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ABSTRACT OF THE THESIS 

 

 

Stabilization of an Inverted Pendulum with 2 Degrees of Freedom, using a Five Bar 

Linkage Mechanism. 

  

by 

 

Sina Kouchaki 

 

Master of Science in Engineering Sciences (Mechanical Engineering) 

 

University of California, San Diego, 2017 

 

Professor Mauricio de Oliveira, Chair 

 

 A pendulum which has its center of mass above its pivot point, is an inverted 

pendulum. Inverted pendulum is an unstable system, and without applying an acceleration 

at the bottom of it, it will fall over. The dynamics of the inverted pendulum are non-linear. 

In this paper, utilizing linear control design technique, specifically a Linear Quadratic 



x 
 

Gaussian (LQG) controller is applied to stabilize two degrees of freedom inverted 

pendulum on a five-bar linkage mechanism. The linkage mechanism converts the rotational 

motion of two direct current (DC) motors into translational motion on the x-y plane, and it 

will provide the required acceleration that is needed in both x and y direction to stabilize 

the pendulum.  

 The equation of motion is obtained by the Lagrangian method instead of the 

Newtonian method. This method allows to neglect the reaction forces in the system and 

develops the equation of motion using the energy of the system. The other key aspect of 

this research paper is to simulate the non-linear model of the inverted pendulum rather than 

linearized version which makes controller more robust. 
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Chapter 1                 

Introduction 

  

1.1. Scope of Thesis 

 

 Inverted pendulum is one of the classic problems used in control theory. Its non-

linear dynamics as well as the unstable nature of it, makes it one of the most popular 

problems in which a wide range number of feedback systems can be used to stabilize the 

system. To balance the pendulum, one can apply acceleration at the bottom of the 

pendulum. There are many different instruments which are capable of providing the 

required transitional acceleration. Combining the inverted pendulum which is a popular 

system to control with a linkage mechanisms, which are conceivably the most fundamental 
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class of machines, an interesting problem can be studied. Since the inverted pendulum is a 

system with 2 degrees of freedom, the required accelerations to stabilize the pendulum 

must be provided by the linkage mechanism in both x and y direction. Linkages are used 

to translate one type of motion into another, since the linkage system must be able to 

provide acceleration in two directions, two DC motors are used to translate a rotational 

motion into a translational motion. One of the key objective of this project was to simulate 

the non-linear system and capture most of its dynamics. Furthermore, to study the behavior 

of this non-linear system, we looked at the response of the non-linear system in both open 

and close loop, rather than using the linearized system. In the next few sections of chapter 

1, the theories and approaches that are used in the project are explored in detail.    

1.2. The Lagrangian Method 

 

 Newton’s law governs the motion of particles and rigid bodies. It can be used to 

describe all mechanical system, and drive equation of motions. Newtonian method 

develops equation of motion based on forces and acceleration as describe by Newton’s 

three laws. Lagrangian method is a replacement for Newtonian method. It offers a 

systematic way to for formulate the equations of motion of a mechanical system or a 

(flexible) structural system with multiple degrees of freedom. [1]. Lagrange methods avoid 

dealing with some constraints, such as reaction forces at a joint. It is a more convenient 
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method for complex problems with high degree of freedom. Lagrangian method develops 

equations of motion using potential and kinetic energy. Some key notes are that both 

Lagrangian and Newtonian method are equivalent, however one big difference is that the 

Lagrangian method does not capture the friction of the system. Lagrangian equation avoids 

some constraints. In the next section, the Lagrangian method and its equation is shown in 

detail. 

1.2.1. Lagrange’s Equation 

 

The Lagrange equation uses the kinetic and potential energy to solve the equation 

of motion. Unlike Newtonian method, there is no need to solve for accelerations of the 

system. In the kinetic energy term in the Lagrange equation, there is a velocity term which 

cause the acceleration to be found. 

Let’s define  

 𝐿 = 𝑇 − 𝑉 (1.1) 

Equation (1.1) is called the Lagrangian, where 𝑇 is the kinetic energy of the system, and 𝑉 

represent the potential energy. For conservative systems, the Lagrange’s equation is 

defined as: 

 𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) =

𝜕𝐿

𝜕𝑥
 (1.2) 

Equation (1.2) is the Euler-Lagrange equation, which can be used to drive the equation of 

motion of the inverted pendulum and the linkage mechanism.   
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1.3. Five Bar Linkage Mechanism  

 

1.3.1. Definitions 

 

A linkage, or kinematic chain, is an assembly of links and joints that provide a 

desired output motion in response to a specified input motion [3]. A node is defined as a 

point which is used to attach other links together. Links are frequently rigid bodies that 

have of two nodes (binary), however they may contain three or four nods (ternary and 

quaternary). Motion is allowed in a linkage mechanism at the joints between the links, the 

joints are also referred to as pivots. A kinematic chain in which at least one link is 

connected to a frame of reference is called a mechanism. The linkage is a system of links 

connected at pivot points. 4 bar linkage is the most common type of linkages which is 

consists of four links. The links are attached to one another at the pivot points to form a 

close kinematics. 4 bar linkage has 1 degrees of freedom, which for this project is not 

enough; therefore, 5 bar linkage was used which has 2 degrees of freedom.  

1.3.2. Degree of Freedom 

 

A linkage mechanism can be characterized by its number of degrees of freedom. 

DOF can be defined as the number of input motions that must be provided to provide the 

desired output, or the number of independent coordinates required to define the position 
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and orientation of an object [3]. Equation (1.3) can be used to find the number of degree of 

freedom , where 𝑙 is the number of linkages, and 𝑗 is the total number of joints.  

 𝐷𝑂𝐹 = 3(𝑙 − 1) − 2𝑗 (1.3) 

Equation (1.3) is called the Gruebler’s Equation, which is used for a planar mechanism. 

Planar mechanism is defined where all the motions of the links are in one plane or in 

parallel planes. Spherical mechanism is when there is a motion which is not in the same 

plane or in parallel planes.  

Typically, there are four types of linkages: 

1) Revolute: One degree of freedom (Rotational) 

2) Prismatic: One degree of freedom (Translational) 

3) Cylindrical: Two degree of freedom 

4) Spherical: Three degree of freedom 

1.4. State Space Models 

The idea of state space model comes from the state variable method of describing 

differential equations. In this method, the differential equations describing a dynamic 

system are organized as a set of first order differential equations in the vector valued state 

of system, and the solution is visualized as a trajectory of this state vector in space [4].  

A continuous time state space model for linear system is defined by the following 

equations: 

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) 

𝑦(𝑡) = 𝐶(𝑡)𝑥(𝑡) + 𝐷(𝑡)𝑢(𝑡) 

(1.4) 
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In equation (1.4), A, B, C, and D are vectors and matrices which we will discuss later. 𝑥 is 

called the state vector, 𝑢 is the input or control vector of the system, and 𝑦 is the output 

vector of the system. In equation (1.4), the relationship between the input and output of the 

system is shown. To determine the output of the system, we need to solve the state equation 

at a particular initial condition 𝑥(0) for a given input of the system and then substitute it 

into the output equation to obtain the system output. 

 Once we have a mathematical model for the system in a form of differential 

equation, we can write this model as a state space model. Let’s consider the following nth 

order LTI system: 

𝑦(𝑛) + 𝑎1𝑦
(𝑛−1) + ⋯+ 𝑎𝑛−1𝑦′ + 𝑎𝑛𝑦 = 𝑢 (1.5) 

with some initial conditions. 

Now let’s define the states as the following vector:  

𝑥 =

[
 
 
 
 
𝑦(𝑛−1)

𝑦(𝑛−2)

⋮
𝑦′

𝑦 ]
 
 
 
 

 (1.6) 

Using our original ODE shown in (1.5) we can write the state equation as: 

�̇� =

[
 
 
 
 
 

𝑦(𝑛)

𝑦(𝑛−1)

⋮
𝑦′′

𝑦′ ]
 
 
 
 
 

=

[
 
 
 
 
−𝑎1 −𝑎2 ⋯ −𝑎𝑛−1 −𝑎𝑛

1 0 … 0 0
0 1 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 1 0 ]

 
 
 
 

𝑥 +

[
 
 
 
 
1
0
⋮
0
0]
 
 
 
 

𝑢 

𝑦 = [𝑏1 𝑏2 ⋯ 𝑏𝑛−1 𝑏𝑛] 𝑥 

(1.7) 
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Equation (1.7) is now in a special form which is called space state equations. It is in form 

of equation (1.4) where D matrix is zero in this example. In the next section, we will 

examine the method of converting a non-linear differential equation to space state model 

via linearization.  

 

1.5. Non-Linear System and Linearization  

Nonlinear systems can be written as: 

 �̇� = 𝑓(𝑡, 𝑥, 𝑢) 

𝑦 = ℎ(𝑡, 𝑥, 𝑢) 

(1.8) 

System (1.8) is time variant system. When f and h are continuous and differentiable 

functions and the state vector and input are within a small neighborhood of a point (�̿�, �̅�) 

or trajectory (�̿�(𝑡), �̅�(𝑡)), it is natural to expect that the behavior of the non-linear system 

can be approximated by that of properly define linear system [6]. The method that is used 

to convert a non-linear system to space state model which is for linear systems, is called 

linearization.  

To obtain the linear system lets take the point (�̿�, �̅�) such that 𝑓(�̿�, �̅�) = 0, which 

is the equilibrium of the system. In dynamic system in which there are no external forces 

acting on the system, the system that starts at equilibrium stays around that point. When 

we linearize a system, it is done around a certain point, where usually it will make it simpler 

to linearize the system around the its equilibrium point. Using partial differential equation, 

we can linearize the system around its equilibrium point and write it in space state form 

where:   
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𝐴 =
𝜕𝑓

𝜕𝑥
|
𝑥 = �̅�
𝑢 = �̅�

   ,   𝐵 =
𝜕𝑓

𝜕𝑢
|
𝑥 = �̅�
𝑢 = �̅�

   ,   𝐶 =
𝜕ℎ

𝜕𝑥
|
𝑥 = �̅�
𝑢 = �̅�

   ,   𝐷 =
𝜕ℎ

𝜕𝑢
|
𝑥 = �̅�
𝑢 = �̅�

 (1.9) 

 

In the next and last section of this introduction chapter we will introduce the control 

design method that was used, which is called Linear Quadratic Regulator and Linear 

Quadratic Gaussian Control (LQR and LQG). 

1.6. Linear Quadratic Gaussian Control 

Let’s look at the linear time-invariant (LTI) system of our state space model 

equation (1.4) with the initial condition of 𝑥(0) = 𝑥0. Controllability describes the ability 

of an external input to move the internal state of a system from any initial state to any other 

final state in a finite time interval. A system with an initial state, 𝑥(0) = 𝑥0 is observable 

if and only if the value of the initial state can be determined from the system output y(t) 

that has been observed through the time interval 𝑡0 < 𝑡 < 𝑡𝑓 [7]. 

 The system is said to be controllable if the controllability matrix is full rank, and it is 

observable if the observability matrix is full rank.  

The controllability and observability matrices are defined as:  

𝐶(𝐴, 𝐵) = [𝐵 𝐴𝐵 ⋯ 𝐴𝑛−1𝐵] 

O(A, C) = [

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑛−1

] 

(1.10) 
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Controllability and observability are the two important property of any dynamical system. 

They are used in Linear Quadratic Gaussian (LQG) control design and they are one of the 

key characteristic in those types of control design.  

 LQG concerns uncertain linear systems which involve having incomplete state 

information and undergoing control subject to quadratic cost. Furthermore, the solution is 

unique and constitutes a linear dynamic feedback control law that is easily computed and 

implemented. Finally, the LQG controller is also fundamental to the optimal control of 

perturbed non-linear systems [12].
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Chapter 2                      

System Modeling  

 

2.1.  Kinematics  

 

Figure 1, Five bar linkage mechanism 
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 Kinematics is the motion of object without reference to the forces that cause the 

motion. In order to develop a model for the system, first we need to consider the kinematics 

of the five-bar linkage. In figure 1, the five-barlinkage mechanism is shown, using this 

figure the coordinate of each linkage can be written as:  

𝑅𝑜𝑑1 = (cos(𝜃1(𝑡) , sin(𝜃1(𝑡)) 

𝑅𝑜𝑑2 = (cos(𝜃2(𝑡) , sin(𝜃2(𝑡)) 

𝑅𝑜𝑑3 = (cos(𝜃3(𝑡) , sin(𝜃3(𝑡)) 

𝑅𝑜𝑑4 = (cos(𝜃4(𝑡) , sin(𝜃4(𝑡)) 

(2.1) 

Next, as shown in Figure 1, Five bar linkage mechanism, there are five nodes in the linkage 

mechanism, the coordinate of each node is: 

𝑂 = (0 , 0) 

𝑛𝐴 = L ×  Rod1 

𝑛𝐵 = nA + (L ×  Rod2) 

𝑛𝐶 = (2L , 0) + (L ×  Rod4) 

𝑛𝐷 = 2𝐿 

(2.2) 

Rod1 through Rod4, describe each linkage coordinate, however to use Lagrangian method, 

to derive the equation of motion, one needs to describe the center of mass of each link; 

therefore, by knowing the length of each rod, the coordinate of the center of mass of each 

link can be written as: 
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𝑅1 =
L

2
 𝑅𝑜𝑑1 

𝑅2 = nA +
L

2
𝑅𝑜𝑑2 

𝑅3 = 𝑛𝐶 +
𝐿

2
𝑅𝑜𝑑3 

𝑅4 = (2L , 0 ) + (
L

2
 𝑅𝑜𝑑4) 

(2.3) 

As shown in the equation of Rod1 thought Rod4, the angle of each link, 𝜃 is a function of 

time, so by taking the time derivative of each equation (Rod1 through Rod4) we can write 

the velocity of each rod as: 

𝑅𝑜𝑑𝑛′ =
dRodn

dt
= (− sin(𝜃𝑛(𝑡)) 𝜃𝑛′(𝑡), 𝑐𝑜𝑠(𝜃𝑛(𝑡)) 𝜃𝑛′(𝑡))    

𝑤ℎ𝑒𝑟𝑒 𝑛 = 1,2,3,4 

(2.4) 

We can do the same for the velocity of the center of mass of each rod 

𝑅𝑛′ =
dRn

dt
 (2.5) 

Now the we have the kinematics for the linkage mechanism, we need to write the 

kinematics for the inverted pendulum as well, the figure to the right shows the three-unit 

Figure 2, Inverted Pendulum 
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vector of Px, Py, and Pz. Using these unit vectors we can easily define the position of the 

pendulum as: 

𝑅𝑜𝑑𝑃𝑒𝑛 = (Px(𝑡), Py(t), Pz(𝑡)) (2.6) 

However, just as we did for the linkage mechanism, we need to define the position of the 

center of mass of the pendulum with respect to the origin of our system. The inverted 

pendulum is mounted at node B of the linkage, and assuming that it has length ℓ, we can 

write its position as: 

𝑅𝑝𝑒𝑛 = (𝐿 𝑐os(θ1(t)) + 𝐿 cos(θ2(t)) +
1

2
ℓpx(𝑡) ,

1

2
ℓpy(𝑡) +

𝐿 sin(θ1(t)) + 𝐿 sin(θ2(t)) ,
1

2
ℓpz(𝑡)) 

(2.7) 

Rpen represents the position of the center of mass of the inverted pendulum which 

is mounted on node B of the linkage, with respect to the origin of the system which is at 

point O. Now that we have the position of both the inverted pendulum and its center of 

mass, we can write their velocities by taking time derivative of equations Rodpen and Rpen. 

𝑅𝑜𝑑𝑃𝑒𝑛′ =
dRodPen

dt
 

𝑅𝑃𝑒𝑛′ =
dRPen

dt
 

(2.8) 

All the results and detail calculations are shown in the appendix. Now, that we have the 

kinematics of the system, the next step is to look at the dynamics of the system in order to 

write the Lagrangian equation.  
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2.2.  Dynamics 

 

 The dynamics of the system involves its kinetic and potential energy. To use the 

Lagrangian method, first we need to find the kinetic and potential energy of the system. 

When finding the kinetic energy of the system, we need to look the effect of both mass and 

the inertia of the system. Keeping this in mind, we need to write down 8 different kinetic 

energy equations. Four of these equations are for the four links of the system, one is for the 

base of the inverted pendulum which includes the sensors and other parts, and one is for 

the inverted pendulum itself.  

𝑇𝑛 =
1

2
(𝑚𝑅𝑛

′2 + 𝐽𝑅𝑜𝑑𝑛
′2)     𝑊ℎ𝑒𝑟𝑒 𝑛 = 1,2,3,4 𝑎𝑛𝑑 𝐽 =

𝐿2𝑚

12
 

𝑇5 =
1

2
𝑀𝑛𝐵′2      

𝑇6 = (
1

2
𝑚𝑝𝑒𝑛𝑅𝑝𝑒𝑛

′2 + 𝐽𝑝𝑒𝑛𝑅𝑜𝑑𝑝𝑒𝑛
′2      𝑊ℎ𝑒𝑟𝑒  𝐽𝑝𝑒𝑛 =

ℓ2𝑚𝑝𝑒𝑛

12
 

 

(2.9) 

We also need to write down the kinetic energy of each the shaft of DC motors, used in the 

system. There are two motors mounted at ends the first and the last link. The equations 

blow represent the kinetic energy of each shaft.  

TMotor1 = (
1

2
) Im ∗ ( 

dθ1[𝑡]

𝑡
 )

2

 

TMotor4 = (
1

2
) Im ∗ ( 

dθ4[𝑡]

𝑡
 )

2

 

(2.10) 
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Combining the total of eight kinetic energy equations, we can write the total kinetic energy 

of the system as: 

T = T1 + T2 + T3 + T4 + T5 + T6 + TMotor1 + TMotor4 (2.11) 

Where T represent the total kinetic energy of the system.  

 In terms of potential energy of the system, the only component that contribute to 

this, is the inverted pendulum. Since the linkage mechanism is on a x-y plane, the links do 

not have any contribution to the potential energy. Knowing this we can write the potential 

energy of the inverted pendulum as weight times the position of the pendulum which gives 

us: 

 

 

2.2.1  Constraints 

 

 The linkage mechanism consists of 5 links and 5 joints. Using equation 3, this 

results in a cylindrical mechanism. To control a 2 DOF linkage, 2 inputs are required; 

𝑉 = 𝑚𝑝𝑒𝑛𝑔 × 𝑅𝑝𝑒𝑛 =
1

2
𝑚𝑝𝑒𝑛 𝑔 ℓ 𝑃𝑧(𝑡) (2.12) 

Figure 3, linkage mechanism for constraints 
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therefore, we have 2 DC motors mounted on the first and last link. As shown in figure 3, 

the linkage mechanism consists of four angles, which two of these angles are controlled by 

the inputs. Thinking down the line about our states for our system model, we cannot have 

𝜃2(𝑡) 𝑎𝑛𝑑 𝜃3(𝑡) as states, since there are no sensors at node A, B, nor C; therefore, a 

relationship between the two controlled angles (θ1[𝑡], θ4[𝑡]) and the unknown angles 

(θ2[𝑡], θ3[𝑡]) may be derived.  

As shown in the figure to the right, let’s draw a vector from node A to node C and call this 

vector H.  

          𝐻2 =  (𝐶𝑥 − 𝐴𝑥)2 + (𝐶𝑦 − 𝐴𝑦)2                   (2.13)    

Where Ax and Cx represent the x components of node A and C, and Ay and Cy represent 

the y components of those nodes. By using the triangle formed with ABC and law of cosine, 

we can write the following: 

𝐻 = 𝐿2 + 𝐿2 − 2𝐿 cos [𝜃3(𝑡) − 𝜃2(𝑡)] (2.14) 

 

By solving equation (2.14) we can write 𝜃3(𝑡) as function of 𝜃1(𝑡), 𝜃2(𝑡), 𝑎𝑛𝑑 𝜃4(𝑡). In 

order to solve for 𝜃2(𝑡) we can use the fact that the length of all the links are equal to each 

other and write: 
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(𝐵𝑥 − 𝐴𝑥)2 + (𝐵𝑦 − 𝐴𝑦)2 = (𝐵𝑥 − 𝐶𝑥)2 + (𝐵𝑦 − 𝐶𝑦)2 (2.15) 

By solving equation (2.15) we can write 𝜃3(𝑡) as function of 𝜃1(𝑡) 𝑎𝑛𝑑 𝜃4(𝑡). As a result, 

𝜃2(𝑡) 𝑎𝑛𝑑 𝜃3(𝑡) can be written as a function of the inputs. 

𝜃2 = sec−1(
𝑓𝑐𝑜𝑠(𝜃1,𝜃4)

𝑓𝑐𝑜𝑠(𝜃1,𝜃4) + 𝑓𝑠𝑖𝑛(𝜃1,𝜃4) + 𝑓𝑠𝑖𝑛2(𝜃1,𝜃4)
) 

𝜃3 = 𝜃2 + cos−1(𝑓cos(𝜃1,𝜃2)) 

(2.16) 

As shown in equation (2.16) the result of solving for 𝜃2(𝑡) 𝑎𝑛𝑑 𝜃3(𝑡)is costly. Both 

𝜃2(𝑡) 𝑎𝑛𝑑 𝜃3(𝑡) are highly non-linear and if they were to be using in our model, they 

would be costly in terms of simulation and computation time. Thus, we need to drive a new 

set of constraints so we can use in Lagrangian Multipliers.  

In equation (2.2), nC was defined in a counter clock wise direction of the links. Looking 

and node C, we can write it in two ways. First going in counter clock wise direction as was 

done in (2.2), and second in the clock wise direction. Since in both ways we end up at a 

same point we can write a set of x and y coordinate as constraints of the linkage.  

Figure 4, Five bar linkage constraints 
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 𝑛𝐵 = 𝑛𝐶 − 𝐿𝑅𝑜𝑑3 →  𝑛𝐶 + 𝐿𝑅𝑜𝑑3 − 𝑛𝐵 = 0 (2.17) 

Which results in 2 sets of constraints: 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡1: 2𝐿 − 𝐿 cos (θ1(t)) − 𝐿 cos (θ2(t)) + 𝐿 cos (θ3(t))

+ 𝐿 cos (θ4(t)) = 0 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡2: − 𝐿 sin(θ1(t)) − 𝐿 𝑠in(θ2(t)) + 𝐿 𝑠in(θ3(t))

+ 𝐿 sin(θ4(t)) = 0 

(2.18) 

For the inverted pendulum, since 𝑝𝑥, 𝑝𝑦, 𝑎𝑛𝑑 𝑝𝑧are defined as unit vectors, the norm of 

Rodpen should equal to 1. The constraint equation for the inverted pendulum can be written 

as 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡3: 𝑅𝑜𝑑𝑝𝑒𝑛
2 = 1 → 𝑝𝑥(𝑡)

2 + 𝑝𝑦(𝑡)2 + 𝑝𝑧(𝑡)
2 = 1 (2.19) 

2.2.2  DC Motor 

 

 There are two Brush DC Motors in the system. They are used to control the input 

of the system. The fundamental input of the system can be recognized as the voltage. The 

suppled voltage into the motors, cause the motor to change position with a certain velocity 

and acceleration. To develop equation of motions for the entire system, we need to 

understand and have a model for the motors as well.  
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 The circuit in figure 5 represent the electrical and torque characteristics of a DC 

motor. vb represent the back emf that is induce by the permanent magnets on to the motor 

armature. Back emf is a function of the angular velocity of the motor armature, and it is 

directly proportional to the angular velocity 𝜔.  

𝑣𝑏 = 𝑘𝑣𝜔 (2.20) 

The torque of the DC motor is directly proportional to the current, and it can be written as 

𝜏 = 𝑘𝑡𝑖 (2.21) 

 

𝑘𝑣, 𝑎𝑛𝑑 𝑘𝑡 are the back emf constant and torque constant of the motor. Assuming that the 

mechanical and electrical power are equal, and making sure that all the parameters have 

units that are in SI, we can say that 𝑘𝑣 = 𝑘𝑡. 

Using Kirchhoff’s voltage law around the circuit loop shown in figure 5, we can write the 

following ordinary differential equation: 

Figure 5, DC motor circuit 
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𝑉(𝑡) = 𝑅 𝑖(𝑡) + 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑣𝑏(𝑡) (2.22) 

By substituting equations 2.20 and 2.21 into 2.22 we get 

𝑉(𝑡) = 𝑅
𝜏(𝑡)

𝑘𝑡
+ 𝐿

𝑑𝜏

𝑑𝑡

1

𝑘𝑡
 + 𝑘𝑣𝜔(𝑡) 

𝑑𝜏

𝑑𝑡
= −

𝑅 𝜏(𝑡)

𝐿
−

𝑘𝑣𝑘𝑡

𝐿
𝜔(𝑡) +

𝑘𝑡𝑉(𝑡)

𝐿
 

(2.23) 

Solving the ordinary differential equation (2.23), and assuming that the transient 𝑒−
𝑅

𝐿
𝑡
 is 

very fast, we can approximate the torque of the DC motor as: 

𝜏(𝑡) =  −
𝑘𝑡𝑘𝑉

𝑅
𝜔(𝑡) +

𝑘𝑡

𝑅
𝑉(𝑡) (2.24) 

Using a gearbox with a DC motor is essential since the DC motors which run on 12Volt, 

usually do not have enough torque to carry out the load of the system. They are also high 

speed which makes them hard to control. Adding a gearbox to the system, increase the 

torque and decrease the angular velocity of the DC motor.  

𝜏(𝑡)𝐺𝑒𝑎𝑟𝑏𝑜𝑥 = 𝑅𝑎𝑡𝑖𝑜 × 𝜏(𝑡)𝑚𝑜𝑡𝑜𝑟 

𝜏(𝑡)𝐺𝑒𝑎𝑟𝑏𝑜𝑥 = 𝑅𝑎𝑡𝑖𝑜 × [−
𝑘𝑡𝑘𝑉

𝑅
𝜔(𝑡) +

𝑘𝑡

𝑅
𝑉(𝑡)] 

(2.25) 

Since angular velocity is the time derivative of the angular position, we can write the torque 

of the motors as a function of 𝜃1(𝑡) 𝑎𝑛𝑑 𝜃4(𝑡) which are the input angles of the linkage.  
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𝜏1(𝑡) = 𝑅𝑎𝑡𝑖𝑜 × [−
𝑘𝑡𝑘𝑉

𝑅
𝜃1′(𝑡)  +

𝑘𝑡

𝑅
𝑉1(𝑡)] 

𝜏4(𝑡) = 𝑅𝑎𝑡𝑖𝑜 × [−
𝑘𝑡𝑘𝑉

𝑅
𝜃4′(𝑡)  +

𝑘𝑡

𝑅
𝑉4(𝑡)] 

(2.26) 

In equation above (2.26), the torque provided by the DC motor at each link, is written in 

terms of the corresponding angular velocity and voltage.  

2.3.  Lagrangian Dynamics and Equation of Motion 

 

In the previous sections the kinetic and potential energy of the system were written 

in equations (2.11) and (2.12). Using Lagrangian method the equation of motion can be 

developed. Using equations (1.1) and (1.2), we can write the equation of motion as: 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑞
= 𝜏 (2.27) 

Where  

𝐿 = 𝑇 − 𝑉 − 𝜆(𝑡) × 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2.28) 

  𝐿 = 𝑇 − 𝑉 − 𝜆1(𝑡)𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡1 −  𝜆2(𝑡)𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡2 − 𝜆3(𝑡)𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡3  

𝑞 is a vector with the system parameters 

𝑞 = [𝜃1(𝑡) 𝜃2(𝑡) 𝜃3(𝑡) 𝜃4(𝑡) 𝑝𝑥(𝑡) 𝑝𝑦(𝑡) 𝑝𝑧(𝑡) ] 

 �̇� =
𝑑𝑞

𝑑𝑡
= [𝜃1′(𝑡) 𝜃2′(𝑡) 𝜃3′(𝑡) 𝜃4′(𝑡) 𝑝𝑥′(𝑡) 𝑝𝑦′(𝑡) 𝑝𝑧′(𝑡) ] 

�̈� =
𝑑�̇�

𝑑𝑡
= [𝜃1′′(𝑡) 𝜃2′′(𝑡) 𝜃3′′(𝑡) 𝜃4′′(𝑡) 𝑝𝑥

′′(𝑡) 𝑝𝑦
′′(𝑡) 𝑝𝑧′′(𝑡) ] 



22 

 

 

  

𝜏 uses the torques form equation (2.26) which we can write as a vector for each element 

of 𝑞. 

𝜏 =

[
 
 
 
 
 
 
𝑟𝑎𝑡𝑖𝑜 × 𝜏1(𝑡)

0
0

𝑟𝑎𝑡𝑖𝑜 × 𝜏4(𝑡)
0
0
0 ]

 
 
 
 
 
 

 (2.29) 

Also, using the constraints of the system 2.18 and 2.19, we can construct a constraint 

matrix for the system by taking the time derivative of our 3 equations with respect to 𝑞: 

𝐴 =

[
 
 
 
 
 
 
 

𝐿 sin[𝜃1(𝑡)] −𝐿 cos[𝜃1(𝑡)] 0
𝐿 sin[𝜃2(𝑡)] −𝐿 cos[𝜃2(𝑡)] 0

−𝐿 sin[𝜃3(𝑡)] 𝐿 cos[𝜃3(𝑡)] 0
−𝐿 sin[𝜃4(𝑡)] 𝐿 cos[4(𝑡)] 0

0 0 2𝑝𝑥(𝑡)

0 0 2𝑝𝑦(𝑡)

0 0 2𝑝𝑧(𝑡)]
 
 
 
 
 
 
 

 (2.30) 

 

Using equation (2.27) we get a set of 10 equations of motion which are functions 

of 𝑞, 𝑞,̇  𝑎𝑛𝑑 �̈�. 7 equations for 𝑞, and 3 equations corresponds to the constraints of the 

system 𝜆. Writing the equation of motion in a matrix form results in:  

𝑀(𝑞) �̈� + 𝐴(𝑞) 𝜆 = 𝑔(𝑞, �̇�) 

𝐴𝑇(𝑞) �̈� = −�̇�𝑇(𝑞) �̇� = ℎ(𝑞, �̇�) 

(2.31) 

 

Equation (2.13) is the equation of motion for our system in a matrix form which was 

developed using Lagrangian method from 2.27 where M, g, and h matrix are:  
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𝑀= 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝐼𝑚 +

1

3
𝐿2 (4𝑚 + 3(𝑀 + 𝑚𝑝𝑒𝑛))

1

2
𝐿2 (𝑚 + 2(𝑀 + 𝑚𝑝𝑒𝑛)) cos[θ1(t)] − θ2(t)] 0 0 −

1

2
𝐿 𝑚𝑝𝑒𝑛ℓsin [𝜃1(𝑡)]

1

2
𝐿 𝑚𝑝𝑒𝑛ℓ𝑐𝑜𝑠 [𝜃1(𝑡)] 0

1

2
𝐿2 (𝑚 + 2(𝑀 + 𝑚𝑝𝑒𝑛))cos[θ1(t)] − θ2(t)]

1

3
𝐿2 (𝑚 + 3(𝑀 + 𝑚𝑝𝑒𝑛)) 0 0 −

1

2
𝐿 𝑚𝑝𝑒𝑛ℓsin [𝜃2(𝑡)]

1

2
𝐿 𝑚𝑝𝑒𝑛ℓ𝑐𝑜𝑠 [𝜃2(𝑡)] 0

0 0
𝐿2𝑚

3

1

2
𝐿2𝑚 cos [𝜃3(𝑡) − 𝜃4(𝑡)] 0 0 0

0 0
1

2
𝐿2𝑚 cos [𝜃3(𝑡) − 𝜃4(𝑡)] 𝐼𝑚 +

4𝐿2𝑚

3
0 0 0

−
1

2
𝐿 𝑚𝑝𝑒𝑛ℓsin [𝜃1(𝑡)] −

1

2
𝐿 𝑚𝑝𝑒𝑛ℓsin [𝜃2(𝑡)] 0 0

𝑚𝑝𝑒𝑛ℓ2

3
0 0

1

2
𝐿 𝑚𝑝𝑒𝑛ℓcos [𝜃1(𝑡)]

1

2
𝐿 𝑚𝑝𝑒𝑛ℓ𝑐𝑜𝑠 [𝜃2(𝑡)] 0 0 0

𝑚𝑝𝑒𝑛ℓ2

3
0

0 0 0 0 0 0
𝑚𝑝𝑒𝑛ℓ2

3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑔 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−2 kt ratio V1(t) + 2 k𝑡 kv ratio

2 θ1′(𝑡) + 𝐿2(𝑚 + 2(𝑀 + mPen))𝑅 sin[θ1(𝑡) − θ2(𝑡)] θ2′(𝑡)2

2𝑅
1

2
𝐿2(𝑚 + 2(𝑀 + mPen)) sin[θ1(𝑡) − θ2(𝑡)] θ1′(𝑡)2

−
1

2
𝐿2𝑚 sin[θ3(𝑡) − θ4(𝑡)] θ4′(𝑡)2

2kt ratio V4(𝑡) + 𝐿2𝑚 𝑅 𝑠in[θ3(𝑡) − θ4(𝑡)]θ3′(𝑡)2 − 2 ktkv ratio
2 θ4′(𝑡)

2𝑅
1

2
𝐿 mPenℓ (cos[θ1(𝑡)] θ1′(𝑡)2 + cos[θ2(𝑡)] θ2′(𝑡)2)

1

2
𝐿 mPenℓ (sin[θ1(𝑡)] θ1′(𝑡)2 + sin[θ2(𝑡)] θ2′(𝑡)2)

−
1

2
𝑔 𝑚𝑝𝑒𝑛ℓ ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

ℎ = 

[

𝐿 (−cos[θ1(𝑡)]θ1′(𝑡)2 − cos[θ2(𝑡)]θ2′(𝑡)2 + cos[θ3(𝑡)]θ3′(𝑡)2 + cos[θ4(𝑡)]θ4′(𝑡)2)

𝐿 (−sin[θ1(𝑡)]θ1′(𝑡)2 − sin[θ2(𝑡)]θ2′(𝑡)2 + sin[θ3(𝑡)]θ3′(𝑡)2 + sin[θ4(𝑡)]θ4′(𝑡)2)

−2(𝑝𝑥
′ (𝑡)2 + 𝑝𝑦

′ (𝑡)2 + 𝑝𝑧
′(𝑡)2)

] 

 

2.4.  Reduced Model  

 

 In the previous section, we derived the equation of motion for our system. This 

equation is a non-linear differential equation. To develop a state space model for the 

system, we need to linearize this system around it equilibrium point. The goal in this and 



24 

 

 

  

next section is to develop a state space model for the system, and reduce the state space 

model as much as we can.   

 To reduce the state space, we can use our equation of motion and the constraints of 

the system. We have the following  

𝑀(𝑞) �̈� + 𝐴(𝑞) 𝜆 = 𝑔(𝑞, �̇�) 

𝐴𝑇(𝑞) �̇� = 0 

(2.32) 

Now we can define a state like variable 𝑥 where 

𝑥 = [
𝑥1

𝑥2
] = [

𝑞
�̇�] 

Now we can rewrite equation (2.32) as  

𝑀(𝑥1) 𝑥2̇ + 𝐴(𝑥1) 𝜆 = 𝑔(𝑥1, 𝑥2) 

𝐴𝑇(𝑥1) 𝑥2 = 0 

𝑥1̇ = 𝑥2 

(2.33) 

Now 𝐴𝑇(𝑥1) 𝑥2 = 0 has a solution 𝑆(𝑥1) which is defined as   

𝑆(𝑥1) = [𝑁𝑢𝑙𝑙[𝐴𝑇(𝑥1)]]
𝑇
  (2.34) 

Next, we can define a new matrix 𝑆𝐴  as 

𝑆𝐴 = [
𝑆𝑇(𝑥1)

𝐴𝑇(𝑥1)
]  
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Using 𝐴𝑇(𝑥1) 𝑥2 = 0, and the new matrix 𝑆𝐴  

𝑆𝐴 ∙ 𝑥2 = [
𝑆𝑇(𝑥1)

𝐴𝑇(𝑥1)
] 𝑥2 = [

𝑃
0
]  (2.35) 

Where 𝑃 = [𝑝1[𝑡]     𝑝2[𝑡]    𝑝3[𝑡]    𝑝4[𝑡]] is a new vector state.   

Now, we can solve for 𝑥2 and by taking the time derivative for 𝑥2̇ 

𝑥2 = 𝑇 ∙ 𝑃    

𝑊ℎ𝑒𝑟𝑒 𝑇 = (𝑆𝐴)−1  

𝑥2̇ = �̇�(𝑥1)𝑃 + 𝑇(𝑥1)�̇� 

(2.36) 

Next, we can rewrite our reduced equation of motion and constraints in terms of 𝑥   

𝑇𝑇(𝑥1)𝑀(𝑥1)𝑇(𝑥1)�̇� = 𝑇𝑇(𝑥1)𝑔(𝑥1, 𝑇𝑃) − 𝑇𝑇(𝑥1)𝑀(𝑥1)�̇�(𝑥1)𝑃 

𝑥1̇ = 𝑇 ∙ 𝑃 

(2.37) 

2.5.  Linearization and Space State Model 

 To linearize the system, we need to identify the equilibrium of the system, and then 

we can linearize the reduced non-linear model around its equilibrium. The vector q was 

defined as 𝑞 = [𝜃1(𝑡) 𝜃2(𝑡) 𝜃3(𝑡) 𝜃4(𝑡) 𝑝𝑥(𝑡) 𝑝𝑦(𝑡) 𝑝𝑧(𝑡) ]. The inverted 

pendulum has two equilibriums. When 𝑝𝑧 = −1 𝑜𝑟 1 𝑓𝑜𝑟 𝑝𝑥 = 𝑝𝑦 = 0. Using figure 4 the 

equilibrium of the linkage mechanism can be identified. To summarize, the equilibrium of 

the model is:  
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𝑞 = [0
𝜋

2
𝜋

𝜋

2
0 0 1 ] , �̇� = 0,  

𝑝 = 0, �̇� = 0 

𝑉1[𝑡] = 𝑉4[𝑡] = 0 

(2.38) 

Now that we have the equilibrium of the system, we can start linearization to develop the 

state space model. To do so, first we need to define the output, the states, and the input of 

the system. The output is defined in equation (2.39), where 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑝𝑧(𝑡)

𝑝𝑦(𝑡)
) is the angle of 

the inverted pendulum in the y-z place (𝛼) and 𝐴𝑟𝑐𝑡𝑎𝑛 (
𝑝𝑧(𝑡)

𝑝𝑥(𝑡)
) is in x-z place (𝛽) 

𝑂𝑢𝑡𝑝𝑢𝑡 =

[
 
 
 
 
 
 

𝜃1(𝑡)

𝜃4(𝑡)

𝐴𝑟𝑐𝑡𝑎𝑛 (
𝑝𝑧(𝑡)

𝑝𝑦(𝑡)
)

𝐴𝑟𝑐𝑡𝑎𝑛 (
𝑝𝑧(𝑡)

𝑝𝑥(𝑡)
)
]
 
 
 
 
 
 

 (2.39) 

States and input of the system can be written as 
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𝑋 =

[
 
 
 
 
 
 
 
 
 
 
 
𝑝1(𝑡)

𝑝2(𝑡)

𝑝3(𝑡)
𝑝4(𝑡)
𝜃1(𝑡)
𝜃2(𝑡)
𝜃3(𝑡)
𝜃4(𝑡)
𝑝𝑥(𝑡)
𝑝𝑦(𝑡)

𝑝𝑧(𝑡)]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)
𝑥4(𝑡)
𝑥5(𝑡)
𝑥6(𝑡)
𝑥7(𝑡)
𝑥8(𝑡)
𝑥9(𝑡)
𝑥10(𝑡)
𝑥11(𝑡)]

 
 
 
 
 
 
 
 
 
 
 

,    𝑢 = [
𝑉1(𝑡)

𝑉2(2)
] = [

𝑢1(𝑡)

𝑢2(𝑡)
] (2.40) 

The reduced equation of motion (Equation 2.37) can be written as 

𝑀𝑝(𝑥1)�̇� = 𝑔𝑝(𝑥1, 𝑥2, 𝑢) 

�̇�1 = 𝑥2 = 𝑇(𝑥1) ∙ 𝑃 

(2.41) 

Equation (2.41) can be written as   

�̇� = 𝑀𝑝(𝑥1)
−1𝑔𝑥𝑝(𝑥1, 𝑇(𝑥1) ∙ 𝑃, 𝑢) 

�̇�1 = 𝑇(𝑥1) ∙ 𝑃 

(2.42) 

Linearizing equations (2.42) around the system’s equilibrium and taking the partial 

differentiation we get 

𝜕�̇� = 𝐴11𝜕𝑝 + 𝐴12𝜕𝑥1 + 𝐵11𝜕𝑢 

𝜕�̇�1 = 𝐴21𝜕𝑝 + 𝐴22𝜕𝑥1 + 𝐵21𝜕𝑢 

(2.43) 

Where 𝐴1𝑛 = 𝑀(�̅�1)
−1 ∙

𝜕𝑔𝑥𝑝

𝜕𝑥
 , 𝐴2𝑛 =

𝜕[𝑇(𝑥1∙𝑃)

𝜕𝑥
, 𝐵1𝑛 = 𝑀(�̅�1)

−1 ∙
𝜕𝑔𝑥𝑝

𝜕𝑢
, 𝐵2𝑛 = 0, solved at 

the equilibrium of the system.  
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Form the constraints equation (2.33) we get 𝐴𝑇𝜕𝑥1 = 0 using a change of variable we can 

set 𝜕𝑥1 = 𝑆̅ 𝜕𝑧 and 𝜕�̇�1 = �̅�𝑇𝑆̅ 𝜕�̇� where 𝑆̅ 𝑎𝑛𝑑 �̅� are 𝑆 𝑎𝑛𝑑 𝑇 Matrices evaluated at the 

equilibrium of the system. By doing this change of variable we end up with 

𝜕�̇� = 𝐴11𝜕𝑝 + 𝐴12𝑆̅ 𝜕𝑧 + 𝐵11𝜕𝑢 

𝜕�̇� = �̅�𝑇𝐴21𝜕𝑝 + �̅�𝑇𝐴22𝑆̅ 𝜕𝑧 + �̅�𝑇𝐵21𝜕𝑢 

(2.44) 

Next, we can write the space state model of the system in the form of equation (1.4) 

Where the A, B, C, and D matrices are defined as 

𝐴 = [
𝐴11 𝐴12𝑆̅

�̅�𝑇𝐴21 �̅�𝑇𝐴22𝑆̅
] , 𝐵 = [

𝐵11
0

] 

𝐶 =
𝜕(𝑜𝑢𝑡𝑝𝑢𝑡)

𝜕𝑥
, 𝐷 =

𝜕(𝑜𝑢𝑡𝑝𝑢𝑡)

𝜕𝑢
= 0 

(2.45) 

Now that we have A, B, C, and D matrices defined, we can write the space state model and 

use it to design the controller for the system. In the appendix, Mathematica file, the detail 

calculation and numerical results can be found. 
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Chapter 3                    

Controller Design and Simulation Result 

 

 Now that we have a state space model we can start to design the controller for the 

system. The first step is to define the parameters of the system. The table blow shows the 

numerical values of the system. 
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Table 1, System parameters numerical value 

Parameter Symbol Value Unit 

Gravity g 9.81 𝑚/𝑠2 

Length of each link L 0.3 𝑚 

Mass of each link m 0.1131 𝑘𝑔 

Mass of Pendulum Box M 0.5 𝑘𝑔 

Motor shaft Inertia Im 6.033 × 10−7 𝑘𝑔 𝑚2 

Motor internal resistance R 5.714 Ω 

Motor back emf constant kv 0.00907 𝑉 𝑠/𝑟𝑎𝑑  

Motor torque constant kt 0.00907 𝑉 𝑠/𝑟𝑎𝑑 

Gearbox, gear ratio ratio 227  

Length of the inverted pendulum ℓ 0.2 𝑚 

Mass of the inverted pendulum mPen 0.25 𝑘𝑔 

 

Table 2, shows the numerical result of the space state model of the system using system 

parameter data table.  

3.1.  Open Loop Simulation  

 

 As mentioned one of the objective of this project was to simulate the system in the 

non-linear form to have more accurate result. This simulation was done using Wolfarm 

0 0 12.3706 0 91.848 0 0 0 0 12.0047

0 0 0 12.3706 0 91.848 0 0 12.0047 0

0 0 10.9961 0 16.3094 0 0 0 0 10.6708

0 0 0 10.9961 0 16.3094 0 0 10.6708 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0
1

2
0 0 0 0 0 0 0

0 0 0
1

2
0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

Table 2, Space state model of the system (Numerical) 
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Mathematica software. The simulation chapter in the Mathematica notebook shown in 

appendix covers all details of the simulation and the code. 

 To understand the system better, first let’s look at the poles and zeros of the system. 

One way of finding the open loop poles of the system is to look at the eigenvalues of the 

A matrix. Using the values shown in table 2, we can find the eigenvalues of A.   

 𝑃𝑜𝑙𝑒𝑠 = −13.3395,−13.3395, 9.04323, 9.04323, −6.6998,−6.6998, 0, 0  

𝑍𝑒𝑟𝑜𝑠 = −8.57321 , 8.57321 , −8.57321, 8.57321, 0, 0  
(3.1) 

As expected the system is unstable with two poles on the left-hand side of the complex 

plane and two poles as zero. Also, we see that the poles are coupled, which is also expected 

since 𝛼 𝑎𝑛𝑑 𝛽 act in the same way on the system.  In figure 6, the root locus plot of the 

system from the first input, confirms that the system is unstable. We can also look at the 

Figure 6, Root Locus Plot from input one 
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system transfer function and see the system has been decoupled and essentially look at the 

angles of the inverted pendulum separately. 

Table 3, Open loop Transfer Function 

 

Now that we have more understanding of the system, we can solve the non-linear equation 

of motion shown in 2.31, using computer software (Mathematica) and look at the response 

of the system. By solving the non-linear equation of motion, we can see the more accurate 

response of the system.  

 

Figure 7, Open loop simulation of linkage angles 

 

Figure 7, shows the open loop simulation of the linkage angles. Since there is no 

input to the system, there is no significant motion in the linkages. As we see in the figure 

392.152 5.3354 s2

808.212 s 91.848 s2 10.9961 s3 s4
0.

0.
392.152 5.3354 s2

808.212 s 91.848 s2 10.9961 s3 s4

12.0047 s

808.212 91.848 s 10.9961 s2 s3
0.

1.16415 10 10

653 206. 148 465. s 9338.25 s2 3636.36 s3 62.7824 s4 21.9922 s5 s6

12.0047 s

808.212 91.848 s 10.9961 s2 s3
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7, the angles of the linkage only oscillate slightly due and they are within ±0.2 radians (12 

degrees) of their equilibrium position. This small oscillation is due to the drop of the 

inverted pendulum.  

 

Figure 8, Open loop state response of the inverted pendulum 

  

As expected without any control input to the system, the inverted pendulum will fall over. 

As shown in figure 8, the pendulum drops down and oscillates around its bottom 

equilibrium position at 𝜋 radian or 180 degree.  

Figure 9, Open loop state response of the linkage angles 
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In figure 9, we see that the inputs angles are relatively at their equilibrium since there is no 

control input to the system. The slight oscillation of the states is due to the motion of the 

inverted pendulum.  

 To make sure that our solver did hold the constraints of the system we plot the 

constraints equation verses time, and as shown in figure 10, we see that throughout solving 

the equations of motion we did not violate the constraints equations.   

 

Figure 10, System Constraints 

 

3.2.  Close Loop Simulation  

LQ problem is a case where the system dynamics are described by a set of 

differential equations and the cost is described by a quadratic function [8]. Minimizing the 

cost function can result in an optimal control for a dynamic system. LQR is a state feedback 

back controller with the following equations: 
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Using space state model (1.) system, with a quadratic cost function 

𝐽 = ∫ 𝑥(𝑡)𝑇𝑄𝑥(𝑡) + 𝑢(𝑡)𝑇𝑅𝑢(𝑡)
∞

0

𝑑𝑡 (3.2) 

Where 𝑥 𝑎𝑛𝑑 𝑢 are the state and input of the LTI system (1.). The feedback control law 

which minimizes the cost function (3.2) is given as: 

𝑢 = 𝐾𝑥 (3.3) 

Where the gain K is given as: 

𝐾 = −𝑅−1𝐵𝑇𝑋 (3.4) 

In (3.4) X is the solution of an Algebraic Riccati Equation (ARE): 

𝐴𝑇𝑋 + 𝑋𝐴 − 𝑋𝐵𝑅−1𝐵𝑇𝑋 + 𝑄 = 0 (3.5) 

Using this method, we can obtain an optimal control gain 𝐾 which is independent of the 

initial condition of the system.  

When designing the controller, we set Q as the following matrix: 

𝑄 =

[
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 𝜌 0
0 0 0 0 0 0 0 𝜌 ]

 
 
 
 
 
 
 

 Where 𝜌 = 50  

And for R matrix we set it equal to: 

𝑅 = [
𝛾 0
0 𝛾

] Where 𝛾 = 1.25  
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Now that we have a Q and R matrix we can solve the Algebraic Riccati Equation (3.5) and 

find the solution for X. To do so we can use Mathematica, since we also have A and B 

matrix from the state space model in table 2. The solution to the ARE for X is a 8 by 8 

matrix. Once we find X, we can then solve for the gain K using equation (3.4).  

𝐾 =     

[
0 −4.464 0 −3.074 0 −39.84 0 −6.324

4.464 0 3.074 0 39.84 0 6.324 0
] 

(3.6) 

 

Linear Quadratic Estimation is an algorithm that estimates the unknown variables 

utilizing a series of measurements observed overtime.  

Consider the LTI system: 

�̇� = 𝐴𝑥 + 𝐵𝑢𝑢 + 𝐵𝑤𝑤 

𝑦 = 𝐶𝑦𝑥 + 𝐷𝑦𝑤𝑤 

𝑧 = 𝐶𝑧𝑥 

(3.7) 

With the cost function, of 

𝐽 = lim
𝑛→∞

𝐸[(𝑧(𝑡) − �̂�(𝑡))𝑇(𝑧(𝑡) − �̂�(𝑡))] (3.8) 

And the observer 

�̇� = 𝐴�̂� + 𝐹(�̂� − 𝑦) 

�̂� = 𝐶𝑦�̂� 

�̂� = 𝐶𝑧�̂� 

(3.9) 

Where the estimation gain 𝐹 is given as: 
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𝐹 = −𝑌𝐶𝑦
𝑇(𝐷𝑦𝑤𝑊𝐷𝑦𝑤

𝑇 )
−1

 (3.10) 

Where 𝑌 is the solution of the ARE: 

𝐴𝑌 + 𝑌𝐴𝑇 − 𝑌𝐶𝑦
𝑇(𝐷𝑦𝑤𝑊𝐷𝑦𝑤

𝑇 )
−1

𝐶𝑦𝑌 + 𝐵𝑤𝑊𝐵𝑤
𝑇 = 0 (3.11) 

 

 Like LQR it turns out that we can use the same Q and R matrix for state estimation. 

By using equation (3.11) we can solve the ARE for Y and use it to find F. Since 𝐵𝑤 = 0 in 

our system, and by setting 𝐶𝑦 = 𝐶 we can solve the ARE to get Y which is an 8 by 8 matrix. 

By substituting Y in equation 3.11, we get a matrix for the state estimation F. 

𝐹 =     

[
 
 
 
 
 
 
 

0 4.331 0 163.446
−4.331 0 163.446 0

0 −0.389 0 −14.711
0.389 0 −14.711 0

0 0.478 0 18.096
−0.478 0 18.096 0

0 −6.337 0 −0.478
6.337 0 −0.478 0 ]

 
 
 
 
 
 
 

 (3.12) 

Now that we have both the LQR and estimation gain we can use LQG to put our controller 

together. 

Linear Quadratic Gaussian (LQG) control is one of the fundamental controller in 

optimal control. It is a combination of Linear Quadratic Estimator (LQE) with Linear 

Quadratic Regulator (LQR). LQG is an observer based controller with the following 

equations: 

Consider the LTI system: 

�̇� = 𝐴𝑥 + 𝐵𝑢𝑢 + 𝐵𝑤𝑤 (3.13) 
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𝑦 = 𝐶𝑦𝑥 + 𝐷𝑦𝑤𝑤 

𝑧 = 𝐶𝑧𝑥 + 𝐷𝑧𝑢𝑢 

And the observer based controller  

�̇� = 𝐴�̂� + 𝐵𝑢𝑢 + 𝐹(�̂� − 𝑦) 

�̂� = 𝐶𝑦�̂� 

𝑢 = 𝐾�̂� 

(3.14) 

With the cost function of:  

𝐽 = lim
𝑛→∞

𝐸[𝑧(𝑡)𝑇𝑧(𝑡)] (3.15) 

Where (𝐾, 𝐹) stabilize the closed loop system are: 

𝐾∗ = −(𝐷𝑧𝑢
𝑇 𝐷𝑧𝑢)−1𝐵𝑢

𝑇𝑋∗ (3.16) 

𝐹∗ = −𝑌∗𝐶𝑦
𝑇(𝐷𝑦𝑤𝑊𝐷𝑦𝑤

𝑇 )
−1

 (3.17) 

𝑋∗𝑎𝑛𝑑 𝐹∗are the solution of the ARE 

𝐴𝑇𝑋∗ + 𝑋∗𝐴 − 𝑋∗𝐵𝑢(𝐷𝑧𝑢
𝑇 𝐷𝑧𝑢)−1𝐵𝑢

𝑇𝑋∗ + 𝐶𝑧
𝑇𝐶𝑧 = 0 (3.18) 

𝐴𝑌∗ + 𝑌∗𝐴𝑇 − 𝑌∗𝐶𝑦
𝑇(𝐷𝑦𝑤𝑊𝐷𝑦𝑤

𝑇 )
−1

𝐶𝑦𝑌∗ + 𝐵𝑤𝑊𝐵𝑤
𝑇 = 0 (3.19) 

In equation (3.14) we can substitute �̂� 𝑎𝑛𝑑 𝑢 in the �̇� equation. This results in  

�̇� = 𝐴�̂� + 𝐵𝐾�̂� + 𝐹(𝐶�̂� − 𝑦) 

�̇� = 𝐴�̂� + 𝐵𝐾�̂� + 𝐹𝐶�̂� − 𝐹𝑦 

�̇� = (𝐴 + 𝐵𝐾 + 𝐹𝐶)�̂� − 𝐹𝑦 (3.20) 

Equation (3.20) is the controller for the system. By inserting the parameters values in there 

we can get a state space model for the controller: 
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Table 4, Controller Space State Model 
  

 

 

 

If we look at the eigenvalue of the A matrix of the controller:  

 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑃𝑜𝑙𝑒𝑠 = 

−25.84 + 22.74𝑖, −25.84 − 22.74𝑖, −25.84 + 22.74𝑖, −25.84

+ 22.74𝑖, −6.41,−6.41, 1.873, 1.873   

(3.21) 

We see that the controller itself is unstable. There are poles in the right-hand side of 

complex plane; therefore, we are using an unstable controller to stabilize an unstable 

system. However, if we look at the poles of the closed loop system, in an other words the 

eigenvalues of A matrix for the closed loop system, we can see if the closed loop system 

is stable.  

The closed loop system is given by: 

[
�̇�
�̇̂�
] = [

𝐴 𝐵𝑢𝐾
−𝐹𝐶𝑦 𝐴 + 𝐵𝑢𝐾 + 𝐹𝐶𝑦

] [
𝑥
�̂�
] + [

𝐵𝑤

−𝐹𝐵𝑤
]𝑤  

𝑧 = [𝐶𝑧 𝐷𝑧𝑢𝐾] [
𝑥
�̂�
] 

(3.22) 
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𝐶𝑙𝑜𝑠𝑒𝑑 𝐿𝑜𝑜𝑝 𝑃𝑜𝑙𝑒𝑠 = 

−13.36 + 1.11 × 10−10𝑖, −13.36 − 1.11 × 10−10𝑖, −13.05 + 1.61 × 10−10𝑖, −13.05

− 1.61 × 10−10𝑖, −9.21 + 4.82 × 10−9𝑖, −9.21 − 4.829 × 10−9𝑖, −9.08

+ 5.06 × 10−9𝑖, −9.08 − 5.06 × 10−9𝑖, −6.66 + 6.57 × 10−10𝑖, −6.66

− 6.57 × 10−10𝑖, −6.31 + 4.72 × 10−10𝑖, −6.31 − 4.72 × 10−10𝑖, −6.16

+ 8.48 × 10−10𝑖, −6.16 − 8.48 × 10−10𝑖, −3.34,−3.34 

Now that we have the closed loop system model, we can simulate the non-linear 

system from chapter 2, with the controller added. The figure below shows the response of 

the system where the initial angle of the inverted pendulum is at 20 degrees.  

 

Figure 11, Linkage angels behavior with 20 degree initial condition of the inverted pendulum 

Figure 11, shows the plot of the angles of the five-bar linkage with the controller 

added to the system.  
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Figure 12, closed loop state response of inverted pendulum 

 Figure 12, shows the closed loop state response for the inverted pendulum. As 

shown in the plot the settling time is about 4 seconds. 

 

 

Figure 13, Closed loop state response of the linkage angles 
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Figure 14, Closed loop input response 

 

Figure 15, Closed loop input response (first half second) 

 Figure 14 and 15 shows the input voltage of the system at each motor. In figure 15, 

we can see the voltage saturation line in which, we can make sure that the input voltage 

does not exceed 12 volts.
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Chapter 4                    

Experimental Setup and Conclusion    

 The experimental setup of the system has not yet been complete. Future work will 

be done in order to complete the experiment. So far, we have competed the hardware part 

of the experiment, and more work on implementing the control algorithm needs to be done.  

Figure 16, CAD model of the system hardware 
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Figure 16, shows the CAD model of the system. It consists of 2 motor box, 4 links, and the 

inverted pendulum part.  

 Each motor box consists of a DC motor and an encoder, with a 1:1 gear contacting 

them together. The encoder is directly attached to the links, which minimizes the effect of 

the backlash of the gear box of the motor. Two encoders are used to measure the angles of 

the inverted pendulum. There are more work needs to be done on the experimental part of 

this project. 

 By simulating the non-linear model, and using it to adjust the controller we were 

able to achieve stabilization in a case where the inverted pendulum is theoretically 20 

degrees off from vertical axis. In future work this can be check against the simulation of 

the linearized model to see the impact of nonlinear modeling. 
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