry is not found an entry is created at the next available space in the 
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table. This initial entry has the name of the routine in word 1, and words 

2,3,4 zero. The address of this entry is then returned. (The table manager 

also checks against running out of table space.) 

Using this scheme, the table is searched only once per unique call from each 

routine. (For overlay and segmented programs, the table will have to be 

searched again each time a new copy of the routine is loaded.) 

The main program starts this process by establishing its clock entry and 

turning its own clock on. 

Of course, there are some significant special cases to worry about. These 

have to do with overlays, alternate entry points, alternate returns, calling 

routines that are formal parameters, and call-chains that intermingle 

profile-compiled and not profile-compiled routines: 

Alternate Entry Points: 

An interesting problem arises with subprograms with more than one entry 

point. A unique clock will be defined for each of the entry points called 

during execution. If nothing is done about this, the profile report gen­

erated at program termination will be misleading. Also, should this routine 

subsequently call another routine, it must know which entry point was called 

so that it can turn off the appropriate clock before leaving the routine, 

and turn it back on again upon return. 

One solution is to compile code at each additional entry point that asks the 

table manager routine to mark the clock for the alternate entry point name 

with a pointer to the main entry's clock. The report generator can then 

take care of the multiple-entry clocks later. The profile report would have 

the correct total time listed under the main entry point, but each multi-
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entry point would be marked as being a part of the main routine. 

The problem with subsequent calls from this routine can be solved by forcing 

each entry point in multi-entry point routines to always redefine the 

pointer to the routine's clock with the name of each entry point. 

SUBROUTINE SOUR 
•••• get pointer to clock SOUR 
•••• and store in >SOUR 

ENTRY GRAPES 
•••• mark GRAPES as alternate for SOUR 
•••• get pointer to clock GRAPES 
•••• and store in >SOUR 

CALL SORRY 
•••• turn off clock pointed at 
•••• by >SOUR; turn on clock SORRY 

It seems necessary that the total time spent in the routine be listed with 

the main entry point name, and information be given showing how many times 

each alternate entry point was called, and the amount of time spent in the 

routine when entered this way. 

Alternate Returns: 

A basic assumption in this timing scheme is that all calls return to the 

instruction following the calling RJ. This, unfortunatly, may not always be 

the case. Subprograms defined and called with (non-standard) alternate 

returns, non-standard use of ASSIGN'ed GOTO, and certain I/O library rou-

tines may return to arbitrary locations and foul the timing sequence sur-

rounding the CALL. This will leave the called routine's clock running. The 

calling routine's clock will not be turned back on. A subsequent attempt to 

turn off the calling routine's clock will find it already off. Likewise, a 

subsequent call to the previously called routine will find that clock still 

on. 

- 7 -



Under these circumstances assistance from the compiler is needed. To insure 

the proper sequence of turning on and off clocks, the compiler will have to 

insert return code (st,ps 7 thru 11 above) following each possible alternate 

return point in the calling routine. This is particularly important with 

FTN5's END=sn and ERR=sn. 

We note that this problem would not occur if the profiling scheme was organ­

ized around subprogram entry and exit points rather than CALL statements. 

In the entry/exit scheme, clocks are turned off and on upon entry to the 

routine, and then switched back upon return. The CALL statement then does 

nothing new except pass to the called routine the pointer to the caller's 

clock. The only problem, as was noted earlier, is that with this scheme 

only those routines compiled with the profiling option will be timed. Tim­

ing CALL statements provides more information than entry/exit timing, and is 

probably more useful as a result. 

Overlays: 

The problem with overlays is that they are entered via the library subpro­

gram OVERLAY. By itself, the time spent in an overlay would then appear in 

the profile as time spent in the subprogram OVERLAY, without any further 

differentiation. However, the compiler can help here by issuing conditional 

entry/exit code for overlay main programs. 

What is needed is a way to detect the main program of an overlay higher than 

the (0,0). This can be accomplished by requiring that all (0,0) main pro­

grams compiled with the profile option have at least one file (OUTPUT) 

defined on the PROGRAM header card. This seems reasonable since we would 

expect the profile report generator to write directly to the file OUTPUT. 
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The only possible main program having no files defined would then be an , 

OVERLAY. This situation can now be detected by the entry/exit sequence for 

the main program. The conditional code would turn off the clock for the 

library routine OVERLAY and turn on the clock for the overlay's main pro-

gram. On return back to the calling overlay, the exit code must remember to 

turn off the clock and turn back on the clock for OVERLAY. 

Formal Parameter CALLs: 

When a subprogram is called with the name of another external subprogram as 

an argument, it is not possible to properly time the subsequent call to this 

routine. For example, if routine ONE calls TWO with THREE as an argument to 

TWO, TWO's subsequent call to THREE cannot be timed: 

SUBROUTINE ONE( •• ) 
EXTERNAL THREE 
CALL TWO(THREE) 

END 
SUBROUTINE TWO(EXT) 
EXTERNAL EXT 
CALL EXT •• cannot time call 

The call cannot be timed because subroutine TWO is presented with an address 

of the entry point of THREE and not its name. The clock table would have to 

be expanded to include entry addresses for this to work, which leads to real 

problems in overlay and segmentation environments. Another possibility 

would be to assume that word entry.address-2 contains the traceback word for 

the routine, and hence the subprogram name, but this is not always true 

(especially for library routines or user-written COMPASS routines). 

The CALL in routine TWO above would be able to detect that the call to EXT 

is a call to a formal parameter since this information is passed on to the 
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RJT macro already. In this case, the RJT code should assemble as the basic, 

un-profiled RJT. In the profile, the time spent in "EXT" would be accumu-

lated as time spent in the calling routine, in this case TWO. 

Intermingled Executions: 

Typical applications of the profiling option would probably involve compila-

tion of a set of source level FORTRAN routines which will call FORTRAN 

library routines and possibly user library routines that were not compiled 

with profiling. In the simple case where a profiling routine calls a non-

profiling library routine there is no trouble, as we have seen. Since we 

are timing CALL statements, the time spent in the library routine is prop-

erly timed. Any routines subsequently called by the library routine are not 

specifically timed and their execution is included as time spent in the 

first routine. 

As long as the "CALL-chain" from the profiling-compiled routine to the non-

profiling set of routines is consistent, there is no problem. However, 

should the chain be broken by a call to a profiling-compiled routine which 

subsequently calls another routine (of any flavor), we have a problem with 

clocks left running: 

A ==> b ==> C ==> d (A,C profiling; b,d not) 
:--- Turn off C, on d clocks 

RJ to d 
off d, on C 

:--- no timing code generated 

:--- Turn off A, on b 
RJ to b 
off b, on A 

clock C left running ••• 

When C calls d in the above example, the clock for C is already off. Turn-
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ing off a clock that is already off will corrupt the accumulated time count 

(acc.time = acc.time + now.time - start.time , but start.time = 0). There­

fore, the "turn off clock" procedure must detect this situation. An error 

diagnostic could be issued identifying the clock and call in trouble. Sub­

sequently, the programmer could elect to compile the routine separately, 

putting the call in un-profiling mode. 

Alternatively, the off-clock procedure could just ignore turning off clocks 

that are already off. A subsequent call to a routine with a clock still run­

ning leads to the comparable state of turning on a clock that is already on. 

By the time this situat.ion is detected it is probably too late to issue a 

diagnostic. 

Timing Accuracy and Estimating Overhead: 

How accurate a timing is really needed? If the primary purpose of the pro­

file report is to identify which routines .absorb the most execution time, 

perhaps the only important information is the relative execution times 

expressed in percent of total program time. However, if the timing error is 

not uniformly distributed, even the relative timings could be inaccurate. 

Two factors can introduce serious errors: 1) the resolution of the system 

clock used by the timing code, and 2) the overhead involved in the timing 

process. 

On the 7600 we have found it necessary to utilize the monitor function that 

returns the job's CPU elapsed time in cycles rather than the standard func­

tion that returns milliseconds. With a machine cycle time of 27.5 

nanoseconds the millisecond clock is far too vague. (In fact, we have rede­

fined the FORTRAN library function SECOND to use this cycle-time clock, 
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returning cycles*27.5E-09) Words 3 & 4 in the clock table are integer 

cycle counts in our 7600 FTN4 implementation. 

Clearly then, the times now obtained by the CALL statement code outlined in 

our basic scheme above includes the time spent fetching clock pointers, 

turning on and off clocks, and requesting the current time from the system. 

It is really not an accurate picture of the actual execution time of the 

program in the non-profiling mode. This overhead is a function of the 

number of times the program is CALLed. In fact, the overhead time spent 

before the actual RJ to the called routine (steps 1 thru 5) appears as part 

of the execution time of the called routine, while the overhead time spent 

upon return from the called routine (steps 7 thru 11) appears as part of the 

execution time of the calling routine. 

There seem to be two ways to try to minimize or eliminate this overhead in 

the timings expressed in the profile report. The first would be to estimate 

the overhead involved in the two parts of the timing operation and subtract 

it from the appropriate timings. There is some randomness involved due to 

the table referencing that occasionally must be done. A statistical estima­

tion could be computed beforehand and this "fudge factor" multiplied by the 

number of times a routine is called, subtracted from the gross elapsed time. 

Also, another fudge factor is needed to reflect the time spent making CALLs. 

Consequently, the number of CALLs issued by a routine must be tallied and 

multiplied by some average time per call factor, and this subtracted from 

the gross elapsed time for each routine as well. 
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net.xeq.time = 
gross.xeq.time - entries * fl - calls * f2 

where: entries = number of times routine is called 
fl = "entry phase fudge factor" 
calls = number of calls made from routine 
f2 = "exit phase fudge factor" 

The other approach might be to bracket out the overhead sequences by dou-

bling the number of time requests made to the system. The CALL sequence 

would now look like: 

1. Mark TIMEI 
2. Turn off CALLer's clock using TIMEI 
3. Find CALLed's clock 
4. Mark TIME2 
5. Turn on CALLed's clock using TIME2 
6. Issue RJ to CALLed routine 
7. (Return) Hark TIME3 
8. Turn off CALLed's clock using TIME3 
9. Find CALLer's clock 
10. Mark TIME4 
ll. Turn on CALLer's clock using TIME4 

Here the only unaccounted for time is the few cycles involved in turning on 

a clock with a new time value (one store instruction). The disadvantage is 

the doubling of the number of system calls per subprogram CALL, which may 

seriously degrade the throughput (and cost) of the running program. This 

could be particularly disastrous in the case of programs that typically make 

100,000 or more subprogram calls. 

Estimating the overhead seems to be the least painful way of taking care of 

the problem, but how accurately can this be estimated, and how good will the 

numbers in the profile be? This seems to be a very open question. 
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3.FTN4TRA -- An Experimental Implementation: 

In response to a request from one of our users to provide a profile timing 

feature with FTN4 similar to the "flowtrace" option available with the CFT 

compiler on the CRAY-l computer, we came up with FTN4TRA. 

FTN4TRA is a callable procedure that compiles source programs using FTN4's E 

option, generating COMPASS, which is subsequently assembled using a modified 

FTNliAC macro text file, TRAMAC. TRAMAC redefines the RJT macro (CALL state­

ment) to do the profile timing described above. Also, there are expanded 

definitions of the macros used to defined program/subprogram entry points. 

Not all the special cases and problem situation described in this paper are 

fully handled (this is, after all, just an experiment). However, even with 

its limitations the package has already proven itself useful as a tool in 

attempts at optimizing large and complex programs. 

FTN4TRA has some interesting practical features. A procedure call to 

FTN4TRA is used in place of the control card call to FTN. The options 

available are: 

CALL,FTN4TRA,key=param, •••• 

T= Timing option. If T=O is specified, subroutine calls are only counted. 

No timing is done. This is intended for the initial use of FTN4TRA to 

determine which routines are called too many times to make timing prac­

tical. If not specified, full timing is done on all subprogram calls. 

N= Size of clock table. Default is 200 clocks. Word size of table is 4*N 

(2*N if T=O spcified). Small programs can save memory space by setting 

N to an appropriate size. If N is exceeded during execution, the pro­

gram is terminated and the profile produced of the execution up to that 
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point. 

X= "IGNORE" directives file (see below). If not specified, no IGNORE 

directives are expected. If a file name is given, one logical record 

is read. IGNORE directives provide a means to indicate which routines 

are not to be timed when called. 

Other strictly FTN4 options (1=, L=, OPT=, LCM=, etc.) are passed directly 

to the compiler. 

IGNORE Directives: 

Typically, a program is first compiled using FTN4TRA with T=O to diSCOver if 

any routine is called an excessive number of times (100,000 or more). The 

overhead with T=O is minimal. Excessively called routines can be eliminated 

from the timing process by inclusion on IGNORE directives read via the 

X=file option. The IGNORE directive has the form: 

IGNORE (sub1,sub2, ••• ,subk) 

When a subprogram appears on an IGNORE directive, any call to that routine 

is not timed. That is, the time spent in an IGNORE'd routine is accumulated 

as part of the calling routine. No timing code is generated for any calls 

made by the IGNORE'd routine either. It is as if the IGNORE'd routine were 

compiled separately without profiling. 

IGNORE directives are actually macro calls that are read by the FTN4TRA pro­

cedure and inserted into the source file for TRAMAC. TRAMAC' is then assem­

bled with these inserted IGNORE statements, which generate conditional 

assembly code within TRAMAC to check subprogram names. The RJT and program 

entry/exit macros revert in assembly to their un-profiling state if the sub­

program involved appears on the list generated by the IGNORE. 
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Timing Accuracy: 

The subprogram times printed by the FTN4TRA profile (see Figure 1) are gross 

times, uncorrected for o'verhead. In the summary at the end of the profile, 

an attempt is made to estimate the approximate amount of time wasted to 

overhead, using a very inaccurate fudge factor of .0001 sec/call. This is 

probably of not very much use, but we found that our users of FTN4TRA were 

more interested in the relative times (the PERCENT column) than the absolute 

times. Also we tally "unaccounted time", or the difference between the 

actual total time and the sum of the times spent in all the routines. 

Note the warning INCOMPLETE in the Figure 1 profile. This indicates that the 

clock for this routine was found running at program termination. This would 

be expected for the main program and the subroutine EXIT, which never 

return. 

The major difficulty with FTN4TRA has been the increase in memory require­

ments and execution time inherent in the profiling process. Although every 

attempt was made to be as optimal as possible, programs that experience a 

great number of subprogram calls will suffer from the overhead in space and 

execution time. The IGNORE directive does help some of these situations. It 

also allows the programmer to profile sections of his code individually when 

a full profile execution would be too costly, or not fit in core. 

4. Possible Extensions: 

Timing Statement Blocks: 

The obvious extension to the profiling scheme is to provide some way to get 

down to the statement level. Once a subprogram is identified to be ripe for 
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optimization, how do you find out where within the subprogram it is spending 

most of its time? And can you find out automatically, without having to 

pepper the routine with calls to SECOND? 

. 
With help from the compiler, it should be possible to pro-.ride an option 

(compiler directive in-line?) that breaks the routine into blocks of state-

ments and times each entry/exit through the block. A report generator could 

produce a profile on program termination something like: 

lines 23-56 17 times .000231 sec. 1.19 % 

Obviously, one would have to be very selective about using such a block pro-

filing option. Typically, one would expect to use it on a single routine in 

execution, once identified by a run with the subprogram call profile. 

Cross-Referencing Calls: 

The profile could be extended to include a list for each routine of all the 

routines that call it. This would add to the overhead and the size of the 

clock table, but could be useful in determining whether a subprogram would 

be more efficiently coded into the calling routines. A subprogram called 

from only one routine might be more efficient using COMMON blocks to pass 

arguments. 

Because of the overhead requirements, cross-referencing might be better 

implemented as part of the no-timing profile (FTN4TRA's T=O option). 

~ A Recommendation: 

Using the FTN4TRA procedure at BKY, one user was able to reduce a program's 

execution time by a significant amount. The profile revealed that the pro-
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gram was spending 40% of its time in a trivial pack/unpack routine. By re­

writing this routine in a more intelligent manner, the new version ran 30% 

faster. 

Another user discovered that as a result of a logic error in his program 

that had been hidden for years, the library routine REWIND. was being called 

50 times unnecessarily for every I necessary call. Fixing the bug improved 

execution significantly. 

Users of the CRAY-IS computer system, where optimization is critical, have 

found the automatic "flowtrac"e" feature of the CFT compiler an invaluable 

aid. 

We recommend to CDC that this feature be considered an important enhancement 

to existing compilers, especially FTN5. As outlined above, it should be 

automatic, requiring little or no change to the source program. 

The T=O no-timing option of FTN4TRA, along with the N=n option to set clock 

size, and the IGNORE directives, have proved sufficiently useful to be con­

sidered in any profiling design. A means to direct the profile to a 

specific file should also be prOvided. Finally, the profiling option should 

not be chained to any particular OPT level as DEBUG was to OPT=O. 

-*-
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760C PROG~A~ FlnW PROFILE 

RC'UTI~E CALLS Ti'4F(SEC.1 PERCENT AV. SEC/CALL 

AllGIII 0 .OO2~930b .193 O. i\!t:1P1'Pl HE 
SETFLS 11 .OCCS9730 .050 .00005 
QUTt I. 51 .01217582 1.027 .000l4 
1'1 PC I. 80 .1)2186632 1.844 .ooon 
OVERLAY 5 .O(,082b2~ .1)70 .0001 7 
R12 1 .on331l82 .279 .00331 
11'01 ITO 1 .00C72185 .061 000072 
OR8GE~ 1 .OC053562 .045 .01)054 
t~IT t 1 .00576672 .486 .00577 
REAOt J .OOU2365 .095 .00112 
DATE 1 .00011124 .009 .00011 
RI~G 1 1 .01"1618386 .S30 .00628 
CR80UT 1 .0001.2152 .010 .0')012 
ERROR1 1 .OOOQS9bS .073 .0008 (: 
SEXl 6 • CO~ 19c,,82 .202 .00040 
RR4N 834 .04R28706 4.073 .OOO()6 
R'.jG~M 828 .13510008 11.395 .00016 
RGEN 8~8 .04640339 ~.9! 4 .00006 
SEX2 6 .00232196 .196 .000"39 
"AJIJR 1 - • COl32003 .111 • O~ 1"32 
SCU 1 .02<;·)1171 2.110 .O?501 

I StJRTU 1 • (11145686 .966 .01146 
I-' 
1.0 lINl SQ 2 .CO<;50560 .802 • 0(J47 5 
I HFCI)MP 2 .093<;OS53 7.887 .04675 

H')l~E 2 .00729889 .616 .00365 
PESID 2 o0061U64 .532 .0"316 
ASH 1 .012Vt951 1.042 .01235 
DE'JR 8t 1 0668C8940 56.349 .66R09 
HA~"1N 2 .00015309 .013 • 00C08 
sun 456 .C2 715644 2.290 .00006 
STAT 2 1 .0001)9303 .008 .00009 
FIN1 1 .00014509 .012 .00015 
CRS" F.A 2 .000V.958 .029 .00017 
Pr:AO~ ? .(\0165061 .139 .00(1111 :3 
"'EAt 2 .oce5l478 .719 .0(1426 
HAR'41 1 .00044226 .037 .00044 
INl TIt 1 .(JOOl ~a66 .024 .00028 
PEAD41 1 .1)012351«; .104 .00124 
SA"'PTS 1 .t'106Q4401t .577 .0068,. 
SAMOUT 1 .00014061 .012 .0"1014 
ANAL It 1 .017.54864 1.058 .01255 

TOTAL Tt ME (SEt. ,. 1.1856~"01 
TIME UNACCOC~TF.O (~EC.'e .0:)010684 OR .009 PERCENT I"F T:1TAl TIME 

~143 SIJBPROGRAM rAllS TIMED. TIMING OVERHEAD (SEC).~ .~143ryOOO APPROX. 26.509 PERCENTJ 

1600 FT~4 Fla~TRACE CCMPlETE 
Figure 1 
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