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Abstract 

 

Development of Data Driven Approaches for Understanding Watershed Processes and 

Environmental Hot Spots and Hot Moments 

 

by 

 

Jiancong Chen 

 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

 

University of California, Berkeley 

 

Professor Yoram Rubin, Chair 

  

 

 The study of watershed processes between the hydrosphere, biosphere and atmosphere in 

response to climate change is critical for modeling dynamics in the hydrologic and 

biogeochemical cycles. Quantifying the occurrences of environmental hot spots and hot moments 

(HSHMs) defined as the rare locations or events that exert disproportionate influence over the 

environment is essential to improve our understanding of watershed dynamics under gradual 

climate change. This dissertation consists of three different approaches that develop theories and 

models to statistically characterize HSHMs, improve flux estimation and better identify linkages 

among aspects of land surface, atmosphere and groundwater interactions.  

 First, we propose a statistical framework to characterize the spatiotemporal distribution of 

HSHMs. The statistical framework utilizes indicator random variables to construct a statistical 

model for HSHMs, which relate the characteristics of HSHMs to the relevant spatial and 

temporal components. Three categories of HSHMS are identified, including (1) HSHMs defined 

by only spatial (static) components; (2) HSHMs defined by both spatial and temporal (dynamic) 

components and (3) HSHMs defined by multiple dynamic components. In order to demonstrate 

the suitability of the statistical framework, we demonstrate the procedure for constructing the 

models for each of the category. We further develop a groundwater hydrology example to 

illustrate the importance of incorporating subsurface heterogeneity in modeling HSHMs 

occurrences and the corresponding uncertainties. The representation of an HSHM through its 

spatial and temporal components allows us to relate the HSHM’s uncertainty to the uncertainty 

of its components.  

 Second, we develop the hybrid-predictive-modeling (HPM) approach to improve estimation 

of evapotranspiration (ET) and ecosystem respiration ( 𝑅𝐸𝐶𝑂 ), especially at mountainous 

watersheds. The proposed HPM approach integrates meteorological forcing data and remote 

sensing data to estimate ET and 𝑅𝐸𝐶𝑂 with the deep learning recurrent neural network long short-

term memory as the main driver. HPM can easily incorporate measured data from eddy 

covariance tower and simulated data from physically-based-models (e.g., Community Land 

Model). In order to test the performance of HPM, 4 different use cases are developed and tested. 

Furthermore, we focus on estimating ET and 𝑅𝐸𝐶𝑂 at the East River Watershed in Colorado and 
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distinguish the role of small-scale meteorological forcing heterogeneity and vegetation 

heterogeneity in regulating ET and 𝑅𝐸𝐶𝑂 dynamics. Estimation results from HPM can then be 

used as inputs for assessing the occurrences of ecological HSHMs, especially at mountainous 

watersheds, to improve our understanding of mountainous watershed dynamics.  

 Third, we recognize the necessity to better understand the intra-annual variability of 

mountainous watersheds dynamics to better improve our water and resources management. We 

develop the concept of temporal regimes to identify the sub-annual variability in hydroclimate 

processes and assess its effects over ET dynamics. We select six mountainous watersheds along 

the central Rocky Mountain ranges to demonstrate the applicability of temporal regimes. 

Through the employment of temporal regimes, we identify the temporal boundaries and 

durations of snow regimes, snowmelt regimes, growing season regimes, monsoon regimes and 

defoliation regimes from 2005 to 2016. We define within-regime ET as the sub-annual ET 

contributed from each of the regimes, which enables us to distinguish how the timing and 

duration of watershed processes regulate ET. High correlation between within-regime ET and 

regime duration is observed, which suggests intra-annual variability is a major control that 

regulates the temporal variability of ET at mountainous watersheds. The proposed concept of 

temporal regimes can further advance of our understanding of how mountainous watersheds 

evolve under gradual climate change and improve water and energy resources management in 

the future.  

 The proposed approaches in this dissertation provide us theories and models to further 

advance our understanding of watershed dynamics under a rapidly changing environment. Even 

if we present limited number of examples (e.g., subsurface HSHMs and intra-annual variability 

of ET), we expect these approaches can be applied towards other ecosystem dynamics.     
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Chapter 1 

 

Introduction 

 
1.1 Motivations 

Environmental Hot Spots and Hot Moments (HSHMs) are defined as the areas (or patches) 

that show disproportionately higher transport and transformation rates relative to the surrounding 

area (or matrix) and the short periods of time that show disproportionately transport and 

transformation rates relative to longer intervening time periods (McClain et al., 2003). HSHMs 

are important as they represent the unique spatiotemporal components in an ecosystem that 

potentially carry disproportionately elevated contributions to the whole system. Characterization 

of HSHM development and occurrence is of great significance for better understanding 

contaminant transport, biogeochemical cycling, vegetation adaptation and evolvement under 

extreme conditions, and providing guidance for water resources management and environmental 

remediation and risk assessments (Arora, Spycher, et al., 2016a; Bernhardt et al., 2017; Henri et 

al., 2015; Vidon et al., 2010).  The occurrences of HSHMs are triggered by various conditions 

including but not limited to shifts in hydrological dynamics (Vidon et al., 2010), interactions 

within the biogeochemical cycles (Schiff et al., 2002), occurrences of extreme weather 

conditions (Sloat et al., 2015), mixing between adjacent ecosystems (Gu et al., 2012). Kuzyakov 

& Blagodatskaya. (2015) analyzed the potential locations and size of HSHMs in soil related with 

process rates and microbial activities, and distinguish the significant contributions from 

rhizosphere, detritusphere, biopores and aggregate surfaces to carbon cycling and microbial 

activities in soils. Gu et al. (2012) used a numerical modeling approach to simulate how 

hyporheic exchanges in the riparian zones induced by stream stage fluctuations influences 

contaminant transport and transformations. Harms & Grimm. (2008) distinguished how the 

intersection of hydrologic vectors and biologically active regions within the soil profile trigger 

elevated microbial activities and nutrient chemical cycling at a semi-arid desert landscape. Each 

of these studies provides unique understanding of HSHM dynamics, however the conditions that 

trigger HSHMs vary case by case. Thus, it is necessary to find the common similarities and 

dissimilarities among HSHMs cases, which provides more informative intuition for identification 

and prediction of HSHMs under different conditions.    
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As the first step to delineate the combinational effects from multiple processes, Vidon et al. 

(2010) characterized HSHMs into transport-driven ones and biogeochemical process driven ones. 

The transport-driven HSHMs focus on HSHM induced by elevated solute fluxes and the 

biogeochemical process-driven HSHMs are indicated by elevated biogeochemical cycling. This 

definition further delineated the coupled effects from multiple dynamic processes, however 

mainly focused on riparian zones and did not incorporate other types of HSHMs beyond nitrogen 

and carbon. Other research also founds that the interfaces between different systems were also 

likely to trigger the development and occurrences of HSHMs. Krause et al. (2017) summarized 

how the ecohydrological interfaces, defined as the dynamic transition zones that develop within 

ecotones or boundaries between adjacent ecosystems, can substantially alter the movement of 

water, matter, organisms and energy and hence trigger the occurrences of HSHMs. Examples 

such as the riparian zones or the hyporheic zones fall into the ecohydrological interfaces, which 

have been shown to cause HSHM occurrences during the mixing of waters from different 

sources, such as surface water, groundwater and rainfall. Bernhardt et al. (2017) synthesized the 

concept of HSHMs and developed the concept of ecosystem control points, which are the areas 

of the landscape that exert disproportionate influence on the biogeochemical behavior of the 

system under study. Through their study, they classified control points into permanent, activated, 

export and transport control points, where permanent control points are landscape patches that 

possess continuous delivery of reactants that support sustained high rates of biogeochemical 

activities compared to the surrounding landscape; activated control points are the landscape 

patches that only support high rates when the delivery of reactants and local conditions are met; 

export control points are landscape patches where reactants accumulate until a gradient or 

diffusion threshold is overcome to export and the transport control points are unique for high 

potential and capacity for water and gas transport within the ecosystem. The smart classification 

of control points mainly focused on the spatial perspective of Hot Spots, but still did not quantify 

when Hot Moments are triggered, especially for activated, export and transport control points. 

Methods to quantify the corresponding processes that lead to the classifications of HSHMs or the 

control points are still needed. Thus in this study, we will incorporate both the original concepts 

of HSHMs and the continued expanded definitions, such as ecohydrological interfaces and 

control points.   

Though there is the arising popularity of HSHMs in the field of hydrology, ecohydrology, 

landscape ecology, biogeochemistry and climate sciences, there are still many missing 

components that could further advance our understanding of HSHMs and prediction capability 

due to limited data, unknown processes and large uncertainties. Specifically, as mentioned in 

Bernhardt et al. (2017), there are currently no studies that focus on developing statistical theories 

to quantify the uncertainties of HSHMs nor developing data-driven models to predict future 

occurrences of HSHMs. Processes that govern HSHMs are still quite restricted to certain fields, 

such as riparian zones, hyporheic zones with limited focus on nitrogen, carbon and other 

nutrients, which further constrain HSHM theory and model development. Conceptual model 

uncertainties that arise from the lack of corresponding physical theories for HSHM and the 

parametric uncertainties that arise from limited data constrain our capabilities to develop 

statistical models using probability theories and applications. The lack of statistical models to 

quantify the occurrence of HSHMs further limit our ability to develop early warning systems and 

predict future occurrences of HSHMs. In addition, as HSHMs can be triggered by various 

different mechanisms, generic approaches that seek out the similarities are needed for the 

development of statistical models. For example, HSHMs can be found as the preferential flow 
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path in the subsurface (Bundt et al., 2001a; Henri et al., 2015), riparian zones or stream corridors 

(Boulton, 2007; Gu et al., 2012; Vidon et al., 2010), unique landscape in the ecosystem such as 

hollows and naturally reducing zones (Duncan et al., 2013a; Wainwright et al., 2015); these 

complicated interactions in hydrology, ecology and biogeochemistry further increase the 

difficulties in summarizing the similarities and developing statistical frameworks. Spatial 

heterogeneity within the landscape is a specific source of uncertainties that needs to be 

incorporated sufficiently in the field of HSHM. Numerical modeling approaches including large 

scale climate models and reactive transport models are very advantageous as they provide a 

physical representation of the dynamics that lead to development and occurrences of HSHMs as 

they incorporate complicated interactions between the hydrosphere and the biosphere. However, 

these models tend to simplify the topographic structures and subsurface heterogeneity such as the 

assumption of isotropic homogeneous domain and simplified reaction network due to limited 

data that are necessary to characterize the spatial variability and computation costs needed to 

construct finer grids in a numerical model. For example, Dwivedi et al. (2017) develops the first 

3-D reactive transport model to simulate HSHMs of nitrogen transformation in the subsurface. 

This study significantly advances our understanding how riparian corridors control nitrogen 

speciation and trigger HSHMs. However, they assume a bimodal hydro-stratigraphic units for the 

subsurface with constant hydrological parameters, including porosity and permeability, which 

are key parameters for contaminant transport. However, in cases presented in Bundt et al. (2001) 

and Henri et al. (2015), occurrences of HSHMs are significantly controlled by preferential flow 

paths and low permeability regions that are caused by the spatial heterogeneity of hydraulic 

conductivity. In addition, Duncan et al. (2013) concluded the riparian hollows that present as the 

topographic lowlands can provide up to 99% of nitrogen transformation in certain environment, 

and thus models that potentially neglect the spatial variability of topography can significantly 

draw biased conclusions towards the distribution of hot spots. Thus characterization of HSHM 

occurrences will not only require a well-defined complicated geochemical reaction networks but 

also incorporate spatial variability in hydrologic parameters and topography.   

Other limitations that slow down the advancement of HSHMs come from limited data at 

larger spatial scales. For example, characterizing the spatial distribution of Hot Spots are 

essentially important to determine the most influential components within an ecosystem, and is 

necessary to close the water and energy budget. However, direct data that could be used to 

quantify HSHM may not be available at such scales, including evapotranspiration and carbon 

fluxes for HSHMs in ecohydrology, contaminant concentration in biogeochemistry or simply 

elevated solute fluxes in hydrology. Remote sensing datasets that utilize satellite images provide 

large scale coverage of the earth surfaces, and can be used to represent the topography (e.g., 

digital elevation models), vegetation (e.g., normalized differences vegetation index) and many 

other interpolated attributes including gross primary production through machine learning 

models. Geophysical techniques, such as electrical resistivity tomography, ground penetration 

radar, electromagnetic and seismic methods, are related with the soil hydraulic parameters at 

higher spatial coverage including hydraulic conductivity through petrophysical relations (e.g., 

Archie’s law). These datasets from remote sensing and geophysics cannot be directly used to 

quantify HSHM development and occurrence, however are very supportive for developing large 

scale datasets for HSHM attributes of interests such as ET, ecosystem respiration (𝑅𝐸𝐶𝑂 ), 

subsurface chemistry and soil moisture dynamics. However, these datasets are difficult to be 

incorporated into physically based models, which limit their applications for large scale mapping 

and determination of HSHMs. Thus data-driven models that utilize these data are strongly 
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needed to provide datasets at high spatiotemporal resolutions with enlarged coverage of the 

ecosystem being studied. 

Evapotranspiration (ET) and ecosystem respiration (𝑅𝐸𝐶𝑂) are key components of ecosystem 

water and carbon cycles. As the important link between atmosphere-biosphere-hydrosphere 

compartments, dynamic changes dynamic changes in ET can affect precipitation, soil moisture, 

and surface temperature, leading to uncertain feedbacks in the environment (Jung et al., 2010; 

Seneviratne et al., 2006; Teuling et al., 2013). 𝑅𝐸𝐶𝑂 describes the sum of autotrophic respiration 

and respiration by heterotrophic microorganisms  in a specific ecosystem and plays a vital role in 

the response of terrestrial ecosystem to global change (Jung et al., 2017; Reichstein et al., 2005; 

Xu et al., 2004). HSHMs of ET and 𝑅𝐸𝐶𝑂 have disproportionate contributions to the global scale 

water, energy and carbon balances as well as vegetation evolutions under climate change. 

Quantifying the occurrences of HSHMs of ET and 𝑅𝐸𝐶𝑂 is not only necessary to improve our 

predictability of ecosystem evolution, but also significant for us to develop strategies and 

approaches to improve resources management with ongoing climate change and extreme climate 

conditions.  

Current methods that focus on estimating ET, 𝑅𝐸𝐶𝑂  and other ecosystem fluxes include 

direct sampling approaches such as the eddy covariance method and chamber method; 

physically-based models that numerically solve differential equations; and data-driven models 

that can integrate meteorological forcing data and remote sensing datasets. However, it is 

difficult to deploy eddy covariance towers to capture dynamics happening at different parts of a 

watershed with high installation and maintenance costs. Ground based flux chambers may affect 

the microclimate of the surrounding environment leading to decrease in data quality. Physically-

based models might be biased due to the underlying assumptions. Data-driven models are 

advantageous as they could integrate datasets at different spatiotemporal scale, however still 

heavily rely on data quality and spatiotemporal availability. Thus it is still necessary to develop 

hybrid approaches that could integrate direct measurements and mechanistic models with data-

driven methods to advance our predictability of ecosystem flux and scalar estimation. 

The development of statistical frameworks and the increasing availability of data and model 

simulation results provide revenues to improve our understanding of watershed dynamics and 

HSHMs occurrences. Still, climate change poses difficulties into capturing and modeling HSHM 

phenomena due to its uncertain effects on hydrology, ecology and biogeochemistry in 

ecosystems. Studies have found significant changes in snowmelt dynamics in western US 

mountainous watersheds (Blankinship, 2014; Rauscher et al., 2008; Stocker et al., 2013), which 

causes increasing occurrences of fore-summer drought (Sloat et al., 2015) and multi-year 

droughts (Avanzi et al., 2019; Rungee et al., 2019) that further result in changes in 

evapotranspiration and ecosystem carbon fluxes. Temperature increases due to climate change 

also alter the percentage between snow precipitation and rainfall precipitation, and have been 

found to have significantly impacts over streamflow fluctuations and soil moisture storage in the 

subsurface and potentially alter the earth surface energy balance (Jasechko et al., 2016; Foster et 

al., 2016; Rood et al., 2008). The effects caused by climate change have significant impacts over 

hydrologic dynamics and ecosystem functioning within an ecosystem; however the 

corresponding HSHMs induced by such changes are still uncertain. Characterization of the 

corresponding of HSHMs in ET, 𝑅𝐸𝐶𝑂 and other fluxes within an ecosystem will also rely on 

better understanding of how watershed hydrologic dynamics and ecosystem functioning evolve 

under climate change.  

1.2 Research Objectives 
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 Identification and prediction of HSHMs rely on data and improved understanding of the 

ecosystem dynamics. The overarching goal of this dissertation is to develop approaches that 

overcome the aforementioned challenges. Specifically, this dissertation aims to contribute with 

the following research objectives,  

 a. How can we incorporate statistical concepts into modeling HSHMs and the associated 

uncertainties? 

 b. How can we estimate important and relevant parameters and attributes for HSHMs when 

direct data are not available, in particular evapotranspiration (ET) and ecosystem respiration 

(𝑅𝐸𝐶𝑂)? 

 c. How does quantification of HSHMs further advance our understanding of hydrological 

and ecological dynamics and what are the implications for inter-annual and intra-annual 

variability of these processes under climate change?  

1.3 Scope of the Dissertation 
 Following the motivations discussed in previous sections, this dissertation centers around 

HSHMs, from identifying the key processes; quantifying uncertainties of HSHMs; predicting key 

attributes when data are sparse to furthering our understanding of ecohydrological processes. The 

following chapters are organized as follows, 

 Chapter 2 introduces a statistical formulation to quantify HSHMs and the associated 

uncertainties. The major novelty in this approach is to use indicator random variable to 

decompose complex HSHMs dynamics into relevant processes and attributes, which enables us 

to relate HSHMs’ uncertainties to the uncertainty of their components. Additionally, it provides a 

formulation, well established by Bayesian statistics theories, for conditioning the HSHM 

probabilities on in-situ measurements as well as on information borrowed from 

ecohydrologically similar sites. This approach enables us to define HSHMs based on the 

contributing factors, including HSHM defined by static contributors; HSHMs defined by 

dynamic indicators and HSHMs requiring the coupling of static and dynamic contributors. For 

each category, the HSHM stochastic formulations is expressed in terms of the stochastic 

formulations of the relevant contributors. Groundwater HSHMs that occur in the subsurface are 

studied using the proposed framework, where we derive, analyze and demonstrate the process of 

developing such framework, assessing HSHM uncertainties and identifying the key attributes.  

 Chapter 3 describes a Hybrid Predictive Modeling (HPM) approach that is used to estimate 

key attributes and dynamics important for HSHM applications, such as evapotranspiration (ET) 

and ecosystem respiration (𝑅𝐸𝐶𝑂), which are difficult to obtain over large spatiotemporal domain. 

HPM integrates eddy covariance measurements and mechanistic model based simulation results 

for model development and takes meteorological forcing data (i.e., air temperature, precipitation 

and solar radiation) and remote-sensing derived data (i.e., normalized differences vegetation 

index; NDVI) to estimates ET and 𝑅𝐸𝐶𝑂 under various climate conditions. HPM utilizes deep 

learning models, such as long short-term memory (LSTM), to establish relationships among ET, 

𝑅𝐸𝐶𝑂 and input features (i.e., meteorological attributes and NDVI). Effectiveness of HPM are 

investigated at FLUXNET sites and the East River Watershed in Colorado. We demonstrate the 

HPM approaches through various Use Cases, including: estimating ET and 𝑅𝐸𝐶𝑂 over time; data-

driven HPM for estimation over space; physical-model-driven HPM for estimation over space; 

and HPM applications at the East River Watershed. With the aid of HPM, ET and 𝑅𝐸𝐶𝑂 

estimation become available, which enables us to assess the corresponding ecological HSHMs. 

Further, HPM-based estimations are extremely helpful for mountainous watersheds, where ET 

and 𝑅𝐸𝐶𝑂 data are typically difficult to obtain. We also assess how small-scale (i.e., hillslope 



CHAPTER 1: INTRODUCTION   5 
 

scale) heterogeneity factors (e.g., vegetation type) control ET and 𝑅𝐸𝐶𝑂  dynamics at the East 

River Watershed.  

 Chapter 4 proposes the method of temporal regimes to quantify the temporal variability of 

biogeochemical and ecohydrological dynamics and assess environmental hot moments. 

Temporal regimes are defined as a specific period of time when watershed dynamics are 

controlled by a certain set of relevant attributes (i.e., hydroclimate or biogeochemical) and the 

joint distributions of these attributes are statistically different compared to other temporal 

regimes. Hydroclimate attributes, such as air temperature, soil temperature, precipitation and 

radiation, are used to identify hydroclimate regimes, and assess the intra-annual variability of ET. 

Biogeochemical attributes, such as concentration of chemical elements, are used to determine the 

biogeochemical regimes and assess the corresponding environmental hot moments. The method 

of regimes is advantageous as it quantitatively describes the intra-annual variability of 

biogeochemical and ecohydrological dynamics and assesses the contributions from each regime 

to the annual cycle, which provides significant insights for analyzing the limiting factors for 

inter-annual dynamics. This approach is applied at mountainous watersheds along the Central 

Rocky Mountain to analyze the intra-annual variability of ET, including multiple FLUXNET 

sites and East River Sites.  

 Finally, chapter 5 summarizes the key findings and conclusions from the previous chapters 

and generalizes the major contributions from this dissertation to the field of environmental 

HSHMs. Appendices at the end of this dissertation include necessary derivations and discussions  

mentioned in this dissertation. 
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Chapter 2  

 

Statistical Characterization of Environmental 

Hot Spots and Hot Moments with Applications 

in Groundwater Hydrology 

 
 

2.1 Introduction 
 In this chapter, we present a novel statistical framework for analyzing environmental hot 

spots and hot moments (HSHMs) and the uncertainties. Environmental hot spots and hot 

moments (HSHMs) were originally defined as rare locations or events that support or induce 

disproportionately high activity levels (e.g., chemical reaction rates) compared to surrounding 

areas or preceding times (McClain et al., 2003). Vidon et al. (2010) further classified HSHMs 

into either transport-driven or biogeochemically-driven HSHMs, based on the mechanisms 

causing the HSHMs. Bernhardt et al. (2017) derived the concept of ecological control points 

(CPs) related to HSHMs, defining CPs as areas of the landscape that exert a disproportionate 

influence on the biogeochemical behavior of an ecosystem under study. These definitions have 

mainly focused on HSHMs related to elevated biogeochemical activities triggered by 

hydrological or biogeochemical processes, or a confluence of both processes. The concept of 

HSHMs is also used in climate science, where it is related to elevated greenhouse gas emissions 

or specific locations that are subject to extreme natural hazards (e.g., sea-level rise, floods, 

hurricanes, or earthquakes) caused by climate change (Arora et al., 2020; Shrestha & Wang, 

2018). Further, Henri et al. (2015) related HSHMs to locations experiencing elevated 

environmental risks and developed the incremental lifetime cancer risk (ILCR) model to quantify 

the effects of hot spots on human health. Overall, these studies have focused on quantifying the 

consequences of HSHMs by way of environmental risks and costs while also emphasizing the 

importance of characterizing the occurrences of environmental HSHMs. In this chapter, we 

combined these definitions such that, henceforth, HSHMs are referred to as rare locations or 

events that could exert a disproportionate influence on an ecosystem and which are associated 

with heightened health or environmental risks.1 

 Characterizing HSHMs dynamics is useful for understanding hydrological and ecological 

dynamics related to nutrient cycling, contaminant transport, and accurate assessment of 

                                                           
1 This chapter is based on a manuscript submitted to the journal of Hydrology and Earth System Science 
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ecosystem and hydrological perturbations under climate change. For example, Duncan et al. 

(2013) demonstrated that riparian hollows, which represent less than 1.0% of the landscape but 

contribute to more than 99% of total denitrification of a whole catchment area, function as hot 

spots. Additionally, wetlands have been considered biogeochemical hot spots for mercury 

mobilization and methylation production since the early 1990s (Vidon et al., 2010). The spatial 

patterns of methylmercury (MeHg) hot spots in wetlands can vary significantly across space. 

Indeed, the MeHg concentration at the interface between upland and peatland can be 100 times 

greater than a different patch within the same wetland (Mitchell et al., 2008). In managed 

temperate peatlands, drainage ditches that account for less than 5% of a land area can act as hot 

spots and can contribute to over 84% of total greenhouse gas emissions (Teh et al., 2011). 

Ecohydrological interfaces, the dynamic transition zones between adjacent ecosystems, 

substantially influence migration of water, nutrients, and organisms and hence triggers 

occurrences of HSHMs (ADD KRAUSE CITATION). Though riparian zones and hyporheic 

zones only account for a small percentage of ecosystem, these interfaces significantly contribute 

to nitrogen and carbon cycling between the biosphere, hydrosphere and atmosphere. The 

disproportionate contributions from HSHMs to the overall hydrological and ecological dynamics 

strongly indicate the necessities of characterizing HSHMs.    

 Quantifying HSHMs has also been recognized as important for assessing the consequences 

after catastrophes and the environmental risks, such as water crises (Baum et al., 2016) or 

nuclear disasters  (Kamidaira et al., 2018; Morino et al., 2011; Showstack, 2014). The migration 

of contaminants after a catastrophe creates zones of different toxicity levels and poses 

disproportionate threats to the surrounding natural and urban environment. In contrast, existing 

HSHMs caused by the leakage of nuclear waste or heavy metals largely influence site 

characterization needs and the remediation efforts needed to minimize environmental and 

economic losses (Bao et al., 2014; Harken et al., 2019). Thus far, studies in this area have 

focused on the environmental implications and usefulness of characterizing HSHMs. However, 

special tools for characterizing and modeling HSHMs are still needed, such as physically-based 

and statistical models, which can provide additional benefits to capture the disproportionate 

effects of an HSHM on a whole ecosystem.  

 Reactive transport models have been used to understand and predict HSHMs. Dwivedi et al. 

(2017), for instance, developed a 3-D high-resolution numerical model to investigate whether 

organic-carbon-rich and chemically-reduced sediments located within the riparian zone act as 

denitrification hot spots. Their study demonstrated a significantly higher potential (~70%) of the 

naturally reduced zones (NRZs) to remove nitrate than the non-NRZ locations. Arora et al. (2016) 

used a 2-D transect model and showed that temperature fluctuations constituted carbon hot 

moments in a contaminated floodplain aquifer that resulted in a 170% increase in annual 

groundwater carbon fluxes. Gu et al. (2012) developed a Monte Carlo reactive transport 

approach and discovered how denitrification HSHMs are triggered by river stage fluctuations. 

Despite these studies, clear statistical conventions of HSHMs are missing, which significantly 

limits the transferability of these approaches. In fact, distinguishing HSHMs based on statistical 

formulations has been identified as a major gap in the current HSHM literature (Bernhardt et al., 

2017; Arora et al., 2020). 

 Statistical approaches offer multiple advantages for furthering the HSHM concept. First, 

statistical approaches can develop common formulations that integrate biogeochemical and 

hydrogeological knowledge from multiple HSHMs studies. Once developed, these formulations 

can be readily applied to identify HSHMs at similar sites. Second, statistical approaches can 
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easily incorporate categorical indicators that represent spatial heterogeneity and quantify the 

uncertainty of HSHM occurrences tied to these features. Such approaches can be used as 

predictive tools to estimate future occurrences of HSHMs, and provide an alternative to 

computationally-expensive high-resolution mechanistic models. This would greatly aid decision-

makers in identifying scenarios (e.g., changes in the climate or in environmental conditions) that 

increase risks associated with the occurrence of HSHMs phenomena.  

 Statistical concepts and models have been widely applied in hydrology and hydrogeology, 

including but not limited to modeling flow and contaminant transport, quantifying subsurface 

heterogeneity and the associated uncertainties, developing strategies for site characterization, and 

providing informative priors for ungauged watersheds. For example, Rubin (1991) described a 

Lagrangian approach to obtain the summary statistics of contaminant concentrations in the 

subsurface, including mean, variance and covariance. These statistical moments are necessary to 

define the probability distribution of contaminant concentrations over space and time, and thus, 

quite useful for quantifying HSHMs. Statistical terms, such as concentration mean and variance, 

concentration cumulative density function (CDF), exceedance probabilities, and exposure time 

CDF also provide significant guidance to assess the environmental risks associated with HSHMs 

(Rubin et al., 1994). Although there is a lack of conventional statistical approaches in current 

HSHM studies, we believe it is feasible and valuable to develop statistical formulations to 

characterize HSHMs dynamics.  

 Successful characterization of HSHMs through physically-based models or statistical 

approaches relies on experts’ knowledge of a site, intensive field characterization, and possibly 

continuous field sampling to provide the data to develop and validate these approaches. 

Understandably, intensive site characterization and long-term sampling can be quite challenging 

due to the associated costs and efforts. Thus, it is necessary to develop approaches that could 

simplify but still effectively and efficiently represent the underlying structure of HSHMs. In this 

regard, indicator statistics that take value 0 or 1 depending on whether a HSHM occurs or not, 

can be useful, on two counts. First, it is suitable for modeling bimodal situations. For example, a 

situation where an event might or might not take place. Indicators are also appealing in 

applications because of the sparsity of the Bernoulli probability model.  Indicator statistics have 

previously been applied to model flow and transport phenomena in groundwater (Rubin & 

Journel, 1991), where indicators were used to model the spatial distribution in a sand-shale 

formation.  Rubin (1995) applied an indicator spatial random function to model contaminant 

flow and transport in bimodal heterogeneous formations. Ritzi et al. (2004) developed a 

hierarchical architecture to represent the spatial correlation of permeability in cross-stratified 

sediment using indicator statistics. Wilson and Rubin (2002) and Bellin and Rubin (2004) used 

indicator statistics that describe whether particles were captured by sampling points to 

characterize the level of aquifer heterogeneity. These studies suggest that the simplification of 

the system’s structure through indicator formulation significantly lowers the number of 

measurements needed, and thus reduces the costs associated with site characterization, while 

maintain sufficient information for modeling flow and contaminant transport. In addition, 

indicator formulation is useful in that it allows to aggregate multiple variables (e.g., all HSHM 

relevant variables) into a single random variable. Instead of characterizing the full distributions 

of each parameter, indicator formulation only requires knowledge of the critical condition for 

relevant parameters. Such indicator random variable (RV) will take a value of 1 if the critical 

conditions are met, regardless of the original distribution for the parameters. With indicator 

formulations for HSHMs, researchers can focus on identifying the most relevant parameters for 
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HSHMs quantification, which can significantly reduce the efforts and costs required for intensive 

site characterization.   

 In this chapter, we present the statistical framework to quantify HSHMs occurrences and 

uncertainties. The developed statistical framework can help determine HSHM-occurrence 

probabilities under user-defined scenarios. It can also be used for estimating future occurrences 

of HSHMs. Based on the mechanisms that drive HSHM occurrences, we determined three 

categories of HSHMs: (1) those triggered only by spatial (static) contributors, (2) those triggered 

by both spatial (static) and temporal (dynamic) contributors, and (3) those triggered by multiple 

dynamic contributors. Within each category, cases from existing studies were used to illustrate 

the procedures for constructing the statistical formulations. We focused specifically on HSHMs 

applications in groundwater, where we derived analytical solutions for the statistical formulation 

of HSHMs and analyzed the probabilities of HSHM occurrences and their corresponding levels 

of uncertainty using synthetic case studies.  

2.2 Statistical Formulation of HSHMs 
HSHMs represent rare places or events with increased hydrobiogeochemical rates or fluxes 

that are significantly elevated above the background condition, thus exerting disproportionate 

influences over an ecosystem’s dynamics. We define (𝜴∗, 𝑡∗) as the jointly distributed RVs for 

HSHMs, and 𝜴∗ and 𝑡∗ represent the spatial components of hot spots and temporal components 

of hot moments, respectively. An indicator random variable, 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗), is used to represent 

whether the pair (𝜴∗, 𝑡∗) is an HSHM or not. If there exists a pair of (𝜴∗, 𝑡∗) that satisfies the 

critical conditions of an HSHM, 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗) = 1, and the pair (𝜴∗, 𝑡∗) represents the location 

and time of the HSHM. 

Following the original definition by McClain et al. (2003), in our method,  𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗) 

can take the value of 0 or 1, depending on the concentration or reaction rate measured at (𝜴∗, 𝑡∗), 
respectively: 

𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗) = {

1, 𝑖𝑓 𝐶(𝒙, 𝑡∗) > 𝐶𝑡ℎ;  𝒙 ⊆ 𝜴
∗

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              
, or 

    𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗) = {

1, 𝑖𝑓 𝑅(𝒙, 𝑡∗) > 𝑅𝑡ℎ;  𝒙 ⊆ 𝜴∗

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
.                                 (2.1) 

where 𝐶(𝒙, 𝑡∗) 𝑎𝑛𝑑 𝑅(𝒙, 𝑡∗) are the concentration and reaction rate at the position 𝒙 and time 𝑡∗, 
respectively. 𝐶𝑡ℎ 𝑎𝑛𝑑 𝑅𝑡ℎ represent the concentration and reaction rate thresholds, respectively. 

Defining indicators with concentration, or reaction rate depends on the target of HSHM. Similar 

definitions can be introduced based on the regulatory limits or the interest of the investigator, 

using the mean concentration or the solute mass within the volume 𝜴∗.  
 The critical values, 𝐶𝑡ℎ and 𝑅𝑡ℎ, are key to an effective application of the above framework 

and should be determined based on the specific scenario. For example, for contaminants that are 

associated with significant environmental or health risks (e.g., nuclear waste or a cancerous 

substance), 𝐶𝑡ℎ = 0 can be used so that the HSHM will be triggered as soon as there is the 

presence of such contaminants. As an alternative, a limit in the total accumulated mass within 

hot spots may be set, such as suggested by EPA (USEPA, 2001), but in this case the definition (1) 

of the indicators should be modified. For water quality parameters, 𝐶𝑡ℎ = 𝑀𝐶𝐿 can be assigned, 

where 𝑀𝐶𝐿  represents the maximum concentration limit for a specific solute. Alternatively, 

𝐶𝑡ℎ = 𝐶
∗ can be used in cases where 𝐶∗ is chosen based on the experts’ domain knowledge. This 

approach requires that such decisions be made before deriving any solutions to determine HSHM 

occurrences. 
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 Given the definition of 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗), we observe that 𝐼𝐻𝑆𝐻𝑀(𝜴

∗, 𝑡∗) follows a Bernoulli 

distribution, such as  𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(< 𝐼𝐻𝑆𝐻𝑀(𝜴

∗, 𝑡∗) >), where < . > is the operator 

indicating the ensemble mean of the indicator represented as a random variable. An important 

characteristic of the Bernoulli distribution is that all the statistical moments of the RV 

𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗) can be expressed as a function of the ensemble mean < 𝐼𝐻𝑆𝐻𝑀(𝜴

∗, 𝑡∗) >. For 

example, the variance is given by 𝑣𝑎𝑟(𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗)) =< 𝐼𝐻𝑆𝐻𝑀(𝜴

∗, 𝑡∗) > ∗ (1− <

𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗) >).  

 Characterization of the spatiotemporal distribution of 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗)  requires the 

incorporation of the mechanisms that govern the development and occurrence of HSHMs. 

However, the direct quantification of < 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗) > can be difficult in both time and space 

domain. Thus, to facilitate this undertaking, we propose to decompose 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗)  into a 

Type-A (static) indicator random variable—𝐼𝑠(𝜴
∗)—and a Type-B (dynamic) indicator random 

variable—𝐼𝑑(𝜴
∗, 𝑡∗). Definitions of the Type-A and Type-B contributors are as follows: 

 Type-A (Static) Contributors. This category covers discrete spatial elements (and their 

associated critical states) that could trigger an HSHM once they come into contact with 

Type-B contributors (see discussion below). Critical states are the range of values 

needed to trigger an HSHM (either in standalone mode or when coupled with Type-B 

contributors).  

 Type-B (Dynamic) Contributors. This category covers dynamic variables (and their 

associated critical states) that could trigger an HSHM once they come into contact with 

Type-A contributors. This category includes, for example, mass transport variables. It 

also includes changes in local hydrological and environmental conditions (e.g., water 

table fluctuations). The displacement of solutes in the subsurface (trajectories and travel 

times) from below- and above-ground processes are prime examples of Type-B 

contributors.  

As an example, naturally reduced sediments (Type-A contributor)  occurring next to the 

river corridor at Rifle, Colorado were identified as carbon export hot spots (Arora et al., 2016; 

Wainwright et al., 2015). Studies showed that these hot spots were triggered when temperature 

conditions (Type-B contributor) varied in the subsurface, resulting in a 170% increase in 

groundwater carbon export from the floodplain site to the river (Arora et al., 2016). In another 

example, topographic features, such as the backslope of the lower montane hillslope (Type-A 

contributor) within the East River Watershed (Hubbard et al., 2018), were considered 

denitrification hot spots, which can have a significant impact on the watershed-scale nitrogen 

loss pathway. These hot spots were often triggered by spring snowmelt and storm events (Type-

B contributor).  

Both indicators of the Type-A and Type-B contributors assume a value of either 0 or 1. If 

one of these indicators takes a value of 1, it can be viewed as an HSHM contributor. However, 

for an HSHM to occur, both indicators must have a value of 1 at the same location and time. This 

idea can be expressed as follows: 

𝑃(𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗) = 1) = 𝑃(𝐼𝑠(𝜴

∗) = 1, 𝐼𝑑(𝜴
∗, 𝑡∗) = 1)                                         

= 𝑃(𝐼𝑠(𝜴
∗) = 1) ∗ 𝑃(𝐼𝑑(𝜴

∗, 𝑡∗) = 1|𝐼𝑠(𝜴
∗) = 1)                                              

= 𝑃(𝐼𝑑(𝜴
∗, 𝑡∗) = 1) ∗ 𝑃(𝐼𝑠(𝜴

∗) = 1|𝐼𝑑(𝜴
∗, 𝑡∗) = 1).                                  (2.2)      

In equation (2.2),  𝑃(𝐼𝑑(𝜴
∗, 𝑡∗) = 1|𝐼𝑠(𝜴

∗) = 1) is the probability of observing a dynamic 

HSHM within  𝜴∗,   at time 𝑡∗  conditional to the fact that 𝜴∗  is a static hotspot and 

𝑃(𝐼𝑠(𝜴
∗) = 1|𝐼𝑑(𝜴

∗, 𝑡∗) = 1) is defined similarly.  Based on the mechanisms of HSHMs, we 

can classify HSHMs into three different categories as discussed below. These categories can be 
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used to guide the application of the above statistical framework in a variety of complex HSHM 

scenarios, and they can also be used to develop analytical or numerical solutions for both static 

and dynamic indicators. Furthermore, the three categories provide guidance on using indicator 

approaches for both transport-driven and biogeochemically-driven HSHMs, as discussed by 

Vidon et al. (2010).  

2.2.1 HSHMs induced by type-A (static) indicators 

In this section, we consider HSHMs that are defined by static indicators only (Figure 2.1a). 

This list can include zones of high, persistent concentration and reactivity that are due to the 

subsurface or the ecosystem’s unique hydrological and biogeochemical properties (e.g., 

microsites). For example, the accumulation of contaminants in the subsurface (e.g., the high 

nuclide concentration in the subsurface at the Hanford Nuclear Production Site, Washington) 

could lead to the evolution of persistent, high reactivity zones. An aquifer’s heterogeneity is 

another example that could distinguish certain regions with high reactivity from surrounding 

areas (Loschko et al., 2016). Such high reactivity spots (hereafter denoted as 𝜴∗)  can be 

characterized by static indicator RVs due to the persistence of high concentration or reactivity. 

The static indicators are defined as follows: 

𝐼𝐻𝑆𝐻𝑀(𝜴
∗) = 𝐼𝑠(𝜴

∗) = {
1,      𝑖𝑓 𝑍(𝜴∗) ⊆ 𝑍𝑠

∗

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
,                                      (2.3) 

where 𝑍𝑠
∗ represents the conditions needed to trigger a hot spot at 𝜴∗, and 𝑍(𝜴∗) represents the 

corresponding local conditions at 𝜴∗.  
2.2.2 HSHMs induced by type-A (static) and type-B (dynamic) indicators 

HSHMs can also result from dynamic processes encountering specific conditions at 𝜴∗ 
(Figure 2.1b). This is the situation described by equation (2.2), where the static indicators are 

determined first, and then used jointly with the dynamic indicators for complete HSHM 

characterization. For example, Bundt et al. (2001) concluded that preferential flow paths are 

biological hot spots for soil microbial activities. Preferential flow paths in such cases are 

candidate hot spot locations (𝜴∗) . Meanwhile, dynamic factors, such as snowmelt, control 

contaminant transport via the preferential flow paths, and thus, they determined the hot moment 

component. The duration of these events presents the temporal component of the HSHM.  

For an HSHM induced by both static and dynamic indicators, the static locations are 

selected first, based on their HSHM-related properties. After this, we can focus on characterizing 

the HSHM dynamics as they relate to the relevant locations. A selected location, 𝜴∗ , could 

become an HSHM site based on characteristics defined through the following static and dynamic 

indicators, respectively: 

𝐼𝑠(𝜴
∗) = {

1,      𝑖𝑓 𝑍𝑠(𝜴
∗) ⊆ 𝑍𝑠

∗

0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
,                                                  (2.4) 

𝐼𝑑(𝜴
∗, 𝑡∗) = {

1,      𝑖𝑓 𝑍𝑑(𝜴
∗, 𝑡∗) ⊆ 𝑍𝑑

∗

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      
,                                           (2.5) 

𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗) = {

1,      𝑖𝑓 𝑍𝑠(𝜴
∗) ⊆ 𝑍𝑠

∗, 𝑎𝑛𝑑 𝑍𝑑(𝜴
∗, 𝑡∗) ⊆ 𝑍𝑑

∗  
0,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

,                  (2.6) 

where 𝑍𝑑
∗  represents the critical conditions needed to characterize a hot moment, and 𝑍𝑑(𝜴

∗, 𝑡∗) 
represents the local condition at 𝑡∗  and 𝜴∗.  The statistical model of 𝐼𝐻𝑆𝐻𝑀(𝜴

∗, 𝑡∗)  can be 

expressed using the statistical models of 𝐼𝑠  and 𝐼𝑑 , as shown in equation (2.2).  

2.2.3 HSHMs induced by multiple type-B (dynamic) indicators 

Various dynamic processes could jointly evolve into an HSHM (Figure 2.1c). Unlike the 

previous scenarios where static locations can be determined through known characteristics 
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provided by geophysical or other types of data, HSHMs can also emerge due to the confluence of 

dynamic processes. This situation is described in equation (2.7). For example, Gu et al. (2012) 

analyzed how streamflow fluctuations could trigger a nitrogen HSHM. In their example, the 

dynamics of the streamflow and groundwater controlled the transport and mixing of the chemical 

reactants, thus triggering the occurrences of HSHMs. For this case, the static locations of 𝜴∗ are 

determined by the confluence of multiple dynamic processes. 

We can consider the case where an HSHM is predicated on 𝑚 dynamic processes, 𝑑𝑗, where 

𝐼𝑑,𝑗(𝜴
∗, 𝑡∗) is the dynamic indicator representing the action (or inaction) of 𝑑𝑗 at 𝜴∗ and time 𝑡∗. 

The hot spot location 𝜴∗ is determined by the confluence of all dynamic processes at time 𝑡∗.  
These dynamic processes are not necessarily independent. Therefore, generally, the statistical 

model for the comprehensive dynamic indicator (which covers all dynamic contributors) 

assumes the following form: 

𝑃[𝐼𝑑(𝜴
∗, 𝑡∗) = 1] = 𝑃[𝐼𝑑,1(𝜴

∗, 𝑡∗) = 1, … , 𝐼𝑑,𝑚(𝜴
∗, 𝑡∗) = 1].                      (2.7) 

In situations where the various dynamic contributors can be viewed as independent (e.g., 

Destouni & Cvetkovic, 1991)—where the reactants travel via different paths—then, assuming 

independence, we can state that   

𝑃(𝐼𝑑(𝜴
∗, 𝑡∗) = 1] =∏𝑃[𝐼𝑑,𝑗(𝜴

∗, 𝑡∗) = 1]

𝑚

𝑗=1

.                                   (2.8) 

Here, the mean of the dynamic indicator becomes  

< 𝐼𝑑(𝜴
∗, 𝑡∗) > =  ∏ < 𝐼𝑑,𝑗(𝜴

∗, 𝑡∗) > .                                        (2.9)

𝑚

𝑗=1

 

If 𝜴∗ is a hot spot, then equation (2.9) also defines < 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗) >. However, if 𝜴∗ is not 

a hot spot, then we need to resort to coupled statistical modeling, as suggested by equation (2.2). 

 
Figure 2.1 Identified categories of HSHMs. Panel (a) presents HSHMs resulting from only Type-A (static) 

indicator; panel (b) presents HSHMs resulting from coupled action (static + dynamic) and panel (c) presents 

HSHMs resulting from multiple (two) dynamic indicators 

2.3 Examples of the statistical formulation of HSHMs with case studies 
In this section, we selected numerous examples from published research to present how our 

approach can be used to derive statistical representations for the HSHMs investigated in these 

studies. We grouped these studies into three categories based on the similarities of their 

underlying HSHM mechanisms, as described in section 2.2. We also characterized the 

environmental risk levels and impacts based on their target HSHMs. Table 1 presents a summary 

of these cases. The indicator formulation is constructed in sections 2.3.1–2.3.3. 
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Reference HS Location Category Seasonality Environmental 

Risk 

Causes Impact Static Mechanism Dynamic 

Mechanism 

HSHM Action Metrics for 

threshold 

Equation(s) 

Examples of static only mechanisms   

Wainwright 

et al. (2015) 

Naturally reducing 

zone 

Subsurface -- Short-term low 

risk; long-term 

high risk 

Anthropogenic 

+ Natural 

Negative Mineralological  

and lithological 

differences 

-- Vanadium, 

uranium, 

metallic 

minerals 

Concentration (3) 

Sassen et al. 

(2012) 

Reactive facies Subsurface -- Short-term low 

risk; long-term 

high risk 

Anthropogenic 

+ Natural 

Negative Lithological 

differences  

-- Uranium and 

other isotopes 

Concentration (3) 

Examples of static + dynamic mechanism   

Andrews et 

al. (2011) 

Shale hill Subsurface 

+ Surface 

Snowmelt and 

fall flushing 

periods 

Low risk Natural Neutral South-facing 

concave hillslopes 

Snowmelt and 

fall flushing 

periods 

Organic carbon Concentration (4) – (6) 

Henri et al. 

(2015) 

Preferential flow 

path 

Subsurface -- High risk Anthropogenic Negative Subsurface 

heterogeneity 

Contaminant 

transport and 

travel time 

distribution 

Chlorinated 

compounds 

Concentration (4) – (6) 

Duncan et 

al. (2013) 

Microtopography Surface Unimportant High risk Natural Positive Riparian hollows Transport and 

retention of 

reactants 

Nitrogen Concentration 

or reaction 

rate  

(4) – (6) 

Arora et al. 

(2016) 

Naturally reducing 

zone-induced 

transport 

Subsurface Temperature 

and water 

table 

fluctuation 

Low risk Anthropogenic 

+ Natural 

Neutral Naturally reduced 

zones 

Temperature and 

water table 

fluctuation 

Carbon fluxes Concentration 

or reaction 

rate 

(4) – (6) 

Examples of multiple dynamic mechanisms   

Hill et al. 

(2000) 

Riparian zone Subsurface -- High risk Natural Positive Interfaces in the 

riparian zone 

Supply of 

electron donor 

and acceptor 

from flow 

transport 

Nitrogen and 

carbon 

Concentration 

or reaction 

rate 

(7) – (9) 

Mitchell et 

al. (2008) 

Peatlands Subsurface 

+ Surface 

Summer 

periods 

High risk Natural Negative Upland-peatland 

interfaces induced 

by flow 

Interactions 

between upland 

and peatland 

flow 

Methylmercury Concentration (7) – (9) 

Frei et al. 

(2012) 

Microtopography Surface -- Neutral Natural Neutral Flowpaths induced 

by 

microtopography 

Biogeochemical 

evolution along 

flow paths 

Organic matter 

and nitrogen 

Concentration 

or reaction 

rate 

(7) – (9) 

Gu et al. 

(2012) 

Mixing zones Subsurface 

+ Surface 

River 

discharge + 

Water table 

fluctuation 

High risk Natural Positive Mixing zones 

caused by river 

stages 

Interaction 

between surface 

water and 

groundwater 

Nitrogen Concentration 

or reaction 

rate 

(7) – (9) 

Table 2.1 Example cases considered in this chapter for constructing the statistical formulation of HSHM. 
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2.3.1 HSHMs triggered by static contributors only 

In this section, we use Wainwright et al. (2015) as an example to illustrate our process to 

construct 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗)  following equation (2.3), where an HSHM is triggered by static 

contributors only (section 2.1). NRZs within floodplain environments at Rifle, Colorado are 

considered biogeochemical hot spots because they represent elevated concentrations of uranium, 

organic matter, and geochemically reduced minerals and they have been found to contribute to 

significant carbon fluxes to the atmosphere and to local rivers (Arora et al., 2016). Due to its 

characteristics, we considered the spatial distribution of an NRZ to be a static-mechanism-based 

hot spot for many constituents and processes, such as reducing minerals and denitrification. 

Wainwright et al. (2015) used geophysical data (e.g., induced polarization) to map the 

distribution of an NRZ at the subsurface level. In their study, the phase shift (𝜙) of electrical 

resistivity from the induced polarization data is a good indicator for mineralogical-geochemical 

properties. They found that (𝜙) was within [4.5, 5]𝑚𝑟𝑎𝑑 for NRZ locations, compared to non-

NRZ locations at 𝜙 ⊆ [1, 3.5]𝑚𝑟𝑎𝑑. Thus, 𝜙 can be used to construct the static indicator with a 

critical condition of [4.5, 5]𝑚𝑟𝑎𝑑. Therefore, 

𝐼𝑠(𝜴
∗) = {

1,      𝑖𝑓 𝑍𝜙(𝜴
∗) ⊆ [4.5, 5] 𝑚𝑟𝑎𝑑

0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
.                                        (2.10) 

Other static attributes, including but not limited to elevation, hydraulic conductivity, and 

resistivity, can also be used to define the critical conditions to construct the static indicator for 

hot spots through Bayesian conditioning. 

2.3.2 HSHMs occurring when dynamic contributors coincide at locations defined by static 

contributors 

The second case we present here utilizes equations (2.4)–(2.6), where HSHMs are triggered 

when dynamic contributors coincide at hot spots determined by static contributors. Here, we 

present the case investigated by Duncan et al. (2013), where riparian hollows representing less 

than 1% of the total catchment area contributed to more than 99% of the total denitrification 

within the watershed. In their study, the denitrification rates peaked during the base flow 

(midsummer) period, when the riparian hollows were partially oxygenated and the hydrologic 

fluxes were at a minimum. The site was considered to have low inorganic N availability, and 

thus, nitrate was supplied via nitrification. The highest rates of denitrification were therefore tied 

to nitrification and the partially aerated conditions.  

The static indicator needs to be constructed based on the microtopographical features within 

the riparian zone. Specifically, the topographic wetness index (TWI) (Beven & Kirkby, 1979; 

Sørensen et al., 2006) was used in Duncan et al. (2013) to delineate the riparian hollows from 

other riparian locations. Terrain analysis indicated a TWI threshold value of 6.0 and 8.0 for 

riparian hollows under wet and dry conditions, respectively, whereas 4.8 and smaller TWI values 

corresponded to other riparian locations (e.g., hummocks). Thus, the static indicator can be 

constructed using the TWI values within the riparian zone to determine the hot spot locations—

the hollows. Hence,  

𝐼𝑠(𝜴
∗) = {

1,      𝑖𝑓 𝑍𝑇𝑊𝐼(𝜴
∗) > 6 (𝑤𝑒𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) or 8 (𝑑𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

0,                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      
.           (2.11) 

Multiple dynamic processes control the denitrification rate at the riparian hollows. As 

examined by Duncan et al. (2013), a partially aerated condition (𝐶𝑂2 > 5%) is needed to support 

nitrification, which supplies the nitrate for denitrification. As quiescent, non-storm periods 

during base flow favor the coupled nitrification-denitrification mechanism, this is another key 

process that needs to be represented by a dynamic indicator. Although Duncan et al. (2013) did 
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not mention specific concentration ranges for nitrogen species, the major components, such as 

organic N, should be available. Therefore, we can construct the dynamic indicators as follows: 

𝑃[𝐼𝑑(𝜴
∗, 𝑡∗) = 1] = 𝑃[𝐼𝑑,𝑂2(𝜴

∗, 𝑡∗) = 1, 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴
∗, 𝑡∗) = 1, 𝐼𝑑,𝑁(𝜴

∗, 𝑡∗) = 1], (2.12) 

where 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴
∗, 𝑡∗) is the dynamic indicator representing the streamflow stages; this will be 1 

if the base flow conditions are met. Additionally, here, 𝐼𝑑,𝑁 (𝜴
∗, 𝑡∗) is the dynamic indicator for 

the transport of the nitrogen species in the subsurface that support the coupled nitrification-

denitrification mechanism.  

𝐼𝑑,𝑂2(𝜴
∗, 𝑡∗) = {

1,      𝑖𝑓 𝐶𝑂2(𝜴
∗, 𝑡∗) > 5%

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
, 

𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴
∗, 𝑡∗) = {

1,      𝑖𝑓 𝑡∗ ⊆ 𝑏𝑎𝑠𝑒 𝑓𝑙𝑜𝑤 𝑝𝑒𝑟𝑖𝑜𝑑𝑠
0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

,                           (2.13)   

𝐼𝑑,𝑁(𝜴
∗, 𝑡∗) = {

1,      𝑖𝑓 𝐶𝑁(𝜴
∗, 𝑡∗) > 0

0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      
. 

It is noted that these dynamic processes are not statistically independent. Usually, when one 

condition is met (e.g., base flow conditions), other conditions may consistently be satisfied (e.g., 

the transport of nitrogen in riparian hollows). Alternatively, numerical modeling approaches are 

more feasible to construct the dynamic indicators based on the critical conditions at riparian 

hollows (𝜴∗), where we could directly target 𝑁2  fluxes using a Monte Carlo approach. The 

statistical formulation used here is constructed specifically for the mechanisms described by 

Duncan et al. (2013). Thus, the detailed threshold limits could change under other denitrification 

HSHMs cases, such as the case presented in Hill et al. (2000), who focus on desert landscapes, or 

the one by Harms and Grimm  (2008), where the monsoon season is influential for the nitrogen 

transport. Nonetheless, the general formulation of HSHMs using indicators is still applicable.  

2.3.3 HSHMs occuring when multiple dynamic processes converge in space 

HSHMs can also be triggered by the confluence of multiple dynamic processes that lead to 

the convergence of complementary reactants at 𝜴∗. Accumulation of complementary reactants is 

mobilized and transported via different hydrologic flowpaths. They converge at hot spot 

locations and trigger hot moments during the mixing. Following the statistical framework 

developed in this chapter, equations (2.7) to (2.9) are suitable for this condition. In order to 

illustrate how the dynamic indicators are constructed, we consider here the case reported by Gu 

et al. (2012), where high biogeochemical activity was observed at the interface of groundwater 

and surface water during the stream stage fluctuations, which resulted in significant in-stream 

denitrification and 𝑁𝑂3
− removal.  

In their study, hot spots form around the near-stream-riparian subsurface during river stage 

fluctuations, where active biogeochemical reaction (e.g., denitrification) requires both 𝑂2 

depletion and the simultaneous presence of 𝑁𝑂3
−  and the dissolved organic carbon (DOC). 

Specifically, the spatiotemporal distribution of denitrification hot spots coincides with an 𝑂2 

depletion zone along the DOC infiltration flowpaths. In order to determine the mixing of 

groundwater and surface water during stage fluctuations, Gu et al. (2012) defined bank storage 

volume 𝑉(𝑡) and maximum bank storage volume 𝑉𝑚𝑎𝑥. The flood hydrograph was subdivided 

into the rising limbs, recession limbs and return flow, the latter representing the slow restitution 

of part of the water that infiltrated during the previous stages. Considering the different dynamics 

of these components, they observed that the largest infiltration rate occurred prior to the 

maximum stage rise, while 𝑉𝑚𝑎𝑥 = 5𝑚
3𝑚−1 (critical condition) occurred in the recession limb 

of the flood event. Instead, maximum return flow occurred toward the end of the recession curve 

before stream hydrograph stabilizes. Maximum 𝑁𝑂3
− rate removal occurred when return flow 
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phase was almost complete and then decreased until the depletion of 𝑁𝑂3
−. Through statistical 

analysis, they found that 𝑉𝑚𝑎𝑥, viewed as an integrated index for hydrological exchange, could 

explain 64% of the variation in the  𝑁𝑂3
− removal. Thus, 𝑉𝑚𝑎𝑥 can be used as the critical state to 

determine whether or not the hyporheic dynamics are sufficient to enhance relevant 

biogeochemical processes. In order for the hot moments to be a trigger, the stream-riparian zone 

should also be microbially active. Based on these conditions, the dynamic indicators can be 

constructed as follows: 

𝑃[𝐼𝑑(𝜴
∗, 𝑡∗) = 1] = 𝑃[ 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴

∗, 𝑡∗) = 1, 𝐼𝑑,𝐶ℎ𝑒𝑚(𝜴
∗, 𝑡∗) = 1],                     (2.14) 

where 𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴
∗, 𝑡∗) represents the dynamic process induced by the hydrologic conditions (e.g., 

stage fluctuation), and 𝐼𝑑,𝐶ℎ𝑒𝑚(𝜴
∗, 𝑡∗) represents the dynamic process controlled by the transport 

and accumulation of chemical reactants. Based on the critical values or ranges, we formulate the 

indicators as follows:  

𝐼𝑑,𝐻𝑦𝑑𝑟𝑜(𝜴
∗, 𝑡∗) = {

1, 𝑍𝑉𝑚𝑎𝑥(𝜴
∗, 𝑡∗) ≥ 5𝑚3𝑚−1

0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 
, 

𝐼𝑑,𝐶ℎ𝑒𝑚(𝜴
∗, 𝑡∗) = 

{
1,    𝑖𝑓 𝐶𝑂2(𝜴

∗, 𝑡∗) 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙 𝑎𝑛𝑑 𝐶𝑁𝑂3−(𝜴
∗, 𝑡∗) > 0 𝑎𝑛𝑑 𝐶𝐷𝑂𝐶(𝜴

∗, 𝑡∗) >  0

0,                                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                    
.  (2.15) 

Typically, because of the complexity of the processes, no analytical solutions are available 

for formulating the indicators. However, Monte Carlo simulations can be useful in constructing 

such indicators. For this case, an HSHM at any given location and time (𝜴∗, 𝑡∗) will only be 

triggered when all of the conditions are met and the ensemble mean of the indicator assumes the 

following form: 

< 𝐼𝑑(𝜴
∗, 𝑡∗) > =

1

𝑁
∑𝐼𝑑,𝑖(𝜴

∗, 𝑡∗)

𝑁

𝑖=1

 ,                                            (2.16) 

where 𝐼𝑑,𝑖(𝜴
∗, 𝑡∗) is the value that the indicator assumes in the 𝑖𝑡ℎ realization and N is the total 

number of simulations. 

 Overall, our choices of the three studies should not limit the generalizability of the indicator 

statistics approach for deriving statistical formulations for HSHM applications. The critical 

conditions chosen to construct the indicators are determined solely on the findings from these 

selected studies, and they will vary under different scenarios. 

2.4 HSHM applications in groundwater hydrology 
Processes occurring within the subsurface are important factors leading to HSHM 

occurrences. Among others, these processes include the migration of groundwater carrying 

reducing substrates, nuclear waste transport within the subsurface, the accumulation and 

transport of dense non-aqueous phase liquid (DNAPL) and other biogeochemical processes. 

Some current modeling approaches that focus on subsurface HSHMs assume simplified 

hydrologic structures (e.g., homogeneous and isotropic domains) in quantifying contaminant fate 

and transport in the subsurface. However, such an assumption neglects the effect of the 

heterogeneity in the subsurface, leading to the underestimation of the uncertainties in the HSHM 

occurrences. Thus, in this section, we focus on HSHM applications in groundwater hydrology, 

with a particular emphasis on spatial variability in the subsurface. Specifically, we consider 

several situations often encountered in groundwater contamination studies and present the 

indicator statistical formulations of HSHMs. With these results, we can determine the probability 

of HSHMs occurrences in the subsurface at a given time and space. Further, we are able to 
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determine how spatial variability influences HSHM occurrences and how this is translated into 

environmental health risks.  

 

2.4.1 Importance of spatial variability in the subsurface 

The heterogeneous structure of hydraulic conductivity leads to significant variability in the 

contaminant transport in the subsurface, which further results in the heterogeneity of 

biogeochemical cycling, such as the development of NRZs, reactive facies, and heterogeneity in 

aquifers’ reactivity (Li et al., 2010; Loschko et al., 2016; Sassen et al., 2012; Wainwright et al., 

2015).  

Figure 2.2 demonstrates the uncertainty associated with HSHMs by looking at the flow 

fields in two-dimensional log-hydraulic conductivity (𝑌 = 𝑙𝑛 (𝐾))  fields with streamlines 

resulting from a uniform mean head gradient, left to right. The three panels differ in terms of the 

variance, 𝜎𝑌
2, of the log-conductivity. The covariance function used for generating the fields is 

exponential and isotropic. 𝜎𝑌
2 is shown to have a profound impact upon the conductivity field. As 

the variance increases, regions of high and low log-conductivity emerge, creating preferential 

flow paths bypassing the low conductivity zones as shown by particle trajectories. At smaller 

variance (i.e., 𝜎𝑌
2 = 0.1), particles mainly travel along the mean flow direction with very limited 

departure from the mean trajectory, which are the straight lines connecting the left and right 

boundaries. In this situation, the arrival times of solute particles to critical locations (i.e., 𝜴∗))are 

predictable. With large variances (i.e., 𝜎𝑌
2 = 2), the streamlines assume a very irregular, hard-to-

predict geometry, and we can observe the emergence of flow channels, where particles can move 

fast, next to stagnant flow regions. Arrival times become more uncertain, because the exact 

geometry of the streamlines is hard to predict unless the Y field is known deterministically. 

However, in another realization of the 𝑌 field, the situation may be totally different, resulting in 

significant uncertainties in predicting the particle travel times. Thus, spatial variability of log-

conductivity is a major uncertainty-inducing factor, by extension, obviating the need for 

stochastic modeling of HSHMs in situations where the associated processes and attributes are 

subject to uncertainty. In the following sections, we will present illustrative examples to analyze 

how subsurface spatial variability influences < 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗) > , including variance and 

anisotropy ratio of the log-conductivity.  
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Figure 2.2 Illustrative example of a heterogeneous log-hydraulic conductivity field and solute particle 

transport. Black lines represent simulated particle travel paths.  

 

2.4.2 Geostatistics and Lagrangian Approaches to Flow and Solute Transport 

Assuming steady, uniform in the average flow with mild heterogeneity of the log-hydraulic 

conductivity field with Gaussian displacement, the displacement pdf in the longitudinal direction 

(𝑥1) is given by the following equation (Dagan and Nguyen, 1989; Dagan and Rubin, 1992): 
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𝑓𝑋1(𝑡∗)(𝑥1) =
1

√2𝜋𝑋11(𝑡∗)
exp [−

1

2

(𝑥1 − 𝑈𝑡
∗)2

𝑋11(𝑡∗)
].                                     (2.17) 

Additionally, the displacement pdf in the transverse directions (𝑥2 and 𝑥3) is given by 

𝑓𝑋𝑖(𝑡∗)(𝑥𝑖) =
1

√2𝜋𝑋𝑖𝑖(𝑡∗)
exp [−

1

2

𝑥𝑖
2

𝑋𝑖𝑖(𝑡∗)
] , 𝑖 = 2,3.                                     (2.18) 

Dagan (1984) developed a solution for the displacement variances for an exponential and 

axisymmetric covariance function:  

 𝐶𝑌(𝒓) = 〈(𝑌(𝒙) − 〈𝑌〉) (𝑌(𝒙 + 𝒓) − 〈𝑌〉)〉 = 𝑒𝑥𝑝 [−√
𝑟1 
2+𝑟2

2

𝐼𝑌ℎ
2 +

𝑟3
2

𝐼𝑌𝑣
2  ] ,               (2.19) 

𝑋11 = 𝜎𝑌
2𝐼𝑌
2 {2𝑡∗ + 2[exp(−𝑡∗) − 1]

+ 8𝑒∫ [𝐽0̅(𝐾𝑡
∗) − 1]

∞

0

× [
1

(1 + 𝐾2 − 𝑒2𝐾2)2
−

𝑒𝐾

(1 + 𝐾2 − 𝑒2𝐾2)2(1 + 𝐾2)0.5

−
𝑒𝐾

2(1 + 𝐾2 − 𝑒2𝐾2)(1 + 𝐾2)1.5
] 𝑑𝐾 − 2𝑒∫ [

∞

0

𝐽0̅(𝐾𝑡
∗) −

𝐽1̅(𝐾𝑡
∗)

𝐾𝑡∗
−
1

2
] 

 

× [
𝑒3𝐾3(𝑒2𝐾2 − 5 − 5𝐾2)

(𝑒2𝐾2 − 1 − 𝐾2)1.5
+
1 + 𝐾2 − 5𝑒2𝐾2

(1 + 𝐾2 − 𝑒2𝐾2)3
] 𝑑𝐾,                               (2.20) 

 

𝑋22 = −2𝑒𝜎𝑌
2𝐼𝑌
2 

∫ [
𝐽1̅(𝐾𝑡

∗)

𝑡∗
−
𝐾

2
] [

𝑒3𝐾2(𝑒2𝐾2 − 5𝐾2 − 5)

(𝑒2𝐾2 − 1 − 𝐾2)3(1 + 𝐾2)1.5
+

1 + 𝐾2 − 5𝑒2𝐾2

𝐾(1 + 𝐾2 − 𝑒2𝐾2)
] 𝑑𝐾,   (2.21)

∞

0

 

𝑋33 = −4𝑒𝜎𝑌
2𝐼𝑌
2∫ [𝐽0̅(𝐾𝑡

∗) − 1]
∞

0

 

× {
1

(𝑒2𝐾2 − 1 − 𝐾2)2
[
1

2
+

2𝑒2𝐾2

1 + 𝐾2 − 𝑒2𝐾2
+

𝑒𝐾(𝑒2𝐾2 + 3 + 3𝐾2)

2(𝑒2𝐾2 − 1 − 𝐾2)(1 + 𝐾2)0.5
]} 𝑑𝐾.   (2.22) 

where 𝒓 is the two-point separation distance and 〈𝑌〉 the ensemble mean of the log-conductivity 

𝑌 = ln𝐾.  𝐽0̅ and 𝐽1̅ are, respectively, the zero and first order of the first kind Bessel functions.  

 Dagan (1984) provided analytical solutions for longitude and transverse displacement 

variances. This is a special case for the anisotropic case with 𝑒 = 1.The solutions are as follows:  

𝑋11 = 𝜎𝑌
2𝐼𝑌
2 {2𝑡∗ − 2 ∗ [

8

3
−
4

𝑡∗
+
8

𝑡∗3
−
8

𝑡∗2
(1 +

1

𝑡∗
) exp(−𝑡∗)]}.                        (2.23) 

𝑋22 = 𝑋33 = 2𝜎𝑌
2𝐼𝑌
2 [
1

3
−
1

𝑡∗
+
4

𝑡∗3
− (

4

𝑡∗3
+
4

𝑡∗2
+
1

𝑡∗
) exp(−𝑡∗)].                     (2.24) 

 

2.5 Case studies and expansions of indicators 
2.5.1 Single-particle 𝑰𝒅 within 𝜴∗ 

Consider the case of a point source release of non-reactive tracer originating from (𝒙𝟎, 𝑡0).  
The dynamic indicator depends on parcel being within 𝜴∗ at time 𝑡∗ or not. If local (pore scale) 

dispersion is neglected, the dynamic indicator is defined as follows:   
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𝐼𝑑(𝜴
∗, 𝑡∗) = {

1,                       𝑖𝑓 𝑿(𝒕∗) ⊆ 𝜴∗ 𝑎𝑡 𝑡∗

0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
,                                      (2.25) 

given that the particle does not change its volume while traveling. The expected value of this 

dynamic indicator at 𝑡∗ is therefore: 

                      < 𝐼𝑑(𝜴
∗, 𝑡∗) >= ∫ 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0)𝑑𝒂

Ω∗
,                                               (2.26) 

where 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0) is the probability distribution function (pdf) of the particle’s trajectory at 

𝑡∗ (Dagan & Nguyen, 1989; Rubin, 2003). Other situations may be addressed by using the same 

framework. For example, for an instantaneous injection within a source volume 𝑉0, the ensemble 

mean of the dynamic indicator assumes the following form: 

< 𝐼𝑑(𝜴
∗, 𝑡∗) >=

1

𝑉0
∫ ∫ 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0)𝑑𝒂𝑑𝒙0

Ω∗𝑉0

.                                    (2.27) 

2.5.2 Concentration-based 𝑰𝒅 within 𝜴∗   
When considering local dispersion, or in case of a reactive tracer, the condition that the 

particle is inside the volume 𝜴∗  does not suffice to define the dynamic indicator and a 

concentration threshold 𝐶𝑡ℎ should be introduced: 

𝐼𝑑(𝜴
∗, 𝑡∗) = {

1,      𝑖𝑓 𝑿(𝑡∗; 𝒙0, 𝑡0) ⊆ 𝜴∗ 𝑎𝑛𝑑 𝐶(𝑿, 𝑡∗) > 𝐶𝑡ℎ
0,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          

.                             (2.28) 

In the absence of local dispersion and for a reactive solute decaying at a (spatially) constant 

rate 𝑘, the ensemble mean assumes the following expression (Cvetkovic & Shapiro, 1990): 

< 𝐼𝑑(𝜴
∗, 𝑡∗) >= {1 − 𝐻 [𝑡∗ −

1

𝑘
ln (

𝐶0
𝐶𝑡ℎ
)]}∫ 𝑓𝑿(𝒕∗)(𝒂|𝒙0, 𝑡0)𝑑𝒂

Ω∗
,                          (2.29) 

where 𝐶0 is the initial concentration and 𝐻[∙] is the Heaviside step function. The ensemble mean 

(2.29) is the product of the probability that the particle assumes a concentration larger than the 

threshold at 𝑡∗ (given that reaction rate 𝑘 is constant, this probability is either 0 or 1) and the 

probability that at the same time 𝑡∗ the particle is within the hot spot 𝜴∗. In other words, equation 

(2.29) expresses the fact that a particle inside 𝜴∗  contributes to the hot moment only if its 

concentration is greater than the threshold. Equation (2.29) can be generalized to the cases of 

instantaneous injection into a source of volume 𝑉0, as discussed before for the non-reactive case. 

For other complex situations, such as that in which 𝑘 is spatially variable and complex reaction 

networks, the ensemble mean of the indicators can be addressed by equation (2.16) in a Monte 

Carlo framework.  

2.5.3 Assessing the duration of hot moment and probabilities 

The probability that the hot moment persists over the interval [𝑡1, 𝑡2] at 𝜴∗ can be formally 

computed as follows: 

< 𝐼𝑑(𝜴
∗, 𝑡1, 𝑡2) >= 𝑃(𝑡1, 𝜴

∗)𝑃(𝑡2|𝑡1, 𝜴
∗),                                       (2.30) 

where 𝑃(𝑡1, 𝜴
∗) is the probability that the particle is inside 𝜴∗ at time 𝑡∗ = 𝑡1 and 𝑃(𝑡2|𝑡1, 𝜴

∗) is 

the probability that the particle is still inside 𝜴∗ at time 𝑡∗ = 𝑡2,  provided that at time 𝑡1, it was 

also inside 𝜴∗ . If the particle exits 𝜴∗  during interval [𝑡1, 𝑡2], this time interval will not be 

qualified as hot moment; and thus the probability computation needs to ensure the particle stays 

within 𝜴∗ during the entire time interval.  

 Under the First-Order Approximation (FOA) (see e.g., Dagan, 1989; Gelhar 1993; Rubin, 

2003), the pdf of the particle displacement is normal with mean < 𝑿(𝑡∗; 𝒙𝟎, 𝑡0) > and auto-

covariance tensor of the residual displacements 𝑿′(𝑡∗) = 𝑿(𝑡∗) − 〈𝑿(𝑡∗)〉  defined by 



CHAPTER 2: STATISTICAL CHARACTERIZATION OF ENVIRONMENTAL HOT SPOTS AND HOT MOMENTS 

WITH APPLICATIONS IN GROUNDWATER HYDROLOGY                                                                                    21 
 

 
 

𝑿𝑖𝑗(𝑡
∗; 𝒙0, 𝑡0) =  〈𝑿𝑖

′(𝑡∗; 𝒙0, 𝑡0)𝑿𝑗
′(𝑡∗; 𝒙0, 𝑡0)〉, 𝑖, 𝑗 = 1, 2, 3. For simplicity in the following, we 

assume 𝒙0 = 0 𝑎𝑛𝑑 𝑡0 = 0. Under these assumptions, 

< 𝐼𝑑(𝜴
∗, 𝑡1, 𝑡2) >= ∫ ∫ 𝑓𝑿(𝑡1)(𝒂)𝑓𝑿(𝑡2)

𝑐 ( 𝒃|𝑿(𝑡1) = 𝒂) 𝑑𝒃 𝑑𝒂
𝜴∗𝜴∗

,                 (2.31) 

where the conditional pdf 𝑓𝑿(𝑡2)
𝑐 (𝒃|𝑿(𝑡1) = 𝒂)  is multi-normally distributed with conditional 

mean and variance tensor given by  

〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉 = < 𝑿(𝑡2) > 

+𝐶𝑜𝑣[𝑿′(𝑡2), 𝑿
′(𝑡1)] ∙ 𝑉𝑎𝑟[𝑿

′(𝑡1)]
−1 ∙ (𝒂−< 𝑿(𝑡1) >),                         (2.32) 

and 

𝝈(𝑡1, 𝑡2) = 𝑉𝑎𝑟[𝑿′(𝑡2)] −  𝐶𝑜𝑣[𝑿
′(𝑡2), 𝑿

′(𝑡1)] ∙ 𝑉𝑎𝑟[𝑿
′(𝑡1)]

−1  ∙ 𝐶𝑜𝑣[𝑿′(𝑡1), 𝑿
′(𝑡2)], (2.33)  

respectively, which further yields the following,  

𝑓𝑿(𝑡2)
𝑐 ( 𝒃|𝑿(𝑡1) = 𝒂) 

= 𝑒𝑥𝑝 [−
1

2
 [𝒃 − 〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉]𝑇 ∙  𝝈(𝑡1, 𝑡2)

−1 ∙  [𝒃 − 〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉] ] 

∗ {8 𝜋3  ∙ |𝝈(𝑡1, 𝑡2)|}
−
1

2 ,                                                   (2.34)   
where |⋅| indicates the determinant, 𝑒𝑥𝑝 is the exponential function and the exponent T indicates 

the transpose of the vector. 

 In equations (2.31) and (2.32), 𝑿′(𝑡∗) = 𝑿(𝑡∗) − 〈𝑿(𝑡∗)〉 stands for the departure of the 

particle’s displacement with respect to the ensemble mean trajectory, and 𝑉𝑎𝑟[𝑿]−1 is the auto-

covariance tensor of the residual displacement whose elements are defined above. Similarly, 

𝐶𝑜𝑣[𝑿′(𝑡1), 𝑿
′(𝑡2)]  is the covariance tensor of residual displacement which elements are: 

𝑿𝑖𝑗(𝑡1, 𝑡2; 𝒙𝟎, 𝑡0) = 〈𝑋𝑖
′(𝑡1) 𝑋𝑗

′(𝑡2)〉, 𝑖, 𝑗 = 1, 2, 3. Note that in the general three-dimensional case 

〈𝑿(𝑡2)| 𝑿(𝑡1) = 𝒂)〉  is a three-dimensional vector and 𝝈(𝑡1, 𝑡2) is a 3 × 3 second-order tensor.  

For 𝑡2 → 𝑡1 , 𝑓𝑋(𝑡2)[𝒃|𝑿(𝑡1) = 𝒂] →  𝛿(𝒃) , where 𝛿(∙)  is the Dirac Delta, such that 

𝑃(𝑡2|𝑡1, 𝜴
∗) → 1. On the other hand, for 𝑡2 ≫ 𝑡1, 𝐶𝑜𝑣[𝑿′(𝑡1), 𝑿

′(𝑡2)] → 0 and 𝑃(𝑡2|𝑡1, 𝜴
∗) →

𝑃(𝑡2, 𝜴
∗) the marginal probability that the particle is within 𝜴∗ at time 𝑡∗ = 𝑡2. Equations (2.31) 

to (2.34) are obtained under the FOA approximation and assuming that the particle can enter 𝜴∗ 
only once. Such assumption is needed to obtain analytical solutions and is reasonable for 

situations with small to mild subsurface heterogeneity (e.g., 𝜎𝑌
2 ≤ 1.6) , such as the cases 

presented in Bellin et al. (1992, 1994); Cvetkovic et al. (1992). In particular, FOA assumes small 

heterogeneity and under this assumption the particle trajectory deviates slightly from its 

ensemble mean, which is directed along the regional hydraulic head gradient. For a regular 

volume 𝜴∗,  this reduces the probability of the particle entering the hot spot more than once. This 

probability reduces further if in horizontal and vertical transverse directions  𝜴∗ is much larger 

than the respective integral scales, because the probability of observing negative longitudinal 

velocity components (i.e., along the mean flow field) is much smaller than in the transverse 

directions (Bellin et al., 1992) and vanishes as formation heterogeneity reduces.  

 If the hotspot 𝜴∗ is the volume confined between two planes at 𝑥1 −
𝑙1

2
  and 𝑥1 +

𝑙1

2
 , with the 

other two dimensions much larger than the transverse horizontal and vertical integral scales: 

𝑙2 ≫ 𝐼ℎ , 𝑙3 ≫ 𝐼𝑣, equation (2.34) simplifies to: 

< 𝐼𝑑(𝜴
∗, 𝑡1, 𝑡2) >= ∫ ∫ 𝑓𝑋1(𝑡∗)(𝑎1)𝑓𝑋𝟏(𝑡∗)

𝑐 ( 𝑏1|𝑋1(𝑡1) = 𝑎1) 𝑑𝑏1 𝑑𝑎1

𝑥1+
𝑙1
2

𝑥1−
𝑙1
2

𝑥1+
𝑙1
2

𝑥1−
𝑙1
2

,   (2.35) 
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where 𝑋1 is the longitudinal component of the particle’s trajectory and 𝑓𝑋1(𝑡∗)
𝑐  is its conditional 

pdf, which is normal with conditional mean and variance given by 

𝜇[𝑎1] =  〈𝑋1(𝑡2)| 𝑋1(𝑡1) = 𝑎1)〉 = < 𝑋1(𝑡2) > +
𝑋11(𝑡1, 𝑡2)

𝑋11(𝑡1)
 (𝑋1(𝑡1)−< 𝑋1(𝑡1) >), (2.36) 

and 

𝜎2(𝑡1, 𝑡2) =  𝑋11(𝑡2) − 
𝑋11(𝑡1, 𝑡2)

2

𝑋11(𝑡1)
,                                                  (2.37) 

respectively. Consequently, 𝑓𝑋𝑐(𝑡∗) in equation (2.35) assumes the following form: 

𝑓𝑋1(𝑡∗)
𝑐 (𝑏1|𝑋1(𝑡1) = 𝑎1) =

1

√2 𝜋 𝜎(𝑡1, 𝑡2)
𝐸𝑥𝑝 [−

1

2
(𝑏1 − 𝜇[𝑎1])

2 𝜎(𝑡1, 𝑡2)
−1].            (2.38) 

Substituting equation (2.37) into equation (2.35) allows us to compute  < 𝐼𝑑(𝜴
∗, 𝑡1, 𝑡2) >. For 

situations where the FOA assumptions are not valid (e.g., large heterogeneity), Monte Carlo 

simulation framework is still applicable as alternative approach to construct the dynamics 

indicators (see equation 16).  

2.6 Illustrative example and indicator formulation 
Following sections 2.5.1 and 2.5.2, we present here synthetic case studies that demonstrate 

the statistical formulation of the indicators using methods developed in stochastic hydrogeology. 

The choice of the synthetic case studies does not limit our approaches to broader applications 

where stochastic modeling with Monte Carlo simulations are applicable. In most applications, 

the locations of hot spots (𝜴∗) are determined by static indicators, such as riparian hollows 

(Duncan et al., 2013) and reactive facies (Sassen et al., 2012), and NRZs (Wainwright et al., 

2015). The static indicator is constructed according to the corresponding critical conditions 

provided by ancillary data such as topography, remote sensing, and/or geophysical data. Hence, 

in this case, assuming the boundaries of 𝜴∗ are determined by a static indicator, we consider a 

hot spot (𝜴∗) to be confined within the following volume: 𝑤1 ≤ 𝑥1 ≤ 𝑤1
′ ; 𝑤2 ≤ 𝑥2 ≤ 𝑤2

′ ; 𝑤3 ≤
𝑥3 ≤ 𝑤3

′ .   

 
Figure 2.3 Configuration of the synthetic case study. Parcels originate from source denoted by star. Yellow 

lines represent potential trajectories. Red cube is assumed to be hot spot location, 𝜴∗. 
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Given this case, the hot moment will be triggered only when the contaminant particle is 

found within 𝜴∗. The probability of finding the contaminant particle within 𝜴∗ is given by 

𝑝𝑟𝑜𝑏 {𝑿(𝑡∗) ⊆ 𝜴∗ } 

=∏𝑝𝑟𝑜𝑏{𝑤𝑖 ≤ 𝑋𝑖(𝑡
∗) ≤ 𝑤𝑖

′} =∏ ∫ 𝑓𝑋𝑖(𝑡∗)(𝑎𝑖|𝑥0, 𝑡0)𝑑𝑎𝑖

𝑤𝑖
′

𝑤𝑖

𝑚

𝑖=1

,                

𝑚

𝑖=1

(2.39) 

where m denotes the space dimensionality. Equation (2.39) defines the dynamic indicator for this 

case. If 𝜴∗  is already identified as a hot spot location, then equation (2.39) provides <
𝐼𝐻𝑆𝐻𝑀(𝜴

∗, 𝑡∗) > . Otherwise, the static indicator should be incorporated to determine the 

boundaries of 𝜴∗  in order to compute < 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗) > as shown in equation (2.10) where 

geophysical data is used to identify the spatial context of 𝜴∗. If we also assume steady, uniform 

in the average flow with mild heterogeneity of the log hydraulic conductivity field with Gaussian 

displacement pdf—then we can compute  < 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗) > analytically using the following 

equation: 

< 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗) >=< 𝐼𝑠(𝜴

∗) > < (𝐼𝑑(𝜴
∗, 𝑡∗) > 

= 𝑝𝑟𝑜𝑏(𝐼𝑑(𝜴
∗, 𝑡∗) = 1) =  𝑝𝑟𝑜𝑏 {𝑋(𝑡∗) ⊆ 𝜴∗ } 

=∏ ∫ 𝑓𝑋𝑖(𝑡∗)(𝑎𝑖|𝑥0, 𝑡0)𝑑𝑎𝑖

𝑤𝑖
′

𝑤𝑖

𝑚

𝑖=1

= ∫ 𝑓𝑋1(𝑡∗)(𝑎1|𝑥0, 𝑡0)𝑑𝑎1

𝑤1
′

𝑤1

∫ 𝑓𝑋2(𝑡∗)(𝑎2|𝑥0, 𝑡0)𝑑𝑎2

𝑤2
′

𝑤2

∫ 𝑓𝑋3(𝑡∗)(𝑎3|𝑥0, 𝑡0)𝑑𝑎3

𝑤3
′

𝑤3

  

=
1

(2𝜋)
3
2√𝑋11(𝑡∗)𝑋22(𝑡∗)𝑋33(𝑡∗)

∫ exp [−
1

2

(𝑎1 − 𝑈𝑡
∗)2

𝑋11(𝑡∗)
]

𝑤1
′

𝑤1

𝑑𝑎1 

∗ ∫ exp [−
1

2

𝑎2
2

𝑋22(𝑡∗)
] 𝑑𝑎2

𝑤2
′

𝑤2

∫ exp [−
1

2

𝑎3
2

𝑋33(𝑡∗)
] 𝑑𝑎3.

𝑤3
′

𝑤3

                              (2.40) 

which can be integrated to yield : 

< 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝑡∗) > =  

1

8
[𝑒𝑟𝑓𝑐 (

𝑤1 − 𝑈𝑡
∗

√2𝑋11(𝑡∗)
) − 𝑒𝑟𝑓𝑐 (

𝑤1
′ − 𝑈𝑡∗

√2𝑋11(𝑡∗)
)] 

 

∗ [𝑒𝑟𝑓𝑐 (
𝑤2

√2𝑋22(𝑡∗)
) − 𝑒𝑟𝑓𝑐 (

𝑤2
′

√2𝑋22(𝑡∗)
)] ∗ 

[𝑒𝑟𝑓𝑐 (
𝑤3

√2𝑋33(𝑡∗)
) − 𝑒𝑟𝑓𝑐 (

𝑤3
′

√2𝑋33(𝑡∗)
)].                                   (2.41) 

The form of the displacement variances is controlled by the spatial distribution of the 

hydraulic conductivity in the subsurface. Equations (2.17)-(2.24) of the appendix show the 

displacement variances for an axisymmetric exponential covariance function of the log-

conductivity (2.20).  

2.7 Implications for HSHMs 
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In the following sections, we present the results from the case study described in section 2.6. 

Specifically, in section 2.7.1 and 2.7.2, we explore how heterogeneity of log-hydraulic 

conductivity influences the probability of HSHM occurrences. To make results as general as 

possible, lengths are made dimensionless with respect to the integral scales (𝐼𝑌ℎ  in the two 

horizontal directions and 𝐼𝑌𝑣  in the vertical one) and time with respect to the following advective 

time scale: 𝐼𝑌ℎ/𝑈, where 𝑈 is the mean velocity). In the following, we explore the effect of the 

remaining parameters, i.e. the anisotropy ratio 𝑒 =
𝐼𝑌𝑉

𝐼𝑌𝐻
  and the variance of the log-conductivity 

𝜎𝑌
2, on the emergence of HSHM. We placed 𝜴∗ along the mean trajectory at (21𝐼𝑌𝐻, 0, 0) with 

dimensions as (2𝐼𝑌𝐻, 2𝐼𝑌𝐻, 2𝐼𝑌𝑉). The dimensions of the hot spot are therefore of two integral 

scales in the three coordinate directions (𝑥1, 𝑥2, 𝑥3)and is placed at a dimensionless distance of 

21 from the point source. 

2.7.1 Dependence of < 𝑰𝑯𝑺𝑯𝑴(𝜴
∗, 𝝉) > on variance in the spatial correlation structure of 

the log-conductivity  

 
Figure 2.4 Dependence of < 𝑰𝑯𝑺𝑯𝑴(𝜴

∗, 𝝉) > on 𝝈𝒀
𝟐 . Smaller 𝝈𝒀

𝟐  lead to greater peak  < 𝑰𝑯𝑺𝑯𝑴(𝜴
∗, 𝝉) > and less 

spread over time, whereas greater 𝝈𝒀
𝟐  and greater spread of < 𝑰𝑯𝑺𝑯𝑴(𝜴

∗, 𝝉) > over time are observed. 

Isotropic heterogeneity (𝑒 = 1 and the particle moments given by Eqs. (2.23) and (2.24)) 

was considered to investigate the dependence of < 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝜏) > on 𝜎𝑌

2 with results presented 

in Figure 2.4. 𝜏 = 𝑡𝑈/𝐼𝑌ℎ   is the dimensionless time. At early time (e.g., 𝜏 < 5 ), larger 

probability < 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝜏) >  is observed with increase in 𝜎𝑌

2 . At intermediate time, i.e., at 

times comparable with the mean travel time 𝜏 = 21, < 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝜏) >  is inversely proportional 

to 𝜎𝑌
2. At late time (e.g., 𝜏 > 40), the largest < 𝐼𝐻𝑆𝐻𝑀(𝜴

∗, 𝜏) >  occurs at intermediate 𝜎𝑌
2. We 

observe that 𝜎𝑌
2 regulates the timing of the peak in  < 𝐼𝐻𝑆𝐻𝑀(𝜴

∗, 𝜏) > , which is located in the 
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proximity of the mean travel time, 𝜏 = 21, for weak heterogeneity, and shifts towards earlier 

times as 𝜎𝑌
2 increases.  

These effects relate to the relationship between travel times (from the source to 𝜴∗) and 𝜎𝑌
2. 

The key point to note is that 𝜎𝑌
2 controls the spread of the travel time around the mean travel 

time. Larger variance enhances channeling effects (Fiori & Jankovic, 2012; Moreno & Tsang, 

1994, also in Figue 2), which in turn enables earlier arrival times. But at the same time, large 𝜎𝑌
2 

also leads to the low-conductivity zones. Streamlines of the solute tend to bypass low hydraulic 

conductivity zones; however, the small amount of solute that actually penetrates these zones by 

advection and diffusion gets trapped for long time before being released and this results in an 

extended tailing with low concentration and therefore low < 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝜏) >. Thus, with an 

increase in 𝜎𝑌
2, we notice an increase in the probability to observe both increasingly earlier and 

increasingly delayed arrival times, which widens the probability distribution. On the contrary at 

small variance, particles deviate little from the ensemble mean trajectory, because of the small 

contrast in conductivity between high and low conductivity zones. This results in small particle 

spreading and travel times that differ only slightly from the mean travel time (𝜏 = 21), and a 

probability distribution with less spread around the mean, where the peak is observed.  

In summary, hydraulic conductivity contrast between low and high conductive lithofacies 

increases with 𝜎𝑌
2, leading to the emergence of organized high conductivity pathways sneaking 

through surrounding low conductivity zones with the latter acting as “trapping” elements. This 

causes the emergence of both early and late arrival times. Early arrival times are controlled by 

the connected high conductivity pathways and the late arrival times are influenced by the low 

conductivity zones, which act as low-release reservoirs for solutes.  

2.7.2 Dependence of < 𝑰𝑯𝑺𝑯𝑴(𝜴
∗, 𝝉) > on on anisotropy in the spatial correlation structure 

of the log-hydraulic conductivity 
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Figure 2.5 Dependence of < 𝑰𝑯𝑺𝑯𝑴(𝜴

∗, 𝝉) > on 𝒆. This figure shows that with increasing 𝒆, peak <
𝑰𝑯𝑺𝑯𝑴(𝜴

∗, 𝝉) > decreases. Magnitude of 𝒆 does not contribute to the timing of peak < 𝑰𝑯𝑺𝑯𝑴(𝜴
∗, 𝝉) >.  

The discussion here (accompanying Figure 2.5) focuses on the impact of the anisotropy ratio 

in the correlation structure (𝑒, defined above) on the HSHM probabilities. The anisotropy ratio, 

𝑒 , provides an indication about the persistence of the log-conductivity (𝑌 ) in the various 

directions. The spatial correlation model used here for demonstration is that of axis-symmetry, 

which is common to sedimentary formations (Dagan, 1989; Rubin, 2003), with 𝑒 providing the 

ratio between the persistence of 𝑌 in the vertical (𝑥3) direction, represented by 𝐼𝑌𝑉, and the ones 

on the horizontal plane (𝑥1 − 𝑥2), represented by 𝐼𝑌𝐻. In unconsolidated sedimentary formations, 

𝐼𝑌𝑉 is typically smaller than 𝐼𝑌𝐻 by as much as one order of magnitude, due to the different time 

scales of the depositional process taking place in the horizontal and vertical directions, which 

leads to thin and elongated lithofacies and consequently to a much smaller persistence of 𝑌 

values in normal to the horizontal plane (Miall, 1985, 1988; Ritzi et al., 2004). 

Figure 2.5 compares < 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝜏) > between formations defined by different anisotropy 

ratios and different 𝜎𝑌
2 . It shows that we have two factors to consider when explaining the 

differences in < 𝐼𝐻𝑆𝐻𝑀(𝜴
∗, 𝜏) >. First factor, as discussed earlier, is the expansion in the range 

of travel times due to increase in 𝜎𝑌
2. With larger variance, we observe higher probabilities for 

departure of the travel times away from the average. The anisotropy ratio 𝑒 adds a compounding 

factor. To understand its effect, we should recall the analyses of lateral displacement variances of 

solute particles moving in heterogeneous formations (cf., Dagan, 1989, and equations 2.17 to 

2.24 here), showing that smaller 𝑒  leads to smaller lateral (both vertical and horizontal) 

displacement variances, implying smaller probabilities for lateral departures from the mean flow 

trajectory. Smaller 𝑒 limits lateral spread, and increases the probability of particle to enter 𝜴∗ , 
sooner or later, and to trigger HSHM.  The effect could also be viewed as a channeling effect of 
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sorts: smaller 𝑒  implies 𝑌  blocks of small aspect ratio (i.e., long but thin elements), which 

provide fast tracks for particles when defined by high 𝑌 values, while blocking lateral spreads 

when defined by low 𝑌 values.  

There are a few additional things to note here for completeness. First, 𝜴∗  in the present 

analysis is located downstream from the source, along with the mean trajectory of the solute 

displacement. We expect different results in situations where 𝜴∗ is positioned at an offset with 

respect to the mean flow direction. Second, we note that the analytical models used to compute 

the displacement statistics are formally limited to smaller variance (𝜎𝑌
2 < 1), although they are 

shown to provide good approximations for large variances (Bellin et al., 1992). Third, the 

stochastic formulation provides the theoretical and computational formalism for conditioning the  

probabilities on in-situ measurements (Copty et al., 1993; Ezzedine & Rubin, 1996; Hubbard et 

al., 1997; Maxwell et al., 1999; Rubin, 1991a; Rubin et al., 1992; Rubin & Dagan, 1992) as well 

as on information  borrowed from similar sites (Li et al., 2018; Cucchi et al., 2019).  

2.8 Discussion and Summary 
In this chapter, we developed a general stochastic framework that could be used to 

characterize the spatiotemporal distribution of environmental Hot Spots Hot Moments (HSHMs), 

with groundwater applications. The stochastic formulation is built around the following 

principles: 

 The HSHMs are defined as random variables and the goal is to derive their stochastic 

distribution in terms of the relevant processes and attributes. 

 HSHMs processes cover the dynamic components of the HSHMs. An example could be 

the transport of solutes and reactants. HSHMs attributes refer to the static components of 

the HSHMs, e.g., in situations related to the nitrogen cycles, attributes could represent 

pyrite concentrations or naturally-reducing zones. HSHMs could be defined through the 

confluence of a variety of contributors, both static and dynamic.  

 The processes and attributes are modeled as stochastic processes and random variables, 

respectively, based on the underlying physics.  

 The static contributors are modeled stochastically using geostatistical space random 

functions. 

 The dynamic contributors are modeled stochastically using probability distribution 

functions derived from the underlying mathematical-physical models.  

 Several HSHMs categories are defined, based on the contributing factors, as follows: 

HSHMs defined by dynamic contributors only, HSHMs defined by static contributors, 

and most commonly, HSHMs requiring the coupling of static and dynamic contributors. 

The HSHMs stochastic formulations are expressed in terms of the stochastic formulations 

of the relevant contributors.  

 We provided a detailed review of multiple HSHMs and showed how they relate to our 

definitions.  

The framework we proposed in this chapter is advantageous in that it allows to calculate the 

uncertainty associated with HSHMs based on the uncertainty associated with its contributors. 

Additionally, it provides a formalism, well established by Bayesian theory, for conditioning the 

HSHM probabilities on in-situ measurements as well as on information borrowed from 

geologically and otherwise similar sites.  

We demonstrated our proposed approach through applications in the area of subsurface 

transport and hydrogeology, focusing on the impacts of subsurface heterogeneity on HSHMs. 

We analyzed, quantitatively, how subsurface heterogeneity of the conductivity field controls the 
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HSHM statistics, for example, the time expected for the probability of the HSHM to occur to 

reach a-priori set thresholds or time to peak probability.  

Lastly, as mentioned both here and in previous studies, statistical methods for quantifying 

the occurrences of HSHMs and the associated uncertainties are needed to advance our 

understanding of the mechanisms that cause HSHMs, as well as to enhance our ability to predict 

HSHMs and manage their consequences.  
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Chapter 3 

 

 

A Deep-Learning Hybrid-Predictive-Modeling 

Approach for Estimating Evapotranspiration and 

Ecosystem Respiration and Assessing 

Watershed Hot Spots and Hot Moments 

 
3.1 Introduction 

Evapotranspiration (ET) and ecosystem respiration (𝑅𝐸𝐶𝑂)  are key components of 

ecosystem water and carbon cycles. ET is an important link between the water and energy cycles: 

dynamic changes in ET can affect precipitation, soil moisture, and surface temperature, leading 

to uncertain feedbacks in the environment (Jung et al., 2010; Seneviratne et al., 2006; Teuling et 

al., 2013). Thus, quantifying ET is particularly essential for improving our understanding of 

water and energy interactions and watershed response to abrupt and gradual changes in climate, 

which is critical for water resources management, agriculture, and other societal benefits 

(Anderson et al., 2012; Jung et al., 2010; Rungee et al., 2019; Viviroli et al., 2007; Viviroli & 

Weingartner, 2008). 𝑅𝐸𝐶𝑂  describes the sum of autotrophic respiration and respiration by 

heterotrophic microorganisms  in a specific ecosystem and plays a vital role in the response of 

terrestrial ecosystem to global change (Jung et al., 2017; Reichstein et al., 2005; Xu et al., 2004). 

As long term exchanges in 𝑅𝐸𝐶𝑂 have pivotal influences over the climate system (Cox et al., 

2000;  Gao et al., 2017; IPCC, 2019; Suleau et al., 2011), approaches are needed to estimate and 

monitor 𝑅𝐸𝐶𝑂 over relevant spatiotemporal scales. As described below, there are many different 

strategies for measuring and estimating ET and 𝑅𝐸𝐶𝑂 , each of which has advantages and 

limitations. The motivation for this chapter is the recognition that current methods cannot 

provide ET and 𝑅𝐸𝐶𝑂  at space and time scales needed to improve prediction of changing 

terrestrial system behavior, particularly in challenging mountainous watersheds.  
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Several ground-based approaches have been used to provide 𝑖𝑛 𝑠𝑖𝑡𝑢  estimates or 

measurements of ET and 𝑅𝐸𝐶𝑂. Ground based flux chambers capture and measure trace gases 

emitted from the land surface, which can be used to estimate ET and 𝑅𝐸𝐶𝑂  (Livingston & 

Hutchinson, 1995; Pumpanen et al., 2004). However, the microclimate of the environment is 

affected by the chamber, and the laborious acquisition process and small chamber size typically 

leads to information with coarse spatiotemporal resolution (Baldocchi, 2014). The eddy 

covariance method uses a tower with installed instruments to autonomously measure fluxes of 

trace gases between ecosystem and atmosphere (Baldocchi, 2014; Wilson et al., 2001). The 

covariance between the vertical velocity and mixing ratios of the target scalar is computed to 

obtain the fluxes of carbon, water vapor, and other trace gases emitted from the land surface. ET 

is then calculated from the latent heat flux, and 𝑅𝐸𝐶𝑂 is calculated from the net carbon fluxes 

using night-time or daytime partitioning approaches (van Gorsel et al., 2009; Lasslop et al., 2010; 

Reichstein et al., 2005). The spatial footprint of obtained fluxes is on the order of hundreds of 

meters, and the temporal resolution of the measurements range from hours to decades (K. B. 

Wilson et al., 2001). Such in situ measurements of fluxes have been integrated into the global 

network of Ameriflux (http://ameriflux.lbl.gov/) and FLUXNET 

(https://FLUXNET.fluxdata.org/), where such data have strongly supported scientists in process 

understanding and model development. Given the cost, efforts, and power required to install and 

maintain a flux tower, eddy covariance towers are typically sparse relative to the scale of study 

sites used to address ecosystem questions. Additionally, the location of a flux tower within a 

watershed greatly influences measurement representativeness. For example, eddy covariance 

towers are usually installed at valley bottoms of mountainous watersheds (Strachan et al., 2016), 

and estimates obtained there may not be representative of fluxes across a range of elevations or 

slope aspects within the watershed. The limited number of towers and their limited ability to 

sample different portions of a watershed thus limit the usefulness of flux towers for estimating 

ET and 𝑅𝐸𝐶𝑂 in high resolution over space and time.  

Physically-based models, which numerically represent land-surface energy and water 

balance, have also been used to estimate ET and 𝑅𝐸𝐶𝑂 (Tran et al., 2019). These physically-based 

models solve physical equations to simulate the exchanges of energy, heat, water and carbon 

across atmosphere-canopy-soil compartments. Examples include the Community Land Model 

(CLM, Oleson et al., 2013). Performance of these models depend on the accuracy of inputs and 

parameters, such as soil type and leaf area index, which can be difficult to obtain at sufficiently 

high spatiotemporal resolution. The lack of measurements to infer parameters needed for models 

often leads to large discrepancies between model-based and flux-tower-based ET and 𝑅𝐸𝐶𝑂 

estimates. Conceptual model uncertainty inherent in mechanistic models can also lead to ET and 

𝑅𝐸𝐶𝑂 estimation uncertainty and errors. For example, Keenan et al. (2019) suggested that current 

terrestrial carbon cycle models neglect inhibition of leaf respiration that occurs during daytime, 

which can result in a bias of up to 25%. These conceptual uncertainties, in addition to data 

sparseness and data uncertainty, further limit the applicability of physically-based models to 

estimate ET and 𝑅𝐸𝐶𝑂  at high spatiotemporal scales. Semi-analytical formulations based on 

combinations of meteorological and empirical parameters provide a reference condition for the 

water and energy balance. Examples used to estimate potential ET include the Budyko 

framework and its extensions (Budyko, 1961; Greve et al., 2015; Zhang et al., 2008); the 

Penman-Monteith’s equation (Allen et al., 1998), and the Priestley-Taylor equation (Priestley 

and Taylor, 1972). Actual ET can then be approximated by multiplying a coefficient associated 

http://ameriflux.lbl.gov/
https://fluxnet.fluxdata.org/
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with water deficit (De Bruin, 1983; Williams & Albertson, 2004). However, even with these 

empirical formulations many attributes are still difficult to obtain globally at high temporal 

scales, such as water-vapor deficit, leaf area index, and aerodynamic conductance of different 

plants.  

Remote sensing products, such as Landsat imagery (Irons et al., 2012) and the moderate-

resolution imaging spectroradiometer (MODIS, NASA. 2008), have also been integrated to 

estimate ET and 𝑅𝐸𝐶𝑂 with empirical, statistical, or semi-physical relations (Abatzoglou et al., 

2014; Daggers et al., 2018; Mohanty et al., 2017; Paca et al., 2019). Due to the high spatial 

coverage of remote sensing products, global-scale estimates of ET and 𝑅𝐸𝐶𝑂  have become 

feasible. For example, Ryu et al. (2011) proposed the Breathing Earth System Simulator 

approach, which integrates mechanistic models and MODIS data to quantify ET and GPP with a 

spatial resolution of 1-5 km and a temporal resolution of 8 days. Ai et al. (2018) extracted 

enhanced vegetation index, fraction of absorbed photosynthetically active radiation, and leaf area 

index from the MODIS dataset—and used the rate-temperature curve and strong correlations 

between terrestrial carbon exchange and temperature to estimate 𝑅𝐸𝐶𝑂 at 1 km spatial resolution 

and 8-day temporal resolution. Ma et al. (2018) developed a data fusion scheme that fused 

Landsat-like-scale datasets and MODIS data to estimate ET and irrigation water efficiency at a 

spatial scale of ~100 meters. However, even though remote sensing data cover large areas of the 

earth surface, they typically do not provide information over both high spatial and temporal 

resolution, and are also subject to cloudy conditions. For example, Landsat has average return 

periods of 16 days with a spatial resolution of 30 m (visible and near-infrared), whereas MODIS 

has 1-2 days temporal resolution with a 250 m or 1 km spatial resolution depending on the 

sensors. These resolutions are typically too coarse to enable exploration of how aspects such as 

plant phenology, snowmelt, and rainfall impact integrated ecosystem water and energy dynamics.  

Combining machine-learning models with remote sensing products and meteorological 

inputs offers another option for large-scale estimation of ET and 𝑅𝐸𝐶𝑂 . Remotely sensed data are 

good proxies for plant productivity and can be easily implemented into machine-learning models 

for ET and 𝑅𝐸𝐶𝑂 estimation, such as for an enhanced vegetation index, land surface water index 

and NDVI (Gao et al., 2015; Jägermeyr et al., 2014; Migliavacca et al., 2015). Li and Xiao (2019) 

developed a data-driven model for gross primary production at a spatial and temporal resolution 

of 0.05° and 8 days using MODIS and meterological reanalysis data. Berryman et al. (2018) 

demonstrated a Random Forest model to predict growing season soil respiration from subalpine 

forests in the Southern Rocky Mountains ecoregion. Jung et al. (2009) developed a model tree 

ensemble approach to upscale FLUXNET data, where they have successfully estimated ET and 

GPP. Other methods have used support vector machines, artificial neural networks, random 

forest, and piecewise regression (Bodesheim et al., 2018; Metzger et al., 2013; Xiao et al., 2014; 

T. Xu et al., 2018). These models were trained with ground-measured flux observations and 

other variables, and then applied to estimate ET over continental or global scales with remote 

sensing and meteorological inputs. Some of the most important inputs include the enhanced 

vegetation index, aridity index, temperature, and precipitation. However, the spatiotemporal 

resolution of these approaches is constrained by the resolution of remote sensing products and 

meteorological inputs. Additionally, parameters such as leaf area index, cloudiness, and the 

vegetation types required by those models may not be available at the required resolution, 

accuracy or location. For example, in systems that have significant elevation gradients, errors 
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may result when valley-based FLUXNET data are used for training and then applied to hillslope 

or ridge ET and 𝑅𝐸𝐶𝑂 estimation 

Development of hybrid models that link direct measurements and/or mechanistic models 

with data-driven methods can benefit ET and 𝑅𝐸𝐶𝑂 estimation (Reichstein et al., 2019). While 

remote sensing data that cover large regions provide promise for informing models, quantitative 

interpretation of these data needed for input into mechanistic models is still challenging 

(Reichstein et al., 2019). Physically-based models can provide estimates of ET and 𝑅𝐸𝐶𝑂, but the 

estimate error can be high, owing to parametric, structural, and conceptual uncertainties as 

described above. Hybrid data-driven frameworks are potentially advantageous because they 

enable the integration of remote sensing datasets, meteorological forcings, and mechanistic 

model outputs of ET and 𝑅𝐸𝐶𝑂 into one model. Machine-learning approaches are then applied to 

extract the spatiotemporal patterns for ET and 𝑅𝐸𝐶𝑂 prediction. Hybrid models can utilize the 

high spatial coverage of remote sensing data (e.g., 30 m of Landsat) and high temporal resolution 

of direct measurement from flux towers or simulation results from mechanistic models (e.g., 

daily or hourly scales), thus providing alternative approaches for next-stage, more accurate 

estimation of ET and 𝑅𝐸𝐶𝑂  at greater spatial and finer temporal scales—and enhancing our 

process understanding of water and carbon cycling under climate change.  

In this chapter, we developed a hybrid predictive modeling approach (HPM) to better 

estimate ET and 𝑅𝐸𝐶𝑂  over space and time with easily acquired meteorological data (i.e., air 

temperature, precipitation and radiation) and remote sensing products (i.e., NDVI). HPM is 

hybrid as it can use deep learning models to integrate direct measurements from flux towers and 

physically-based model results (e.g., CLM) with meteorological and remote sensing inputs to 

capture the complex physical interactions within the watershed ecosystem. After development, 

we validated HPM performance with the FLUXNET dataset and benchmarked the CLM model 

at select sites. We then used the HPM for ET and 𝑅𝐸𝐶𝑂 estimation at the mountainous East River 

Watershed in CO and investigated how small-scale heterogeneity influences ET and 𝑅𝐸𝐶𝑂 

dynamics.  

3.2 Site and Data Description 
Various sites were selected to develop and validate our approaches. We focused on 

mountainous watersheds because they provide significant water resources to the world (Viviroli 

et al., 2007), but also included sites to test HPM’s capabilities under different climate and 

vegetation conditions. Mountainous watersheds are very sensitive to changes in temperature and 

precipitation patterns, which can significantly threaten downgradient water resources and 

associated societal benefits (Breshears et al., 2005; Ernakovich et al., 2014; Immerzeel et al., 

2019). As mountainous regions are extremely important for regional and global assessment and 

management of water resources and carbon storage and emission (Knowles et al., 2015; Schimel 

et al., 2002), accurate estimation of ET and 𝑅𝐸𝐶𝑂 in these regions is critical, though challenging 

due to complex heterogeneity and complicated interactions among the hydrosphere, biosphere 

and the atmosphere (Pelletier et al., 2018; Speckman et al., 2015). Thus, we focused on 

estimating ET and 𝑅𝐸𝐶𝑂 at various sites along the Rocky Mountains, including the East River 

Watershed  (Hubbard et al., 2018) of the Upper Colorado River Basin.  

3.2.1 FLUXNET Stations and Ecoregions 

Eight FLUXNET stations were selected for this study (Table 3.1 and Figure 3.1), which 

cover a wide range of climate and vegetation types. These stations have elevations from 129 m 

(US-Var) to 3050 m (US-NR1), mean annual air temperature from 1.5℃ (US-NR1) to 17.92℃ 



CHAPTER 3. A DEEP-LEARNING HYBRID-PREDICTIVE-MODELING APPROACH FOR 

ESTIMATING EVAPOTRANSPIRATION AND ECOSYSTEM RESPIRATION AND ASSESSING 

WATERSHED HOT SPOTS AND HOT MOMENTS          33 
 

 
 

(US-SRM), and mean annual precipitation from 320 mm (US-Whs) to 800 mm (US-NR1). These 

FLUXNET stations also cover a wide range of vegetation types (i.e., evergreen forest, deciduous 

forest, and shrublands). As indicated by Hargrove et al. (2003), FLUXNET stations provide a 

good representation of different ecoregions, which are areas that display recurring patterns of 

similar combinations of soil and landform characteristics (Omernik, 2004). Omernik & Griffith. 

(2014) delineated the boundaries of ecoregions through pattern analysis that consider the spatial 

correlation of both physical and biological factors (i.e., soils, physiography, vegetation, land use, 

geology and hydrology) in a hierarchical level. FLUXNET stations considered in this study are 

mainly located in 4 unique ecoregions (Table 3.1). As is described below, we developed local-

scale (i.e., point scale) HPM that are representative for different ecoregions using data provided 

at these FLUXNET stations to estimate ET and 𝑅𝐸𝐶𝑂, and validated the HPM estimates with 

measurements from stations within the same ecoregion.   

3.2.2 SNOTEL Stations 

 For reasons described below, we performed a deeper exploration within one of the 

mountainous watershed sites (the East River Watershed of the Upper Colorado River Basin), 

which is located in the “western cordillera” ecoregion. At this site, we utilized meteorological 

forcings data from three snow telemetry (SNOTEL) stations. These sites include the Butte (ER-

BT, id: 380), Porphyry Creek (ER-PK, id: 701) and Schofield Pass (ER-SP, id: 737) sites. A 

CLM model was developed at these SNOTEL stations that provides physically-model-based ET 

estimation (Tran et al., 2019). The consideration of SNOTEL stations in this study enabled us to 

explore and compare how heterogeneity in meteorological forcing attributes control ET and 𝑅𝐸𝐶𝑂 

dynamics as well as provide cases for further validating our proposed approach. Table 3.1 

summarizes the SNOTEL stations used in this study and the corresponding climate 

characteristics. Figure 3.1 shows the geographical locations of FLUXNET and SNOTEL stations 

selected in this study.  

 
Table 3.1 Summary of FLUXNET stations and SNOTEL stations information. * denotes SNOTEL stations 

and all others are FLUXNET stations. Dfc, Bsk, Csa represent subarctic or boreal climates, semi-arid climate, 

Mediterranean hot summer climates, respectively. ENF, DBF, WSA, GRA, and OSH represent evergreen 

needleleaf forest, deciduous broadleaf forests, woody savannas, grasslands, open shrubland, respectively.  

Site ID Site Name Latitude, 

Longitude 
Elevation 

(m) 
Mean 

Annual 

temperature 

(°∁) 

Mean 

Annual  

Precipitation 

(m) 

Climate 

Koeppen 
Vegetation 

IGBP 
Ecoregions 

(Level II) 

Period 

of 

Record  

US-

NR1 
Niwot Ridge (40.0329, -

105.5464) 
3050 1.5 800 Dfc ENF Western 

Cordillera 

2000-

2014 
CA-

Oas 
Saskatchewan-

Aspen 

(53.6289, -

106.1978) 
530 0.34 428.53 Dfc DBF Boreal Plain 1997-

2010 

CA-
Obs 

Saskatchewan-
Black Spruce 

(53.9872, -
105.1178) 

628.94 0.79 405.6 Dfc ENF Boreal Plain 1999-
2010 

US-

SRM 
Santa Rita 

Mesquite 
(31.8214, -

110.8661) 
1120 17.92 380 Bsk WSA Western 

Sierra Madre 
Piedmont 

2005-

2015 

US-

Ton 

Tonzi Ranch (38.4316, -

120.9660) 

177 15.8 559 Csa WSA Mediterranean 

California 

2002-

2015 
US-Var Vaira Ranch-

lone 

(38.4133, -

120.9507) 

129 15.8 559 Csa GRA Mediterranean 

California 

2002-

2015 

US-
Whs 

Walnut Gulch 
Lucky Hills 

Shrub 

(31.7438, -
110.0522) 

1370 17.6 320 Bsk OSH Western 
Sierra Madre 

Piedmont 

2008-
2015 

US-
Wkg 

Walnut Gulch 
Kendall 

Grasslands 

(31.7365, -
109.9419) 

1531 15.64 407 Bsk GRA Western 
Sierra Madre 

Piedmont 

2005-
2015 
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ER-

BT* 

East River-

Butte 

(38.894, -

106.945) 

3096 2.38 821 Dfc N/A Western 

Cordillera 

1995-

2017 
ER-

SP* 

East River-

Schofield Pass 

(39.02, -

107.05) 

3261 2.46 1064 Dfc N/A Western 

Cordillera 

1995-

2017 

ER-
PK* 

East River-
Porphyry 

Creek 

(38.49, -
106.34) 

3280 1.97 574 Dfc N/A Western 
Cordillera 

1995-
2017 

 

 
Figure 3.1 Location of sites considered in this study. Note: US-Ton and US-Var; US-Whs and US-Wkg are at 

the same locations.   East River Watershed is located next to ER-BT. The white lines delineate Western US 

states and Canadian provinces. 

3.2.3 East River Watershed and Previous Analyses 

 Data from the East River Watershed were used to explore how ET and 𝑅𝐸𝐶𝑂  dynamics 

estimated from the developed HPM vary with different vegetation and meteorological forcings. 

The East River Watershed is located northeast of the town of Crested Butte, Colorado. This 

watershed has an average elevation of 3266 m, with significant gradients in topography, 

hydrology, geomorphology, vegetation, and weather. The watershed has a mean annual 

temperature around 0℃ , with an average of 1200 mm yr−1 total precipitation (Hubbard et al., 

2018). Consisting of montane, subalpine, and alpine life zones, each with distinctive vegetation 

biodiversity, the East River Watershed is a testbed for the US Department of Energy Watershed 

Function Scientific Focus Area Project, led by the Lawrence Berkeley National Laboratory 
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(LBNL; Hubbard et al., 2018). The project has acquired a range of datasets, including 

hydrological, biogeochemical, remote sensing, and geophysical datasets.  

 Recently completed studies at the East River Watershed were used in this study to inform 

HPM and to assess the results. For example, physically-model-based estimations of ET at this 

site (Tran et al., 2019) were used herein for HPM development and validation. Falco et al. (2019) 

used machine-learning-based remote sensing methods to characterize the spatial distribution of 

vegetation types, slopes, and aspects within a hillslope at the East River Watershed, which were 

used with obtained HPM estimates to explore how small-scale vegetation heterogeneity 

influences ET and 𝑅𝐸𝐶𝑂  dynamics. To perform this assessment, we computed the spatial 

distribution of vegetation types at watershed scale, based on Falco et al. (2019), and selected 16 

locations within the East River Watershed having different vegetation types and slope aspects. 

These 16 locations were chosen at a level to be distinguishable by Landsat images and maintain 

the same vegetation type (given a spatial resolution of 30 m), and also possess small-scale 

heterogeneity. A summary of the locations is presented in Table 3.2; the spatial distribution of 

the locations is shown in Figure 3.3.2. 
Table 3.2 Location and vegetation types of East River Watershed sampling points (Figure 3.2) 

Easting (m) Northing (m) Vegetation Type Aspect Elevation (m) 

327085 4309878 Deciduous Forest South 2983 

326288 4312504 Deciduous Forest South 3177 
330012 4313132 Deciduous Forest North 3108 

326854 4313192 Deciduous Forest South 3098 

328246 4312832 Meadow South 3095 
327010 4315059 Meadow South 2790 

328738 4306139 Meadow North 2890 

334270 4309465 Meadow  North 2929 
333406.5 4308340 Riparian Shrubland South 2760 

327846 4312497 Riparian Shrubland South 2723 

334641 4305632 Riparian Shrubland North 2740 
330760 4310097 Riparian Shrubland South 2855 

329573 4314569 Evergreen Forest South 3026 

333106 4307313 Evergreen Forest North 3102 
325056 4310456 Evergreen Forest South 2961 

335141 4309614 Evergreen Forest North 3131 
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Figure 3.2 Vegetation classification of the East River, CO Watershed from Falco et al. (2019). East River sites 

selected in this study are denoted by black circles. 

3.2.4 Data Collection and Processing 

 To enhance transferability of the developed HPM strategy to less intensively characterized 

watersheds, we selected only “easy to measure” or “widely available” attributes, such as 

precipitation, temperature, radiation and NDVI, as inputs to the HTM model. The data sources 

used for these inputs include FLUXNET data (https://fluxnet.fluxdata.org/), SNOTEL data 

(https://www.wcc.nrcs.usda.gov/snow/) and developed CLM model (Tran et al., 2019) at 

SNOTEL stations, DAYMET meteorological inputs (Thornton et al., 2017) and remote sensing 

data from Landsat imageries (Irons et al., 2012).   

 A variety of measured data and model outputs were used to train and validate HPM.  We 

obtained daily meteorological data, including air temperature, precipitation, radiation, ET, and 

𝑅𝐸𝐶𝑂 data, from the FLUXNET database at the selected FLUXNET sites. The pipeline of data 

processing for FLUXNET dataset is provided at https://FLUXNET.fluxdata.org/. ET data for 

US-NR1 were cleaned following the procedures presented in Rungee et al. (2019). The 

meteorological data were used as inputs for HPM development, and ET and 𝑅𝐸𝐶𝑂  data from 

these sites were used for HPM validation. At the three selected SNOTEL stations, we obtained 

air temperature, precipitation, and snow-water-equivalent data from the SNOTEL database. Air 

temperature data at these three SNOTEL stations were processed following Oyler et al. (2015), 

given potential systematic artifacts. Snow-water-equivalent data are not easily acquired, and thus 

were not considered as inputs for HPM. However, a categorical variable was constructed to 

assimilate information regarding snow (Section 3.2.1). CLM models were generated following 

Tran et al. (2019) for the SNOTEL stations and US-NR1 to assess the spatiotemporal variability 

of ET at the East River Watershed and for training and validating HPM (Section 4.3). The 

DAYMET dataset (Thornton et al., 2017) provided gridded daily weather-forcings-attribute 

estimates at a 1 km spatial resolution. We obtained the incident radiation data from DAYMET at 

the SNOTEL stations as inputs for HPM. For the East River Watershed sites, meteorological 

forcings data, including air temperature, precipitation and radiation, were also obtained from 

https://fluxnet.fluxdata.org/
https://www.wcc.nrcs.usda.gov/snow/
https://fluxnet.fluxdata.org/
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DAYMET. The low spatial resolution of DAYMET data introduces uncertainty in HPM 

estimation of ET and 𝑅𝐸𝐶𝑂, which will be discussed in the following sections. We calculated the 

NDVI time series from the red band (RED) and near-infrared band (NIR) from Landsat 5, 7, and 

8 images following Equation 3.1 at all selected FLUXNET sites, SNOTEL stations, and East 

River Watershed sites at a spatial scale of 30 m.  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
                                                        (3.1) 

 Since cloud conditions can severely decrease data quality, we used the cloud-scoring 

algorithm provided in the Google Earth Engine to mask clouds in all retrieved data, only 

selecting the ones that had a simple cloud score below 20 to ensure data quality. Given the 

different calibration sensors used in Landsat 5, 7, and 8, we also followed the processes 

described in Homer et al. (2015) and Vogelmann et al. (2001) to keep NDVI computations 

consistent over time. Landsat satellites have a return period of 16 days, and thus we performed a 

reconstruction of NDVI time series to obtain daily scale time data (Section 3.2.2).  

3.3 Hybrid Predictive Modeling Framework  
 In this section, we illustrate the steps for building an HPM model for ET and 𝑅𝐸𝐶𝑂 

estimation over time and space. Figure 3.3 presents the general framework of HPM, which 

includes modules for data preprocessing, model development, model validation, and predictive 

modeling.  
3.3.1 Model Framework  

 HPM establishes relationships among meteorological forcings attributes, NDVI, ET, and 

𝑅𝐸𝐶𝑂 (Figure 3.3). Both input data (e.g., meteorological forcings) and output data (ET and 𝑅𝐸𝐶𝑂) 

used for training and validation are preprocessed for gap filling, smoothing, and data updating. 

HPM “learns” the complex space-time relationship among meteorological forcings, NDVI, ET, 

and 𝑅𝐸𝐶𝑂  using a deep-learning-based module (deeply connected neural networks and a long 

short-term memory recurrent neural network). HPM then can be used for ET and 𝑅𝐸𝐶𝑂 

estimation at sparsely monitored watersheds. Individual HPM models can be trained in two 

different ways using ET and 𝑅𝐸𝐶𝑂  information: with data obtained from flux towers (“data-

driven HPM”) or with outputs from 1-D physically-based models (“mechanistic HPM”). In both 

cases, the models obtained with local data are then used to estimate ET and 𝑅𝐸𝐶𝑂 at other sites in 

the same ecoregion (see Section 2.1). For ecoregions not represented by FLUXNET sites, it is 

necessary to develop mechanistic HPM that enables ET and 𝑅𝐸𝐶𝑂 estimation over space and time.  

 HPM has several additional modules, including model development, model validation, and 

model prediction modules. In the HPM model development module, deep-learning algorithms 

are trained with input features and response data until a pre-defined “stopping criteria” (e.g., root 

mean squared error, RMSE) is met, indicating subsequent training would lead to minimal 

improvement. In the validation module, estimation outputs from the “trained HPM models” are 

compared with other ET and 𝑅𝐸𝐶𝑂  data obtained from other independent sites or mechanistic 

models within the same ecoregion. Statistical measures, including adjusted 𝑅2 and mean absolute 

error (MAE), are computed to evaluate the performance of HPM models. In the predictive model 

module, meteorological forcings data and remote sensing data are processed at target sites of 

interest, and the validated HPM model is used to estimate ET and 𝑅𝐸𝐶𝑂 at these sites. ET and 

𝑅𝐸𝐶𝑂  outputs estimated from HPM at sparsely monitored watersheds then provide alternative 

datasets for process understanding within the target watersheds.  
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Figure 3.3 Hybrid Predictive Model Framework. The HPM model mainly consists of four modules: Input 

Attributes, Model Development, Model Validation and Model Prediction, represented by rectangles with 

colors. Arrows represent the linkages among different modules. Choices of data-driven HPM or mechanistic 

HPM depend on the ecoregion of target watershed and data availability. 

Long short-term memory (LSTM, Hochreiter & Schmidhuber, 1997) is capable of 

identifying long-term dependencies between climate and environmental data. For example, 

Kratzert et al. (2018) successfully used LSTM to learn the long-term dependencies in 

hydrological data (e.g., storage effects within catchments, time lags between precipitation inputs 

and runoff generation) for rainfall-runoff modeling. Kratzert et al. (2019) further developed 

predictive models with LSTM trained on gauged sites to provide streamflow estimations at 

ungaged basins. LSTM has also been used for gap filling in hydrological monitoring networks in 

the spatiotemporal domain  (Ren et al., 2019). In this study, the outputs (ET or 𝑅𝐸𝐶𝑂) denoted as 

𝑦 are predicted from the input 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑇], consisting of the last 𝑇consecutive time steps 

of attributes, such as meteorological forcings attributes (e.g., air temperature and precipitation) 

and remote sensing attributes (i.e., NDVI). In a recurrent neural network (RNN), ℎ𝑡 represents 

the internal state at every time step 𝑡 that takes in current input value 𝑥𝑡 and previous internal 

state ℎ𝑡−1, and is recomputed along the time axis using the following equation: 

ℎ𝑡 = 𝑔(𝑊𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏),                                                      (3.2) 
where 𝑔 represents the hyperbolic tangent activation function, 𝑊  and 𝑈  are trainable weight 

metrices of the hidden state ℎ, and 𝑏  is a bias vector. W, U and 𝑏  are all trainable through 

optimization. LSTM introduces the cell state 𝑐𝑡 , which makes LSTM powerful in identifying 

long-term dependencies in a statistical manner. The cell state 𝑐𝑡  has three gates structures, 

including “forget gates” (which determine what information from previous cell states will be 

forgotten), “input gates” (which determine what information will be conveyed from the forget 

gate) and “output gates” (which return information from cell state 𝑐𝑡 to a new state ℎ𝑡). With 

these gate structures, the cell state 𝑐𝑡 controls what information will be forgotten, conveyed, and 

updated over time. The forget gate is formulated as follows:  

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓),                                                      (3.3) 

where 𝑓𝑡 results in a value between 0 and 1 indicating the degree of information to be forgotten; 

𝜎 is the logistic sigmoid function, 𝑎𝑛𝑑 𝑊𝑓 , 𝑈𝑓 and 𝑏𝑓 are trainable parameters. Next, the input 



CHAPTER 3. A DEEP-LEARNING HYBRID-PREDICTIVE-MODELING APPROACH FOR 

ESTIMATING EVAPOTRANSPIRATION AND ECOSYSTEM RESPIRATION AND ASSESSING 

WATERSHED HOT SPOTS AND HOT MOMENTS          39 
 

 
 

gate decides which values will be updated in the current cell state, and creates a vector of 

candidate values 𝑐�̃� in the range of (-1, 1) through a 𝑡𝑎𝑛ℎ layer, which will be used to update the 

current state. With the candidate values calculated from the current state, and the information 

conveyed from the forget gate, we can calculate the current cell state as follows: 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖),                                                        (3.4) 
𝑐�̃� = 𝑡𝑎𝑛 ℎ(𝑊𝑐̃𝑥𝑡 + 𝑈𝑐̃ℎ𝑡−1 + 𝑏𝑐̃),                                                  (3.5) 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐�̃�,                                                              (3.6) 
where 𝑖𝑡 is the input gate that defines which information of 𝑐�̃� will be used to update the current 

cell state and is in the range of (0, 1); 𝑐𝑡  represents the current cell state; and 

𝑊𝑐̃, 𝑈𝑐̃, 𝑏𝑐̃,𝑊𝑖, 𝑈𝑖 ,  𝑎𝑛𝑑 𝑏𝑖  are trainable parameters. Finally, the output gate 𝑜𝑡  controls the 

information of cell state 𝑐𝑡  to a new hidden state ℎ𝑡 , which is computed using the following 

equation: 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜),                                                      (3.7) 
ℎ𝑡 = tanh(𝑐𝑡) ∗ 𝑜𝑡,                                                                (3.8) 

With the new hidden state calculated, ET and 𝑅𝐸𝐶𝑂 can be calculated using a one unit dense layer: 

𝑦𝑡 = 𝑊𝑑ℎ𝑡 + 𝑏𝑑 ,                                                                   (3.9) 
where 𝑊𝑑 and 𝑏𝑑 are additional trainable parameters. In summary, the LSTM unit calculates the 

internal state using current meteorological forcings and remote sensing data at every time step. 

The forget gate, input gate, and output gate decide what information from previous time steps 

will be kept, updated, and conveyed to the new hidden state. Finally, with a single dense layer, 

the algorithm will output ET and 𝑅𝐸𝐶𝑂 estimation from the trained model.  

A 70%-30% sequentially split between training and validation time series data was applied here, 

where the first 70% of the data were used for HPM development as a learning process, and 30% 

of the data were used as validation sets at individual sites. At the East River Watershed, HPM 

results were also validated with benchmark CLM outputs from Tran et al. (2019) and FLUXNET 

measurements. We used the mean absolute error (MAE), and adjusted 𝑅2  as the statistical 

measure to determine model performance.  

𝑀𝐴𝐸 =
∑ |𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡−𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|
𝑛
𝑖=1

𝑛
,                                                 (3.10)   

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆
,                                                              (3.11) 

where SSE represents the sum of squared errors, SS is the sum of squares of the response 

attributes (i.e., ET or 𝑅𝐸𝐶𝑂 ), and n is the number of data points. In most models, the 

configuration of the neural networks includes a first LSTM layer with 50 units, a second LSTM 

layer with 25 units, and a dense layer with 8 units having L2 regularizers and a final output dense 

layer. Dropout layers are also embedded in the model to prevent overfitting. Other configurations 

of networks may provide better estimation results; however, they are not assessed in this study. 

More information about the LSTM-RNN method is provided by Olah (2015). Configuration of 

the deep-learning module is documented in Table 3.3 
Table 3.3 Configuration of Deep-Learning Module 

Layer Output Shape Parameters # Note 

LSTM [50, 1] 11600  

LSTM [25] 7600  

Dropout [25] 0 Rate = 0.1 

Dense [8] 208 L2 regularizers, 0.01 
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Dropout [8] 0 Rate = 0.1 

Dense [1] 9 Output Layer 

 

3.3.2 Feature Selection 

 Given data availability and the practicability of applying HPM to estimate ET and 𝑅𝐸𝐶𝑂 at 

sparsely monitored watersheds, we also selected, constructed, and augmented certain attributes 

as features for HPM.   

 In mountainous watersheds, snow dynamics significantly influence water and carbon fluxes. 

Because of the difficulties in measuring snow time series over space, we did not directly use 

attributes such as snow water equivalent as input to HPM. Instead, we separated precipitation 

data into snow (air temperature < 0) and rainfall (air temperature > 0). This is in line with what 

has been used in hydrological models such as CLM (Oleson et al., 2013). Note that for certain 

sites in this study, snow is not present (e.g., US-Ton). In order to capture the dynamics of snow 

processes, such as accumulation and melting, we constructed a categorical variable (sn), as 

follows: 

𝒔𝒏 = {
0, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑛𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑙𝑎𝑡𝑖𝑜𝑛;   𝑆𝑊𝐸 > 0 𝑎𝑛𝑑 𝑆𝑊𝐸 < 𝑝𝑒𝑎𝑘 𝑆𝑊𝐸
1, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑛𝑜𝑤 𝑚𝑒𝑙𝑡𝑖𝑛𝑔; 𝑆𝑊𝐸 > 0 𝑎𝑛𝑑  𝑆𝑊𝐸 ≤ 𝑝𝑒𝑎𝑘 𝑆𝑊𝐸 

2, 𝑛𝑜 𝑠𝑛𝑜𝑤; 𝑆𝑊𝐸 =  0
,         (3.12) 

 Since data on peak SWE are rarely available because of the difficulties in measuring snow, 

we also define a proxy categorical variable, sn. When no SWE measurements were available, we 

estimated sn using air and soil temperature data following Knowles et al. (2016), who found 

significant correlations between the day of peak snow accumulation and first day of air 

temperature above 0 degrees Celsius, as follows: 

𝒔𝒏 = {

0, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑛𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑙𝑎𝑡𝑖𝑜𝑛;   𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 0
1, 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑛𝑜𝑤 𝑚𝑒𝑙𝑡𝑖𝑛𝑔; 𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 0 𝑤ℎ𝑖𝑙𝑒 𝑆𝑜𝑖𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ≤ 0,

2, 𝑛𝑜 𝑠𝑛𝑜𝑤; 𝐴𝑖𝑟 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑎𝑛𝑑 𝑆𝑜𝑖𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 0
(3.13) 

 To mitigate the long return periods of satellites and the presence of clouds, we reconstructed 

daily NDVI values based on meteorological forcings data (e.g., air temperature, precipitation, 

radiation) using deep-learning recurrent neural networks, leading to estimates of NDVI at daily 

temporal resolution. For example, Figure 3.4 represents Landsat-derived NDVI and 

reconstructed NDVI values for two sites at the East River, CO watershed: Butte (ER-BT), and 

Schofield Pass (ER-SP). Figure 3.4 reveals that based on meteorological forcings data only, the 

reconstructions achieved an adjusted R2 of 0.65. Though not ideal, as satellites continue to 

advance and more training data becomes available, the accuracy of NDVI temporal 

reconstruction will increase. 
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Figure 3.4 Temporal reconstruction of NDVI at ER-BT (left) and ER-SP (right). Black line represents 

reconstructed daily NDVI. Red points are used for training and blue points are used for validation 

3.4. Results 
 We tested HPM’s capabilities using different use cases to explore different conditions. First, 

we tested the capability of HPM to estimate long-term temporal dependency among 

meteorological forcings, ET, and 𝑅𝐸𝐶𝑂 (presented in Section 3.4.1). Second, we validated HPM’s 

capability to estimate the spatial distribution of ET and 𝑅𝐸𝐶𝑂 over space in selected watersheds, 

where we developed HPM using existing FLUXNET data (data-driven HPM, Section 3.4.2) or 

outputs from a mechanistic model (physical-model-based HPM, Section 3.4.3). Third, HPM was 

used to estimate ET and 𝑅𝐸𝐶𝑂 at selected sites within the East River Watershed and to distinguish 

how local factors (e.g., vegetation heterogeneity) influence ET and 𝑅𝐸𝐶𝑂  dynamics (Section 

3.4.4). These four use cases illustrate and demonstrate how HPM can be developed and applied 

at target watersheds, where data are sparse.  
3.4.1 Use Case 1: ET and 𝑹𝑬𝑪𝑶 Time Series Estimation with HPM Developed at FLUXNET 

Sites 

 Local HPMs were developed to estimate ET and 𝑅𝐸𝐶𝑂 using flux tower data obtained from 

FLUXNET sites listed in Table 3.1. Attributes used to train these individual HPM are 

documented in Table 3.3.   
Table 3.4 Attributes used for HPM development in Use Case 1 

Site ID Site Name Attributes 

US-NR1 Niwot Ridge Air Temperature, precipitation, net radiation, sn, NDVI, soil temperature 

CA-Oas Saskatchewan- 

Aspen 

Air Temperature, precipitation, net radiation, sn, NDVI, soil temperature 

CA-Obs Saskatchewan- 

Black Spruce 

Air Temperature, precipitation, net radiation, sn, NDVI, soil temperature 

US-SRM Santa Rita Mesquite Air Temperature, precipitation, net radiation, NDVI, soil temperature 

US-Ton Tonzi Ranch Air Temperature, precipitation, net radiation, NDVI, soil temperature 

US-Var Vaira Ranch-lone Air Temperature, precipitation, net radiation, NDVI, soil temperature 

US-Whs Walnut Gulch Lucky Hills Shrub Air Temperature, precipitation, net radiation, NDVI, soil temperature 

US-Wkg Walnut Gulch Kendall Grasslands Air Temperature, precipitation, net radiation, NDVI, soil temperature 

The results, which are shown in Figure 3.5 and Table 3.4, reveal that the HPM approach was 

effective for estimating ET. Adjusted 𝑅2  between the HTM estimates and flux tower 
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measurements are above 0.85 for all sites, and mean absolute errors are small at a level of 

~0.2 𝑚𝑚/𝑑. Figure 3.5 displays the estimation of ET from HPM US-NR1 and CA-OAS (other 

sites provided in supplementary material), and presents monthly mean ET values of 

measurements, HPM estimations, and differences. The long-term trends in ET are well captured 

by HPM. At larger temporal scales (monthly or yearly), HPM provides reasonable estimation of 

ET at these sites. However, short-term fluctuations during the summer are also not well captured 

by ET, specifically at California sites during the periods when plant transpiration and soil 

evaporation are constrained by soil moisture (Figure 3.3.A2 panel a).  

 
Figure 3.5 ET estimation with data from FLUXNET sites at CA-OAS and US-NR1. Panels (a) and (c) 

illustrate the daily estimation of ET with red, green, and blue lines representing data used for training, 

validation, and prediction, respectively, and the black line showing the eddy covariance measurements. Pink 

points describe monthly mean difference between HPM estimation and measured data. Panels (b) and (d) 

show the scatter plots of daily (blue) and monthly (red) ET. Darker blue clouds represent greater density of 

data points. Results for other sites are included in supplementary materials below (Figures A1 and A2).  

  Similarly, Table 3.4 and Figure 3.6 reveal that HPM was also effective in estimating 𝑅𝐸𝐶𝑂, 

leading to small MAE and adjusted 𝑅2 of 0.8 between estimated and measured 𝑅𝐸𝐶𝑂 except for 

US-Ton and US-Var. Figure 3.6 presents HPM-estimated 𝑅𝐸𝐶𝑂 at US-NR1 and CA-OAS, with 

other sites presented in Figures A3 and A4. Long-term dynamics of 𝑅𝐸𝐶𝑂 are also successfully 

captured by HPM; however, HPM underestimates 𝑅𝐸𝐶𝑂  during peak growing seasons. For 

example, at US-NR1, error increased during the growing season, when estimates of 𝑅𝐸𝐶𝑂  are 

smaller than measured 𝑅𝐸𝐶𝑂. While soil moisture can limit 𝑅𝐸𝐶𝑂  during peak growing season 
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(Ng et al., 2014; Wang et al., 2014), the developed HPM does not include soil moisture as a key 

attribute. As such, HPM underestimates 𝑅𝐸𝐶𝑂  during peak growing season, leading to higher 

𝑀𝐴𝐸 than other times of the year. In addition, HPM 𝑅𝐸𝐶𝑂 estimation at US-Ton and US-Var 

show higher uncertainties (i.e., 𝑀𝐴𝐸 > 0.4 and Adj. 𝑅2 < 0.8), which also indicates that soil 

moisture data is necessary to increase 𝑅𝐸𝐶𝑂 prediction accuracy in this ecoregion.  

 
Figure 3.6 𝑹𝑬𝑪𝑶  estimation with data from FLUXNET sites at CA-OAS and US-NR1. Panels (a) and (c) 

present daily estimation of 𝑹𝑬𝑪𝑶 with red, green, and blue lines representing data used for training, validation, 

and prediction, and the black line shows the eddy covariance measurements. Pink points describe monthly 

mean difference between HPM estimation and measured data. Panels (b) and (d) show the scatter plots of 

daily (blue) and monthly (red) 𝑹𝑬𝑪𝑶. Darker blue clouds represent greater density of data points.  

Table 3.5 Statistical measures of HPM estimation of ET and 𝑹𝑬𝑪𝑶 

Site ID Train 

MAE 

-ET 

[𝒎𝒎/𝒅] 

Test 

MAE 

- ET 

[𝒎𝒎/𝒅] 

Train 

Adj. 𝑹𝟐 - 

ET 

Test Adj. 

𝑹𝟐 - ET 

Train MAE 

−𝑹𝑬𝑪𝑶 

[𝒈𝑪𝒎−𝟐𝒅−𝟏] 
 

Test MAE 

−𝑹𝑬𝑪𝑶 

[𝒈𝑪𝒎−𝟐𝒅−𝟏] 
 

Train 

Adj. 𝑹𝟐 

−𝑹𝑬𝑪𝑶 

Test Adj. 

𝑹𝟐 

−𝑹𝑬𝑪𝑶 

US-NR1 0.19 0.11 0.95 0.98 0.33 0.18 0.91 0.98 

CA-Oas 0.18 0.13 0.94 0.97 0.33 0.26 0.96 0.97 

CA-Obs 0.12 0.09 0.95 0.96 0.29 0.25 0.96 0.97 

US-SRM 0.22 0.17 0.92 0.94 0.24 0.19 0.80 0.87 

US-Ton 0.22 0.17 0.92 0.94 0.43 0.36 0.76 0.82 

US-Var 0.15 0.12 0.92 0.95 0.49 0.38 0.81 0.88 

US-Whs 0.13 0.09 0.93 0.96 0.12 0.09 0.84 0.89 

US-Wkg 0.19 0.15 0.87 0.91 0.18 0.15 0.85 0.91 
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3.4.2 Use Case 2: Ecoregion-Based, Data-Driven HPM Model for ET and 𝑅𝐸𝐶𝑂 Estimation 

 While the effort and cost involved in establishing flux towers naturally limit the spatial 

coverage of obtained measurements, point scale measurements from one FLUXNET station 

provides representative information about ecosystem dynamics at other locations within the same 

ecoregion. In this section, we explored the use of a data-driven HPM trained with one 

FLUXNET station to estimate ET and 𝑅𝐸𝐶𝑂 at other locations within the same ecoregion. To test 

this approach, we first trained HPM at a selected FLUXNET stations and validated these HPM 

models at other FLUXNET stations (ET and 𝑅𝐸𝐶𝑂  data at testing sites were only used for 

comparison with HPM prediction) within the same ecoregion. Specifically, we developed HPM 

models at US-Ton, CA-Oas and US-Wkg, and provided ET and 𝑅𝐸𝐶𝑂 estimations at US-Var, 

CA-Obs and US-Whs at three ecoregions, respectively.  

 Table 3.5 summarizes how we developed the data-driven HPM models for spatially 

distributed estimation of ET and 𝑅𝐸𝐶𝑂 as well as the corresponding statistical summaries.  The 

estimation led to an adjusted 𝑅2 greater than 0.85 for CA-Obs and US-Whs and 0.70 for US-Var. 

Figure 3.7 and 3.8 present the time series of HPM-estimated ET and 𝑅𝐸𝐶𝑂  compared to 

measurements from flux towers. The figures show that HPM captures the seasonal and longer-

term dynamics of ET and 𝑅𝐸𝐶𝑂  well, as indicated by the high adjusted 𝑅2 . However, we 

observed an increased error in HPM-based estimations compared to measurements during peak 

growing seasons (e.g., a 0.5 mm discrepancy in June mean ET). Higher prediction accuracy for 

the two ecoregions presented by US-Whs and CA-Obs are observed compared to US-Ton, which 

indicates other attributes are necessary to improve prediction accuracy, especially for sites 

limited by moisture conditions. For example, ET is usually constrained by moisture condition 

during peak growing season. Other attributes such as soil moisture can be very useful for 

improving the prediction accuracy. Although the prediction accuracy is not as high as Use Case 1 

(Section 4.1), this use case demonstrates that HPM can learn the complicated relationships 

between responses and features successfully, and that a local data-driven HPM can be used to 

fuse with data from other subsites for long-term estimation of ET and 𝑅𝐸𝐶𝑂  within the same 

ecoregions.  
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Figure 3.7 ET estimation at CA-Oas (a), US-Var (c), and US-Whs (e) with HPM trained at US-Ton, US-Wkg, 

and CA-Oas, respectively. Red and black lines represent HPM estimation and real measurements, with green 

points denoting the monthly mean difference between HPM estimationss and measurements. Panels (b), (d), 

and (f) show the scatter plots of daily (blue) and monthly (red) ET at these three sites. Darker blue clouds 

represent greater density of data points. 
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Figure 3. 8 𝑹𝑬𝑪𝑶 estimation at CA-Oas (a), US-Var (c), and US-Whs (e) with HPM trained at US-Ton, US-

Wkg, and CA-Oas, respectively. Red and black lines represent HPM estimations and real measurements; 

green points denote the monthly mean difference between HPM estimation and measurements. Panels (b), (d), 

and (f) show the scatter plots of daily (blue) and monthly (red) 𝑹𝑬𝑪𝑶 at these three sites. Darker blue clouds 

represent greater density of data points. 

3.4.3 Use Case 3: Ecoregion-Based, Mechanistic HPM Estimation of ET  

 Mechanistic HPM, which is trained with ET estimates from 1-D physically-based-model 

simulations, provides an avenue for estimating ET in ecoregions where direct measurements 

from eddy covariance tower are not available. In order to test the effectiveness of the mechanistic 
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HPM, we focused on the three SNOTEL stations and US-NR1, which locates in the “Western 

Cordillera” ecoregion. Mechanistic HPM is coupled with CLM simulations at these sites (Tran et 

al., 2019). To ensure the CLM physically-based-model simulations can provide alternative 

datasets to develop mechanistic HPMs, we compared CLM estimation and direct measurements 

of ET at US-NR1 (Figure D.1). The consistent results between measured ET and CLM-estimated 

ET (adjusted 𝑅2 = 0.88; 𝑘 = 0.95) indicate independent CLM simulations can be effectively 

used to develop the mechanistic HPM. 

 We applied mechanistic HPM trained with 1-D CLM developed at ER-BT (Tran et al., 2019) 

to estimate ET at sites classified as part of the same ecoregion (i.e., ER-SP, ER-PK and US-NR1). 

We then compared ET estimation from HPM to independent CLM-based ET estimations at ER-

SP and ER-PK and to direct measurements at US-NR1. Figure 3.9 shows a high consistency 

between HPM estimation and the validation data. For all scenarios, an adjusted 𝑅2 of 0.8 or 

greater is observed (Table 3.5), which strongly indicates that mechanistic HPM can provide 

accurate ET estimation at sites of similar ecoregions. These results suggest the broad 

applicability of mechanistic HPM to estimate ET based on ecoregion characteristics. This 

approach is expected to be particularly useful for regions where flux towers are difficult to install 

or where measured fluxes are not representative of the landscape, such as in mountainous 

watersheds.  
Table 3.6 Statistical summary of HPM estimation over space with FLUXNET sites and SNOTEL stations 

with CLM 

Target 

Site 

Training 

Site 

Level II Ecoregion ET MSE 

(monthly)[𝑚𝑚/𝑑] 
ET 

Adj. 𝑅2 

RECO 

MSE(monthly)[𝑔𝐶𝑚−2𝑑−1] 
RECO 

Adj. 𝑅2 

CA-Obs CA-Oas Boreal Plain 0.39 0.88 0.36 0.97 

US-Var US-Ton Mediterrean California 0.34 0.70 0.67 0.70 

US-Whs US-Wkg Western Serra Madre 

Pidemont 

0.13 0.94 0.17 0.85 

ER-SP ER-BT Western Cordillera 0.20 0.92 - - 

ER-PK ER-BT Western Cordillera 0.24 0.90 - - 

US-NR1 ER-BT Western Cordillera 0.23 0.90   
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Figure 3.9 HPMs trained with CLM simulation at ER-BT are used to estimate ET at ER-SP, ER-PK, and US-

NR1. Panels (a), (c), and (e) display HPM estimation of ET (red lines), as well as independent CLM 

estimation at ER-SP, ER-PK, and eddy covariance measurements at US-NR1 (black lines). Panels (b), (d), 

and (f) show the scatter plots of daily (blue) and monthly (red) ET at these three sites. Darker blue clouds 

represent greater density of data points. 

3.4.4 Exploration of How ET and 𝑹𝑬𝑪𝑶 Varies with Meteorological forcings and Vegetation 

Heterogeneity at the East River Watershed 

 ET and 𝑅𝐸𝐶𝑂 estimated from the HPM model at the mountainous East River Watershed in 

CO enabled us to analyze how heterogeneity in vegetation and meteorological forcings influence 
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estimated ET and 𝑅𝐸𝐶𝑂  dynamics, and to identify limitations in the developed approach for 

estimating ET and 𝑅𝐸𝐶𝑂  across mountainous and heterogeneous watersheds.  

 NDVI time-series data provide high-resolution (30m) information about vegetation 

variability across the East River Watershed. The spatial distribution of vegetation cover 

presented in Figure 3.2 (from Falco et al. 2019) enables us to distinguish different patches of 

deciduous forests, evergreen forests, meadow grassland and riparian shrublands and retrieve 

corresponding NDVI time-series.  Figure 3.10 shows Landsat-derived and reconstructed NDVI 

values for the four different vegetation types within the East River Watershed. Evergreen forests 

have an extended growing season compared to deciduous forests. However, peak NDVI is 

smaller in evergreen forests compared to deciduous forests. NDVI ranges from 0.2 to 0.6 for 

evergreen forests, whereas larger fluctuations in NDVI are observed for deciduous forests (-0.2 

to 0.8).  The NDVI values during the winter are likely sensing both snow and forest density, due 

to pixel spatial averaging from Landsat images. Similar to Qiao et al. (2016), we also found that 

the NDVI of deciduous forests exhibits a significant increase during the growing season, 

followed by a sharp decline (likely caused by defoliation), and that evergreen forests had a more 

stable NDVI.  

 
Figure 3. 10 Reconstructed NDVI time series at selected locations in the East River Watershed for 2011 to 

2018 (panel a) and for 2015 (panel b, normal water year). Black, red, green, and blue lines represent the time 

series of NDVI for deciduous forests, meadow grasslands, evergreen forests and riparian shrubland, 

respectively.  

HPM-estimated ET and 𝑅𝐸𝐶𝑂  also show different dynamics in evergreen forests and 

deciduous forests. Figure 3.11a and 11b present the time series of estimated ET and 𝑅𝐸𝐶𝑂 

associated with deciduous forests, respectively. Figure 3.11c and d present the ET and 𝑅𝐸𝐶𝑂 

differences between deciduous forest sites and sites with other vegetation (e.g., evergreen forests 

shown in red). Before peak growing season, the ET of evergreen forests is about 10% greater 

than deciduous forests, whereas ET of deciduous forests during peak growing season is greater 

than evergreen forests. After growing season, the NDVI of deciduous forests is less than 0.2 (loss 

of leaves) compared to the NDVI of evergreen forests. Before peak growing season, 𝑅𝐸𝐶𝑂  of 

evergreen forests is slightly greater than deciduous forests. During peak growing season, 𝑅𝐸𝐶𝑂 of 

deciduous forests is around 17% greater than 𝑅𝐸𝐶𝑂of evergreen forests. Total annual ET between 

evergreen and deciduous forests is very close (DF1: 535 to 573 mm and EF1: 532 to 569 mm 

across 7 years in this study). Total annual 𝑅𝐸𝐶𝑂 of evergreen forests is smaller than deciduous 

forests (DF1: 642 to 698 𝑔𝐶𝑚−2𝑑−1 and EF1: 592 to 639𝑔𝐶𝑚−2). The ET estimation at East 



CHAPTER 3. A DEEP-LEARNING HYBRID-PREDICTIVE-MODELING APPROACH FOR 

ESTIMATING EVAPOTRANSPIRATION AND ECOSYSTEM RESPIRATION AND ASSESSING 

WATERSHED HOT SPOTS AND HOT MOMENTS          50 
 

 
 

River Watershed is comparable to Mu et al. (2013), where ET is computed based upon the logic 

of the Penman-Monteith equation and MODIS remote sensing data.  At the East River 

Watershed, data retrieved from Mu et al. (2013) indicate annual ET ranges from 554 to 585 mm 

at deciduous forests sites and 540 to 593 mm at evergreen forests sites. The 𝑅2 between 8-day 

aggregated HPM-based ET estimation and data retrieved from Mu et al. (2013) achieves 0.65 

(Figure B.1). Berryman et al. (2018) developed a random forest model to predict growing season 

soil respiration at subalpine forests in the Southern Rocky Mountain ecoregions. Their results 

suggest a consistent respiration rate from 2004 to 2006, with 150-day sums of 

542.8, 544.3 𝑎𝑛𝑑 536.5 𝑔𝐶𝑚−2, respectively, with a mean measured growing season respiration 

across sites and years of 3.37 𝑔𝐶𝑚−2. HPM-based 𝑅𝐸𝐶𝑂 estimation is also comparable to what 

Berryman et al. (2018) discovered, with growing season 𝑅𝐸𝐶𝑂  ranging between 555 to 607 

𝑔𝐶𝑚−2  and mean growing season 𝑅𝐸𝐶𝑂  ranging between 3.01 𝑡𝑜 3.30 𝑔𝐶𝑚−2 . While we 

currently do not have a time-series measurement of ET and 𝑅𝐸𝐶𝑂 at the East River Watershed for 

validation, our results are comparable to other studies that focus on sites within the same 

ecoregion (e.g., Berryman et al., 2018). 
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Figure 3.11 ET (a) and 𝑹𝑬𝑪𝑶 (b) estimation for the deciduous forest site DF1 at the East River Watershed. 

Panels (c) and (d) show the differences in ET and 𝑹𝑬𝑪𝑶 among various vegetation types and DF1. Red, green, 

and blue lines represent the differences in evergreen forest, meadow, and riparian shrubland compared to 

DF1. Panels (e) and (f) zoom into 2015 to better display seasonal variations. 

ET and 𝑅𝐸𝐶𝑂 estimation at the East River Watershed from the HPM model further enabled 

us to assess the impacts of small-scale (e.g., hillslope scale) heterogeneity in vegetation type on 

ET and 𝑅𝐸𝐶𝑂 dynamics. Figure 3.12 shows the absolute value of monthly mean difference in ET 
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(Fig. 12a and Fig. 12b) and 𝑅𝐸𝐶𝑂 (Fig. 12c and Fig. 12d) across SNOTEL stations (ER-BT, ER-

SP and ER-PK) and within selected East River locations. A comparison of meteorological 

forcings data within selected East River locations and across SNOTEL stations are given in 

Figure C.1 and C.2.  We observed 2.5 times greater differences in ET across SNOTEL stations 

compared to the sites within the East River watershed, whereas the differences in 𝑅𝐸𝐶𝑂 across 

SNOTEL stations are at the same level compared to the sites within East River Watershed 

(around 0.8 𝑔𝐶𝑚−2). This result indicates small-scale meteorological forcings and vegetation 

heterogeneity are the major controls of differences in ET and 𝑅𝐸𝐶𝑂 at the East River Watershed.  

 
Figure 3.12 Absolute differences in monthly mean ET and 𝑹𝑬𝑪𝑶 across SNOTEL stations and within East 

River Watershed. Panels (a) and (c) describe the absolute differences in monthly mean ET and 𝑹𝑬𝑪𝑶 between 

ER-BT, ER-SP, and ER-PK. Panels (b) and (d) describe the absolute differences in monthly mean ET and 

𝑹𝑬𝑪𝑶 within East River Watershed between deciduous forest (DF1), evergreen forest (EF1), meadow (MS1), 

and riparian shrubland (RS1). 

3.5. Discussion  
 Our study demonstrates that HPM provides reliable estimations of ET and 𝑅𝐸𝐶𝑂  under 

various climate and vegetation conditions, including data-based HPMs that are trained with 

FLUXNET data and physical-model-based HPMs that are coupled with simulations results from 

mechanistic models (i.e., CLM in our case). With 70% of the data used for training (model 

development), ET and 𝑅𝐸𝐶𝑂 estimation from HPM achieves an adjusted 𝑅2 of 0.9 compared to 

eddy covariance measurements. With this high estimation accuracy, we demonstrated that this 

approach could be used for predicting ET and 𝑅𝐸𝐶𝑂 over time. HPM is capable of “learning” the 

complex interactions among meteorological forcings, vegetation dynamics, and water and carbon 
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fluxes. The underlying relationships acquired by HPM can serve as a local ecohydrological 

model for long-term monitoring of ET and 𝑅𝐸𝐶𝑂, with the aid of remote sensing data, and can fill 

in gap data during occasional equipment failure.  

 HPM was also successful at estimating the spatial distribution of ET and 𝑅𝐸𝐶𝑂  through 

exploiting an ecoregion concept.  Using the representative FLUXNET sites in different 

ecoregions, HPM provided estimates of ET and 𝑅𝐸𝐶𝑂  at locations using learned relationships 

from other sites having the same ecoregion classification. For conditions where no FLUXNET 

sites are within the same ecoregion, our study showed that physically-based models that can 

utilize weather forcings data can provide alternatives for developing mechanistic HPM to 

estimate ET and 𝑅𝐸𝐶𝑂. We found that HPM performance was more reliable when trained and 

applied at different watersheds in the same ecoregion. For example, HPM that only relies on 

energy-related parameters was able to successfully estimate ET and 𝑅𝐸𝐶𝑂 at US-NR1 and CA-

OAS, where radiation and temperature are key components that regulate ET and 𝑅𝐸𝐶𝑂 dynamics. 

However, HPM with the same input features do not yield desired results at sites limited by water 

conditions (e.g., US-Ton and US-Var), due to lack of soil moisture data. This change indicates 

that parameter optimization and attributes selection may be needed for sites that are limited by 

moisture conditions, because important features can be subject to local conditions that potentially 

lower HPM performance.  

 We confirmed the important role of small-scale vegetation heterogeneity in modeling ET 

and 𝑅𝐸𝐶𝑂 dynamics, which further enabled us to better understand ecosystem dynamics at the 

East River Watershed. As indicated from NDVI time series (Fig 10), evergreen forests have a 

longer growing season compared to deciduous forests; however, deciduous forests have greater 

peak NDVI values. Correspondingly, we also observed an earlier increase in ET and 𝑅𝐸𝐶𝑂 for 

evergreen forests (before May), but larger ET and 𝑅𝐸𝐶𝑂  for deciduous forests during peak 

growing season (around June and July). Annual ET between deciduous forests and evergreen 

forests are not statistically different, which is similar to (Berryman et al., 2018; Mu et al., 2013). 

Annual 𝑅𝐸𝐶𝑂 differences between evergreen forests and deciduous forests are around 50 𝑔𝐶𝑚−2, 

which is comparable to Berryman et al. 2018). Similar dynamics were also observed at regions 

that are have different climate conditions. Through assessing the differential mechanisms of 

deciduous forests and evergreen forests at various sites under Mediterranean climates, Baldocchi 

et al. (2010) found that deciduous forests had a shorter growing season, but showed a greater 

capacity for assimilating carbon during the growing season. Evergreen forests, on the other hand, 

had an extended growing season but with a smaller capacity for gaining carbon. These results 

were identified through analyzing the relationships among leaf ages, leaf nitrogen level, leaf area, 

and water use efficiencies of these tree species at the selected Mediterranean climate sites. Older 

leaves tend to have smaller leaf nitrogen and stomata conductance, and thus evergreen forest ET 

and 𝑅𝐸𝐶𝑂  are smaller during the peak growing season compared to deciduous forests, yet 

maintain a relatively high level before the peak growing season or during defoliation. Hu et al. 

(2010) analyzed flux data at US-NR1 to determine the relationships between growing season 

lengths and carbon sequestration, and found that extended growing season length resulted in less 

annual 𝐶𝑂2 uptake. They also found that the duration of growing seasons substantially decreases 

snow water storage, which significantly decreases forest carbon uptake. While we were not able 

in this study to assess the differential advatanges and physiological mechanisms among 

vegetation types, HPM-based estimation of ET and 𝑅𝐸𝐶𝑂  presented similar dynamic trends to 

those found in Berryman et al. (2018); Hu et al. (2018); and Mu et al. (2013). 
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 Microclimate and small-scale heterogeneity in meteorological forcings attributes control the 

magnitude and timing of ET and 𝑅𝐸𝐶𝑂 dynamics. For example, other field observations along the 

Rocky Mountain ranges have shown that south-facing hillslopes have significantly earlier 

snowmelt compared to north-facing hillslopes (Kampf et al., 2015; Webb et al., 2018), which are 

hypothesized to result in significant differences in ET and 𝑅𝐸𝐶𝑂 dynamics. As a result, estimation 

of small-scale ET and 𝑅𝐸𝐶𝑂  dynamics requires high spatial resolution meteorological inputs, 

which is currently a challenge. We originally intended to investigate aspect impacts on ET and 

𝑅𝐸𝐶𝑂  dynamics at East River Watershed by selecting East River sites with different slope 

orientations. However, small-scale meteorological-forcings heterogeneity and microclimate were 

not available due to the relatively low spatial resolution of meteorological forcings inputs 

(DAYMET, 1 km scale). While DAYMET data suggest that differences in air temperature and 

solar radiation are very small for sites located at different portions of the watershed, the three 

weather stations at the site reveal that spatial heterogeneity in meteorological forcing attributes 

does exist, especially air temperature (Figure C.2). Even though the small-scale meteorological 

forcings heterogeneity is partly embedded in NDVI time series, the heterogeneity in ET and 

𝑅𝐸𝐶𝑂 estimated from HPM at the East River Watershed is potentially underestimated, due to the 

insufficient spatial resolution of meteorological inputs. In addition to limitations imposed from 

the spatial resolution, uncertainties in meteorological inputs can also result in large errors 

(i.e., >20% MAE) and reduce accuracy by 10-30% in ET and 𝑅𝐸𝐶𝑂 estimations as suggested by 

Mu et al. (2013) and Zhang et al. (2019). Thus, there is still a significant need for high-spatial-

resolution meteorological-forcing data products, such as data provided by the Surface 

Atmosphere Integrated Field Laboratory (SAIL) that can capture small-scale heterogeneity for 

implementing into HPM, which will then enable us to better assess the governing factors that 

regulate small-scale heterogeneity in ET and 𝑅𝐸𝐶𝑂.  

 In addition to the quality of meteorological data, HPM is also influenced by remote sensing 

inputs accuracy. Incorrectly calculated or pixel-averaged NDVI values from Landsat images can 

greatly alter HPM outputs for ET and 𝑅𝐸𝐶𝑂. Satellite images with different cloud cover have a 

slight influence over the NDVI values calculated, which do not represent real-time vegetation 

conditions. Algorithms used to reconstruct daily NDVI time series are also subject to 

uncertainties. However, with recent advances in remote sensing and satellite technologies 

(McCabe et al., 2017), the spatial and temporal resolution should greatly increase in the future 

(i.e., 3 m resolution and daily). These advances will lead to more accurate classification of 

vegetation types and NDVI calculations, which are expected to decrease uncertainty associated 

with flux estimation 

 Another source of uncertainty in HPM arises from the choice of hybrid approaches and any 

parameter uncertainties in mechanistic models. Since HPM relies on accurate ET and 𝑅𝐸𝐶𝑂 

inputs from flux towers or mechanistic models, any uncertainties in measuring or modeling ET 

and 𝑅𝐸𝐶𝑂 will propagate to HPM. If HPM is developed with a mechanistic model that has such 

missing components, these biases will be passed on to HPM estimation of ET and 𝑅𝐸𝐶𝑂 . 

Parameter and conceptual model uncertainties in mechanistic models also restrict HPM’s ability 

to “learn” the ecosystem dynamics. In order to reduce potential biasedness, we trained data-

based HPM and physical-model-based HPM upon long time series (e.g., > 5 years) with quality 

assessed data or simulation results, which also enables HPM to better memorize long time 

dependencies of ecosystem dynamics. Though the quantification of uncertainties remains 
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challenging, efforts have been made to lower these uncertainties using the technical advances 

described here.  

3.6. Conclusion 
 In this study, we developed and tested a Hybrid Predictive Modeling (HPM) approach for 

ET and 𝑅𝐸𝐶𝑂  estimation, with a focus on mountainous watersheds. We developed individual 

HPM models at various FLUXNET sites and at sites where data can support the proper 

development of a mechanistic model (e.g., CLM). These models were validated against eddy 

covariance measurements and CLM outputs. We further used these models for ET and 𝑅𝐸𝐶𝑂 

estimation at watersheds within the same ecoregion to test HPM’s capability of providing 

estimation over space, where only meteorological forcings data and remote sensing data were 

available. Lastly, we applied the HPM to provide long-term estimation of ET and 𝑅𝐸𝐶𝑂 and test 

the sensitivity of HPM to various vegetation types at various sites within the East River 

Watershed.  

 Given the promising results of HPM, this work offers an avenue for estimating ET and 𝑅𝐸𝐶𝑂 

using easy-to-acquire or commonly available datasets. This study also suggests that the spatial 

heterogeneity of meteorological forcings and vegetation dynamics have significant impacts on 

ET and 𝑅𝐸𝐶𝑂 dynamics, which may be currently underestimated due to typically coarse spatial 

resolution of data inputs. Parameters related to energy and soil moisture conditions can be 

implemented into HPM to increase HPM’s accuracy, especially for sites limited by soil moisture 

conditions. Lastly, it should be pointed out that HPM is not restricted to estimation of ET and 

𝑅𝐸𝐶𝑂  only. We focused here on developing HPM for ET and 𝑅𝐸𝐶𝑂 , but HPM also has great 

potential for estimating other parameters important for water and carbon cycles. Indeed, other 

attributes, such as GPP and sensible heat flux, might also be accurately captured and represented 

with HPM, given the right choice of features.  
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Chapter 4 

 

Defining Temporal Regimes for Assessing 

Intra-annual Variability of Evapotranspiration in 

Central Rocky Mountain Watersheds  

 

 
4.1 Introduction 

Mountainous watersheds provide more than 60% of the water resources to the world and are 

thus recognized as  “Water Towers” of earth that provide significant economic and societal 

benefits (Immerzeel et al., 2019; Viviroli et al., 2007). Central Rocky Mountains and the 

Colorado River Basins provide vital source of water for agricultural and urban areas in western 

North America. Annual contribution of the Colorado River to the combined Gross State Product 

in the Colorado River Basin region is approximately one twelfth of total U.S. gross domestic 

product in fiscal year 2012 (James et al., 2014) with over 16 million public and private sector 

jobs in the Colorado River Basin Region relying on the availability of Colorado River Water. 

Water and energy resources availability of the Colorado River thus have a crucial impact on the 

socioeconomic development of the region. However, changes in meteorological forcing, such as 

increases and decreases in temperature and precipitation, can lead to uncertain responses in 

watershed dynamics and increase the uncertainties in water and energy resources management 

(Immerzeel et al., 2019). Studies have shown that mountainous watersheds’ responses to climate 

change have been greatly altered in the past few decades, including streamflow responses 

(Godsey et al., 2014); montane biodiversity (Voepel et al., 2011); plant phenology (Jonas et al., 

2008); occurrences of droughts (Sloat et al., 2015); soil moisture dynamics (Aulenbach & Peters, 

2018); and evapotranspiration (ET) and ecosystem respiration (Jung et al., 2017; Nelson et al., 

2018). Occurrences of extreme weather, fire, floods and other perturbations are significantly 

reshaping complex interactions within mountainous watersheds, leading to challenges in the 

development of optimized  management strategies to meet the growing demand of clean water, 

food and energy (Carpenter et al., 2015). Thus, quantifying the interactions among changes in
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hydroclimate and watershed processes is extremely important for understanding mountainous 

watersheds’ evolution under climate change as needed to improve management strategies.  

Interactions among meteorological forcing and watershed processes are complex. Changes 

in temperature, radiation and precipitation patterns can greatly alter growing season length, the 

timing of snowmelt, defoliation and plant phenology and crucially influence the hydrological 

cycle, including runoff, discharge and ET. Recent global climate models and studies have 

predicted that the increase in spring temperatures in the Rocky Mountains may occur weeks 

earlier than today by the end of this century, which may result in significant earlier snowmelt and 

snowmelt-driven runoff (Blankinship, 2014; Rauscher et al., 2008; Stocker et al., 2013). Changes 

in the timing of snowmelt further alters the intra-annual variability of other numerous processes. 

Shorter growing season with decreased plant productivity can occur due to decreased water 

availability from earlier snowmelt and warmer summer temperatures (Ernakovich et al., 2014). 

Wieder et al. (2017) discovered earlier snowmelt and warmer summertime temperatures can 

cause significant divergent plant responses across landscape. Earlier snowmelt also increases the 

probability of occurrences of fore-summer (May-June) drought (Sloat et al., 2015). Working at 

the East River of Colorado, they showed that the severity of drought conditions significantly 

decreased peak and cumulative net ecosystem productivity (NEP) and ET, especially during soil 

moisture limiting conditions. In the same watershed, Wainwright et al. (2020) used satellite data 

to explore the spatial heterogeneity of foresummer drought sensitivity of plant productivity. 

Their study suggested that peak plant productivity (expressed by remote-sensed vegetation 

indices) was highly correlated with the timing of snowmelt and foresummer temperature. Weiss 

et al. (2009) showed that occurrences of foresummer drought can significantly reduce ET due to 

limited soil moisture in the subsurface. The duration of foresummer drought in the Rocky 

Mountains is not only influenced by the timing of snowmelt and warmer temperature, but also by 

monsoon timing and magnitude. These studies focus on different aspects of changes in 

hydroclimate, and strongly suggest the necessity to describe intra-annual variability of watershed 

processes qualitatively and quantitatively.  

Evapotranspiration, as the important component of water and energy cycle, is also largely 

influenced by atmospheric and soil conditions. Quantifying the inter-annual variability of ET 

dynamics improves our understanding of watershed responses and increase our capability for 

water and energy resources management. In the North American monsoon region, Bohn & 

Vivoni. (2016) suggested a strong correlation between ET and current monsoon precipitation, 

whereas correlation between ET and precipitation from prior seasons were not statistically 

significant. Working in the Gunnison River Basin of Colorado, Condon & Maxwell, (2019) 

simulated how ET and streamflow respond to large-scale groundwater depletion under synthetic 

climate change scenarios. Their study demonstrated a significant decline of ET in water-limited 

periods and shallow groundwater regions. Foster et al., (2016) used an integrated modeling 

approach to isolate the impacts of climate change on Rocky Mountain hydrology. Their study 

suggested that phase shifts in precipitation inputs from snow to rain and changes in energy-

driven evaporative losses were the most influential control on watershed hydrology, especially 

streamflow discharge and ET. Fatichi & Ivanov (2014) investigated how fluctuations of annual 

precipitation influenced ecohydrological dynamics (including ET and plant productivity) through 

imposing four scenarios characterized by different interannual variabilities of precipitation. Their 

findings suggested a relative insensitivity of the interannual ET and vegetation productivity to 

annual climatic fluctuations except for water-limited environment. Their study also indicated that 
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fluctuations of inter-annual variability of ET and plant productivity can be better explained by 

certain combination of meteorological conditions taking place within the year rather than annual 

conditions. Thus in addition to capturing the inter-annual variability of ET, there’s a strong need 

to incorporate sub-annual dynamics and develop approaches that could quantitatively analyze the 

intra-annual variability of ET  

Recent methods that focused on quantifying intra-annual variability of ET dynamics 

leveraged the Budyko framework and its extensions that distinguish energy-limiting versus 

water-limiting conditions for ET dynamics  (Budyko, 1961; Zhang et al., 2008). Zeng & Cai, 

(2015) decomposed the variability of ET into covariance from precipitation, potential 

evapotranspiration (PET) and storage factors and suggested that: precipitation variability mostly 

influenced ET variance under hot-dry climates; variance of PET was the limiting factor for ET 

variance under cold-wet climates; and both precipitation and PET variance were important under 

moderate climate. Zeng & Cai. (2016) further emphasized the importance of terrestrial storage 

for dampening ET variance in arid climates but strengthening ET variance in humid climates. 

Similarly, Zhang et al. (2016) examined the contributions of precipitation, reference ET and total 

water storage change to ET and streamflow variability under different climate conditions through 

Budyko-based variance decomposition framework. However, methods based upon the Budyko 

hypothesis are restricted to the two limiting conditions (i.e., soil moisture and energy inputs), and 

do not systematically consider other processes, including snow, drought, growing season and 

monsoon. For example, in mountainous watersheds such as those in the Rocky Mountains, the 

effects of earlier snowmelt and the resulting fore-summer drought on ET can possibly be 

compensated by an earlier monsoon leading to small or no changes in annual ET. Alternatively, 

drought conditions can be intensified by late arriving monsoons, resulting in severer vegetation 

loss and decrease in ET and plant productivity. Transitions and phase shifts among these 

processes, such as timing of snowmelt, occurrences of drought and monsoon seasons, trigger 

significant intra-annual variability of ET. These disproportionate contributions caused by these 

transitions and phase shifts cannot be quantified without identifying the corresponding sub-

annual processes.  

In this chapter, we proposed the concept of temporal regimes to delineate the transition 

among various hydroclimate processes and to better assess the intra-annual variability of ET 

dynamics. Each temporal regime was determined based on the unique combination of statistical 

characteristics (e.g., amplitude and variance) of meteorological attributes, including air 

temperature radiation and precipitation inputs. Temporal regimes characterize the distinct rate, 

duration and process of ET dynamics.  In each temporal regime, we expect to observe different 

ET behavior compared to other temporal regimes, however with relatively constant ET rate 

within the same temporal regime across different years and locations. The duration of temporal 

regime thus becomes a key parameter for assessing the intra-annual variability of ET as well as a 

pivotal component that controls the inter-annual variability of ET.  

4.2 Study Sites 
 In this chapter, we focus on six sites along the Rocky Mountains, including sites from the 

FLUXNET network (https://fluxnet.fluxdata.org/) and SNOTEL sites 

(https://www.wcc.nrcs.usda.gov/snow/). Three FLUXNET sites are considered in this chapter, 

including the Niwot Ridge site (US-NR1, Monson et al., 2002), the Glacier Lakes Ecosystem 

Experiments Sites (US-GLE, Frank et al., 2014) and the Valles Caldera Conifer site (US-VCM, 

Litvak et al., 2016). US-NR1 (40.0329, -105.5464) is located in a subalpine forest ecosystem at 

https://fluxnet.fluxdata.org/
https://www.wcc.nrcs.usda.gov/snow/
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3050m elevation with a subarctic climate and evergreen needleleaf forests as the dominant 

vegetation. US-GLE (41.36653, -106.2399) is located in the Snowy Range of Wyoming at an 

elevation of 3197m. US-GLE is characterized as a high elevation wilderness-like site with an 

alpine and subalpine aquatic and terrestrial ecosystem and evergreen needleleaf forests is the 

dominant vegetation at US-GLE. US-VCM (35.888447, -106.532114) is located in the Jemez 

River basin in north-central New Mexico at 3030m elevation. The dominant vegetation for US-

VCM is also evergreen needleleaf. US-VCM experienced a stand-replacing wildfire in May 2013, 

which resulted in discontinuous functionality of flux tower until 2014.  We will discuss the data 

processing procedure at US-VCM in the following sections. 

 The three SNOTEL sites considered in this chapter include Butte (ER-BT, id: 380), 

Porphyry Creek (ER-PK, id: 701) and Schofield Pass (ER-SP, 737). These three sites are part of 

the East River Watershed, which is located within the Elk Range of the central Rocky Mountains 

in the state of Colorado and is a testbed for the US Department of Energy Watershed Function 

Scientific Focus Area Project (Hubbard et al., 2018). Montane to alpine ecosystems with an 

elevation from 2500m to 4000m are present within this watershed, which provides life support 

for mixed vegetation in this region. Figure 1 displays the geographical locations of the three 

FLUXNET sites and three SNOTEL sites considered in this chapter.  

 

 
Figure 4.1 Geographical locations of the six sites selected in this chapter 

4.3 Data Acquisition 
4.3.1 Climate forcing data 

At the three FLUXNET sites, eddy covariance towers have been installed and maintained to 

provide half-hourly direct measurements of climate forcing data, including air and soil 

temperature, precipitation, and solar radiation. As we mainly focused on daily temporal scales in 
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this chapter, we aggregated half-hourly climate forcing data into daily scales. As ecosystem 

dynamics in these watersheds are mainly controlled by snow dynamics, it is necessary to 

incorporate snow depth or snow water equivalent time series. Thus we also obtained snow data 

from Niwot (SNOTEL id: 663) for US-NR1, Brooklyn Lake (SNOTEL id: 367) for US-GLE, 

and Quemazon (SNOTEL id: 708) for US-VCM. At the three SNOTEL sites in the East River 

Watershed, quality assessed climate forcing data were obtained from 

https://wcc.sc.egov.usda.gov/, including air and soil temperature, precipitation, snow water 

equivalent and snow depth. In addition, we followed approaches proposed in Oyler et al. (2015) 

to filter potential systematic artifacts in air temperature data. Solar radiation data is not available 

at these three SNOTEL sites, and thus we integrated incident solar radiation from the DAYMET 

database (Thornton et al., 2017). For certain conditions such as data gap and unreasonable data 

due to power outages or sensor malfunction, DAYMET climate forcing data were also used to 

append the time series of climate forcing at these sites. Snow water equivalent and snow depths 

data are available at the SNOTEL sites, however are not measured at FLUXNET sites. Thus in 

this study, we did not directly integrate snow data into the model. Table 4.1 provides a statistical 

summary of climate forcing attributes at these six sites.  
Table 4.1 Summary of six sites selected in this chapter. 

Site ID Site Name Latitude Longitude Elevation (m) Air Temperature 

(°𝐶) 

Rain Precipitation 

(mm) 

Snow Precipitation 

(mm) 

Climate 

Koeppen 

US-NR1 Niwot Ridge 40.0309 -105.5464 3050 2.43 377 632 Dfc 

US-GLE Glees 41.36653 -106.2399 3197 0.80 234 855 Dfc 

US-VCM Valles Caldera 
Mixed Conifer 

35.88845 -106.53211 3030 4.70 397 284 Dfb 

ER-BT Butte 38.894 -106.945 3096 2.38 342 564 Dfc 
ER-SP Schofield Pass 39.02 -107.05 3261 1.97 392 784 Dfc 

ER-PK Porphyry Creek 38.49 -106.34 3280 2.46 267 368 Dfc 

  

4.3.2 ET data 

 At the FLUXNET sites, ET data were calculated from the latent heat fluxes measured from 

eddy covariance towers. We followed approaches developed in Rungee et al. (2019) to further 

process unreasonable ET data and fill the gaps in ET measurements. Independent Community 

Land Models (CLM) were developed for both FLUXNET sites and SNOTEL sites at the East 

River Watershed (Tran et al., 2019) using the augmented climate forcing time series documented 

in the previous section. For certain periods of time when it is not feasible to use approaches in 

Rungee et al. (2019) to gap fill ET data, we used ET estimation from the developed CLM. We 

also applied CLM ET estimation to append data till 2016 so that we obtained 10 years of ET 

augmented data to analyze long-term dynamics of ET under climate change. Specifically, at US-

VCM, we used the ET estimation from CLM to replace the post-fire dynamics after May 2013. It 

is noted that the time series after 2013 do not consider the effects caused by fire at US-VCM, and 

our approach does not consider any factors related with fire. A comparison between ET 

estimated from CLM and direct measurements from the three FLUXNET sites are provided in 

the supplementary materials (Figure D.1, 𝑅2>0.8, 𝑘 > 0.94, 𝑝 < 2.2𝑒 − 10,𝑀𝐴𝐸 < 0.25𝑚𝑚 

for all three sites), which enables us to use CLM ET estimation to integrate with direct flux 

measurements. As no flux tower data is available for the three SNOTEL sites, we obtained ET 

estimation from Tran et al. (2019) for ER-BT, ER-SP and ER-PK. Despite the high estimation 

accuracy of CLM models, augmented ET data for FLUXNET sites and ET estimation from 

SNOTEL sites are subjective to any conceptual model and parameter uncertainties in CLM. We 

https://wcc.sc.egov.usda.gov/
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should point out the use of CLM estimation does not restrict the applicability of our approaches. 

If flux tower measurements become available at SNOTEL sites, these data can be easily 

integrated into our approach.  

4.4 Framework of Temporal Regimes 
 In this section, we will provide a brief overview of the statistical methods applied in this 

study. Hypothesis tests and analysis of variance (ANOVA) were used to estimate the 

heterogeneity of meteorological forcing attributes and ET in space and time. Hidden Markov 

Model (HMM) was used to statistically characterize temporal regimes that govern ET dynamics. 

Regime transitions in meteorological forcing were determined, and further used to determine the 

intra-annual variability of ET dynamics. Based on the results of temporal regimes, we calculated 

the within-regime cumulative ET, which is the sum of total ET for each temporal regime to 

determine the contribution of each temporal regime and dominant seasonal event to the annual 

ET. Our proposed method provides a qualitative and quantitative approach to analyze inter- and 

intra-annual variability of ET dynamics under climate change.  

4.4.1 Analysis of Variance (ANOVA) and Tukey’s test 

 ANOVA is a statistical method used to test the differences between two or more means. In 

this study, we applied ANOVA to test the null hypothesis that the mean values of meteorological 

forcing attributes and ET from the six sites do not vary significantly. Rejecting the null 

hypothesis indicates that the differences in hydroclimate attributes and ET observed across 

different sites are unlikely caused by random chance, indicating heterogeneity in meteorological 

forcing and ET data over space and time. A test statistic (e.g., F-statistics) is calculated and used 

to calculate a p-value, which is compared to a preset significance level (0.05 in this study). When 

the p-value is smaller than the significance level, the null hypothesis is rejected, which indicates 

significant spatial heterogeneity or temporal variability is present in at least one member of the 

group compared to the rest. ANOVA is not capable of identifying which location or which year 

is statistically different from the other locations or years when the null hypothesis is rejected. 

Hence, Tukey’s test (Tukey, 1949) is also used in conjunction with ANOVA to further determine 

pairwise differences across the six sites. It compares all possible pairs of means, and is based on 

a studentized range distribution to determine whether or not to reject the null hypothesis. Failing 

to reject the null hypothesis indicates the mean of the two pairs are not statistically significantly 

different from each other. We also applied linear regression to determine the trends of 

meteorological forcing and ET over time under climate change. The slope coefficient represents 

rate of change in attributes over years. A goodness of fit test is usually performed together with 

linear regression to determine if such slope coefficient is statistically significant, which indicates 

if the trend of meteorological forcing or ET dynamics is statistically significant under climate 

change.  

4.4.2 Hidden Markov Model (HMM) for temporal regime determination 

 HMM is a statistical model in which the system being modeled is assumed to be a Markov 

process with unobserved (i.e., hidden) states. Among many other studies, HMM has been used to 

characterize mechanistic reaction network of uranium transport in a contaminated aquifer (Chen 

et al., 2013), reconstruct streamflow  (Bracken et al., 2014, 2016), and predict spatiotemporal 

variability in precipitation (Foufoula‐Georgiou & Lettenmaier, 1987; Zucchini & Guttorp, 

1991). In this study, six temporal regimes (R0 to R5) were determined through identifying the 

hidden states and transitions through HMM with a year specific drought regime. Temporal 

changes in meteorological forcing attributes lead to transitions among different temporal regimes 
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related with hydroclimate processes (e.g., snowmelt season, growing season, and monsoon 

season). Each temporal regime will have distinguishable statistical characteristics of 

meteorological forcing attributes and ET compared to other temporal regimes. The use of HMM 

enables us to statistically characterize the boundaries and transitions among temporal regimes 

and thus assess the intra-annual variability of ET dynamics.  

 We notations employed in Chen et al. (2013) and Zucchini & MacDonald. (2009) to present 

a brief summary of HMM. For observed time series of hydroclimate attributes (𝑋𝑡, 𝑡 = 1, 2, … , 𝑇, 

i.e., air temperature, precipitation, and radiation), we defined a temporal regime variable 𝑅𝑡, 𝑡 =
1, 2, … , 𝑇, where 𝑅𝑡 takes values from 1, 2, … ,𝑚, which represents 𝑚 unique temporal regimes. 

The emission (output) probabilities are used to relate “temporal regimes” with the observed 

measurements (i.e., meteorological forcing attributes), and are modeled by state dependent 

probability distributions: 

𝑝𝑖(𝑥) = 𝑃(𝑋𝑡 = 𝑥|𝑅𝑡 = 𝑖)                                                       (4.1) 
First order Markov process has been assumed to represent the time series behavior of 

measurements and temporal regimes, which are presented as follows.  

𝑃(𝑅𝑡|𝑅1, 𝑅2, … , 𝑅𝑡−1) = 𝑃(𝑅𝑡|𝑅𝑡−1), 𝑡 = 2, 3, … , 𝑇                                  (4.2) 
𝑃(𝑋𝑡|𝑋1, 𝑋2, … , 𝑋𝑡−1, 𝑅1, 𝑅2, … , 𝑅𝑡) = 𝑃(𝑋𝑡|𝑅𝑡), 𝑡 = 2, 3, … , 𝑇                        (4.3) 

Transitional probability metrics denote the probabilities of transition between temporal regime 𝑖 
to temporal regime 𝑗, and are expressed as:  

𝛾𝑗𝑘 = 𝑃(𝑅𝑖+1 = 𝑘|𝑅𝑖 = 𝑗)                                                        (4.4) 

where 𝑅 denotes a temporal regime determined from HMM.  If 𝑘 = 𝑗, then no transition of the 

temporal regimes occurs in the time domain. In order to estimate the unknown parameters, the 

likelihood function needs to be derived, which is the joint conditional probability distribution of 

all the data given unknown parameters with the initial probability of unknown temporal regime. 

The unknown parameters (including temporal regimes) can be determined using the Expectation-

Maximization algorithm. More details about deriving the likelihood function and the E-M 

algorithm can be found in Zucchini & Guttorp (1991) and Dempster et al. (1977). We used the 

package “depmixS4” in R developed by Visser & Speekenbrink (2010) for implementation.   

 In this chapter, we used air temperature, soil temperature and radiation as inputs to HMM. In 

addition, a categorical variable (𝑠𝑛) that represents hydrological dynamics is also included as an 

input. 𝑠𝑛  is determined based on the time series of air and soil temperature as well as 

precipitation data. It provides a proxy for peak snow day, bareground day, effective monsoon 

day, which represents the day with maximum snow depth, first day of snow disappearance and 

first day that have monsoon precipitation greater than 10 mm, respectively. If snow data becomes 

available, snow accumulation, melting and no snow can be directly determined with snow water 

equivalent and depth data. 𝑠𝑛 is derived as follows, 

𝑠𝑛 =

{
 
 

 
 

0; 𝑖𝑓 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 0℃
1;   𝑖𝑓 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 0℃ 𝑎𝑛𝑑 𝑠𝑜𝑖𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 0℃ 

2; 𝑖𝑓 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑠 > 0℃
3; 𝑖𝑓 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑠 𝑎𝑛𝑑 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 < 10𝑚𝑚 

4; 𝑖𝑓 𝑚𝑜𝑛𝑠𝑜𝑜𝑛 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 > 10𝑚𝑚

                         (4.5) 

We assumed a Gaussian distribution for the emission probability 𝑝𝑖(𝑥) = 𝑁(𝜇𝑖, 𝜎𝑖
2)  for air 

temperature, soil temperature and radiation inputs. Other state probability distributions for the 

emission probability can be applied based on other conditions with domain knowledge. For 
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example, a Gamma state dependent probability distributions have been widely used for 

precipitation regime determination (Bracken et al., 2014, 2016). Figure 4.2 displays hypothesized 

seasonal events, where we generally characterize any year into regimes of snow accumulation, 

snowmelt, growing season, monsoon season and defoliation season. For given combination of 

meteorological conditions such as significantly earlier snowmelt (e.g., Year 2012), it is likely 

that the watershed encounters a foresummer drought during the growing season, and hence a 

potential drought regime (𝑅? ) is added in figure 2 as well. Temporal boundaries of these 

temporal regimes are selected based upon the mode of 1000-Hidden Markov Model simulations 

with the optimal information criterion (Akaike, 1974; Schwarz, 1978). 

 

 

 
Figure 4.2 Illustration of potential temporal regimes (𝑹𝒊 ) within a year. 𝑿𝒊  represents the data used to 

determine temporal regimes and follow a statistical distribution denoted by 𝑭(𝝁𝒊, 𝝈𝒊
𝟐). 𝝁𝒊 𝒂𝒏𝒅 𝝈𝒊

𝟐  are the 

mean and variance of 𝑿𝒊 under specific temporal regimes, respectively  

 With temporal regimes being determined from Hidden Markov Model, we defined within-

regime cumulative ET that represents the contribution of ET from each individual temporal 

regime to annual cumulative ET as indicated in equation (6), where 𝐸𝑇𝑅𝑖 is the mean ET (𝑚𝑚/𝑑) 

and 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑅𝑖 represents the duration of temporal regime 𝑅𝑖.  

𝑊𝑖𝑡ℎ𝑖𝑛 𝑅𝑖  𝐸𝑇 = 𝐸𝑇𝑅𝑖 ∗ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑅𝑖                                                    (4.6) 

𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑇 ≅∑𝑤𝑖𝑡ℎ𝑖𝑛 𝑅𝑖  𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑇

𝑖=5

𝑖=0

 = ∑𝐸𝑇𝑅𝑖

𝑖=5

𝑖=0

∗ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑅𝑖                (4.7) 

 

 

4.5 Results and Discussion 
 In this section, we first presented the spatial heterogeneity and temporal variability observed 

in meteorological forcing attributes and ET data across the sites selected in this study (section 

4.5.1). Then we focused on the characteristics of each temporal regime (section 4.5.2) and 

demonstrated the underlying dominant processes and assessed the spatiotemporal variability in 
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temporal regimes (section 4.5.3). In section 4.5.4, we analyzed the intra-annual variability of ET 

through within-regime cumulative ET based upon temporal regimes. Section 4.5.5 explained the 

linkage between temporal regimes and watershed dynamics observed in the physical 

environment. In the last section, we used year of 2008 and 2012 as examples to explain how 

determination of temporal regimes can help us better understand the inter-annual variability of 

ET.  

 

4.5.1 Nonlinear interactions between meteorological forcing and ET dynamics 

The six sites selected in this study covers a wide range of annual mean air temperature, 

annual rain precipitation, annual snow precipitation, annual mean solar radiation, annual ET, and 

annual P-ET (Figure 4.3).  We observe close to 5℃ difference in the annual mean temperature 

between US-VCM and US-GLE, 500 mm snow precipitation differences between US-VCM and 

US-GLE, 100 mm rain precipitation between US-NR1 and ER-PK. Climate forcing across the 

sites shows much stronger heterogeneity than the heterogeneity observed in the annual ET. 

ANOVA with annual ET data rejects the null hypothesis, which suggests at least the mean of 

annual ET in one of the six sites is statistically different from the others. Tukey’s test further 

indicates that with a 95% family-wise confidence level there is no significant difference in 

annual ET between the following pairs: ER-SP and ER-BT, US-NR1 and ER-BT, US-VCM and 

ER-BT, US-NR1 and ER-SP, US-VCM and ER-SP, US-GLE and ER-PK, US-VCM and US-

NR1. Table 4.2 displays the results from Tukey’s test on annual ET.  

The heterogeneity in climate forcing attributes across these sites is likely influenced by their 

latitudes, elevation and other local scale factors. For example, we observe greatest air 

temperature at US-VCM, followed by the three SNOTEL sites and US-NR1 with US-GLE 

having the lowest air temperature. On the other hand, maximum annual solar radiation is 

observed for US-GLE, followed by SNOTEL sites and US-NR1, with US-VCM as the lowest. 

Rain and snow patterns across these six sites are complex. We observe greater rain at US-NR1 

and US-VCM, whereas ER-PK has the smallest annual rain totals. The largest snow amounts are 

observed at US-GLE and ER-SP, whereas the lowest snow total generally occurs at US-VCM. 

Even though these six sites are located along the Rocky Mountain ranges, they span a wide range 

of latitudes, which leads to significant differences in their energy inputs as well as precipitation 

inputs. Spatial heterogeneity of snow and total precipitation minus ET (P – ET) also appears to 

be associated with energy inputs and latitudes; we observe the greatest snow totals and P – ET at 

US-GLE, followed by US-NR1, with US-VCM having the lowest snow total and P – ET. 

However, this relationship becomes much more complex when we further consider the three 

SNOTEL sites that have similar latitude. We observe similar annual snow precipitation between 

ER-SP and US-GLE; ER-BT and US-NR1, however, annual P – ET of ER-BT is closer to US-

VCM. Despite significant differences in energy and precipitation patterns among these sites, we 

observe some similarity in the temporal distribution of annual ET between US-NR1 and US-

VCM; ER-BT and ER-SP; ER-PK and US-GLE, which suggests the necessity to capture the 

intra-annual variability of ET dynamics influenced by hydroclimate changes.  
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Figure 4.3 Spatial heterogeneity in hydroclimate attributes, ET and P-ET across six sites.  

Table 4.2 Tukey’s test result indicate differences in annual ET for certain pairs at familywise 95% level. 

Significance level is set at 0.05 

Site 1 Site 2 Difference in 

mean annual ET 

[mm] 

Lower Bound 

[mm] 

Upper Bound 

[mm] 

p-value Significant 

ER-SP ER-BT -0.74 -39.55 38.07 0.99 No 

ER-PK ER-BT -78 -116.83 -39.21 0.00 Yes 

US-NR1 ER-BT 21.47 -17.34 60.28 0.59 No 

US-GLE ER-BT -55.65 -94.46 -16.84 0.00 Yes 

US-VCM ER-BT 36.33 -2.48 75.15 0.08 No 

ER-PK ER-SP -77.28 -116.09 -38.46 0.00 Yes 

US-NR1 ER-SP 22.21 -16.60 61.02 0.55 No 

US-GLE ER-SP -54.91 -93.72 -16.10 0.00 Yes 

US-VCM ER-SP 37.07 -1.74 75.89 0.07 No 

US-NR1 ER-PK 99.49 60.68 138.30 0.00 Yes 

US-GLE ER-PK 22.34 -16.44 61.18 0.54 No 

US-VCM ER-PK 114.35 75.54 153.17 0.00 Yes 

US-GLE US-NR1 -77.12 -115.93 -38.31 0.00 Yes 

US-VCM US-NR1 14.86 -23.95 53.68 0.87 No 

US-VCM US-GLE 91.98 53.17 130.80 0.00 Yes 

 

4.5.2 Characteristics of temporal regimes 

 In this section, we presented the statistical summary of meteorological forcing attributes 

determined for each temporal regime and demonstrate the physical representation of each 

determined temporal regimes and how dynamic changes in hydroclimate govern ET dynamics. 

With the proposed framework, six temporal regimes (R0 – R5) that have distinct statistical 

characteristics in meteorological forcing attributes were determined. Figure 4 presents the 

temporal regime-based distribution of air temperature (Figure 4.4a), solar radiation (Figure 4.4b), 

regime durations (Figure 4.4c) ET (Figure 4.4d), rain precipitation (Figure 4.4e), snow 
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precipitation (Figure 4.4f) and net precipitation minus ET (Figure 4.4g) across all six sites and 

years considered.  

 
Figure 4.4 Statistical summary of temporal regime based characteristics of daily air temperature, solar 

radiation, regime durations, ET, rain precipitation, snow precipitation, and net precipitation minus ET at all 

six sites across 10 years considered in this study  

As calendar year was used in this study, temporal regime R5 and R0 represents the period of 

time that the watershed is covered under snow, which has minimum temperature, minimum solar 

radiation and minimum ET. The duration of R5 and R0 is largely controlled by snow 

precipitation and the effective accumulation of snow during the winter time. During R0 and R5, 

positive P – ET is observed. Towards the end of R0, as temperature is reaching above freezing 

point and solar radiation increases, R0 and R1 transition happens following the start of snowmelt. 

During R1, sufficient soil moisture is supplied from melted snow and supports nutrient transport 

in the subsurface. However, due to limited energy conditions (e.g., low air temperature), R1-

based ET is still very small (~ 1.6 𝑚𝑚/𝑑). Snow disappearance usually occurs at the end of R1 

and bareground date is highly correlated with the day of R1-R2 transition. Duration of R1 is 

important as it controls the amount of soil moisture from snowmelt that can be potentially used 

to support vegetation growth at later temporal regimes. During R1, snowmelt water also 

contribute to groundwater and stream recharge, which are necessary for plant dynamics during 

later regimes.  

Following R1, R2 represents the period of time during which the watershed experiences 

maximum radiation that supports vegetation growth. At the beginning of R2, rate of vegetation 

growth is very high due to ambient soil moisture from snowmelt and radiation, where we 

observed increase in ET. Comparing to other regimes, we observed the smallest P – ET in R2. 

However, with certain combinations of meteorological conditions (e.g., late monsoon and earlier 

snowmelt), decreases in R2-mean ET can occur due to occurrences of droughts, such as year 

2012. Our current approach does not explicitly determine a drought regime, however the 

occurrence of fore-summer drought within R2 is highly dynamic and happen with earlier R1-R2 

transition (earlier snowmelt) and late R2-R3 transition (later monsoon). R2-R3 transition is 

controlled by the first effective monsoon, which greatly eases the potential drought condition 

posed in R2. Compared to R2, R3 has the highest rain precipitation inputs, and these monsoon 

precipitation provide additional water supply for ET that support both plant transpiration and soil 

evaporation. However, as the solar radiation input is small, R3-based ET is smaller than R2 due 
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to decreasing evaporative demands. The changes in meteorological forcing between R2 and R3 

also suggests different partition of ET into transpiration and evaporation. For example, 

transpiration is likely greater in R2 than R3, whereas evaporation is greater in R3 compared to 

R2. Correspondingly, P-ET varies around 0, indicating the competition between potential 

drought condition due to high ET demand and monsoon precipitation inputs.  

R3 and R4 transition usually takes place in late autumn and correspond to the defoliation 

period, where temperature and radiation is low, and most plants are adapting to winter dynamics 

and reduce ET significantly. Though rainfall precipitation still occurs in R4, this increasing 

moisture input does not contribute to ET due to energy limiting condition and limited plant 

productivity. R4-R5 transition is triggered when temperature decreases to the freezing point. R5 

marks the start of winter, where the ecosystem has minimum ET and extends to R0 until 

snowmelt initiate the transition to R1. Overall contribution of ET from R4, R5 and R0 are very 

small compared to the other temporal regimes due to very small regime based ET (limited plant 

functionality and evaporative demands).  

4.5.3 Intra-annual variability of ET  

 Within-regime Following R1, R2 represents the period of time during which the watershed 

experiences maximum radiation that supports vegetation growth. At the beginning of R2, rate of 

vegetation growth is very high due to ambient soil moisture from snowmelt and radiation, where 

we observed increase in ET. Comparing to other regimes, we observed the smallest P – ET in R2. 

However, with certain combinations of meteorological conditions (e.g., late monsoon and earlier 

snowmelt), decreases in R2-mean ET can occur due to occurrences of droughts, such as year 

2012. Our current approach does not explicitly determine a drought regime, however the 

occurrence of fore-summer drought within R2 is highly dynamic and happen with earlier R1-R2 

transition (earlier snowmelt) and late R2-R3 transition (later monsoon). R2-R3 transition is 

controlled by the first effective monsoon, which greatly eases the potential drought condition 

posed in R2. Compared to R2, R3 has the highest rain precipitation inputs, and these monsoon 

precipitation provide additional water supply for ET that support both plant transpiration and soil 

evaporation. However, as the solar radiation input is small, R3-based ET is smaller than R2 due 

to decreasing evaporative demands. The changes in meteorological forcing between R2 and R3 

also suggests different partition of ET into transpiration and evaporation. For example, 

transpiration is likely greater in R2 than R3, whereas evaporation is greater in R3 compared to 

R2. Correspondingly, P-ET varies around 0, indicating the competition between potential 

drought condition due to high ET demand and monsoon precipitation inputs.  

 Dynamics in meteorological forcing attributes extend or shorten the duration of temporal 

regimes and thus re-partition the annual cumulative ET into different temporal regimes. At ER-

BT, within-R1 cumulative ET varies from 64 mm to 126 mm and within-R2 cumulative ET 

varies from 77 mm to 187 mm where annual ET ranges from 446 mm to 579 mm between 2005 

and 2016. Through comparing the within regime cumulative ET between 2011 and 2015, we 

determined that the differences in annual ET mainly resulted from within-R3 cumulative ET 

(124 mm vs 233mm), indicating adequate precipitation events and radiation inputs during the 

prolonged monsoon season in 2015 is the major driver that lead to the discrepancy in annual ET 

between 2011 and 2015; whereas ET dynamics during snowmelt periods, growing season and 

other regimes are similar in these two years. These results further indicate that differences in 

annual ET dynamics can be explained by differences contributed from certain regimes, where 

regime duration and transitions lead to the short-term and long-term temporal variability of ET. 
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We also observed significant fluctuations in annual ET, within-regime ET and regime durations 

across the six watersheds. For example, at US-NR1 and US-GLE, we have identified greater 

contribution in annual ET from within-R0 and within-R1 ET whereas within-R3 ET is 

significantly greater at US-VCM. Correspondingly, longest duration of R3 was observed at US-

VCM, whereas longest duration of R1 occurs at US-GLE and US-NR1 (Figure E.1). These 

comparisons further distinguish the disproportionate effects of regimes in regulating intra-annual 

variability of ET across these Rocky Mountain watersheds.  

 
Figure 4.5 Temporal regime dependent partitioning of ET. Numbers within each column represents the 

amount of within-regime ET.  

4.5.4 Timing and duration of temporal regime as the key controls for within-regime 

cumulative ET and annual ET 

 The magnitude of each within-regime cumulative ET contributes to annual ET. Duration of 

temporal regimes and regime-mean ET control within-regime cumulative ET, and thus influence 

the inter-annual variability of annual ET. Figure 4.6 presents the correlation between temporal 

regime duration and within regime cumulative ET. At each temporal regime, ET fluctuates 
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around its regime-mean ET, which is relatively constant across various years and sites (𝑘 in 

Figure 4.6). Thus, the duration of temporal regimes is an important factor that leads to 

spatiotemporal variability in annual ET. Earlier snowmelt, extended-foresummer drought or 

changes in other watershed dynamics reshapes the duration of temporal regimes, which further 

influences annual ET. Considering all years and sites, high correlations between regime 

durations and within-regime cumulative ET were observed for R0-R5, which suggested an 

overall similarity in within-regime ET across the various sites. Regime-mean ET for R0-R5 is at 

1.1, 1.5, 2.4, 2.7, 0.96 and 0.55 𝑚𝑚/𝑑 respectively. Prolonged duration of R2 and R3 increase 

the annual ET due to high regime-mean ET in R2 and R3. Adequately prolonged duration of R0 

and R5 caused by higher snow precipitation and colder winter increases R0 and R5 duration and 

delays R1-R2 transition and snowmelt, which provide sufficient water supply during high solar 

radiation that lead to an overall increase in annual ET. However, if the duration of R0 and R5 

becomes excessive, it significantly decreases R2 and R3 duration and reduces annual cumulative 

ET. Further, ET dynamics also experience compensatory effects of these two temporal regimes 

(i.e., extended R2 and shortened R3 vs. shortened R2 and extended R3), leading to minor 

differences in annual ET (further explored in section 4.5.6). 

 
Figure 4.6 Correlation between hydroclimate regime duration and within-regime cumulative ET. Colored 

points represent different sites. Colored lines are regression lines for each hydroclimate regime between 

within-regime cumulative ET and hydroclimate regime duration. k values measure regime-mean ET 

[mm/day]. 

4.5.5 Linking temporal regimes with dynamics observed in the physical environment 

 We used data at US-NR1 as an example to present the coherency between various 

observations in the physical environment and assess how they’re related with the timing of 

hydroclimate regime shifts. Figure 4.7 presents the time series of snow water equivalent (SWE), 

ET, soil temperature, and soil water content of 2008 and 2012 at US-NR1. Temporal consistency 

in all these processes are observed, including date of maximum snow depth, first day of snow 
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disappearance (bareground date), and day of air and soil temperature above 0℃. This result 

suggests changes in one aspect of the hydroclimatological dynamics (e.g., snow) are coherent 

with changes in other aspects (e.g., soil temperature and ET). The coherency and covariability in 

ET and soil moisture (Figure 8) indicate the plausibility of using statistical characteristics to 

determine intra-annual variability, such as proposed in this study.  

 
Figure 4.7 Coherency in the timing of watershed dynamics. Panel (a) and (b) present snow water equivalent 

(SWE, black), ET (red), soil temperature (Pink), and soil water content (blue) time series. Orange, green, blue 

and black vertical lines representing R0-R1 transition, R1-R2 transition, R2-R3 transition and R3-R4 

transition, respectively. 2008 and 2012 are selected due to their divergence in climate forcing with 2012 

having earlier snowmelt and earlier monsoon and 2008 having later snowmelt and later monsoon. 

Temporal regimes provide a quantitative approach to unify the linkages among different 

dynamic processes. Figure 4.8 presents inter-annual variability of data based indices, including 

bareground date, day of minimum net ecosystem exchange (NEE), day of maximum gradient in 

soil temperature, day of maximum soil moisture at US-NR1 supported by Fluxnet data, where 

R0-R1 and R1-R2 transition date were also used for comparison. As regimes were determined 

upon the interactions among multiple dynamics, regime transitions are not identical to specific 

data based indices but a statistical significant correlation among regime transition dates and the 

other commonly used indices were observed. For example, R0-R1 transition date that represents 

the watershed transits from a snow accumulation regime to snowmelt regime is highly correlated 

with the occurrence of bareground date, day of maximum soil moisture, and maximum gradient 

with correlation coefficient above 0.8. Similarly, R1-R2 transition that distinct snowmelt regime 

and growing season regime is also highly correlated with these indices. This result indicated that 

the temporal regimes and regime shifts are able to integrate multiple ecosystem dynamics (e.g., 

snowmelt, temperature rising, monsoon etc.) as a whole to determine the intra-annual variability 

dynamics. Such coherency in dynamic processes has also been reported in other studies. For 

example, soil moisture dynamics and timing of snowmelt are highly correlated (Harpold & 

Molotch, 2015); dynamic changes in meteorological forcing also leads to temporal variations in 

ecosystem respiration and gross primary production (Berryman et al., 2018; Knowles et al., 

2016); and fore-summer drought occurrences are also highly linked with the timing of snowmelt 

and shifts in energy inputs (Sloat et al., 2015; Wainwright et al., 2020). Thus, even if our current 

study focuses on using temporal regimes and regime shifts to assess the intra-annual variability 

of ET dynamics, our proposed approach can be also applied towards other ecosystem dynamics, 

such as ecosystem respiration and gross primary production.  
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Figure 4.8 Coherency between hydrological indices, R0-R1 and R1-R2 transitions at US-NR1 

4.5.6 Evaluate inter-annual variability in ET through intra-annual variability determined 

with temporal regimes 

 We further used the determined temporal regimes to investigate the major contributors that 

lead to the inter-annual variability of ET. We specifically considered 2008 and 2012, as 2008 

represents a year in the Rocky Mountains having  above average snow precipitation and later 

snowmelt and 2012 depicts a situation with significantly less than average snow precipitation 

and very early snowmelt with identified fore-summer drought in the Colorado sites (Sloat et al., 

2015). ET dynamics in 2008 and 2012 are very different due to differences in hydroclimate 

dynamics. At ER-BT, we observed approximately 3 weeks earlier R0-R1 transition in 2012 (75th 

day) due to earlier snowmelt compared to 2008 (99th day), where snow has not begun to melt 

until April. R1-R2 transition is 2 weeks apart between 2008 (153th day) and 2012 (137th) due to 

different rate of snowmelt (Figure E.2). R2-R3 transition in 2012 happened at the 189th day 

compared to 205th day in 2008 at ER-BT, which provided monsoon soil moisture that relieved 

the effect of fore-summer drought. At the other Colorado sites (i.e., ER-SP, ER-PK and US-NR1) 

and US-VCM, we observed a similar earlier R0-R1 and R1-R2 transition in 2012 compared to 

2008. However at US-GLE, R0-R1 and R1-R2 transition were not following the similarity as we 

observed in the Colorado sites. US-GLE usually have longer R0 and R1 durations due to its 

higher latitude and more accumulation of snow during winter.  

 Variability in annual ET across different years is also largely controlled by the intra-annual 

variability of ET through within-regime cumulative ET. Though we have observed significant 

differences in the timing of ET dynamics between 2008 and 2012 at ER-BT, annual ET was 493 

mm for 2008 and 474 mm for 2012. Correspondingly, we observed +27 mm differences in 

within-R0 ET, -28 mm differences in within-R1 ET, +53 mm differences in within-R2 ET, and -

31 mm differences in within-R3 ET. The strong decrease of ET during R2 in 2012 due to earlier 

snowmelt was compensated by earlier monsoon. These results showed that intra-annual 

variability of ET can vary significantly across different years, however, result in significantly 

less differences in annual ET due to the compensatory effects between different temporal 

regimes. At ER-BT, precipitation from monsoon becomes more essential for ET and plant 

growth for years that experience significant earlier snowmelt (e.g., 2012) compared to other 

scenarios where ambient moisture supply due to later snowmelt contributes more ET during 

snowmelt and growing periods, which together result in smaller differences in annual ET. At US-

GLE, annual ET was 439 mm for 2008 and 417 mm for 2012. Though R0-R1 transition between 

2008 and 2012 is not as significantly different as the Colorado sites, different contributions from 
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within-R2 and within-R3 ET result in the overall differences in annual ET. Similarly at US-VCM, 

differences in annual ET between 2008 and 2012 was largely caused by within-R2 ET (145 mm 

in 2008 versus 95 mm in 2012).  

 With the example of ET dynamics at 2008 and 2012, we determined which changes in 

meteorological conditions caused significant differences in temporal regime durations and within 

regime ET over different years.  Inter-annual variability in annual ET is largely controlled by the 

combinational effects from all temporal regimes. Thus quantifying the intra-annual variability is 

necessary to better understand these dynamics.  

4.6 Summary 
In this chapter, we developed the framework of temporal regimes to better characterize the 

intra-annual variability of ET dynamics at mountainous watersheds. With this method, we were 

able to determine the dominant factors for temporal regimes in the central Rocky Mountains, 

including transitions between temporal regimes; the duration of temporal regimes and within-

regime cumulative ET. Our proposed framework of temporal regimes is advantageous as it can 

quantitatively distinguish the distinct contribution from intra-annual dynamics to inter-annual 

variability and assess the major limiting processes The use of temporal regimes also enabled us 

to distinguish the temporal variability of season durations, which is important for water and 

energy resources management.   

Intra-annual variability in ET is the major driver that leads to spatiotemporal variability of 

ET across the six watersheds and across all years. With the statistical framework, we 

quantitatively characterize the durations and occurrences of regimes related with snow, snowmelt, 

growing season, monsoon and defoliation. Differences in annual ET between different years 

result from disproportionate contribution from certain regimes with similar ET dynamics in other 

periods. For example, annual ET differences between 2011 and 2015 at ER-BT results from the 

disproportionate contributions from within-R3 ET during the monsoon season. Combinations of 

meteorological conditions also lead to compensatory effects in the intra-annual variability of ET, 

such as R2 and R3 ET dynamics in 2008 and 2012 at ER-BT. Temporal regimes also reveal the 

spatial heterogeneity in ET dynamics across the six watersheds. We observed greater ET 

contributions from snow-related regimes at US-GLE and US-NR1 than at US-VCM where ET 

contributions was more strongly driven by monsoon season. Our approach provides a unique 

perspective to better quantify spatiotemporal variability of ET dynamics and quantify 

contributions from each regime associated with seasonal events.  

 Regime-mean ET is relatively constant across all years and the six Rocky Mountain 

watersheds. Temporal regime duration and occurrences of regime transition are the pivotal 

factors that lead to the magnitude of annual cumulative ET. Combinations of different timing of 

snowmelt and monsoon, changes in temperature and precipitation patterns, significantly alter the 

duration of regimes and the contribution of ET from sub-annual dynamics, which can add 

complexity to the water and energy balance of mountainous watersheds. Earlier snowmelt, 

limited precipitation during R2 and ambient energy demand lead to a decrease in regime-mean 

ET in 2012, which indirectly indicating occurrence of fore-summer drought that were also 

discovered in Sloat et al. (2015) and Wainwright et al. (2020). However the earlier arrival of 

monsoon precipitation events ended the extended growing season regime and evolved the 

watershed into R3 and thus restored ET. Even if we observed a smaller within-R2 ET due to 

fore-summer drought, the earlier R2-R3 transition extended R3 and lead to increasing within-R3 

ET. Thus intra-annual variability of ET indicated from temporal regimes is as significant as or 
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even greater than the inter-site and inter-annual variability of ET along the central Rocky 

Mountain regions. Quantifying intra-annual variability assists us to better understand the cause 

and effect linkages in the long-term trends of climate change, which are essential for managing 

water and energy resources.  

 It should be noted that the proposed statistical framework that focuses on understanding 

intra-annual dynamics also is flexible enough to be used to identify intra-annual variability of 

other processes, including carbon cycling, plant production and hydrological dynamics with the 

right data inputs for analysis. In this study, we have demonstrated the high correlation between 

regime-based transition dates and process-based indices, such as peak snow day, bareground date, 

and day of maximum soil moisture. If additional data becomes available (e.g., remote sensing, 

ecological and hydrological data), we believe our proposed approach can still be effective in 

quantifying intra-annual variability of other hydrological and ecological processes in future 

studies.  
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Chapter 5 

 

Summary 
 

 

The purpose of this dissertation was to improve the conceptual understanding of 

environmental Hot Spots and Hot Moments as well as the mathematical modeling of processes 

within mountainous watersheds. Particularly, this dissertation focuses on deriving statistical 

approaches to characterize the occurrence of HSHMs and the associated uncertainties; 

developing hybrid data-driven and physically-based model simulation approaches to estimate 

evapotranspiration and ecosystem respiration from stand scale to watershed scale; and assimilate 

statistical frameworks that could finally improve our understanding of HSHMs dynamics and 

mountainous watersheds ecosystem functioning. The previous three chapters investigated 

different aspects of the methodology and application, and presented the relevant findings.  

With the recognition of current lacking of statistical quantifications of environmental 

HSHMs, Chapter 2 describes a statistical framework that utilizes indicator random variables to 

decompose HSHMs into the relevant processes and attributes. The proposed approach provides a 

general stochastic framework that can capture both transport-driven HSHMs as well as 

biogeochemical processes-driven HSHMs through the applications of static indicators and 

dynamic indicators. For example, static indicators can be constructed at locations that have 

higher pyrite concentrations or characterized as naturally-reducing zones through geophysical 

data that are necessary for nitrogen related HSHMs, whereas dynamic indicators can be 

constructed through the deployment of particle displacement probability density function that 

represent solute transport in the subsurface. The developed statistical framework significantly 

improves the capability to capture the uncertainties of HSHMs occurrences and provide an 

“easy-to-use” approach for future HSHMs predictions under various conditions. With the 

framework, we could relate HSHMs dynamics to the most influential parameters that could 

significantly reduce site characterization needs to capture HSHMs occurrences.    
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Understanding HSHMs occurrences at sparsely monitored mountainous watersheds relies 

upon long-term measurements, such as evapotranspiration and ecosystem respiration. However, 

due to the associated costs and efforts to establish and maintain eddy covariance flux towers at 

mountainous watersheds, ET and 𝑅𝐸𝐶𝑂  data are mostly sparsely measured, which limits out 

ability to understand the occurrences of related ecohydrological HSHMs. In Chapter 3, we 

proposed a hybrid data-driven and physically-based modeling approach, namely Hybrid-

Predictive-Modeling (HPM) approach, to predict ET and 𝑅𝐸𝐶𝑂  at satisfactory spatial and 

temporal resolution with meteorological forcing data and remote sensing data. The proposed 

HPM approach utilizes deep-learning based long short-term memory recurrent neural network to 

establish temporal dependencies among ET, 𝑅𝐸𝐶𝑂  and meteorological forcing attributes and 

remote-sensed vegetation indices (e.g., NDVI). In order to test the performance of HPM, we 

developed four use cases that cover a wide range of situations for ET and 𝑅𝐸𝐶𝑂 estimation. Use 

Case 1 is mainly developed for estimating ET and 𝑅𝐸𝐶𝑂  over time at local scale with HPM 

trained at local Fluxnet sites. High adjusted 𝑅2 for all sites considered was observed indicating 

satisfactory performance of HPM approach. In Use Case 2 and Use Case 3, we tested HPM for 

ET and 𝑅𝐸𝐶𝑂  estimation from one site to other sparsely monitored locations within the same 

ecoregion. Depending on data availability, data-driven HPM or mechanistic HPM can be applied. 

For various testing scenarios, HPM provides accurate and reliable estimation of ET and 𝑅𝐸𝐶𝑂 for 

sparsely monitored watersheds within the same ecoregion. In Use Case 4, we integrated the 

previous three Use Cases to estimate ET and 𝑅𝐸𝐶𝑂 at the mountainous East River Watershed, 

which is located in the Upper Colorado River Basin in the state of Colorado. With HPM-

estimated ET and 𝑅𝐸𝐶𝑂, we were capable of distinguishing how heterogeneity in vegetation (e.g., 

vegetation types) and small-scale meteorological forcing control ET and 𝑅𝐸𝐶𝑂 dynamics. With 

the remote-sensing derived NDVI time series, we determined different adaptation strategies for 

deciduous forests and evergreen forests in assimilating carbon and water usage under different 

meteorological conditions. Our results indicated similar annual ET and 𝑅𝐸𝐶𝑂 budget for different 

vegetation types, however, diverse intra-annual variability. With the original intent to extract the 

role of topography and micrometeorology on ET and 𝑅𝐸𝐶𝑂  dynamics, we recognized the 

uncertainties in meteorological forcing reanalysis data that significantly underestimate small-

scale heterogeneity caused by slope, aspects, elevation gradient and other topographic features. 

In short, the proposed HPM approach significantly improved our predictive capability for ET and 

𝑅𝐸𝐶𝑂  estimation at mountainous watersheds, which then can be linked with the statistical 

framework proposed in Chapter 2 for ecohydrological HSHMs quantification that is necessary 

for better understanding of ecosystem dynamics under gradual and rapid climate change.  

Findings discovered in Chapter 2 and Chapter 3 show the importance of capturing intra-

annual variability in watershed ecosystems. From Chapter 2, we realized that HSHMs can occur 

at different temporal scales, bringing the importance of capturing HSHMs dynamics at both 

intra-annual cycles as well as inter-annual cycles. In Chapter 3, we discovered very small 

differences in annual ET and 𝑅𝐸𝐶𝑂 at the East River Watersheds between deciduous forests and 

evergreen forests, the intra-annual variability is significantly different. Thus, in Chapter 4, we 

developed the framework of hydroclimate regimes to quantitatively and qualitatively identify 

intra-annual variability caused by dynamic changes in the hydroclimate to better assist our 

understanding of ecosystem dynamics and the occurrences of HSHMs, such as fore-summer 

drought. Hydroclimate regimes utilizes Hidden Markov Model to distinguish the temporal 

boundaries and duration of regimes through hydroclimate data inputs, including air temperature, 

soil temperature, precipitation and radiation. The identified regimes (e.g., R0-R5) enable us to 
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distinguish the duration of ecohydrological dynamics (e.g., snowmelt, fore-summer drought, 

growing season, defoliation) and assess their impacts over ET and other ecohydrological 

processes. With hydroclimate regimes, we were able to quantitatively characterize the durations 

and occurrences of regimes related with snow, snowmelt, growing season, monsoon and 

defoliation. The employment of hydroclimate regimes enables us to delineate the spatial 

component and temporal component of ET dynamics over the six sites over 10 years. The 

proposed hydroclimate regimes can fill in the current missing gaps that are needed to 

quantitatively and qualitatively assess the intra-annual variability of ET dynamics at 

mountainous watersheds.  

Finally, although we focused on a limited number of sites and developed specific examples 

(Use Cases) to test and demonstrate the applicability of proposed approaches, these methods are 

applicable for other sites and other attributes. Thus, the approaches proposed in this dissertation 

still provide general formulations that are expected to further contribute to better understand 

watershed processes and model environmental HSHMs. 
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Appendix A 

 

Flux Estimation and Validation for Chapter 3 
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A1. ET and 𝑹𝑬𝑪𝑶 Estimation over Time at other Fluxnet sites 

 

Figure A.1 ET estimation with data from selected FLUXNET sites at CA-OBS, US-Wkg, and US-SRM. 

Panels (a), (c), and (e) present daily estimations of ET with red, green, and blue lines representing data used 

for training, validation, and prediction, respectively, and the black line representing the eddy covariance 

measurement. Pink points describe monthly mean difference between HPM estimation and measured data. 

Panels (b), (d), and (f) show the scatter plots of daily (blue) and monthly (red) ET. Darker blue clouds 

represent greater density of data points.  
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Figure A.2 ET estimation with data from selected FLUXNET sites at US-Ton,  US-Var, and US-Whs. Panels 

(a), (c), and (e) present daily estimations of ET with red, green, and blue lines representing data used for 

training, validation, and prediction, respectively, and the black line representing the eddy covariance 

measurement. Pink points describe monthly mean difference between HPM estimation and measured data. 

Panels (b), (d), and (f) show the scatter plots of daily (blue) and monthly (red) ET. Darker blue clouds 

represent greater density of data points.  
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Figure A.3 𝑹𝑬𝑪𝑶 estimation with data from selected FLUXNET sites at CA-OBS, US-Wkg, and US-SRM. 

Panels (a), (c), and (e) present daily estimations of 𝑹𝑬𝑪𝑶 with red, green, and blue lines representing data used 

for training, validation, and prediction, respectively, and the black line is eddy covariance measurement. Pink 

points describe the monthly mean difference between HPM estimation and measured data. Panels (b), (d), 

and (f) show the scatter plots of daily (blue) and monthly (red) 𝑹𝑬𝑪𝑶. Darker blue clouds represent greater 

density of data points.  
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Figure A.4 𝑹𝑬𝑪𝑶 estimation with data from selected FLUXNET sites at US-Ton, US-Var, and US-Whs. Panels 

(a), (c), and (e) present daily estimations of 𝑹𝑬𝑪𝑶 with red, green, and blue lines representing data used for 

training, validation, and prediction, respectively, and the black line representing the eddy covariance 

measurement. Pink points describe monthly mean difference between HPM estimation and measured data. 

Panels (b), (d), and (f) show the scatter plots of daily (blue) and monthly (red) 𝑹𝑬𝑪𝑶. Darker blue clouds 

represent greater density of data points. 
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Appendix B 

 

HPM and MOD16A2 Comparison 
 

 

 

Figure B.1 Comparison of 8-day averaged ET estimation from HPM and Mu et al. (2013) at deciduous forests 

site in East River Watershed. 
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Appendix C 

 

Meteorological Forcing Heterogeneity at East 

River Watershed
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Figure C.1 Meteorological forcings heterogeneity within East River Watersheds (DF1 and EF1, black lines) 

with DAYMET data and across SNOTEL stations (ER-BT and ER-PK, red lines) with SNOTEL data. 
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Figure C.2 Differences in air temperature and incident solar radiation among three weather stations 

(ER_CSMWS, Snodgrass and Billy Barr) locations within the East River Watershed. Panel (a) and (c) 

present data from weather stations obtained from https://wfsfa-data.lbl.gov/. Panel (b) and (d) present data 

obtained from DAYMET.  

 

 

  

 

 

https://wfsfa-data.lbl.gov/


86 

 

 
 

 

 

 

Appendix D 

 

Community Land Model Performance 

 

 
 

 

Figure D.1 Comparison between ET estimation from CLM and measurement from flux tower. MAE are 

𝟎. 𝟐𝟐, 𝟎. 𝟐𝟓, 𝟎. 𝟏𝟏𝒎𝒎 for US-NR1, US-GLE and US-VCM, respectively. Red points represent monthly mean 

values and blue clouds represent the density of scattered points. Units are 𝒎𝒎/𝒅𝒂𝒚 for both axis. 
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Figure E.1 Temporal distribution of hydroclimate regimes at the six sites between 2005 and 2016 
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