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Abstract. Background/Aim: This study aimed to measure
the DNA methylation state of thousands of CpG islands in
the blood of two monozygotic twins that were discordant for
cardiovascular disease (CVD). Twin 1 had suffered
myocardial infarction, while the other was healthy. Patients
and Methods: Since the aim of this study was to identify
differentially methylated regions which might act as potential
markers, reduced-representation bisulfite libraries were used
for whole-genome methylation analysis. Results: According
to the analysis, 11 genes lipid droplet associated hydrolase
(LDAH), apolipoprotein B (APOB), acyl-CoA synthetase
medium chain family member 2A (ACSM2A), acyl-CoA
synthetase medium chain family member 5(ACSM5), acyl-
CoA synthetase family member 3 (ACSF3), carboxylesterase
1 (CES1), carboxylesterase 1 pseudogene 1 (CES1P1),
AFG3 like matrix AAA peptidase subunit 2 (AFG3L2), iron-
sulfur cluster assembly enzyme (ISCU), SEC14 like lipid
binding 2 (SEC14L2) and microsomal triglyceride transfer
protein (MTTP) were all hypomethylated in DNA from twin
2, the unaffected twin. Methylation changes were observed
at different multiple loci between the twins, suggesting loci
that are affected by disease status in identical genetic
backgrounds. Conclusion: This twin study may contribute
significantly to the understanding of the genetic basis of
CVD and resulting myocardial infarction. This approach may
allow identification of possible target loci associated with
aberrant epigenetic regulation in CVD.

Cardiovascular disease (CVD) is a cause of worldwide
mortality. In addition, diabetes mellitus, hypercho-lesterolemia,
smoking, hypertension, obesity and physical inactivity are
primary risk factors for CVD (1, 2). Factors of CVD include
age, male gender, ethnicity and family history (3). Genetic
factors also play a key role in CVD. Genome-wide association
studies (GWAS) have identified multiple genes and single
nucleotide polymorphisms (SNPs) involved in CVD (4).
However, most of these loci only increase the risk of CVD
modestly, and other studies have sought epigenetic factors that
might be associated with disease incidence and risk. 

Specifically, recent advances in the field of epigenetics
have led to the investigation of DNA methylation and its
association with manifestations of disease phenotype.
Alterations in DNA methylation mediate underlying CVD
risk (5). For example, Epigenome-wide association studies
investigated regions of methylated DNA associated with
phenotypes and identified gene regions that are significantly
associated with risk factors for CVD such as high body mass
index, high blood lipid levels, and type 2 diabetes (6-8). It
also found the DNA methylation status in blood samples to
be associated with CVD itself (9).

It is known that not all genes are expressed at the same
time by all cell types (10). Differences in gene-expression
profiles in cells and tissues occur due to epigenetic
mechanisms. CpG islands are stretches of DNA roughly
1000 base pairs long that have a higher CpG density than the
rest of the genome but often are not methylated (10). CpG
islands contain roughly 70% of gene promoters (11). The
promoter regions for housekeeping genes are often
embedded in CpG islands (12). CpG islands, especially those
associated with promoters, are highly conserved between
mice and humans (13). The location and preservation of CpG
islands throughout evolution implies that these regions
possess a functional importance.

Here we used reduced-representation bisulfite sequencing
(RRBS) to measure the DNA methylation state of thousands
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of CpG islands in the blood of two monozygotic twins that
were discordant for CVD. This approach may allow
identification of possible target loci associated with aberrant
epigenetic regulation in CVD.

Patients and Methods

Design and study subjects. A 27-year-old male presented to our
outpatient clinic for further evaluation of premature coronary artery
disease. He had undergone a primary percutaneous coronary
intervention for an anterior myocardial infarction (MI) 1 month
earlier. The diagnosis of MI had been based on typical
electrocardiographic changes and increased serum activities of
enzymes including creatine kinase, aspartate aminotransferase, and
lactate dehydrogenase; it was confirmed by the presence of a wall
motion abnormality on left ventriculography and attendant stenosis
of the major coronary arteries. It was successfully treated with a
stent implantation in the proximal left anterior descending artery.
He was asymptomatic and with normal physical examination
findings. On echocardiography, his left ejection fraction was
preserved (55%). 

His monozygotic twin was also investigated along with the
patient given the potential catastrophic results of the disease. They
were both soldiers, with moderate daily activity. The medical history
was unremarkable, with no evident risk factors. They were also
screened for non-traditional risk factors, which yielded no
significant results. The absence of coronary artery disease was
confirmed by multislice computed tomography imaging in the
unaffected twin. Both twins were asymptomatic at the 24-month
clinical follow-up. 

Sample collection and DNA extraction. Blood samples were
collected in EDTA vacutainers at Pamukkake University Medical
faculty, Department of Cardiology. Written informed consent was
obtained. Blood cell counts and biochemical tests were carried out
(Table I). Genomic DNA was isolated from the individuals by
standard phenol-chloroform extraction method. This study was
approved by the Ethics Committee of Pamukkale University Faculty
of Medicine (ethical approval number 60116787-020/49148).

DNA methylation assay. Genomic DNA was isolated by standard
phenol-chloroform extraction method and used as input to prepare
RRBS libraries as described previously (14) with minor
modifications. For each sample, 50-100 ng of purified genomic
DNA was digested with 20 U of MspI (NEB, USA) at 37˚C o/n in
the presence of RNase Cocktail Mix (Ambion, USA). End-repair
and dA-tailing was performed by the addition of Klenow Fragment
3’->5’ exo- (NEB) in the presence of dATP, dGTP and d5mCTP
(Fermentas, USA). Adapter ligation was performed by the addition
of 0.3 μl of Illumina TruSeq methylated Adapters (Illumina, TruSeq
Nano, USA) and 2 μl of Illumina Ligation Mix 2 (Illumina, TruSeq
Nano). Samples were pooled and purified using an equal volume of
SPRI beads (Beckman Coulter, USA). Size-selection was performed
using SPRI beads to enrich for fragments from 200 to 300 bp.
Bisulfite treatment was performed using Epitect Bisulfite kit
(QIAGEN, USA) according to the manufacturer’s protocol, except
that two consecutive rounds of conversion were performed, for a
total of 10 h of incubation. Purified converted DNA was polymerase
chain reaction (PCR) amplified using MyTaq HS Mix (Bioline,

USA) and TruSeq PCR Primer Cocktail (Illumina, TruSeq Nano,
USA) according to the following protocol: Initial denaturation at
98˚C for 30 s; 12 cycles of 98˚C for 15 s, 60˚C for 30 s, 72˚C for 3
0 s; final extension at 72˚C for 5 min. Amplified libraries were
purified twice with an equal amount of SPRI beads to remove
primer and adapter dimers. Libraries were sequenced 100 bp single-
end on an Illumina HiSeq4000.

Differential methylation analysis. Reads were aligned to the
reference genome (GRCh37) using BS-Seeker2 (15). Methylation
levels were called using the default parameters of BS-Seeker2. CpG
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Table I. Hematological and biochemical data of the twins.

                                                                    Twin-1 (case)         Twin-2

Age, years/gender                                           27/Male             27/Male

BMI, kg/m2                                                           24                   24.5
WBC, ×103/μl                                                    7.13                   7.42
RBC, ×1012/l                                                        5.9                   6.42
Hemoglobin, g/dl                                               17.2                   18.3
Hct, %                                                                49.6                   52.6
MCV, fl                                                                 84                   81.9
MCH, g/dl                                                          29.1                   28.5
MCHC, pg                                                          34.7                   34.9
RDW, %                                                             13.9                      12
platelet, k/μl                                                        221                    252
PDW, %                                                             66.1                   41.2
glucose, mg/dl                                                       85                    101
LDL cholesterol                                                    78                    179
Urea, mg/dl                                                           32                      36
BUN, mg/dl                                                           15                      17
Creatinine, mg/dl                                               0.94                   1.01
Sodium, mmol/l                                                  136                    141
Potassium, mmol/l                                             4.12                   4.88
AST, IU/l                                                               18                      34
ALT, IU/l                                                               34                      86
uric acid, mg/dl                                                    5.9                     7.8
HDL cholesterol, mg/dl                                        40                      36
Total cholesterol, mg/dl                                      138                    251
Triglyceride, mg/dl                                             101                    179
VLDL cholesterol, mg/dl                                     20                      36
von Willebrant factor antigen, %                   194.5                 204.6
Anti-phosfolipid IGM                                         2.1                     2.2
Anti-phosfolipid IGG                                         2.8                   2.17
Anti-cardiolipin IGM                                        2.79                   2.17
Anti-cardiolipin IGG                                         5.86                   3.48
Sedimentation 1st hour                                         15                      22
Active protein C resistance                              2.62                     2.8
Lupus anticoagulant                                          0.96                   0.98

BMI: Body mass index; WBC: white blood cells; RBC: red blood cells;
Hct: hematocrit; MCV: mean corpuscular volume; MCH: mean
corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin
concentration; RDW: red cell distribution width; PDW: platelet distribution
width; LDL: low density lipoprotein; BUN: blood urea nitrogen; AST:
aspartate aminotransferase; ALT: alanine aminotransferase; HDL: high-
density lipoprotein; VLDL: very-low-density lipoprotein; IGM:
immunoglobulin M; IGG: immunoglobulin G.



sites with coverage more than 10 were retained for the downstream
analysis. DSS, an R package, was used to determine the differentially
methylated loci (DML). A total of 3,004 out of 2,562,092 methylated
loci were called as DML with a p-value cutoff of 0.01. 

Enrichment analysis. To associate the DML with genes, a regulatory
region was first assigned to a gene. Following a similar strategy as
that used in the program GREAT (16), each gene was assigned a
basal regulatory domain of 5 kb upstream and 1 kb downstream of
the transcription starting site. The gene’s regulatory domain was
then extended in both directions to the nearest gene’s basal domain
but no more than 1000 kb in one direction. The DML and the
background methylated sites were then overlapped with the genes’
regulatory regions. Following this approach, each gene’s regulatory
region was assigned to a number of DML and a number of
background methylated sites. A hypergeometric test was then
performed for each gene to estimate whether the number of DML
was higher than that expected by chance. The Benjamini–Hochberg
procedure was used to control for the false-discovery rate. Using
this procedure, 480 genes were retained at a false-discovery rate
level of 0.01. These genes had regulatory regions that were
considered differentially methylated between samples. Enrichment
analysis was performed for these genes using Enrichr (17).

Cell type percentage estimation. The CGmap files output from BS-
Seeker2 was input for CELLFi. Purified B-cell, T-cell, monocyte,
neutrophil and natural killer cell methylation data were used as the
reference, the other parameters were set as default. The percentages
were output from CELLFi and used to prepare the graphical
representation of cell type composition for each twin. The detailed
method can be found in (17).

Results

Clinical data. Table I shows hematological and biochemical
data of the twins, which reveal that some of the healthy
twin’s (twin 2) lipid parameters were higher than those of
the case (twin 1). Since twin 1 was treated with aspirin and
statins (for 2 months), lipid levels were lower than those of
twin 2. Thus, the statins may explain part of the difference
in the laboratory data rather than there being a solely
epigenetic influence, considering the short amount of time
between the index event, myocardial infarction, and tests
performed.

Differential methylation analysis. DNA from the twins was
used to prepare RRBS libraries as described previously with
minor modifications (14). The libraries were sequenced
using an Illumina HiSeq4000 yielding more than 20 million
reads for each twin. After sequencing, the reads were aligned
and methylation called using BS-Seeker2 (15). We selected
CpG sites that had coverage of at least 10 in both twins,
resulting in 2,562,092 CpG sites. We then used DSS, an R
package, to determine DML and found 3,004 DML by
selecting a p-value threshold of 0.01. We show an example
region that contained several DML (Figure 1). This region is
close to the Lipid droplet associated hydrolase (LDAH) gene
(13 kb), which plays a role in cholesterol and lipoprotein
metabolism.
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Figure 1. Differentially methylated loci in twins 1 (case) and 2 (healthy). chr: Chromosome.



Term enrichment analysis of differentially methylated genes.
To find the genes associated with the DML, we first assigned
a regulatory region for each gene (see Materials and
Methods). Then we overlapped the gene’s regulatory region
with the DML and all of the loci that were measured in both
twins. To determine which gene’s regulatory region was
differentially methylated, a hypergeometric test was used for
each gene and a false-discovery rate of 0.01. This process
resulted in 480 genes, which were then used for enrichment
analysis. Eleven genes, namely, lipid droplet-associated
hydrolase (LDAH), apolipoprotein B (APOB), acyl-CoA
synthetase medium chain family member 2A (ACSM2A),
acyl-CoA synthetase medium chain family member 5
(ACSM5), acyl-CoA synthetase family member 3 (ACSF3),
carboxylesterase 1 (CES1), carboxylesterase 1 pseudogene 1
(CES1P1), AFG3-like matrix AAA peptidase subunit 2
(AFG3L2), iron-sulfur cluster assembly enzyme (ISCU),
SEC14 like lipid binding 2 (SEC14L2) and microsomal
triglyceride transfer protein (MTTP) were found to be
involved in fatty acid and cholesterol metabolism, and were
all hypomethylated in DNA from twin 2. This indicates these
genes might be highly expressed in twin 2 and potentially
explains why twin 2 had high triglyceride and cholesterol
levels. The enrichment analysis result of Gene Ontology
(GO) molecular function is shown in Figure 2, from which
it can be seen that these genes were enriched for fatty acid
ligase activities.

Cell type prediction using the methylation data. To study
whether the observed DNA methylation differences were
associated with different cell type composition, we
performed cell type deconvolution using the methylation
data. CELLFi, an unpublished tool developed in the
laboratory, was used to estimate the percentage of each
reference cell type. CELLFi uses CpG methylation calls
from purified reference samples to perform cell mixture
deconvolution of heterogenous samples. Using a non-
negative least squares regression, the tool was used to
estimate the fractional methylation contribution of each
reference cell type, namely B-cells, T-cells, monocytes,
neutrophils and cells, for each twin. The results are shown
in Figure 3. We observed a slight difference in cell type
composition, but the differences were not large, suggesting
that differences in cell type composition do not explain the
DNA methylation differences we observed.

Discussion

Lifestyle factors for cardiovascular diseases have a
significant impact on the development of the disease.
Genome-wide studies reveal the effects of altered gene
expression. For example, Brahmachari et al. reported the
identification of regions across the genome that are

differentially methylated in CVD (18). In recent years,
research on cardiovascular epigenetics has begun to expand
rapidly from biological and animal studies to
epidemiological studies. In studies of blood samples, CVD
has been associated with methylation of repetitive sequences
such as long-interspersed nucleotide repeating elements-1
(LINE1) and ALU elements (19, 20). Numerous
epidemiological studies have shown that lifestyle and
environmental factors may affect cardiovascular health of
individuals and populations (19-21).

Epigenetic mechanisms may play a role in the development
of CVD. This is of particular interest within the framework of
the developmental origins of risk factors that occur during
fetal life, such as maternal exposure (22). As mentioned,
epigenetic mechanisms are crucial during development of the
organism. The in-utero period therefore represents a
vulnerable time frame during which external stimuli can have
considerable influence on long-term risks (22, 23).

In the present study, we identified the differentially
methylated regions between monozygotic twins discordant
for CVD; one (twin 1, 27 years old) of suffered MI while the
other was healthy. Since the aim of this study was to identify
differentially methylated regions which might act as potential
markers, we used RRBS for whole-genome methylation
analysis. According to the analysis, 11 genes (LDAH, APOB,
ACSM2A, ACSM5, ACSF3, CES1, CES1P1, AFG3L2, ISCU,
SEC14L2 and MTTP) were all hypomethylated in DNA from
twin 2, the unaffected twin. These genes are involved in fatty
acid and cholesterol metabolism. The fact that they were
hypomethylated in the unaffected twin suggests that their
gene expression may also be higher in this individual, which
is concordant with his higher lipid levels. As the affected
twin was treated with statins to reduce the cholesterol level,
it is possible that some of the observed epigenetic differences
might have resulted from this drug treatment. However, we
cannot conclude from this that the hypermethylation of these
loci, possibly resulting from statin treatment, is causal for
myocardial infarction. To test this hypothesis, twin studies
with larger cohorts would be needed (24).

Although twin studies have contributed significantly to the
understanding of the genetic basis of coronary artery disease
and resulting myocardial infarction, this study design was
not utilized for the GWAS era as monozygotic twins are
genetically identical and dizygotic twins are not different
from ordinary siblings (25). By contrast, disease-discordant
monozygotic twins, who are completely matched for
genetics, age, sex, cohort effects, maternal influences and
common environment, and are closely matched for other
lifestyle factors, are ideal for detecting epigenetic differences
that may underlie their discordant traits. While this study
examined only a single such pair, the significant epigenetic
differences in lipid pathways that we observed warrant future
investigation in larger cohorts (26).
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Figure 2. Enrichment analysis result of Gene Ontology.

Figure 3. Estimated cell type composition for each twin. NK: Natural killer.
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