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ABSTRACT OF THE DISSERTATION

Multi-Modal Robotic Learning, Reasoning and Planning

by

Feng Gao

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2022

Professor Mark S. Handcock, Chair

Building an intelligent robot that is capable of collaborating with humans in daily tasks is a

challenging problem. Although recent artificial intelligence research shows remarkable results

in classical tasks, there is still a long way to achieve human-level intelligent robots. We need

to start developing methods in terms of perception, learning, reasoning, and planning.

In this dissertation, we study multi-modal robotic learning, reasoning, and planning from

three different perspectives: (i) robot imitation learning: we first introduce a series of works

including hardware prototype, data collection, modeling human demonstration, and planning

for robot imitation learning. (ii) multi-modal reasoning: we study multi-modal reasoning

in two different tasks. We develop a dataset and models for visual abstraction reasoning

with human IQ test. Additionally, we propose a visual language reasoning method for

outside knowledge visual question answering. (iii) robot planning: we show our attempts in

robot planning. We introduce a physically realistic virtual testbed where robots can interact

with humans. In addition, we show a hierarchical reinforcement learning method for robot

planning.
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CHAPTER 1

Introduction

We, humans, show unparalleled intelligence compared to any existing Artificial Intelligence

(AI) and robotics techniques. Human beings are able to (i) learn from a very small amount

of examples, (ii) generalize knowledge to unseen cases, (iii) reason over tasks with multi-

modality and (iv) plan under unseen tasks.

Consider such a scenario that could happen in the future: You may have a robot mate

to help you with your housework. You want it to be smart enough to collaborate with you

so that you only need to teach it with as least examples as possible. Additionally, you want

it to be your friend. You are willing to share your life with this “soul mate” meanwhile, it

is able to have joyful conversations and share knowledge with you. Furthermore, it is also

capable of handling new cases when without your further instruction. How could life be

better with such robot mates?

In order to design and build robots that are able to collaborate with humans, under-

stand our minds and improve our life, we need robots that are capable of learning from

human demonstrations, understanding human knowledge, and generalizing in various sce-

narios without extra human instructions. Fortunately, the trend of current AI research

shows a promising future for its applications in robotics. In recent years, with the renais-

sance of neural network (NN) study, Deep Learning (DL) techniques have helped Computer

Vision (CV), Machine Learning (ML), and robotics research to achieve remarkable results.

Classical CV tasks such as object detection [DDS09, LMB14], had been well solved by

both traditional ML-based [FGM10] and DL-based techniques [HZR16, RHG15, RDG16].
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Multi-modal tasks have been the new challenges in CV community. Visual question answer-

ing (VQA) [AAL15] and embodied AI [SKM19] are two of the most representative tasks that

involve multi-modal data. The agent is not only required to understand visual information

but also others modalities such as natural language, force sensing, etc. Besides the great

leap in CV research, we also witnessed the blooming of ML and task planning research in the

past years. The iconic Go-playing agent [SHM16, SSS17a] had demonstrated that it is plau-

sible to achieve super-human performance with well-defined domains and representations.

In addition, RL researchers took advantages of DL techniques in CV to outperform human

in certain arcade games. In the field of robotics research, it is popular to apply ML-based

methods to improve the performance in various tasks such as grasping [ZSW18], imitation

learning [EGX17] and navigation [FOR18].

According to the above trends in recent AI, CV and ML, and robotics research, we

categorize them into three major domains: robotic learning, multi-modal reasoning, and

robotics planning. We argue that these domains are crucial for future robotics research.

Technically speaking, we hope that a smart robot is able to learn and reason over multi-

modal input from various tasks. By correctly modeling the tasks, it can plan and interact

with the world according. In this dissertation, we will unfold the details of our attempts in

the following three specific domains for building smarter robots:

Robotic Imitation Learning Imitation learning is the fundamental function of an intelli-

gent robot. Although robots with hand-coded rules seem to be widely used and more accept-

able nowadays, it is very limited when we want to deploy them a wide spectrum of tasks. It is

inevitable that robots need to learn from human demonstrations in the future so that they can

better work with us. Therefore, in this dissertation, we study robot imitation learning with

a humanoid robot. In chapter 2, we will introduce a series of works in this chapter, including

hardware design, data collection, robot system deployment, imitation learning modeling and

planning, and study of robot behavior explainability [LXM17, XLE18, EGX17, EGL19].
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Multi-modal Reasoning Multi-modal reasoning is also a key feature of a smart robot.

Humans are educated to understand the world using numerical/physical laws and logic. Can

we also enable the robots to do so? Many daily tasks require simple reasoning over visual

perception and natural language. If we want to have robot mates that can collaborate with

us, they must be capable of understanding and reasoning over what they see (visual) and what

we say (nature language). In chapter 3, we study visual reasoning in two different tasks, i.e.

human IQ tasks and outside knowledge visual question answering [ZGJ19, ZJG19, GPT22].

Robotic Planning The ultimate goal of a smart robot is to act like a human, even outper-

form humans. Thus, planning in a world is one of the most important features of intelligent

robots. In chapter 4, we will introduce two attempts in approaching better robot plan-

ning: (i) a physically realistic interactive environment for robot training [XLZ19] and (ii) a

RL-based planning algorithm.
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CHAPTER 2

Learning: Robot Imitation Learning

2.1 Building A Tactile Glove to Collect Hand-Object Interaction

Data for Imitation Learning

In this section, we present a design of an easy-to-replicate glove-based system that can

reliably perform simultaneous hand pose and force sensing in real time, for the purpose of

collecting human hand data during fine manipulative actions. The design consists of a sensory

glove that is capable of jointly collecting data of finger poses, hand poses, as well as forces

on palm and each phalanx. Specifically, the sensory glove employs a network of 15 IMUs

to measure the rotations between individual phalanxes. Hand pose is then reconstructed

using forward kinematics. Contact forces on the palm and each phalanx are measured by 6

customized force sensors made from Velostat, a piezoresistive material whose force-voltage

relation is investigated. We further develop an open-source software pipeline consisting of

drivers and processing code and a system for visualizing hand actions that is compatible with

the popular Raspberry Pi architecture. In our experiment, we conduct a series of evaluations

that quantitatively characterize both individual sensors and the overall system, proving the

effectiveness of the proposed design.

2.1.1 Introduction

Robots that imitate the behaviors of humans may enable more natural and friendly interac-

tions with humans in man-made environments, as with robotic handshaking [THG16]. Just
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as whole body sensing [KB12] is critical for the study of human movement, hand pose and

force information is crucial to the investigation of manipulative tasks. While researchers

can track hand pose based on perception [RA15], force estimation from vision using nu-

merical differentiation methods [ZZZ15, PKQ15], or sophisticated physics-based soft-body

simulation [WMZ13, ZZM13], glove-based devices still have their own advantages, presenting

convenient, integrated solutions that can be natural and essential for collecting ground truth

hand data during manipulations and interactions.

Designs of tactile gloves have long been proposed for a wide range of applications, and

they remain an active research area. Dipietro et al . provided a comprehensive survey of

glove-based system designs and their application from 1970s to 2008 [DSD08]. Since then, a

number of novel designs have emerged to address existing limitations, including portability,

reliability, and cost. As the main motivations of developing data/tactile gloves or other glove-

based systems are obtaining the pose and force information during manipulative actions, we

divide some notable recent designs since 2008 into two categories based on the types of data

they can collect: gloves with i) only pose-sensing, and ii) joint pose- and force-sensing.

Pose sensing gloves generally utilized IMUs, flex sensors, or similar orientation systems

to obtain finger joint angles. Taylor et al . [TKM13] tests a Zigbee network of IMUs using

independent state estimation for feasibility of joint prediction. In the design by Kortier et

al ., each of 15 phalanxes is fitted with a PCB populated with one 6 degree-of-freedom (DoF)

accelerometer/gyroscope and one 3DoF magnetometer. In this way, a more comprehensive

representation of the hand pose is captured [KSR14]. Ligorio et al . improves localization of

the phalanx by combining IMUs with a camera-based localization system [LS13]. Efforts have

been made to improve pose sensing accuracy using filtering [SLS15] and estimation techniques

like the extended Kalman filter [KSR14, LS13, KAS15]. Using curvature/flex sensors to

measure finger flexion is an approach that has been proven to be effective [KMS11, KSE08].

This approach, however, may bring discomfort to the user or sacrifice the user’s dexterity.

Another recent design, Wolverine [CHC16], adapts a DC motor and time-of-flight sensor into
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(a) (b)

Figure 2.1: Prototype consisting of (a) 15 IMUs on the dorsum of the hand and (b) 6
integrated Velostat force sensor with 26 taxels on the palmar aspects of the hand.

an exoskeleton structure in order to obtain hand pose without using a glove directly.

Pose and force sensing glove-based systems represent efforts to combine both force

sensing and pose sensing into an integrated system. Hammond et al . [HMW14] designs a

liquid-metal embedded elastomer sensor that can measure force across the palm. The sensors

measure skin strain in order to track joint motion, which may lead to less reliable measure-

ment. In the design by Gu et al . [GSL15], a glove equipped with FlexiForce sensors is used

to collect force information, and a Vicon motion capture system is employed to track wrist,

index finger, and thumb angles for manipulative action recognition. For applications that

focus more on the fingertip, a specific tactile sensor is available [BBA16]. Further related

work involves estimating manipulative force from hand pose obtained via a network of 9DoF

IMUs, e.g . [MBS16]. One potential drawback is that many of the commonly-used force

sensors such as the FlexForce are built on plastic substrates that, while flexible compared

to a standard PCB, can be too rigid to conform to the contours of the hand, resulting in
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limitations on natural hand motion during fine manipulative actions, particularly when a

large force sensing area is desired. In recent years, Velostat, a piezoresistive conductive film,

has become popular and is applied to pressure sensing in the fields of soft robotics [LKY15],

robotic touch perception [PMT16], robotic tactile interaction [MSG15], and gesture recog-

nition [JLK11].

The aforementioned efforts in the literature, particularly in joint pose/force sensing,

indicates the needs for capturing the dynamics and not just the kinematics involved in fine

manipulative actions. Such demand is especially important given that changes in hand-object

interaction forces are not always accompanied by measurable changes in hand posture. The

study of fine hand-object manipulative interactions requires finer spatial resolution force

sensing, in combination with pose sensing, than has previously been demonstrated. The

objective of this work is to create, characterize, and demonstrate an integrated system that

extends pose sensing gloves with force sensing over large areas, with finer spatial resolution,

and with materials that do not constrain natural hand motion.

Contributions The glove-based system presented in this work makes the following con-

tributions:

1. The proposed design is an easy-to-replicate, cost-effective glove-based system that per-

forms simultaneous hand pose and force sensing in real time for the purpose of studying

fine manipulative actions. A configuration of IMUs similar to [KSR14] is adapted and

inter-joint rotations are captured in order to reconstruct hand pose with a high degree of

comprehensiveness, as shown in Figure 2.1a.

2. We design a customized force sensor using Velostat (Figure 2.1b), whose force-voltage

relation is investigated, in order to capture distributions of forces over large areas of the

hand rather than just at single contact points (e.g. fingertips only).

3. All software implementation of the proposed design, including the forward kinematics
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Figure 2.2: Overall system schematic

model for the hand, force vector derivation, and visualization of manipulative actions,

are developed using the Robot Operating System (ROS) framework, and are publicly

available at GitHub.

4. A prototype system is evaluated and characterized, showcasing its capability for reliably

capturing dynamical information about manipulative actions. We further analyze the

power consumption of the prototype system, indicating it can be powered by a small,

portable power bank and be wireless to improve user’s mobility.

Overview The remaining subsections under this section are organized as follows. The

proposed overall design and hardware implementations of the prototype are described in

subsection 2.1.2. This section also details the construction of the Velostat force sensors

and its force-voltage relationships. The software implementation consisting of the forward

kinematics model of the hand, force vector derivation, and visualization for manipulative

actions are shown in subsection 2.1.3. The performance of the proposed design is evaluated

in subsection 2.1.4 via a series of experiments.
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2.1.2 Overall Design and Prototyping

This section presents the overall system schematic. In hardware implementation, a network

of 15 IMUs are configured and deployed. For the force sensing pipeline, we utilized Velostat,

a piezoresistive conductive film whose resistance changes in response to applied forces, to

construct a force sensor that is capable of measuring contact force over a large area via an

array of individual taxels. A prototype of the design is built and presented as well.

2.1.2.1 Overall Design

An integrated system consisting of a glove and a processing unit for hand pose and force

acquisition is developed. Figure 2.2 shows a schematic of the integrated system deploying

two sensing networks. A network of 15 IMUs is equipped to measure the orientation of

the palm and each phalanx for comprehensive hand pose reconstruction. A network of 6

customized force sensors constructed from a piezoresistive conductive film—Velostat—are

attached to the palm and each finger, and contact forces are measured.

2.1.2.2 Hardware Implementation

Pose sensing pipeline The pose estimation module is built from 15 Bosch BNO055 9DoF

IMUs. One IMU is mounted to the palm of the glove, twelve are mounted to the three

phalanxes on each of the four fingers, and one IMU each is mounted to the distal and

intermediate phalanges of the thumb. Each IMU contains a 12-bit triaxial accelerometer,

a 16-bit triaxial gyroscope, and a triaxial geomagnetometer. Sensor fusion is performed

via a proprietary algorithm on a 32-bit microcontroller, yielding a global-frame orientation

quaternion for each phalanx of hand.

The BNO055 footprint is 5 ˆ 4.5 mm2 and is mounted on a customized 6.35 ˆ 6.35 mm2

breakout PCB, making it easier to attach to the glove fabric with minimum constraints on

the user’s natural hand motion. These sensors are networked over a pair of I2C buses in star
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(a) Velostat sensor construction (b) Velostat sensor circuit

Figure 2.3: Velostat force sensor construction and circuit layout

configuration, each of which is multiplexed using one TCA9548A I2C multiplexer. Each of

these two multiplexers is connected to one of two I2C bus interfaces available on a single

Raspberry Pi 2 Model B, which acts as the master controller for the entire glove system.

We base the layout for our pose-sensing pipeline largely on work by Kortier et al . [KSR14],

whose experiments quantify the characteristics of such an arrangement.

Physical connections use a high-flexibility, silicone-coated 29-gauge stranded-core wire.

The IMUs are fixed with neutral cure silicone rubber into small 3D-printed housings, which

are sewn into the glove’s Lycra fabric over the top of their corresponding phalanxes.

Force sensing pipeline The force sensing pipeline uses a network of force sensors de-

ploying Velostat. Figure 2.3a shows the multi-layer structure of this sensor. A single-point-

sensing version of these sensor is constructed by layering small strips of Velostat (2 ˆ 2 cm2)

between two outer shells of conductive fabric with conductive thread stitched into it. Lead

wires to the pad are braided into the conductive thread fibers. The braided wire is then

soldered to itself to form loops that hold the braid in place.

Time division of the channels is done for the palm grid via a pair of 74HC4051 analog

multiplexers, and for the pads on the fingers via a single CD74HC4067 analog multiplexer.

The multiplexers are controlled via the Raspberry Pi 2’s GPIO, and their values are read
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into the Raspberry Pi via an SPI-enabled ADS1256 ADC at 40 whole-hand sps.

Force sensor characterization In order to characterize the force-voltage relation of the

sensor, an experiment is conducted using a similar setup to that mentioned in [LS15]. Weights

are applied to a 2 ˆ 2 cm2 Velostat sensing taxel ranging in value from 0.1 kg to 1.0 kg in

0.1 kg increments, and additionally at values of 1.2, 1.5, and 2.0 kg. All Velostat sensors

utilized in prototyping are made of the same 2 ˆ 2 cm2 size taxel to ensure a single force-

voltage relation can be applied. The calibration circuit is the same as Figure 2.3b except

that only the Velostat taxel of interest is connected. A voltage divider to allow tuning

of the taxel’s sensing range was proposed by Lee et al . [LS15], in which the force-voltage

relation follows a power law with different coefficients, yielding the force voltage relation

F “ ´1.067V ´0.4798 ` 3.244 with R2 “ 0.9704, where F is the applied force in terms of

weight and V is the output voltage. In this work, however, we approximate the force-voltage

relation with a logarithmic law instead due to its better R2 value under our experimental

setup, which yields the relation F “ 0.569 log p44.98V q with R2 “ 0.9902. The comparisons

between power law and logmarithmic law are shown in Figure 2.4.

Parameter Value
BNO055 IMU N = 15

Sampling Frequency 20 [Hz]
Velostat sensor N = 26

Sampling Frequency 40 [Hz]
Raspberry Pi 2 N = 1
Quad-core CPU 900 [MHz]

RAM 1 [GB]

Table 2.1: Prototyping hardware parameters
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Figure 2.4: Force-voltage relation of one constructed Velostat sensing unit. A logarithmic
law fit performs better than a power law fit.

2.1.2.3 Prototyping

Figure 2.1 shows a prototype of the proposed design and Table 2.1 lists the equipment we

utilized in the prototype and their parameters. The force sensing functionality is achieved

by deploying five 2 ˆ 1 customized Velostat force sensors on each finger / thumb that each

detects pressure in two regions (proximal and distal), and a single 4 ˆ 4 sensor spreads over

the glove’s palm. The sensors placements and sensing regions are shown in Figure 2.1b.

By constructing a voltage divider circuit as shown in Figure 2.3b, where multiple Velostat

sensors are connected in parallel via a multiplexer that accesses a single sensor at a time.

The Analog-to-Digital converter (ADC) extended from the Raspberry Pi integrated with a

200Ω resistor serves as the voltage divider. The resistance of the corresponding cell can be

measured to capture the force in that region. This arrangement enables the capability of

measuring the force distributed on the hand.

The 15 IMUs on each phalanx and the palm (Figure 2.1a) provide pose sensing. These

IMUs are connected to the Raspberry Pi 2, a single-board computer that is well suited for

wearable devices, via proper multiplexers. With the merit of remote accessing in Raspberry

12



Pi and ROS, one can access the processed data in Raspberry Pi remotely and visualize in

workstations.

Compared to the existing expensive commercially available glove-based systems, which

are only capable of transmitting raw data collected by the sensors to a workstation, our

proposed design can enable on-board processing (see subsection 2.1.3) of the captured infor-

mation.

2.1.2.4 System Power Analysis

In order to make the entire glove-based system more portable, including the processing unit,

we investigate the power consumption of the major components and the system as a whole.

The power is calculated by the product of the voltage and current across the components of

interest. The results reported in Table 2.2 are the peak values over 10 minutes of continuous

operation. The proposed system has the merit of low power consumption by having a peak

of 2.72W in total. Thus, a normal cellphone power bank (5V output, 3.5Ah, and 75g)

could power the system for a reasonable amount of operation time. The proposed system

can be operated in a fully wireless manner after adding a wireless adapter, improving user’s

mobility.

Component Power (W)
IMU (ˆ15) Network with MUX 0.60

Velostat Sensor with MUX 0.02
Raspberry Pi with ADC 2.15

Total 2.72

Table 2.2: Power consumption of the system
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2.1.3 Software Implementation

In the subsequent subsections, we introduce three core software implementations: i) hand

pose calculation, ii) force vector derivation, and iii) manipulative action visualization of both

hand pose and hand-object interaction forces. In an effort to maximize compatibility with

different usages, the software, including processing and visualization, is built on top of the

ROS environment.

2.1.3.1 Hand Pose Reconstruction using Forward Kinematics

Hand forward kinematics The human hand has approximately 20 degrees-of-freedom

(DoF): 2 DoF for metacarpophalangeal (MCP) joints, 1 DoF for proximal interphalangeal

(PIP) joints, and 1 DoF for distal interphalangeal (DIP) joints. Using such structure, each

finger can be modeled as a 4 DoF kinematic chain where the palm is the base frame and

the distal phalanx is the end-effector frame. For simplicity, we model the thumb as a 3 DoF

kinematic chain consisting nominally of its interphalangeal and carpometacarpal joints.

Given the rotations measured by two consecutive IMUs, joint angles are obtained and the

position and orientation of each phalanx can be computed by forward-kinematics. Figure 2.5

shows the frame attachment and the kinematic chain of the index finger as an example. The

palm is assigned as Frame 1, the proximal, middle, and distal phalanx are Frame 2 to Frame

4, respectively. l1, l2, and l3 denote the length for proximal, middle, and distal phalanx,

respectively. β and θ1 denote the abduction/adduction and flexion/extension angles of the

MCP joint while θ2 and θ3 denote the flexion/extension angles of the PIP and DIP joints.

dx and dy are the offset between palm’s center to the MCP joint in the x and y directions.

Given these notations, the standard Denavit-Hartenberg (D-H) parameters are derived for

each reference frame and tabulated in Table 2.3. A general homogeneous transformation
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matrix T from frame i ´ 1 to i is

i´1
i T “

»

—

—

—

—

—

—

–

cθi ´sθi 0 ai´1

sθicαi´1 cθicαi´1 ´sαi´1 ´sαi´1di

sθisαi´1 cθisαi´1 cαi´1 cαi´1di

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (2.1)

where cθi denotes cos pθiq and sθi denotes sin pθiq.

The pose of each phalanx in Cartesian space can be expressed in the palm reference frame

by concatenating the homogeneous transformation matrix as shown in Table 2.4.

Joint limits A commonly used closed form representation of the finger joints motion

constraints [LWH00] is adapted.

0˝
ď θ1 ď 90˝

0˝
ď θ2 ď 110˝

0˝
ď θ3 ď 90˝

(2.2)

´ 15˝
ď β ď 15˝ (2.3)

The imposed joint limits define the upper and lower bounds of the joint motions and,

thus, eliminate unnatural hand gestures due to sensor noise.

The forward kinematics models also keep track of the potential rotational offset between

each fabric-mounted sensor and the underlying bone (skin-motion artifact), which account

for two sources of error: i) the process of mounting and sewing the IMUs into the fabric of the

glove introduces inconsistencies in the alignment of the sensors with respect to the actual

phalanxes, and ii) anatomical differences between users result in IMU mounts naturally

falling into places in different configurations dependent on the anthropometry of the user’s

hand.
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Figure 2.5: Frame attachment and the kinematic chain of the index finger, as an example

Pose calibration A compensatory calibration routine is performed to further eliminate

the aforementioned inconsistencies. First, the hand is held flat on a table in a canonical

pose. A glove-local reference frame is defined with x-y in the plane of the table and the

x-axis parallel to the user’s middle finger. The orientation of the single IMU on the palm

is measured by hand with respect to this glove-local frame, qgloveÑsensorpalm P H. Then, a

calibration event signal is called, triggering the forward kinematics code to update via direct

measurement its internal representation of the rotation qsensorpalmÑsensori P H between the

sensor on the palm and each of the remaining 14 sensors. Since the rotation qgloveÑsensorpalm

is already measured, it becomes trivial to compute the rotational errors qgloveÑsensori , which

can then be cancelled out of the measured orientations.

2.1.3.2 Force Vector Derivation

We further combine force scalar data obtained from the force sensors with our estimated hand

pose into the form of force vectors, enabling heterogeneous forces and poses in manipulative
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actions to share a shared representation. Specifically, each force vector is defined with the

magnitude equal to the force reading from the corresponding force sensor. Vector direction

is then set to be perpendicular to the finger phalanx that encoded the pose information.

Due to the construction of our force sensors, the force reading obtained measures only the

pressure but not the stress component of the surface force over the sensing fabric. In general,

the force vector to one frame could be expressed as follow:

pFXref
, FYref , FZref

q
T , (2.4)

where the ref denotes the frame we are referring to.

By applying the chain homogeneous transformations, we could derive the force vector

Link ID αi´1 ai´1 θi di
1 0 0 β 0
2 π{2 l1 θ1 0
3 0 l2 θ2 0
4 0 l3 θ3 0

Table 2.3: General standard Denavit-Hartenberg parameters of a finger

Phalanx Transformation
Proximal 0

1T
1
2 T

Middle/Distal for thumb 0
1T

1
2 T

2
3 T

Distal 0
1T

1
2 T

2
3 T

3
4 T

Table 2.4: Concatenation of transformation matrices
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Figure 2.6: Bias and standard deviation of an individual IMU with up to 360˝ rotation.
Red horizontal lines indicate median error, and the bottom and top edges of the blue boxes
indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme
data points not considered outliers.

with respect to any hand frame:

V “

n
ź

i“1

i´1
i T ¨ V0, (2.5)

where V and V0 are homogeneous representation of 3-d vectors. In practice, we generate

force vectors on each phalanx regarding wrist frame.

2.1.3.3 Visualization

To visualize the reconstructed hand motion, we create a hand model in ROS Unified Robot

Description Format (URDF). In this model, we define the structure and connected joints of

the human hand, as well as parameters such as the lengths of each phalanx and dimensions

of the palm, which are measured in advance.

The orientation of each joint, as calculated in the forward kinematics, is then assigned

to each linkage of the hand model to visualize the hand pose. We further create a set of

force markers to indicate both the magnitude and direction of the forces being exerted by
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the palm and fingers over each of the 26 force sensing taxels, providing a visualization of

the distribution of forces over the palm. Each finger proximal and distal link corresponds

with one force marker while the palm link includes a 16-marker array which accords with

the distribution of sensor grids on palm. The color of the marker remains green if the sensor

is inactive, and turns red if force is applied.

2.1.4 Performance Evaluation

We evaluate the performance of individual components as well as of the system as a whole.

Three experiments are conducted. The bias and variance of an individual IMU are firstly

obtained. We further examine the accuracy of reconstructing a static angle with two articu-

lated IMUs, indicating the performance of basic element using the pose sensing approach in

the actual setup. The Velostat force sensor is evaluated by the quality of the force response

in grasping a bottle having different weights. Captured pose and force information are also

jointly evaluated via force vector visualization. Lastly, we perform the tasks of opening three

types of medicine bottles that require different sets of manipulative actions.

2.1.4.1 IMU Evaluation

Single IMU evaluation As the reliability of the pose sensing critically relies upon the

IMU performance, it is crucial to take the IMU’s bias and variance into account, thus an

experiment is conducted to model those quantities. An IMU is rotated driven by a precise

stepper motor controlled by an Arduino microcontroller at a constant angular velocity of 60

RPM. Four rotation angles, 90˝, 180˝, 270˝, and 360˝ are executed twenty times each. No

rotating angles of greater than 360˝ are necessary as it is far beyond fingers’ rotation limits.

Figure 2.6 illustrates the mean and the standard deviation of the error of such rotating

angles. The IMU displays consistent error characteristics, that is having a bias of 2˝ to 3˝

with a standard deviation of ˘1.7˝, with small variations for all 4 rotation angles. Such
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(a) Schematic of the setup (b) Actual exemplary setup

Figure 2.7: Experimental setup for evaluating the angle reconstruction with two articulated
IMUs

results indicate that the selected IMU is generally reliably within the applications of the

proposed design.

Articulated IMU reconstruction of fixed angles Based on the data of two adjacent

IMUs that span a joint of interest, assuming revolute joint, we test the accuracy of the

estimated joint angle. Four rigid bends with fixed angles of 0˝ 45˝, 90˝, and 135˝ are

manufactured to simulate an rotation angle of a revolute joint. These four angles are selected

since they evenly divide the reachable area of a finger joint with small exceeding based

on Equation 2.2. The experimental schematic is shown in Figure 2.7a. Figure 2.7b is an

exemplary setup using 90˝ joint angle: IMU 1 is placed 2cm away behind the bend, simulating

the IMU attached to proximal phalanx, while IMU 2 is placed 1cm ahead of the bend,

corresponding to the IMU on the middle phalanx. The IMU placement is identical to that

in the prototype glove. For each bending angle, the test is repeated twenty times, and the

joint angle estimates are shown in Figure 2.8. As bending angles increase, the reconstructed

angle errors increase from 4˝ to approximately 6˝ while the confidence intervals increase. We

can see that articulated IMUs under-perform as the rotated angle increases, but the error

range is still reasonable and the designed IMUs configuration can reliably fulfill the task.
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2.1.4.2 Grasping Bottles

After establishing the force-voltage relation of the proposed Velostat force sensors, we eval-

uate the performance of the entire force sensor network as a whole by performing grasping

action. The reason that we choose grasping is becuase it is one of the most common actions

in manipulation. An experiment in grasping an empty, half-full, and full water bottle, whose

weight is 0.13kg, 0.46kg, and 0.75kg, respectively, is conducted to demonstrate the capability

in differentiating low, medium, and high grasping forces.

The grasping hand pose is shown in the Figure 2.10a. The pose is natural and no artificial

force is applied other than the force just sufficient to grasp and hold the bottle stably. For

each bottle condition, ten grasps are performed. The force in the palm is treated as the

average of the sixteen force readings from the 4-by-4 force sensor on the palm to simplify

the analysis. Similarly, the force in each finger is the average of the 2-by-1 force sensor.

More careful inspections of force exerted in grasping can also be proceeded by analyzing

the response of every force sensing unit. The results shown in Figure 2.9 indicate the force

increments is correlated with the weight increments of the bottle.

Figure 2.10b shows the visualization of the grasping pose and the force vector, which

reliably captures the actual manipulative action. This experiment qualitatively indicates

the sensitivity and reliability of the force sensing using proposed Velostat force sensors.

2.1.4.3 Capturing Fine Manipulative Actions

Using the prototype system, a series of manipulative actions in opening three types of

medicine bottles are studied. Each bottle equips different lock mechanisms and requires

particular actions for removing the bottle lid. Bottle 1 has no safety lock and can be opened

by simply twisting the lid. Bottle 2 requires the lid to be simultaneously pressed down

and twisted to open. Bottle 3 requires pinching the lid’s safety lock in order to open it.

For Bottle 2 and Bottle 3, some of the actions in the sequence (i.e. pressing and pinching)
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Figure 2.8: Mean and standard deviation of the reconstructed angles using articulated IMUs
under different angles including the boxplot of the collected data. Red horizontal lines
indicate median error, and the bottom and top edges of the blue boxes indicate the 25th
and 75th percentiles, respectively. The whiskers extend to the most extreme data points not
considered outliers.

are hard to perceive without recovering the force exerted by the hand. In the first row of

Figure 2.11a,Figure 2.11b,Figure 2.11c, we visualize the manipulative action sequences cap-
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Figure 2.9: Force response of grasping empty, half-full, and full bottles, respectively.
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(a) Actual grasping pose (b) Force vector

Figure 2.10: Grasp of half-full bottle and captured pose and force vector

tured for opening Bottle 1, Bottle 2, and Bottle 3, respectively. The second row of each

corresponding figure illustrates the actual action sequences captured by a RGB camera.

Visualization In contrast to the action sequences captured by a RGB camera, the visual-

ization results provide additional force information regarding the different fine manipulative

actions involved in the opening the bottles. For instance, the fingers in Figure 2.11b are

flat and parallel to the bottle lid, while the one in Figure 2.11c is similar to gripping pose.

The responses of force markers are also different due to varying contact points between the

human hand and the lid: high responses in Figure 2.11b are concentrated on palm area,

while in Figure 2.11c, there are only two evident responses on distal thumb and index finger.

Without taking force responses into account, the actions sequences of opening Bottle 1 and

Bottle 3 are very similar to each other (see Figure 2.11a and Figure 2.11c).

The capability of detecting the visually unobservable forces has been shown as one of the

advantages of the proposed design in studying the fine manipulative actions. By analyzing

the spatio-temporal signals of force and pose in terms of joint angles, we can also evaluate
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the performance of the design as a whole.

Data interpretation Due to the distinct safety lock mechanisms equipped, the manip-

ulative actions required for opening these three types of medicine bottles are different as

shown in Fig. 2.11. The proposed glove-based system successfully captures the differences,

and Figure 2.12 illustrates the force collected at one taxel on palm and at the fingertip of

thumb, as well as the flexion angle of the MCP joint of the index finger.

As opening the Bottle 2 requires pressing the lid, the proposed system captures high

force response on the palm area. In contrast, the other two bottles yields very low force

response in the same region. If we look at the force exerted at the fingertip of the thumb,

opening Bottle 3 with pinch-to-open lock has larger force in magnitude and longer duration

compared to opening Bottle 1 as it comes with no safety lock and it only involves twisting

the lid with mild force. The thumb does not contact with the lid in opening Bottle 2, yielding

no force response.

For joint angle measurements, since opening both Bottle 1 and Bottle 3 involve similar

twist action, the measured flexion angles of the MCP joint in the index finger are around

50˝ in both cases. In opening Bottle 2, only the palm touches the lid and the fingers remain

stretched, resulting in small flexion angle.

2.1.5 Conclusion and Future Work

We present a design of a glove-based system, capable of simultaneously collecting human

hand pose and exerted contact force data during hand-object interaction with fine manip-

ulative actions. The overall system design is firstly illustrated, following by the hardware

implementations. In software implementation, we have defined the kinematic chain of a

hand, in order to reconstruct the hand pose. Using custom Velostat force sensor taxels, we

are able to measure the hand-object interaction forces across large regions of the hand. In

the visualization framework, the simulated hand model successfully reflects subtle differences
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in grasping action sequences when interacting with three different types of bottles with var-

ious safety locks. By quantitatively analyzing the collected spatio-temporal signals of force

and pose, we show the potentials using the proposed glove, as well as some preliminary

analysis for studying hand-object dynamics. A direct application using the proposed system

is to enable robot to learn and perform finer manipulative actions through human demon-

strations [EGX17]. Recent study also shows the haptic feedback is crucial for recognizing

interactions [STC16], indicating potential applications in social interactions [SGR17, SRZ16].

In future, a potential direction would be improving the current kinematic modeling of

the thumb to better reflect the actual structure and the DoF of the thumb. Some indus-

trial manufacturing methods, such as laser cutting, could be introduced in fabricating and

assembling the Velostat force sensor to achieve a more consistent performance.

2.2 Unsupervised Learning of Hand-Object Interaction

Contact forces of the hand are visually unobservable, but play a crucial role in understand-

ing hand-object interactions. In this section, we propose an unsupervised learning approach

for manipulation event segmentation and manipulation event parsing. The proposed frame-

work incorporates hand pose kinematics and contact forces using a low-cost easy-to-replicate

tactile glove. We use a temporal grammar model to capture the hierarchical structure of

events, integrating extracted force vectors from the raw sensory input of poses and forces.

The temporal grammar is represented as a temporal And-Or graph (T-AOG), which can

be induced in an unsupervised manner. We obtain the event labeling sequences by measur-

ing the similarity between segments using the Dynamic Time Alignment Kernel (DTAK).

Experimental results show that our method achieves high accuracy in manipulation event

segmentation, recognition and parsing by utilizing both pose and force data.
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2.2.1 Introduction

Consider a complex manipulation event of a person opening a medicine bottle with safety

lock (Figure 2.13). During this process, a number of movement primitives were performed:

grasp, push-and-twist, push-and-twist, twist, and finally pull the lid off the bottle. Even

with the most state-of-the-art action understanding and recognition algorithms (see sur-

vey [Pop10, WRB11]), it is still challenging to segment such action sequence and parse the

manipulation event. This is due to three major difficulties: i) severe occlusions happen

during fine manipulation, especially self-occlusions, ii) in subtle manipulation tasks, visual

data may not be able to reveal adequate knowledge to capture the quintessence. Certain

actions are hard to detect using skeleton data alone but need additional force readings e.g .,

whether an action of pushing was performed during twisting the lid, and iii) ground truth

data is difficult to obtain using vision sensor alone, oftentimes impossible to obtain the

needed information (e.g ., the force readings, and accurate finger poses during occlusions).

In this section, we present an unsupervised learning method for manipulation event seg-

mentation, recognition and parsing. The method not only accounts for the aforementioned

challenges, but also captures the temporal hierarchical structure of the manipulation se-

quence using a grammar model—a temporal And-Or graph (T-AOG). Specifically, we in-

vestigate the manipulation actions of opening different types of medicine bottles. Some

examples are shown in Figure 2.16a. Bottle 1 has no safety lock and can be opened by

simply twisting the lid. Bottle 2 requires pressing the lid while twisting. Pinching the safety

lock is needed to open Bottle 3. Importantly, some actions (e.g ., pressing, pinching) are

difficult to observe visually, thus require additional sensing for action recognition.

To obtain the force readings during manipulations, we propose to study hand-object

interactions with additional force information through a low-cost, easy-to-replicate tactile

glove [LXM17]. Although some efforts have been shown to recover the forces during interac-

tions using vision-based methods [ZZM13, WMZ13, ZZZ15, PKQ15, ZJZ16], it remains an
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open problem without adopting a hardware-based solution. Using a tactile glove can reliably

retrieve contact forces to overcome the limitation of using visual data alone.

By observing the data collected using the tactile glove, such as the force exerted on the

palm, we can learn that a push-down action is performed as well as a set of motion primitives

that can best describe the action sequences. Thus, our system is able to “see”, in numerical

terms, the forces during hand-object interactions. We argue that this is an important step

in recognizing manipulation actions with visually latent force information.

Still, it is nearly impossible to understand and transfer the raw data (poses and forces)

retrieved from the tactile glove directly to a robot due to different embodiments. There-

fore, we need to reconstruct the semantic meanings of manipulation events from the human

demonstration, allowing the transfer of abstract knowledge to a robot.

To recover the semantic meaning and model the temporal structure of actions in a hand-

object interaction, we represent the manipulation sequence using a T-AOG, a temporal

grammar model that captures the hierarchical structure of the action sequences. Its terminal

nodes are motion primitives, e.g ., twisting and pressing, which is learned by unsupervised

clustering over extracted features of the pose and force sensory inputs. To evaluate the

effectiveness of our model, we compare the segmentation and labeling results of different

sensory data with several baseline methods.

2.2.1.1 Related Work

Action Recognition A number of approaches have been proposed for action recognition

in various applications. This literature is too wide to survey here; we refer readers to two

recent surveys for recognizing and parsing human actions [Pop10, WRB11]. Recently, due

to additional sensory input, RGB-D sensors such as Kinect are capable of estimating 3D

poses from a single image [SSK13]. Further studies have demonstrated impressive results

of pose estimation and action recognition from RGB-D videos [WZZ13b, ZTH12, WLW13,
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WNX14, WZZ16, QHW17]. These works, however, focuses on body-size action recognition

without force sensing. In contrast, the presented work addresses the hand-size finer-grained

manipulation actions with reconstructed forces.

Vision-based Force Estimation Brubaker et al . estimated contact forces and internal

joint torques using a mass-spring system [BF08, BSF09, BFH10]. More recently, Zhu et

al . [ZZZ15] and Pham et al . [PKQ15] proposed to use numerical differentiation methods to

estimate hand-object interactions during manipulation tasks. In computer graphics, sophis-

ticated physics-based soft-body simulation can calculate contact force from video [WMZ13,

ZZM13]. These work, however, requires prior knowledge of geometry and physical properties

of the manipulated objects. By using a tactile glove, estimating forces in the present study

does not rely on such assumptions.

Learning from Demonstration (LfD) A robot must recognize and understand the ac-

tions sufficiently in order to imitate the tasks from the demonstrations. LfD (also imitation

learning, learning by watching, or apprenticeship learning) is too expansive to survey here;

we refer readers to a survey [ACV09]. In the last few years, with the recent rise of Con-

volutions Neural Networks, there are increasing interests in providing and parsing demon-

strations using pure visual data [BRM12] by learning action plans [YLF15] and physical

interactions [PGH16] in complex and higher-level tasks. However, it is yet still difficult to

convey force information from vision-based methods reliably.

Kinesthetic Teaching and Teleoperation To address the above issue, the robotics

community has been developing kinesthetic teaching or teleoperation approaches to rec-

ognize low-level motion primitives during hand-object interactions. These approaches are

capable of transferring certain rich physical information such as force knowledge to robots.

Manschitz et al . [MKG14a] presented a method to teach robots to unscrew a light bulb by

moving primitives, which are represented by sequences of graphs. A more recent work was
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presented in [MGK16]. Chebotar et al . [CKP14] used spectral clustering and PCA to re-

duce the dimensionality in learning tactile feedback during performing scraping task. More

challenging hand-object interaction tasks involving the manipulation of deformable objects

were discussed using a similar approach [LLG15]. Learning impedance behaviors and trajec-

tory following skills was presented in [RCC16] by combining robot’s dynamical system and

stiffness estimation.

2.2.1.2 Contributions

This work makes three contributions:

1. We incorporate invisible force in addition to the conventional pose-based methods for

event segmentation and parsing during fine-grained manipulation tasks. We show in

the experiment that a better performance of motion recognition is achieved by jointly

considering hand pose and force data.

2. We propose an unsupervised learning framework to learn a temporal grammar model (T-

AOG) for hand-object interactions. The framework incorporates automatic clustering,

segmentation, labeling, and high-level grammar induction. The grammar structure is

shown to significantly improve the action recognition results compared to using clustering

method alone.

3. We introduce a general method for modeling noisy and heterogeneous sensory data of

hand-object manipulation.

2.2.1.3 Overview

The remainder of this section is organized as follows. In subsection 2.2.2, we introduce

the representation T-AOG. In subsection 2.2.3, we present the learning algorithm consist-

ing of hierarchical clustering and grammar induction. The inference algorithm of motion
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recognition is introduced in subsection 2.2.5. subsection 2.2.6, we demonstrate the data

with additional force sensing indeed outperforms the data with either pose or force data

only. Furthermore, our analysis shows the parsing results using T-AOG help improve the

performance significantly compared with using clustering only.

2.2.2 Representation

We introduce a structural grammar model Temporal And-Or Graph (T-AOG) [ZM07] to

represent the temporal structure of a task. An AOG is a directed graph which describes a

stochastic context free grammar (SCFG), providing a hierarchical and compositional repre-

sentation. Formally, the AOG is defined as a five-tuple G “ pS, V,R, P,Σq, where S is a

start symbol; V is a set of nodes which includes the non-terminal nodes V NT and terminal

nodes V T : V “ V NT Y V T ; R “ tr : α Ñ βu is a set of production rules that represent the

top-down sampling process from a parent node α to its child nodes β; P : pprq “ ppβ|αq is

the probability for each production rule; Σ is the language defined by the grammar, i.e., the

set of all valid sentences given the grammar.

In an AOG, the non-terminal nodes can be divided into two types: V NT “ V ANDYV OR.

An And-node is used to represent the compositional relations. A node v is an And-node

if the entity represented by v can be decomposed into multiple parts, which are represented

by its child nodes. An Or-node is used to represent alternative configurations. A node v

is an Or-node if the entity represented by v has multiple mutually exclusive configurations

represented by its child nodes. The terminal nodes represent the entities that are not

further decomposed or have different configurations. A parse graph pg is an instance of

the AOG, where the And-nodes are decomposed and one of the child nodes is selected for

the Or-nodes.

In particular, a T-AOG represents a set of all possible sequences to execute a certain

task. The start node S represents an event category (e.g ., opening a bottle). The terminal

nodes V T represents the set of motion primitives that a human or a robot can perform (e.g .,
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approaching, twisting). An And-node is decomposed into sub-events or motion primitives as

its child nodes. An Or-node encodes alternative solutions to perform a sub-task. A pg for

an event is a sub-graph of T-AOG that captures the temporal structure of the scenario.

As shown in Figure 2.15, features are extracted from the raw input sensory data and

further segmented for semantic parsing. Pose and force features Γ are extracted based on

a raw sensory input sequence I in time interval r1, T s. Each frame is labeled with motion

primitive at. Aggregating together, we obtain a label sequence A “ tatu. The segmentation

of the sensory input sequence is defined as T “ tγku, k “ 1, ¨ ¨ ¨ , K, where γk “ rt1k, t
2
ks

represents a time interval in which the motion primitive remains the same. Later in this

section, we use aγk to denote the motion label for the segment Iγk .

2.2.3 Learning of Hand-Object Interactions

The unsupervised learning pipeline is illustrated in Figure 2.14. Given training sequences of

raw sensory input of poses and forces, our goal of learning is to unsupervisedly learn i) the

motion primitives in the sequences of hand-object interactions, ii) the event segmentation

in every sequence, and iii) the high-level grammar structure (T-AOG) that captures every

observed sequences of the hand-object interactions.

2.2.3.1 Unsupervised Learning of Motion Primitives

To recognize motion primitives of hand-object interactions, we adopt the agglomerative hi-

erarchical clustering, capable of successively merging the similar features from the low-level

features, without knowing the exact number of clusters in advance. The Ward’s agglomera-

tive method is used to determine whether a merge is needed in each iteration:
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△pA,Bq “
ÿ

iPAYB

||x⃗i ´ m⃗AYB||2 ´
ÿ

iPA

||x⃗i ´ m⃗A||2

´
ÿ

iPB

||x⃗i ´ m⃗B||2

“
nAnB

nA ` nB
||m⃗A ´ m⃗B||2,

(2.6)

where A, B denote two clusters in the current iteration, mA, mB are the cluster centers, and

△pA,Bq is the cost of merging clusters A and B.

By default, the hierarchical clustering always groups data points using spatial distance

alone, without considering the temporal consistency. This becomes an issue when dealing

with manipulation data, which naturally comes with temporal constraints. To alleviate

this issue, we apply the Aligned Cluster Analysis (ACA) to reduce the noisiness based on

Dynamic Time Alignment Kernel (DTAK) [ZTH12], resulting in a refined segmentation. The

ACA is an extension of kernel k-means clustering that could be solved as a versatile energy

minimization problem using coordinate descent algorithm:

s˚ “ argmin
s

JpG, sq “

k
ÿ

c“1

m
ÿ

i“1

gciDcpXrsi,si`1qq, (2.7)

where GT
kˆn1k “ 1n is the indicator matrix, gci “ 1 if sample Xi belongs to cluster c, and

Dc measures the kernel distance between sample point and cluster center. In practice, Equa-

tion 2.7 could be solved in a dynamic programming manner, which leverages the relationship

between G and s by solving the Bellman’s equation [ZTH12]:

Jpvq “ min
v´nmaxăiďv

pJpi ´ 1q ` min
g

k
ÿ

c“1

gcD
2
ψpXri,vs, 9zcqq, (2.8)

where D2
ψpXri,vs, 9zcq is the squared kernel distance between segment Xi,v and class center c,

and nmax defines the maximum segment length of clustering.
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2.2.4 Event Segmentation

The semantic label of each segment is required to learn a high-level temporal grammar based

on the segmented sequences. Although event segmentation of a single segmented motion

sequence is straightforward by following its clustering label, it is still difficult to extract

the semantic meaning of one segment when having multiple segmented motion sequences

performing the same task.

Considering two segmented sequences XrS1,S2...Sns and YrS1,S2...Sms, we assign semantic

labels by merging those segments into clusters where each cluster contains segments that

are ‘close’ in distance. Specifically, we adopt the DTAK [ZTH08] criterion DpXSi
,YSj

q to

estimate the similarity of segments across different trials of motion primitives segmentation:

DpXSi ,YSj q “ τ”

XSi
,YSj

ı, (2.9)

where XSi
,YSj

are candidate segments that may be grouped together, τrXSi
,YSj

s is the simi-

larity metric between two segments calculated recursively using DTAK kernel matrix. Note

that it could also be applied to the situation that X and Y are the same motion sequence

that only differ in segment index i and j.

Based on the distance metric of DTAK, we further apply k-means algorithm to cluster

those segments such that each cluster represents one semantic label. The semantic labels of

each segmented motion sequence can therefore be obtained by cluster IDs of the correspond-

ing segments.

2.2.4.1 Grammar Induction

After acquiring the semantic labels of multiple segmented motion sequences, we build a T-

AOG grammar model using an unsupervised structural learning method [TPZ13]. We aim to

learn a grammar from a set of sequence of instances that maximize the posterior probability.
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An initial grammar is built in which the root node is an Or-node, and each branch is an

And-node that represents a sequence instance. This initial grammar leads to the maximal

likelihood of the training data but has a very small prior probability because of its large

size. Starting from the initial grammar, new intermediate non-terminal nodes are generated

in a bottom-up fashion to increase its posterior probability. At each iteration, a grammar

fragment rooted at a non-terminal node is added into the grammar. In practice, we find it is

sufficient to use greedy search with random restarts to identify good grammar fragments.

2.2.5 Inference

Given a sequence of pose and force data Γ as an input, our goal is to find the best motion

label sequence A˚, i.e., find the optimal label sequence of the segments that best explains

the observation given the learned grammar G by maximizing the posterior probability:

A˚ “ argmax
A

ppA|Γ,Gq “ argmax
A

ppΓ|AqppA|Gq, (2.10)

where ppΓ|Aq is the likelihood given the motion label sequence, and ppA|Gq is the parsing

probability of the parse graph given the grammar. The first term is given by:

ppΓ|Aq “

K
ź

k“1

ppΓγk |aγkq “

K
ź

k“1

t2k
ź

t“t1k

ppΓt|aγkq, (2.11)

where k is the segment index, γk is the kth segment as introduced in subsection 2.2.2.

This term is given by a Gaussian distribution fitted to the learned clusters in the training

examples.

The second term ppA|Gq in Equation 2.10 is the Viterbi parsing likelihood, i.e., the

probability of the best parse of the string terminals.

Since it is intractable to directly compute the optimal label sequence, we infer the ap-

proximately optimal xA˚ in two steps: i) use the unsupervised clustering method to obtain the
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segmentation and initialized labels, and ii) refine the labels according to Equation 2.10 by

Gibbs sampling with simulated annealing to find the labeling that maximizes the posterior

probability.

2.2.5.1 Gibbs Sampling with Simulated Annealing

After initializing the labels by clustering, we find the best parse by Gibbs sampling with

simulated annealing. Given an input sequence, we assign one segment label according to the

posterior probability (Equation 2.10) at each iteration. Specifically,

a1
γk

„ ppΓγk |aγkqppA1|Gq, (2.12)

where a1
γk

is the new label of segment Γγk , and A1 is the new label sequence obtained by

changing the kth label to a1
γk

in the current labeling sequence A. To find the parse with

the maximum probability, we adopt simulated annealing to the sampling process by dividing

the log probability by a temperature T . We decrease the temperature through the sampling

process until the labeling sequence converges.

2.2.6 Experiments

2.2.6.1 Human Data Acquisition

Tactile Glove To capture both pose and force in hand-object interactions, we utilize

an open-source tactile glove [LXM17]. The tactile glove employs a network of 15 IMUs

to measure the rotations between individual phalanxes. Hand pose is reconstructed using

forward kinematics. With 6 customized force sensors using Velostat, a piezoresistive material,

the force exerted by hand is recorded in two regions (proximal and distal) on each phalange

and a 4 ˆ 4 regions on the palm. The data is collected and visualized using the Robot

Operating System (ROS).
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Experimental Setup We utilize a Vicon motion capture system to obtain the relative

poses between the wrist of hand and object parts. Figure 2.16a describes the schematic

of the experimental environment setup in human data acquisition. Six Vicon cameras are

placed on top left and top right in front of the area of interests.

Force Vectors Force vectors are computed as the extracted features from the force and

pose data (see Figure 2.16b). Each force scalar measured on hand is normalized and treated

as the magnitude of the force vector. The orientation of the force vector is set to be perpen-

dicular to the fingers. All the force vectors are expressed with respect to one fixed frame by

applying the chain product of homogeneous transforms. Hence, we are able to combine the

heterogeneous pose and force information into one compact form of feature vector.

2.2.6.2 Evaluation

The performance is evaluated by the frame-wise recognition accuracy, i.e., comparing the

predicted event label with the ground truth frame by frame. The ground truth segmentation

is manually labeled. Based on this protocol, we evaluate the correspondence in three metrics:

i) Pose feature as the Euler angles of each phalanx, ii) Force feature as the magnitude of

the force, and iii) the combination of Pose and Force in the form of force vectors. For fair

comparison, the results reported below use the cluster number k “ 5 and maximum segment

length nmax “ 200.

2.2.6.3 Event Segmentation and Recognition with Clustering

Figure 2.17 visualizes the event recognition results by segmenting each motion primitive of

the trials in opening Bottle 1, 2, and 3. Quantitative results are shown in Table 2.5. The

segmentation using only pose data has the worst performance compared with the ground

truth. The use of force data shows a significant improvement compared to the pose only data.
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This result indicates the benefits of the force information during hand-object manipulation.

Combining both pose and force data together outperforms that only uses either pose or force

data.

2.2.6.4 Segmentation, Recognition and Parsing with T-AOG

To further reduce noise, mislabeling, and incoherence, T-AOG is integrated to refine the

segmentation, recognition and parsing of the motion sequences by maximizing the posterior

probability.

Figure 2.18 shows the motion frames during the interactions in opening three types of

bottles. The number in each frame denotes its motion label which is produced by the pro-

posed clustering pipeline. Additionally, we highlight the changes after applying the proposed

annealing inference framework, indicated by the red arrow, which reveals the directions of

label merging.

Experimental results after integrating a T-AOG parsing are both qualitatively and quan-

titatively presented. As depicted in Figure 2.17, comparing to model-free clustering methods,

the T-AOG based parsing approach recovers some noisy and mislabeled segments, resulting

in more coherent results. Last column of Table 2.5 shows the quantitative results. The

Clustering only With T-AOG
Pose only Force only Pose and Force Pose and Force

Bottle 1 55.3% 67.5% 70.3% 78.6%
Bottle 2 62.0% 70.9% 76.2% 82.5%
Bottle 3 54.1% 71.1% 72.9% 78.5%

Table 2.5: Quantitative Evaluation. With clustering only, we use the hand pose, in the forms
of Euler angles of each phalanx; hand force, as scalars; and the combination of pose and
force as force vectors as feature inputs. Including force factor yields higher correspondence
with ground truth sequence. Parsing the events with T-AOG on top of the clustering, the
performance improves significantly.
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performance of both segmentation and recognition using T-AOG have a marked improve-

ment compared to the methods only by clustering, demonstrating the usefulness of learning

a grammar model for events parsing and inference.

2.2.7 Conclusion and Future Work

In this work, we present an unsupervised approach for manipulation event segmentation,

recognition and parsing. Hand-object interaction sequences are segmented in an unsuper-

vised learning fashion, based on which a temporal grammar is further induced. Through

a tactile glove, our work explicitly incorporates forces imposed by hands in addition to its

pose.

The experiments demonstrate that force is indeed an important factor as it significantly

improves motion primitives segmentation. In addition, learning a grammar model T-AOG

from the clustering results for parsing the motions can reduce noisiness and eliminate mis-

labeling and ultimately lead to a more coherent event segmentation and parsing.

In the future, the proposed approach could be used to improve the traditional event

segmentation, recognition and parsing in computer vision by inferring the force from the

videos [ZJZ16]. It is also possible to use the segmentation as the demonstrations to teach

robots with LfD to open medicine bottles [EGX17] or more complex tasks, e.g ., tool uses [ZZZ15].

2.3 Robot Imitation Learning of Hand-Object Interaction

Learning complex robot manipulation policies for real-world objects is challenging, often

requiring significant tuning within controlled environments. In this work, we learn a manip-

ulation model to execute tasks with multiple stages and variable structure, which typically

are not suitable for most robot manipulation approaches. The model is learned from hu-

man demonstration using a tactile glove that measures both hand pose and contact forces.
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The tactile glove enables observation of visually latent changes in the scene, specifically the

forces imposed to unlock the child-safety mechanisms of medicine bottles. From these ob-

servations, we learn an action planner through both a top-down stochastic grammar model

(And-Or graph) to represent the compositional nature of the task sequence and a bottom-up

discriminative model from the observed poses and forces. These two terms are combined

during planning to select the next optimal action. We present a method for transferring

this human-specific knowledge onto a robot platform and demonstrate that the robot can

perform successful manipulations of unseen objects with similar task structure.

2.3.1 Introduction

Consider the task of opening medicine bottles that have child-safety locking mechanisms

(Figure 2.19a). These bottles require the user to push or squeeze in various places to unlock

the cap. By design, attempts to open these bottles using a standard procedure will result

in failure. Even if the agent visually observes a successful demonstration, imitation of this

procedure will likely omit critical steps in the procedure. The visual procedure for opening

both medicine and traditional bottles are typically identical. The agent lacks understanding

of the tactile interaction required to unlock the safety mechanism of the bottle. Only direct

observation of forces or instruction can elucidate the correct procedure (Figure 2.19e). Even

with knowledge of the correct procedure, opening medicine bottles poses several manipu-

lation challenges that involve feeling and reacting to the internal mechanisms of the bottle

cap. Although the presented study takes opening medicine bottles as an example, many

other tasks share similar properties and require non-trivial reasoning such as opening locked

doors [SGG08].

In this work, we learn a manipulation model from human demonstration that captures

observed motion and kinematics, as well as visually latent changes such as forces and internal

state Figure 2.19e). We learn this manipulation model for objects that have similar functional

properties, but exhibit different geometries and internal configurations that affect how the
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object must be manipulated.

Two key problems are discussed:

1. how to naturally recover the visually latent force data from the human demonstrations,

and

2. how to represent such knowledge and successfully transfer it to a robot?

For the first problem, although some initial results have been reported to reconstruct

poses and/or forces exerted by the demonstrator using vision-based methods [ZZM13, WMZ13,

ZZZ15, PKQ15, ZJZ16], these methods still have difficulty providing pose and force data

precise enough for robot learning. Instead, we utilize an open-source tactile glove [LXM17]

designed to measure both hand pose and contact forces across the surface of the hand.

These demonstrations are performed naturally, and within a motion capture setup to obtain

ground-truth tracking of the objects and human wrist.

For the second problem, our system takes into consideration: i) an And-Or-Graph

(AOG) [ZM07] learned from human demonstrations as top-down knowledge for manipu-

lations of an unseen medicine bottle, in which the AOG model uses fluents [NC36] to model

the changes between pre- and post-conditions of demonstrations in a low-dimensional sub-

space; and ii) A bottom-up process learned from raw signal data when robot executes to

encode transition between pre- and post-conditions. Together, these two processes learn a

manipulation model to open medicine bottles.

2.3.1.1 Related Work

Tactile Gloves are common tools to capture demonstration data [DSD08]. In this work, we

use a tactile glove [LXM17] to record both human pose and visually hidden forces applied

at each proximal and distal phalange, as well as a 4-by-4 grid of sensors to detect forces

exerted by the palm. In the literature, most data gloves use IMUs [TKM13, KSR14, SLS15]
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or curvature sensors [KSE08, KMS11] to track finger pose. To read force, FlexiForce [GSL15]

sensors or Velostat [JLK11, LKY15, PMT16] are commonly adopted.

Learning from demonstration (LfD) is a crucial component to building general pur-

pose robots, and a very broad field with rich history. This literature is too expansive to

survey here; we refer readers to a survey [ACV09]. Instead, we focus on approaches related

to our work: kinesthetic teaching, teleoperation, and imitation learning in the next para-

graphs. Note that humans are able to learn quickly from one or only a few examples for a

new task [LST15], thus teaching robots to achieve similar performance would enable robots

to enter many routine human activities. Our approach requires a relatively small number of

examples, approximately 10 examples per bottle.

Kinesthetic teaching and teleoperation both enable direct mappings between demon-

strations and executions [ACV09] and have successfully demonstrated capability of learning

both motor skills [LB04, KNC11] and manipulation policies [CPB06, KFM14]. However,

this direct embodiment mapping, a typically complex function that maps states/actions in

demonstrations to states/actions on the robot [ACV09], is ill-suited for manipulation tasks

that incorporate forces. Although some robots have built-in force sensing, the demonstra-

tor often cannot receive feedback from forces applied. To address this problem, [KCC11]

used kinesthetic teaching to demonstrate positional requirements of a task and employed a

secondary haptic demonstration to provide required forces. In contrast, our approach simul-

taneously integrates both poses and forces within a single demonstration using a tactile data

glove, providing a more natural and efficient way to sense force from a demonstration.

Imitation learning has two main streams: i) behavior cloning through supervised

demonstrations that directly mimic the demonstrator’s behaviors [HD94, MGH09, RGB11,

FJ13, LKG14, PJK16, SGR17], and ii) inverse reinforcement learning [AN04, RA07, ZMB08].

While inverse reinforcement learning is limited to Markvoian problems, our approach falls

into behavior cloning and is capable of handling both Markovian and non-Markovian prob-

lems by utilizing a grammar model.
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Two previous work stands out as most relevant to the presented work. [HLD16] use

imitation learning coupled with a data glove for opening a set of standard bottles without

understanding the internal configuration. This simplification is infeasible when dealing with

locking mechanisms of medicine bottles, which require direct and complex manipulation

of the cap beyond pure rotation. [SSS17b] uncovered haptic components of a task from

teleoperated demonstrations. In contrast, our work learns the manipulation tasks directly

from human demonstration using a tactile glove, resulting in more natural and larger variety

of demonstrations. In addition, [SSS17b] used a recurrent neural network based method

that typically only encodes a few steps of dependencies. However, our work uses an explicit

grammar to generate actions, capable of incorporating long-term temporal dependencies.

2.3.1.2 Contribution

This work makes four contributions:

1. Using a tactile glove during demonstrations that enable the robot to utilize both the poses

and forces exerted by the demonstrator. In contrast with previous work, our method

focuses on integrating visual measurements with physical measurements not observable

from vision (e.g . forces), capturing latent relationships that are imperceptible from vision

alone.

2. Learning a stochastic grammar model that represents the compositional task hierarchy

comprising of atomic actions for manipulation tasks, compactly capturing the admissible

sequence of actions for all the bottles demonstrated.

3. Learning a bottom-up process that encodes raw haptic signals to account for the transition

from a previous state to a new state. Together with the stochastic grammar model as a

top-down process, these two processes jointly form the manipulation model.

4. Transferring the learned model from human demonstrations onto a Baxter robot by solv-
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ing a correspondence problem [DH02]. This embodiment mapping function directly re-

lates hand pose and contact force from the human to the force-torque sensing and gripper

state of the robot; enabling the robot to reason about its haptic measurements using the

relations learned from human demonstration.

2.3.1.3 Overview

subsection 2.3.2 outlines the AOG representation and related components. subsection 2.3.3

discusses our data collection environment, instruments, and procedures. subsection 2.3.4, we

present how to learn an AOG representation from demonstrations, and how to combine it

with raw signals using a bottle-up process to infer the next action. subsection 2.3.5 outlines

our robotic system and execution framework. In subsection 2.3.6, we show the results of the

system, showcasing our system that integrates both pose and force outperforms the baseline

systems. Finally, we conclude and discuss the results in subsection 2.3.7.

2.3.2 Representation

We represent a task demonstrated by agents using an AOG consisting of: i) spatial knowledge

to encode the poses of objects and manipulators, and ii) temporal knowledge to encode action

sequencing.

2.3.2.1 And-Or Grammar (AOG)

An AOG is a graph-based grammar [ZM07] encoding compositional variability in the demon-

strated task sequences. Formally, an AOG G is represented by a 4-tuple:

G “ xU, V,∆,ΩF y. (2.13)
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An And-node u P U represents a decomposition of the graph into sub-graphs, and an Or-

node v P V acts as a switch among multiple alternate sub-configurations. The terminal

nodes ∆ is a set of sub-components representing the lowest level of resolution in the graph.

ΩF represents a set of attributes derived from the terminal nodes. In the context of opening

bottles, ∆ “ ta1, . . . , amu corresponds to a set of atomic actions (subsubsection 2.3.2.2)

executed during the task, and ΩF is a set of fluent functions (Section 2.3.2.3) that operate

on terminal nodes.

A parse graph, denoted pg, is a specific parse of the AOG by selecting a sub-configuration

at each Or-node in the graph. An example of a pg is shown in Figure 2.20, simultaneously

incorporating both spatial and temporal knowledge, where the spatial knowledge captures

the physical configuration of the robot environment and fluents, and temporal knowledge

encodes the sequence of atomic action to complete the task.

2.3.2.2 Atomic Actions

The concept of atomic actions [PSY13] or action primitives [SB08] were proposed in the

computer vision community. They are equivalent to the concept of movement primitives in

robotics literature [SPN05, PDP13] and represent the finest resolution of an action sequence.

In this work, both the human and robot actions are modeled using atomic actions. We aggre-

gate each observed atomic action ahk from the demonstration to form the human dictionary of

atomic action ∆h “ tahku and endow the robot with a dictionary of atomic actions, denoted

∆r “ tarku. Here, the subscript k indicates the k-th atomic action in the action sequence.

The correspondences between human and robot action labels were manually mapped. Each

atomic action represents a 4D human-object interaction (4DHOI) unit, as in [WZZ13a].
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2.3.2.3 Fluents

From the human demonstrations, an auto-encoder is trained to embed the space of ob-

served hand geometries, force distributions and the corresponding action label into a low-

dimensional subspace. Changes in this low-dimensional subspace correspond to fluent changes.

Each fluent function maps the high-dimensional scene configuration, sk, to a real value,

fpskq ÞÑ R. A fluent change represents a transition between two scene configurations,

∇fpsi, sjq “ fpsjq ´ fpsiq. For generality, we denote the action at step k as ak, regardless of

whether the action was performed by a human or robot. We denote the scene configuration

of the pre-condition as sk and the post-condition as sk`1. Each action can be characterized

by the changes it imposes across all fluents, denoted ∇fak “ t∇fipsk, sk`1q, i “ 1...nu.

Using this notion of fluent changes, the AOG encodes perceptual causality [ST00], rep-

resented by state changes between terminal nodes. We express this causal change as a

structured equation model (SEM) [Pea09]; i.e., fk`1 “ gakpfkq. This definition relies on

the assumption that the human demonstrator/robot is the only causal agent in the environ-

ment and the inertia action assumption [MT97]. These two assumptions imply a perceptual

causal chain between the agent’s previous action and the next action; i.e., the post-condition

fluents of the previous action are the pre-condition fluents of the current action, depicted by

the chain of fluents in Figure 2.20.

2.3.3 Data Collection

A human demonstrator performed opening various types of bottles shown in Figure 2.21.

Some of the bottles contain child-safety locking mechanisms that require a procedure beyond

simply twisting to unscrew the cap. Most child-safety locks require a particular force to be

exerted on a particular part of the bottle. These forces are difficult to infer from visual

observation alone. We collected human data on bottles 2, 3, and 5. The remaining bottles

were reserved for testing.
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Tactile Glove We use a tactile glove [LXM17] to capture these applied forces. The glove

reconstructs the pose of each finger using IMUs and detects forces using Velostat sensors on

the palm and phalanges. This glove provides 71 degrees of freedom including all pose and

force measurements, resulting in an accurate model of the pose of the hand and the forces

exerted by each phalange.

Experiment Setup A Vicon motion capture system is used to record the ground truth

of poses. The experimental setup is shown in Figure 2.22. Fiducials are attached to each

bottle and its lid to track the pose of object parts. One additional fiducial is attached to the

back of the tactile glove to capture wrist pose in world space. A camera is used to record

the video of data collection procedures to help label the ground truth later.

Data Collection Approximately 10 trials are collected for each grasping strategy for each

bottle. Examples are shown in Figure 2.23. Bottle 2 only has one grasping strategy: pinch-

and-twist. Bottle 3 has two different strategies: push-and-twist using the palm, or push-and-

twist using fingers. Bottle 5 has three valid strategies because it lacks a safety mechanism:

twist, push-and-twist, or pinch-and-twist.

Each demonstration is manually labelled, mitigating the correspondence problem between

a human action and a robot action. The timestamps of the labeling provide the transition

boundaries between actions, i.e., the post-condition of the labelled action and the pre-

condition of the next action.

2.3.4 Imitation Learning

2.3.4.1 Problem Definition

The planning objective is to find the best next action a˚
k`1 given the observed partial parse

graph pgk “ pa0, . . . , akq. The pg is planned within the pre-defined action space, and fluents
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are used as observations. We plan this problem by minimizing the energy of the partial parse

graph at each time step:

pppgk`1|pgk, fkq “
1

Z
expt´Eppgk`1|pgk, fkqu, (2.14)

where Z “
ř

pgk`1
expt´Eppgk`1|pgk, fkqu is the partition function. We decompose the energy

of the parse graph into a top-down term and a bottom-up term, and adopt the notion of

top-down and bottom-up as γ and β channels [WZ11] of influence for inference in And-Or

graphs, respectively. We define Eppgk`1|pgk, fkq as

Eppgk`1|pgk, fkq “ Eγppgk`1|pgkq ` Eβppgk`1|pgk, fkq, (2.15)

where Eγppgk`1|pgkq “ ´ log rpppgk`1|pgkqqs , (2.16)

Eβppgk`1|pgk, fkq “ ´ log rppak`1|ak, fkqs , (2.17)

which incorporates two action planning mechanisms:

‚ Top-down Term: pppgk`1|pgkq plans the next action given the sequence of previous

actions. It represents the long-term relation between all the previous actions and the next

action. In this work, an action grammar represented by AOG is first induced using all the

valid action sequences. An Earley parser [Ear70] is then adopted to parse the likelihood.

See details in subsubsection 2.3.4.2.

‚ Bottom-up Term: ppak`1|ak, fkq plans the next action using both the current action

label and observed fluent. This term encodes a short-term relation using the current fluent

in addition to the pose and force pose sensing. In this work, we convert this planning

task to a classification problem, using a neural network to select the action with highest

probability. See details in subsubsection 2.3.4.3.
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2.3.4.2 Action Planning using AOG

AOG Induction From labelled action sequences of human demonstration, an action gram-

mar G represented by AOG is induced using method presented by Tu et al . [TPZ13], resulting

in a stochastic context-free grammar with probabilistic Or-nodes. Examples are shown in

Figure 2.24. The objective function is the posterior probability of the grammar given the

training data X:

ppG|Xq9ppGqppX|Gq “
1

Z
e´α||G||

ź

pgiPX

pppgi|Gq, (2.18)

where pgi “ pa1, a2, . . . , amq P X represents a valid parse graph of atomic actions with length

m from the demonstrator.

Top-down Parsing Likelihood Given the learned AOG G, for a grammatically complete

parse graph s “ pa0, . . . , aKq, the parsing likelihood is simply the Viterbi likelihood, denoted

by ppsq. For an incomplete parse pgk “ pa0, . . . , akq with length of k ă K, the parsing

likelihood is given by the sum over all grammatically possible actions sequences that begin

with pgk:

pppgkq “
ÿ

sPG,sk“pgk

ppsq, (2.19)

where pgk denotes the first k actions in the parse graph pg. By computing pppgk`1q and

pppgkq using the Earley parsing likelihood, we compute the top-down term, pppgk`1|pgkq,

through Bayes’ rule. The top-down term encodes long-range temporal constraints induced

by the AOG.

2.3.4.3 Action Planning using Fluents

We use tactile glove measurements and haptic feedback signals to learn: i) a low-dimensional

embedding of the human demonstration, ii) a bottom-up term to plan the next action based

on the low-dimensional human embedding, and iii) an embodiment mapping between the
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robot and the low-dimensional human embedding.

Low-dimensional Embedding We use an auto-encoder to encode the scene configuration

into a low-dimensional representation as fluents (Figure 2.25(a)). Changes inside this sub-

space are treated as fluent changes and are used to infer the next action with observed haptic

feedback from the robot. Within this subspace, we train a bottom-up term, ppak`1|ak, fkq, to

plan the next action using haptic observations of the post-condition of the previous action.

The contact force and pose measurements from the tactile glove are reoriented to the

reference frame of the wrist, and concatenated into a feature vector with 159 dimensions. An

encoder-decoder architecture, illustrated in Figure 2.25(a), is used to learn a 8-dimensional

embedding and reconstructs the full feature from this embedding under a criterion that

minimizes the squared residuals between the original feature and the reconstruction:

lpθ;xhq “
1

N

N
ÿ

i“1

pxhi ´ ψpxhi ; θqq
2, (2.20)

where xhi represents one of the N human demonstrations and ψpxi; θq represents the recon-

struction.

Bottom-up Action Planning The bottom-up term ppak`1|ak, fkq takes the form of a

multi-class classifier to plan one of the 13 output actions (Figure 2.25(b)). This classifica-

tion network takes its input from the embedding layer of the auto-encoder and a one-hot

encoding of the current action. A softmax layer is used to interpret it as a probability distri-

bution, and the network is trained by minimizing the normalized cross-entropy. All internal

layers are linear matrix operators, and use sigmoids for their non-linearities. Combined with

the low-dimensional embedding, the bottom-up term incorporates raw tactile signals dur-

ing manipulations, thus complementing the top down constraints from the action grammar

parsing.
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Embodiment Mapping The embodiment mapping seeks a function sh “ ϕ̂psrq, where sh

represent the human state of the demonstration and sr represents the robot’s state during

execution (Figure 2.25(c)). This function maps haptic sensing on the robot to the low-

dimensional embedding of tactile measurements from the human demonstration. A neural

network is trained to approximate this function using a small number of robot examples

(approximately 15 examples). We supervise robot executions sampled from the learned

AOG using the robot’s dictionary ∆r to ensure only successful robot states are mapped to

successful demonstrator states. The loss function for this network is the squared residuals:

lpθ;xh,xrq “
1

N

N
ÿ

i“1

pϕpxhi q ´ ϕ̂pxri ; θqq
2, (2.21)

where xh represents human states, xr represents equivalent robot states, ϕ represents the low-

dimensional embedding of human data, and ϕ̂ represents the embodiment mapping function.

The robot utilizes this mapping to plan the next action using the bottom-up term: first map

its state to an equivalent human state, then use the human state to plan which action to

execute using the bottom-up action planner.

2.3.5 Implementation

2.3.5.1 Robot Platform Setup

We use a dual-armed 7-DoF Baxter robot from Rethink Robotics mounted on a DataSpeed

Mobility Base as our robot platform. The robot is equipped with a ReFlex TackkTile

gripper on the right wrist, and a Robotiq S85 parallel gripper on the left. In addition,

we use Simtrack [PK15] for object pose estimation and tracking with a Kinect One sensor.

The entire system runs on ROS [QCG09], and arm motion planning is computed using

MoveIt! [SC13]. For object grasping, we implement a geometry based grasping planner to

generate grasping poses from CAD models of the objects.
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2.3.5.2 System Architecture

The system architecture consists of three major components shown in Figure 2.26:

‚ Learning: The learning phase includes a top-down process and a bottom-up process. The

top-down representation is built from segmented human demonstrations, and an AOG is

induced to represent valid action sequences (see subsubsection 2.3.4.2). To learn the

bottom-up knowledge, three neural networks are trained from raw sensor data (see sub-

subsection 2.3.4.3).

‚ Inference: During the inference, the top-down term is computed by the Earley parser.

The embodiment mapping and classification network are used to compute the bottom-up

term, as outlined in subsubsection 2.3.4.1. We plan the next action using Equation 2.14

with the corresponding top-down and bottom-up terms.

‚ Execution: Robot executes the next action either by sampling the AOG, using haptic

feedback, or both according to Equation 2.14.

2.3.6 Experiments and Results

2.3.6.1 Experiment Setup

Five bottles were used in the evaluation as shown in Figure 2.21. Bottles 2, 3, and 5 were

used during data collection, while the remaining bottles were reserved for testing. Bottles 1,

2, 3, and 4 all have safety mechanisms while bottle 5 does not.

An action sequence is deemed successful if the robot opens the bottle; otherwise, the

sequence is a failure. If the robot opens the bottle before finishing the sampled execution,

we consider the action sequence that it performed is correct and discard remain actions. We

conducted over 300 opening experiments over all of the bottles, resulting in three groups of

quantitative results. Each bottle was tested approximately 60 times.
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2.3.6.2 Evaluation Criteria

While there may be multiple ways to open each bottle, not all methods are considered

equivalent. For instance, Bottle 5 has no safety mechanism, so while push-and-twist and

pinch-and-twist may succeed in opening bottle 5, there is no reason to execute anything

other than twist. This distinction naturally leads to two levels of evaluation criteria: i) by

the end results only, i.e., whether a sequence of actions can successfully open a bottle, and

ii) not only successfully open a bottle but also efficiently.

As illustrated above, human demonstrator is treated as an oracle and the corresponding

action sequences as perfect executions. We separate robot executions into four different

categories:

1. Success, where the robot successfully executed an action sequence that is an exact match

to one of the sequences from the human demonstrator;

2. Success, but using at least one extra or wrong action;

3. Failure due to using the wrong action sequence; and

4. Failure due to improper execution (e.g . low motor execution accuracy or grasping failure).

2.3.6.3 Qualitative and Quantitative Results

For qualitative analysis, Figure 2.27 shows the robot successfully opening two bottles with

(Figure 2.27a) and without (Figure 2.27a) pushing the bottle lid. The force-torque sensor

Evaluation bot. 1 bot. 2 bot. 3 bot. 4 bot. 5

Success 8.7% 5.6% 4.4% 8.7% 26.1%
Success (extra/wrong) 21.7% 5.6% 34.8% 47.8% 39.1%
Failure (action) 69.6% 77.7% 60.8% 34.8% 30.4%
Failure (execution) 0% 11.1% 0% 8.7% 4.4%

Table 2.6: Baseline 1, top-down only planning
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readings reflect distinguishable differences between performing push-and-twist (Figure 2.27c)

and twist (Figure 2.27d).

We set up three groups of experiments for quantitative results analysis. Table 2.6 shows

the results of using top-down only planning, in which the robot executes a sampled action

sequence only from the AOG. This method describes the order in which actions were executed

but does not capture haptics during manipulations.

Table 2.7 shows the results of using bottom-up only planning. This method incorporates

the haptic feedback from the robot sensing, but lacks long-term temporal constraints from the

AOG, i.e., it executes a Markovian planning process, in which the next action is determined

by the previous action and the current observations as outlined in subsection 2.3.4.

Table 2.8 shows the results of integrating both the top-down planning provided by the

AOG and the bottom-up haptic feedback. By utilizing both terms, the temporal sequence of

actions is not generated only by sampling from the AOG; instead, each action is generated

sequentially by minimizing Equation 2.14.

The proposed top-down and bottom-up planning (Table 2.8) yields large performance

Evaluation bot. 1 bot. 2 bot. 3 bot. 4 bot. 5

Success 4.4% 0% 4.4% 0% 4.4%
Success (extra/wrong) 13% 11.8% 30.4% 42.9% 17.4%
Failure (action) 82.6% 76.4% 65.2% 57.1% 78.2%
Failure (execution) 0% 11.8% 0% 0% 0%

Table 2.7: Baseline 2, bottom-up only planning

Evaluation bot. 1 bot. 2 bot. 3 bot. 4 bot. 5

Success 8.7% 17.6% 17.4% 20% 60.9%
Success (extra/wrong) 52.2% 17.6% 65.2% 73.3% 17.4%
Failure (action) 39.1% 64.8% 13% 6.7% 21.7%
Failure (execution) 0% 0% 4.4% 0% 0%

Table 2.8: Proposed, top-down and bottom-up planning
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improvements over either the top-down (Table 2.6) or bottom-up (Table 2.7) only method.

The rate of Success and Success with extra/wrong are dramatically improved while the failure

rate due to wrong actions sequences drops significantly.

2.3.6.4 Discussion

a) Why it is important to integrate both top-down and bottom-up terms? In

our proposed method, top-down planning generates an action from the non-Markovian AOG,

while the bottom-up planning formulates a Markovian process according to robot’s haptic

feedback. These two processes are complementary to each other and crucial to correctly

executing a manipulation task. Specifically, i) the top-down term represents the structure of

the task, generating the next action based on previous semantic knowledge and preventing

executing irrelevant actions. ii) The bottom-up term encodes real-time sensing information,

capturing subtle interactions during manipulations. By combining these two terms, our

method is capable of learning from small examples of human demonstrations and planning

actions on the fly based on task structure and real-time haptic sensing.

b) Why the success rate of bottle 2 is low? The robot has no haptic feedback

and geometry information prior to touching the bottle with its gripper. By sampling the

first action after approach from the AOG, the probability to plan pinch is around 15%,

due to the frequency in the human demonstrations. While not reported in Table 2.8, the

perfect successful rate for bottle 2 is 100% if the first action after approach is pinch. Other

work [PNZ15] has augmented AOG nodes with attributes to turn the AOG into a context-

sensitive grammar. A context-sensitive grammar would increase perfect success rates by

considering the type of bottle directly in the top-down term, rather than our current method

implicitly inferring the bottle type from haptic feedback.

c) Can the robot derive novel manipulations that are not presented in human

demonstrations? In our opinion, there are at least two types of novel manipulations

that a robot can derive from human demonstrations: i) generating new action sequences, and
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ii) generating new actions. In this work, the proposed method demonstrates the capability of

generating novel action sequences through a compositional grammar. However, generating

new actions is much more difficult, as the structure and capability of human hands and

robot grippers could be dramatically different. For instance, a human demonstration may

need to twist twice to open a bottle lid, while a robot gripper may only need to twist once,

since some robot grippers are capable of rotating with more freedom than human wrist.

Such differences lead to the different success rates of bottle 1, 3, and 4 even though they all

require push-and-twist : bottle 1 must push-and-twist at least twice to open, while bottles 3

and 4 require only one push-and-twist action. If the robot could learn and infer the degree

of rotation required to open the bottle, the robot could generate a new action to achieve

tasks. However, the proposed method does not explore the parameterization of each atomic

action in the presented work.

2.3.7 Conclusion

In this work, we present a novel method of naturally capturing visually hidden states of a

task and transferring them to the robot through human demonstrations using a tactile glove.

The tactile glove provides a data collection method to capture visually hidden causal changes

in the scene. Using this latent encoding of the scene, we learn a model to plan the actions

of the human demonstrator. The human demonstrations are used to induce an AOG, and

the AOG is used to supervise successful executions of opening a bottle.

The robot states of successful executions are mapped to successful demonstrations from

the human demonstrator using a low-dimensional embedding of the human tactile feedback.

This embodiment mapping solves the correspondence problem using a relatively small num-

ber of supervised robot executions. The robot utilizes this mapping in conjunction with the

top-down and bottom-up terms to infer the next action to execute.

The proposed method (Table 2.8) shows a marked improvement over two baselines (Ta-

ble 2.6 and Table 2.7), demonstrating the top-down and bottom-up terms work together to
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increase the success rate in comparison to using either method alone.

2.3.7.1 Future Work

This work paves the way for additional work regarding visually latent states and correspond-

ing embodiment mappings. We would like to investigate methods to make the system less

supervised by clustering the human demonstrations. From the clusters, the robot may not

possess an equivalent action in its dictionary and may need to search its action space for an

action with equivalent pre- and post-conditions.

The framework presented here could be used to attempt functionally equivalent tasks [ZZZ15].

In this way, the robot could demonstrate understanding the dynamics of the task that needs

to be replicated and which can be safely ignored. Experimenting to find functional equiva-

lence is closely related to counterfactual reasoning in the causal domain; such explorations

establish causal connections between actions and their effects.

2.4 Enhancing Explainability of Robot Imitation Learning

The ability to provide comprehensive explanations of chosen actions is a hallmark of intelli-

gence. Lack of this ability impedes the general acceptance of AI and robot systems in critical

tasks. This work examines what forms of explanations best impart trust and prediction ac-

curacy to human subjects and proposes a framework capable of producing explanations from

both functional and mechanistic perspectives. The robot system learns from human demon-

strations to open medicine bottles using: (1) an embodied haptic prediction model to extract

knowledge from sensory feedback; (2) a stochastic grammar model induced to capture the

compositional structure of a multi-step task; and (3) an improved Earley parsing algorithm

to jointly leverage both the haptic and grammar models. The robot system not only shows

the ability to learn from human demonstrators but also succeeds in opening new, unseen

bottles. Using different forms of explanations generated by the robot system, we conducted
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a psychological experiment to examine what forms of explanations best foster human trust

in the robot. We found that comprehensive and real-time visualizations of the robot’s in-

ternal decisions were more effective in promoting human trust than explanations based on

summary text descriptions. In addition, forms of explanation that are best suited to impart

trust do not necessarily correspond to the model components contributing to the best task

performance. This divergence shows a need for the robotics community to integrate model

components to enhance both task execution and human trust in machines.

2.4.1 Introduction

Centuries ago, Aristotle stated that “we do not have knowledge of a thing until we have

grasped its why, that is to say, its cause” [Fal19]. A hallmark of humans as social animals

is the ability to answer this “why” question by providing comprehensive explanations of the

behavior of themselves and others. The drive to seek explanations is deeply rooted in human

cognition. Preschool-age children tend to attribute functions to all kinds of objects—clocks,

lions, clouds, and trees, as explanations of the activity that these objects were apparently

designed to perform [Kel99, GMK99]. The strong human preference and intrinsic motivation

for explanation are likely due to its central role in promoting mutual understanding, which

fosters trust between agents and thereby enables sophisticated collaboration [Lom06, Tom10].

However, a strong human desire for explanations has not been sufficiently recognized

by modern artificial intelligence (AI) systems, in which most methods primarily focus on

task performance [Gun17]. Consequently, robot systems are still in their infancy in devel-

oping the ability to explain their own behavior when confronting noisy sensory inputs and

executing complex multi-step decision processes. Planner-based robot systems can gener-

ally provide an interpretable account for their actions to humans (e.g ., by Markov decision

processes [FHL16, HS17], HTN [EHN96], or STRIPS [FN71]); but these planners strug-

gle to explain how their symbolic-level knowledge is derived from low-level sensory inputs.

In contrast, robots equipped with Deep Neural Networks (DNNs) [HOT06] have demon-

57



strated impressive performance in certain specific tasks due to their powerful ability to

handle low-level noisy sensory inputs [DCH16, LLS15]. However, DNN-based methods have

well-known limitations, notably including a lack of interpretability of the knowledge repre-

sentation [Mar18, MP17, Dom15]. Some recent DNN work addresses this issue using saliency

maps [KRD18, YKY18] or modularized components [HAD18, ZNZ18]. These data-driven

approaches have demonstrated strong capabilities of handling noisy real-time sensory inputs,

distilling the raw input to predict the effect and determine the next action. However, little

work has been done to develop the synergy between the classic symbolic AI and the re-

cent development of DNNs to empower machines with the ability to provide comprehensive

explanations of their behavior.

To fill in this gap, the present project aims to disentangle explainability from task per-

formance, measuring each separately to gauge the advantages and limitations of two major

families of representations—symbolic representations and data-driven representations—in

both task performance and imparting trust to humans. The goals are to explore: (i) what

constitutes a good performer for a complex robot manipulation task? (ii) How can we

construct an effective explainer to explain robot behavior and impart trust to humans?

To answer these questions, this work develops an integrated framework consisting of a

symbolic action planner using a stochastic grammar as the planner-ba sed representation and

a haptic prediction model based on neural networks to form the data-driven representation.

We examine this integrated framework in a robot system using a contact-rich manipulation

task of opening medicine bottles with various safety lock mechanisms. From the performer’s

perspective, this task is a challenging learning problem involving subtle manipulations, as it

requires a robot to push or squeeze the bottle in various places to unlock the cap. At the

same time, the task is also challenging for explanation, as visual information alone from a

human demonstrator is insufficient to provide an effective explanation. Rather, the contact

forces between the agent and the bottle provide the hidden “key” to unlock the bottle, and

these forces cannot be observed directly from visual input.
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To constitute a good performer, the robot system proposed here cooperatively combines

multiple sources of information for high performance, enabling synergy between a high-

level symbolic action planner and a low-level haptic prediction model based on sensory

inputs. A stochastic grammar model is learned from human demonstrations and serves as a

symbolic representation capturing the compositional nature and long-term constraints of a

task [TPZ13]. A haptic prediction model is trained using sensory information provided by

human demonstrations (i.e., imposed forces and observed human poses) to acquire knowledge

of the task. The symbolic planner and haptic model are combined in a principled manner

using an improved Generalized Earley Parser (GEP) [QJZ18], which predicts the next robot

action by integrating the high-level symbolic planner with the low-level haptic model. The

learning from demonstration framework presented here shares a similar spirit of our previous

work [EGX17] but with a new haptic model and a more principled manner, namely the GEP,

to integrate the haptic and grammar models. Computational experiments demonstrate a

strong performance improvement over the symbolic planner or haptic model alone.

To construct an effective explainer, the proposed approach draws from major types of

explanations in human learning and reasoning that may constitute representations to foster

trust by promoting mutual understanding between agents. Previous studies suggest humans

generate explanations from functional perspectives that describe the effects or goals of ac-

tions and from mechanistic perspectives that focus on behavior as a process [Lom13]. The

haptic prediction model is able to provide a functional explanation by visualizing the essen-

tial haptic signals (i.e., effects of the previous action) to determine the next action. The

symbolic action planner is capable of providing a mechanistic explanation by visualizing mul-

tiple planning steps (instead of just one) to describe the process of the task. The proposed

robot system provides both functional and mechanistic explanations using the haptic model

and symbolic planner, respectively.

To examine how well robot-generated explanations impart human trust, we conduct hu-

man experiments to assess whether explanations provided by the robot system can foster
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trust in human users, and if so, what forms of explanation are the most effective in en-

hancing human trust in machines. In this work, we refer to the cognitive component of

“trust” [Sim07] based on rationality. Cognitive trust is especially important in forming

trust within secondary groups (such as human-machine relations) [LW85] compared to the

emotional component typically more important in primary group relations (such as family

and close friends). Our psychological experiment focuses on cognitive trust, stressing on

a belief or an evaluation with “good rational reasons,” as this is the crucial ingredient of

human-machine trust built on specific beliefs and goals with attention to evaluations and

expectations [CF98]. Specifically, human participants were asked to report qualitative trust

ratings after observing robot action sequences along with different forms of explanations for

the robot’s internal decision-making as it solved a manipulation task. Then, participants

observed similar but new robot executions without access to explanations and were asked

to predict how the robot system is likely to behave across time. These empirical findings

shed light on the importance of learning human-centric models that make the robot system

explainable, trustworthy, and predictable to human users. Our results show that forms of

explanation that are best suited to impart trust do not necessarily correspond to those com-

ponents contributing to the best task performance. This divergence shows a need for the

robotics community to adopt model components that are more likely to foster human trust

and integrate these components with other model components enabling high task perfor-

mance.

2.4.2 Results

Figure 2.28 illustrates the overall procedures, wherein the proposed integration framework,

the Generalized Earley Parser (GEP) [QJZ18], efficiently combines a symbolic action planner

and a data-driven haptic model to achieve high task performance and effective explanation.

To this end, we first describe the procedure and data collection of human demonstrations,

followed by the learning approaches. Next, we provide quantitative results as the success
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rate of the robot system in performing the task and assess the contributions from different

modules of the system in task performance. We end the section with an analysis of human

experiments with different types of explanations generated from the learned models, show-

ing how human qualitative trust and prediction accuracy are reflected according to various

provided explanations.

2.4.2.1 Robot Learning

To learn from human demonstrations, our robot system utilizes an efficient encoding and

representation of both haptic inputs and symbolic semantics of the manipulation task. The

specific task, opening medicine bottles, requires inferring about both the hand pose and the

forces imposed on the bottle; agents must understand and enact the correct sequence of

pose and force manipulations to succeed based on both the learned knowledge from human

demonstrations and the real-time haptic sensory input.

We utilize a tactile glove with force sensor [LXM17] to capture both the poses and

the forces involved in human demonstrations in opening medicine bottles that require a

visually latent interaction between the hand and the cap, e.g ., pushing as indicated in

Figure 2.28A. A total of 64 human demonstrations, collected in [EGX17], of opening 3

different medicine bottles serve as the training data. These 3 bottles have different locking

mechanisms: no safety lock mechanism, a push-twist locking mechanism, and a pinch-twist

locking mechanism. To test the generalization ability of the robot system, we conduct

a generalization experiment with new scenarios different from training data, either a new

bottle (Figure 2.31B) or a bottle with a modified cap with significantly different haptic signals

(Figure 2.36). The locking mechanisms of the bottles in the generalization experiment are

similar but not identical (in terms of size, shape, and haptic signals) to the bottles used

in human demonstrations. The haptic signals for the generalization bottles are significantly

different from bottles used in testing, posing challenges in transferring the learned knowledge

to novel unseen cases.
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Embodied haptic model Using human demonstrations, the robot learns a manipulation

strategy based on the observed poses and forces exerted by human demonstrators. One

challenge in learning manipulation policies from human demonstration involves different

embodiments between robots and human demonstrators. A human hand has five fingers,

whereas a robot gripper may only have two or three fingers; each embodiment exerts different

sensory patterns even when performing the very same manipulation. Hence, the embodied

haptic model for the robot system cannot simply duplicate human poses and forces exerted

by human hands; instead, a robot should imitate the actions with the goal to produce the

same end-effect in manipulating the medicine bottle (e.g ., imposing a certain force on the

cap). The critical approach in our model is to employ embodied prediction, i.e., let the

robot imagine its current haptic state as a human demonstrator and predict what action the

demonstrator would have executed under similar circumstances in the next time step.

Figure 2.29 illustrates the force patterns exerted by a robot and a human demonstrator.

As shown in panels A and C, due to the differences between a robot gripper and a human

hand, the haptic sensing data from robots and humans show very different patterns from

each other in terms of dimensionality and duration within each segmented action (illustrated

by the colored segments).

To address the cross-embodiment problem, we train a haptic model in a similar approach

as in [EGX17] to predict which action the robot should take next based on perceived human

and robot forces and poses. The present haptic model learns a prediction model in a three-

step process: (i) learning an autoencoder that constructs a low-dimensional embedding of

human demonstrations containing poses and forces, as shown in Figure 2.29B. (ii) Training

an embodiment mapping to map robot states to equivalent human embeddings, thereby

allowing the robot to imagine itself as a human demonstrator to produce the same force,

achieving functional equivalence to generate the same end effect as the human demonstrator.

This embodiment mapping is trained in a supervised fashion, using labeled equivalent robot

and human states. (iii) Training a next action predictor based on the human embeddings
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and the current action. This action predictor is also trained in a supervised fashion, using

segmented human demonstrations. See section 2.4.4.1 for additional training details.

The robot predicts the next action based on the mapped human embedding using a multi-

class classifier; see details in Model Learning Details in subsection 2.4.4. We denote this

prediction process as our haptic model. Intuitively, the embodied haptic predictions endow

the robot with the ability to ask itself: if I imagine myself as the human demonstrator,

which action would the human have taken next based on the poses and forces exerted by their

hand? Hence, the resulting haptic model provides a functional explanation regarding the

forces exerted by the robot’s actions.

Symbolic action planner Opening medicine bottles is a challenging multi-step manip-

ulation, as one may need to push on the cap to unlock it (visually unobservable), twist it,

and then pull it open. A symbolic representation is advantageous to capture the necessary

long-term constraints of the task. From labeled action sequences of human demonstrations,

we induce a temporal And-Or Graph (T-AOG), a probabilistic graphical model describing a

stochastic, hierarchical, and compositional context-free grammar [ZM07], wherein an And-

node encodes a decomposition of the graph into sub-graphs, an Or-node reflects a switch

among multiple alternate sub-configurations, and the terminal nodes consist of a set of ac-

tion primitives (such as push, twist, pull). A corpus of sentences (i.e., action sequences in

our case) is fed to the grammar induction algorithm presented in [TPZ13], and the gram-

mar is induced by greedily generating And-Or fragments according to the data likelihood;

the fragments represent compositional substructures that are combined to form a complete

grammar. In our case, the grammar is learned from segmented and labeled human demon-

strations. The resulting grammar offers a compact symbolic representation of the task and

captures the hierarchical structure of the task, including different action sequences for dif-

ferent bottles, as well as different action sequences for the same bottle. Examples of the

T-AOG learning progress are shown in Figure 2.30. The nodes connected by red edges in
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Figure 2.30C indicate a parse graph sampled from the grammar, and its terminal nodes

compose an action sequence for robot execution.

Based on the action sequences observed in human demonstrations, the induced grammar

can be used to parse and predict robot action sequences likely to lead to successfully opening

the medicine bottle, assuming each robot action corresponds to an equivalent human action.

The induced grammar can be parsed to generate new, unseen, and valid action sequences for

solving similar tasks (e.g ., opening different medicine bottles), and thus the grammar can

be used with symbolic planning methods, such as the Earley Parser [QJZ18]. We denote the

process of planning actions using a parser and the action grammar as the symbolic planner.

Hence, the symbolic planner endows the robot with the ability to ask itself from a mechanistic

perspective: based on what I have done thus far and what I observed the human do, which

actions are likely to open the bottle at the end of the sequence?

Integration of symbolic planner and haptic model To integrate the long-term task

structure induced by the symbolic planner and manipulation strategy learned from haptic

signals, we seek to combine the symbolic action planner and embodied haptic model using

the Generalized Earley Parser (GEP) [QJZ18]. The GEP is a grammar parser that works on

a sequence of sensory data; it combines any context-free grammar model with probabilistic

beliefs over possible labels (grammar terminals) of sensory data. The output of the GEP

is the optimal segmentation and label sentence of the raw sensory data; a label sentence is

optimal when its probability is maximized according to the grammar priors and the input

belief over labels while being grammatically correct. The core idea of the GEP is to efficiently

search in the language space defined by the grammar to find the optimal label sentence.

To adopt the GEP for a robot system, we modify the GEP presented in [QJZ18] for online

planning. The grammar for the GEP remains the same grammar used in the symbolic plan-

ner; however, the GEP’s probabilistic beliefs come from the softmax distribution from the

haptic model. During the action planning process, a stochastic distribution of action labels
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predicted by the haptic model is fed into the GEP at every time step. The GEP aggregates

the entire symbolic planning history with the current haptic prediction and outputs the best

parse to plan the most likely next action. subsection 2.4.4 introduces more details about

the algorithm. Intuitively, such an integration of the symbolic planner and haptic model

enables the robot to ask itself: based on the human demonstration, the poses and forces I

perceive right now and the action sequence I have executed thus far, which action has the

highest likelihood of opening the bottle?

Robot Results Figure 2.31A and Figure 2.31B show the success rate of the robot in

performing the task of opening the 3 medicine bottles used in human demonstrations and

2 new, unseen medicine bottles, respectively; see more generalization results in subsubsec-

tion 2.4.5.1. The 2 generalization bottles locking mechanisms that are similar (but not

identical) to the ones used in human demonstrations, and the low-level haptic signals are

significantly different, posing challenges in transferring the learned knowledge to novel un-

seen cases. Each bottle and model was executed 31 times on our robot platform. In the

testing experiments, Bottle 1 is a regular bottle without a locking mechanism, Bottle 2 has

a push-twist locking mechanism, and Bottle 3 requires pinching specific points on the lid

to unlock. In the generalization experiments, Bottle 4 also does not have a locking mecha-

nism, and Bottle 5 has a push-twist locking mechanism but with a different shape, size, and

haptic signals compared with the ones in the human demonstrations. For both the testing

and generalization experiments, the robot’s task performance measured by the success rates

decreases as the bottle’s locking mechanism becomes more complex, as expected.

To quantitatively compare the difference between the model components, we conduct

ablative experiments on robot task performance using only the symbolic planner and only

the haptic model; see Figure 2.31. The haptic model and symbolic planner vary in their

relative individual performance, but the combined planner using the GEP yields the best

performance for all cases. Hence, integrating both the long-term task structure provided by
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the symbolic planner and the real-time sensory information provided by the haptic model

yields the best robot performance. The symbolic planner provides long-term action planning

and ensures the robot executes an action sequence capturing the high-level structure of the

task. However, models that solely rely on these symbolic structures are brittle to adjust

to perturbations of haptic signals, especially when the task relies more on the haptics as

the complexity increases. On the other hand, models that rely purely on haptic signals

are unable to impose multi-step task constraints, thus may fail to infer a correct sequence

of actions based on the execution history. Our results confirm that by combining these

modalities together, the robot achieves the highest task performance.

Given that multiple modalities are involved in the GEP’s performance, it is crucial to

assess the contributions from different model components. We ran the χ2-test to determine

if different models (GEP, symbolic, and haptic) are statistically different in their ability

to open five bottles (3 bottles used in human demonstrations and 2 new bottles used in

the generalization task). The robot performs the manipulation task 31 times per medicine

bottle. With the significance level of 0.05, the results show that the performance of the GEP

model is significantly better than both symbolic model (χ2p1q “ 10.0916, p “ 0.0015) and

haptic model (χ2p1q “ 13.0106, p ă 0.001). Performance does not show difference between

the symbolic model and the haptic model, χ2p1q “ 0.1263, p “ 0.7232. These results suggest

that both haptic model and symbolic planner contribute to good task performance; when

the two processes are integrated with the GEP, the success rate of the robot for opening

medicine bottles is improved compared to the performance by the single-module models

based on either the haptic model or the symbolic planner.

2.4.2.2 Explanation Generation

The haptic model and symbolic planner are capable of providing explanations to humans

about robot behavior in real-time. Mechanistic explanations can be generated by the sym-

bolic planner in the form of action sequences as they represent the process of opening a
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medicine bottle. Functional explanations can be provided by a visualization of the internal

robot gripper state (effects) used in the haptic model. It is worth noting that these models

are capable of providing such explanations but are not the only means of producing them.

Alternative action planners and haptic models could produce similar explanations, as long as

the robot systems are able to learn the corresponding representations for haptic prediction

and task structure. Figure 2.32 shows the explanation panels over an action sequence. These

visualizations are shown in real-time, providing direct temporal links between explanation

and execution.

2.4.2.3 Human Experiment

Experimental Design The human experiment aims to examine whether providing ex-

planations generated from the robot’s internal decisions foster human trust to machines and

what forms of explanation are the most effective in enhancing human trust. We conducted a

psychological study with 150 participants; each was randomly assigned to one of five groups.

Our experimental setup consisted of two phases: familiarization and prediction. During fa-

miliarization, all groups viewed the RGB video, and some groups were also provided with an

explanation panel. During the second phase of the prediction task, all groups only observed

RGB videos.

The five groups consist of the baseline no-explanation group, symbolic explanation group,

haptic explanation group, GEP explanation group, and text explanation group. For the

baseline no-explanation group, participants only viewed RGB videos recorded from a robot

attempting to open a medicine bottle, as shown in Figure 2.33A. For the other four groups,

participants viewed the same RGB video of robot executions and simultaneously were pre-

sented with different explanatory panels on the right side of the screen. Specifically, the

symbolic group viewed the symbolic action planner illustrating the robot’s real-time inner

decision-making, as shown in Figure 2.33B. The haptic group viewed the real-time haptic

visualization panel, as shown in Figure 2.33C. The GEP group viewed the combined explana-
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tory panel, including the real-time robot’s symbolic planning and an illustration of haptic

signals from the robot’s manipulator, namely both Figure 2.33B-C. The text explanation

group was provided a text description that summarizes why the robot succeeded or failed to

open the medicine bottle at the end of the video, as shown in Figure 2.33D. See a summary

in Figure 2.33E for the five experimental groups.

During the familiarization phase, participants were provided two demonstrations of robot

executions, with one successful execution of opening a medicine bottle and one failed exe-

cution without opening the same bottle. The presentation order of the two demonstrations

was counterbalanced across participants. After observing robot executions with explanation

panels, participants were first asked to provide a trust rating for the question: to what ex-

tent do you trust/believe this robot possesses the ability to open a medicine bottle? on a

scale between 0 and 100. The question was adopted from the questionnaire of measuring

human trust in automated systems [JBD00]. This question also clearly included the goal of

the system, to open a medicine bottle, to enhance the reliability in trust measures [CF98].

Hence, the rating provided a direct qualitative measure of human trust to the robot’s ability

to open medicine bottles.

In addition, we designed the second measure to assess the quantitative aspects of trust.

We adopted the definition by Castelfranchi and Falcone [CF98] that quantitative trust is

based on the quantitative dimensions of its cognitive constituents. Specifically, as the greater

the human’s belief in the machine’s competence and performance, the greater the human

trust in machines. In the prediction phase, we asked participants to predict the robot’s

next action in a new execution with the same task of opening the same medicine bottle.

Participants viewed different segments of actions performed by the robot and were asked to

answer the prediction question over time. For this measure, participants in all five groups

only observed RGB videos of robot execution during the prediction phase; no group had

access to any explanatory panel after the familiarization phase. The prediction accuracy

was computed as the quantitative measure of trust, with the presumption that, as the robot
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behavior is more predictable to humans, greater prediction accuracy indicates higher degrees

of trust.

Human Study Results Figure 2.34A shows human trust ratings from the five differ-

ent groups. The analysis of variance (ANOVA) reveals a significant main effect of groups

(F p4, 145q “ 2.848; p “ 0.026) with the significance level of 0.05. This result suggests that

providing explanations about robot behavior in different forms impacts the degree of human

trust to the robot system. Furthermore, we find that the GEP group with both symbolic and

haptic explanation panels yields the highest trust rating, with a significantly better rating

than the baseline group in which explanations are not provided (independent-samples t-test,

tp58q “ 2.421; p “ 0.019). Interestingly, the GEP group shows greater trust rating than

the text group in which a summary description is provided to explain the robot behavior

(tp58q “ 2.352; p “ 0.022), indicating detailed explanations of robot’s internal decisions over

time is much more effective in fostering human trust than a summary text description to

explain robot behavior. In addition, trust ratings in the symbolic group are also higher

than ratings in the baseline group (tp58q “ 2.269; p “ 0.027) and higher than ratings in the

text explanation group (tp58q “ 2.222; p “ 0.030), suggesting symbolic explanations play an

important role in fostering human trust of the robot system. However, the trust ratings in

the haptic explanation group are not significantly different from the baseline group, implying

that explanations only based on haptic signals are not effective ways to gain human trust

despite the explanations are also provided in real-time. No other significant group differences

are observed between any other pairing of the groups.

The second trust measure based on prediction accuracy yields similar results. All groups

provide action predictions above the chance-level performance of 0.125 (as there are 8 actions

to choose from), showing that humans are able to predict the robot’s behavior after only a

couple of observations of a robot performing a task. The ANOVA analysis shows a significant

main effect of groups (F p4, 145q “ 3.123; p “ 0.017), revealing the impact of provided
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explanations on the accuracy of predicting the robot’s actions. As shown in Figure 2.34B,

participants in the GEP group yield significantly higher prediction accuracy than those in

the baseline group (tp58q “ 3.285; p “ 0.002). Prediction accuracy of the symbolic group also

yields better performance than the baseline group (tp58q “ 2.99; p “ 0.004). Interestingly, we

find that the text group shows higher prediction accuracy than the baseline group (tp58q “

2.144; p “ 0.036). This result is likely due to the summary text description providing a loose

description of the robot’s action plan; such a description decouples the explanation from

the temporal execution of the robot. The prediction accuracy data did not reveal any other

significant group differences among other pairs of groups.

In general, humans appear to need real-time, symbolic explanations of the robot’s internal

decisions for performed action sequences in order to establish trust in machines when per-

forming multi-step complex tasks. Summary text explanations and explanations only based

on haptic signals are not effective ways to gain human trust, and the GEP and symbolic

group foster similar degrees of human trust to the robot system according to both measures

of trust.

2.4.3 Discussion

In terms of performance, our results demonstrate that a robot system can learn to solve

challenging tasks from a small number of human demonstrations of opening three medicine

bottles. This success in learning from small data is primarily supported by learning multiple

models for joint inference of task structure and sensory predictions. We found that neither

purely symbolic planning nor a haptic model is as successful as an integrated model including

both processes.

Our model results also suggest that the relative contributions from individual modules,

namely the symbolic planner and haptic predictions, can be influenced by the complexity of

the manipulation task. For example, in testing scenarios, for Bottle 1 with no safety locking

mechanism, the symbolic planner slightly outperforms the haptic model. Conversely, to open
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Bottle 3 that has complex locking mechanisms, the haptic model outperforms the symbolic

planner as haptic signals provide critical information for the pinch action needed to unlock

the safety cap. For generalization scenarios with new medicine bottles that are unseen in

human demonstrations, the symbolic planner maintains a similar performance compared to

equivalent bottles in the testing scenarios, whereas the haptic model performance decreases

significantly. We also note that the symbolic planner performance decreases faster as com-

plexity increases, indicating pure symbolic planners are more brittle to circumstances that

require additional haptic sensing. Furthermore, as bottle complexity increases, model per-

formance benefits more from integrating symbolic planner and haptic signals. This trend

suggests that more complex tasks require the optimal combination of multiple models to

produce effective action sequences.

In terms of explainability, we found that reasonable explanations generated by the robot

system are important for fostering human trust in machines. Our experiments show that

human users place more trust in a robot system that has the ability to provide explanations

using symbolic planning. An intriguing finding from these experiments is that providing

explanations in the form of a summarized text description of robot behavior is not an effective

way to foster human trust. The symbolic explanation panel and text summary panel both

provide critical descriptions of the robot’s behavior at the abstract level, explaining why a

robot succeeded or failed the task. However, the explanations provided by the two panels

differ in their degree of detail and temporal presentation. The text explanation provides a

loose description of the important actions that the robot executes after the robot finished

the sequence. In contrast, the symbolic explanation included in the GEP’s panel provides

human participants with real-time internal decisions that the robot is planning to execute

at each step. This mode of explanation enables the visualization of task structure for every

action executed during the sequence and likely evokes a sense that the robot actively makes

rational decisions.

However, it is not the case that a detailed explanation is always the best approach to
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foster human trust. A functional explanation of real-time haptic signals is not very effective

in gaining human trust in this particular task. Information at the haptic level may be

excessively tedious and may not yield a sense of rational agency that allows the robot to

gain human trust. To establish human trust in machines and enable humans to predict robot

behaviors, it appears that an effective explanation should provide a symbolic interpretation

and maintain a tight temporal coupling between the explanation and the robot’s immediate

behavior.

Taking together of both performance and explanation, we found that the relative contri-

butions of different models for generating explanations may differ from their contributions to

maximizing robot performance. For task performance, the haptic model plays an important

role for the robot to successfully open a medicine bottle with high complexity. However,

the major contribution to gain human trust is made by real-time mechanistic explanations

provided by the symbolic planner. Hence, model components that impart the most trust do

not necessarily correspond to those components contributing to the best task performance.

This divergence is intuitive as there is no requirement that components responsible for gen-

erating better explanations are the same components contributing to task performance; they

are optimizing different goals. This divergence also implies that the robotics community

should adopt model components that gain human trust, while also integrating these compo-

nents with high-performance ones to maximize both human trust and successful execution.

Robots endowed with explainable models offer an important step towards integrating robots

into daily life and work.

2.4.4 Materials and Methods

2.4.4.1 Model Learning Details

Embodied haptic model details The embodied haptic model leverages low-level haptic

signals obtained from the robot’s manipulator to make action predictions based on the hu-
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man poses and forces collected with the tactile glove. This embodied haptic sensing allows

the robot to reason about (i) its own haptic feedback by imagining itself as a human demon-

strator, and (ii) what a human would have done under similar poses and forces. The critical

challenge here is to learn a mapping between equivalent robot and human states, which is

difficult due to the different embodiments. From the perspective of generalization, manually

designed embodiment mappings are not desirable. To learn from human demonstrations on

arbitrary robot embodiments, we propose an embodied haptic model general enough to learn

between an arbitrary robot embodiment and a human demonstrator.

The embodied haptic model consists of three major components: (i) an autoencoder to

encode the human demonstration in a low-dimensional subspace; we refer to the reduced

embedding as the human embedding. (ii) An embodiment mapping that maps robot states

onto a corresponding human embedding, providing the robot with the ability to imagine itself

as a human demonstrator. (iii) An action predictor that takes a human embedding and the

current action executing as the input and predicts the next action to execute, trained using

the action labels from human demonstrations. Figure 2.29B shows the embodied haptic

network architecture. Using this network architecture, the robot infers what action a human

was likely to execute based on this inferred human state. This embodied action prediction

model picks the next action according to:

at`1 „ pp¨|ft, atq, (2.22)

where at`1 is the next action, ft is the robot’s current haptic sensing, and at is the current

action.

The autoencoder network takes an 80-dimensional vector from the human demonstration

(26 for the force sensors and 54 for the poses of each link in the human hand) and uses

the post-condition vector, i.e., the average of last N frames (we choose N “ 2 to minimize

the variance), of each action in the demonstration as input; see the Autoencoder portion
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of Figure 2.29B. This input is then reduced to an 8-dimensional human embedding. Given

a human demonstration, the autoencoder enables the dimensionality reduction to an 8-

dimensional representation.

The embodiment mapping maps from the robot’s 4-dimensional post-condition vector,

i.e., the average of the last N frames (different from human post-condition due a faster

sample rate on the robot gripper compared to the tactile glove; we choose N “ 10), to

an imagined human embedding; see the Embodiment Mapping portion of Figure 2.29B.

This mapping allows the robot to imagine its current haptic state as an equivalent low-

dimensional human embedding. The robot’s 4-dimensional post-condition vector consists of

the gripper position (1 dimension) and the forces applied by the gripper (3 dimensions). The

embodiment mapping network uses a 256-dimensional latent representation, and this latent

representation is then mapped to the 8-dimensional human embedding.

To train the embodiment mapping network, the robot first executes a series of super-

vised actions where if the action produces the correct final state of the action, the robot

post-condition vector is saved as input for network training. Next, human demonstrations

of equivalent actions are fed through the autoencoder to produce a set of human embed-

dings. These human embeddings are considered as the ground-truth target outputs for the

embodiment mapping network, regardless of the current reconstruction accuracy of the au-

toencoder network. Then the robot execution data is fed into the embodiment mapping

network, producing an imagined human embodiment. The embodiment mapping network

optimizes to reduce the loss between its output from the robot post-condition input and the

target output.

For the action predictor, the 8-dimensional human embedding and the 10-dimensional

current action are mapped to a 128-dimensional latent representation, and the latent repre-

sentation is then mapped to a final 10-dimensional action probability vector (i.e., the next

action); see Action Prediction portion of Figure 2.29B. This network is trained using human

demonstration data, where a demonstration is fed through the autoencoder to produce a
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human embedding, and that human embedding and the one-hot vector of the current action

execution are fed as the input to the prediction network; the ground-truth is the next action

executed in the human demonstration.

The network in Figure 2.29B is trained in an end-to-end fashion with three different

loss functions in a two-step process: (i) a forward pass through the autoencoder to update

the human embedding zh. After computing the error Lreconstruct between the reconstruction

s1
h and the ground-truth human data sh, we back-propagate the gradient and optimize the

autoencoder:

Lreconstructps
1
h, shq “

1

2
ps1
h ´ shq

2. (2.23)

(ii) A forward pass through the embodiment mapping and the action prediction network. The

embodiment mapping is trained by minimizing the difference Lmapping between the embodied

robot embedding zr and target human embedding zh; the target human embedding zh is

acquired through a forward pass through the autoencoder using a human demonstration

post-condition of the same action label, sh. We compute the cross-entropy loss Lprediction of

the predicted action label a1 and the ground-truth action label a to optimize this forward

pass:

Lplanningpa1, aq “ Lmapping ` β ¨ Lprediction

Lmapping “
1

2
pzr ´ zhq

2

Lprediction “ Hpppa1
q, qpaqq,

(2.24)

where H is the cross-entropy, p is the model prediction distribution, q is the ground-truth dis-

tribution, and β is the balancing parameter between the two losses; see subsubsection 2.4.5.3

for detailed parameters and network architecture.

A similar embodied haptic model was presented in [EGX17] but with two separate loss

functions, which is more difficult to train compared to the single loss function presented in

this work. A clear limitation of the haptic model is the lack of long-term action planning.

To address this problem, we discuss the symbolic task planner below and then discuss how
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we integrate the haptic model with the symbolic planner to jointly find the optimal action.

Symbolic planner details To encode the long-term temporal structure of the task, we

endow a symbolic action planner that encodes semantic knowledge of the task execution

sequence. The symbolic planner utilizes stochastic context-free grammars to represent tasks,

where the terminal nodes (words) are actions and sentences are action sequences. Given an

action grammar, the planner finds the optimal action to execute next based on the action

history, analogous to predicting the next word given a partial sentence.

The action grammar is induced using labeled human demonstrations, and we assume the

robot has an equivalent action for each human action. Each demonstration forms a sentence,

xi, and the collection of sentences from a corpus, xi P X. The segmented demonstrations are

used to induce a stochastic context-free grammar using the method presented in [TPZ13].

This method pursues T-AOG fragments to maximize the likelihood of the grammar producing

the given corpus. The objective function is the posterior probability of the grammar given

the training data X:

ppG|Xq9ppGqppX|Gq “
1

Z
e´α||G||

ź

xiPX

ppxi|Gq, (2.25)

where G is the grammar, xi “ pa1, a2, . . . , amq P X represents a valid sequence of actions

with length m from the demonstrator, α is a constant, ||G|| is the size of the grammar, and

Z is the normalizing factor. Figure 2.30 shows examples of induced grammars of actions.

During the symbolic planning process, this grammar is used to compute which action is

the most likely to open the bottle based on the action sequence executed thus far and the

space of possible future actions. A pure symbolic planner picks the optimal action based on

the grammar prior:

a˚
t`1 “ arg max

at`1

ppat`1 | a0:t, Gq, (2.26)

where at`1 is the next action, and a0:t is the action sequence executed thus far. This grammar
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prior can be obtained by a division of two grammar prefix probabilities: ppat`1 | a0:t, Gq “

ppa0:t`1 |Gq

ppa0:t |Gq
, where the grammar prefix probability ppa0:t |Gq measures the probability that a0:t

occurs as a prefix of an action sequence generated by the action grammar G. Based on a clas-

sic parsing algorithm—the Earley parser [Ear70]—and dynamic programming, the grammar

prefix probability can be obtained efficiently by the Earley-Stolcke parsing algorithm [Sto95].

An example of pure symbolic planning is shown in Figure 2.39.

However, due to the fixed structure and probabilities encoded in the grammar, always

choosing the action sequence with the highest grammar prior is problematic since it provides

no flexibility. An alternative pure symbolic planner picks the next action to execute by

sampling from the grammar prior:

at`1 „ pp¨ | a0:t, Gq. (2.27)

In this way, the symbolic planner samples different grammatically-correct action sequences

and increases the adaptability of the symbolic planner. In the experiments, we choose to

sample action sequences from the grammar prior.

In contrast to the haptic model, this symbolic planner lacks the adaptability to real-

time sensor data. However, this planner encodes long-term temporal constraints that are

missing from the haptic model, since only grammatically-correct sentences have non-zero

probabilities. The GEP adopted in this work naturally combines the benefits of both the

haptic model and the symbolic planner; see the next section.

Generalized Earley Parser (GEP) details The robot imitates the human demonstrator

by combining the symbolic planner and the haptic model. The integrated model finds the

next optimal action considering both the action grammar G and the haptic input ft:

a˚
t`1 “ arg max

at`1

ppat`1 | a0:t, ft, Gq. (2.28)
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Conceptually, this can be thought of as a posterior probability that considers both the

grammar prior and the haptic signal likelihood. The next optimal action is computed by

an improved Generalized Earley Parser (GEP) [QJZ18]; GEP is an extension of the classic

Earley parser [Ear70]. In the present work, we further extend the original GEP to make

it applicable to multisensory inputs and provide explanation in real-time for robot systems,

instead of for offline video processing; see details in section 2.4.4.1 in suppementary material.

The computational process of GEP is to find the optimal label sentence according to both

a grammar and a classifier output of probabilities of labels for each time step. In our case,

the labels are actions, and the classifier output is given by the haptic model. Optimality here

means maximizing the joint probability of the action sequence according to the grammar

prior and haptic model output while being grammatically correct.

The core idea of the algorithm is to directly and efficiently search for the optimal label

sentence in the language defined by the grammar. The grammar constrains the search space

to ensure that the sentence is always grammatically correct. Specifically, a heuristic search

is performed on the prefix tree expanded according to the grammar, where the path from

the root to a node represents a partial sentence (prefix of an action sequence).

GEP is a grammar parser, capable of combining the symbolic planner with low-level

sensory input (haptic signals in this work). The search process in the GEP starts from the

root node of the prefix tree, which is an empty terminal symbol indicating no terminals are

parsed. The search terminates when it reaches a leaf node. In the prefix tree, all leaf nodes

are parsing terminals e that represent the end of parse, and all non-leaf nodes represent

terminal symbols (i.e., actions). The probability of expanding a non-leaf node is the prefix

probability, i.e., how likely is the current path being the prefix of the action sequence. The

probability of reaching a leaf node (parsing terminal e) is the parsing probability, i.e., how

likely is the current path to the last non-leaf node being the executed actions and the next

action. In other words, the parsing probability measures the probability that the last non-

leaf node in the path will be the next action to execute. It is important to note that this
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prefix probability is computed based on both the grammar prior and the haptic prediction;

in contrast, in the pure symbolic planner, the prefix probability is computed based on only

the grammar prior. An example of the computed prefix and parsing probabilities and output

of GEP is given by Figure 2.35, and the search process is illustrated in Figure 2.40. For an

algorithmic description of this process, see algorithm 1.

The original GEP is designed for offline video processing. In this work, we made modifi-

cations to enable online planning for a robotic task. The major difference between parsing

and planning is the uncertainty about past actions: there is uncertainty about observed

actions during parsing. However, during planning, there is no uncertainty about executed

actions—the robot directly chooses which actions to execute, thereby removing any ambi-

guity regarding which action was executed at a previous timestep. Hence, we need to prune

the impossible parsing results after executing each action; each time after executing an ac-

tion, we change the probability vector of that action to a one-hot vector. This modification

effectively prunes the action sequences that contain the impossible actions executed thus far

by the robot.

2.4.4.2 Tactile Glove

For manipulation tasks that require reasoning about latent forces, demonstrations that con-

tain solely visual information (e.g ., RGB videos) are insufficient for learning. Using a glove-

based system to capture hand-related data has long been proposed; however, it remains an

active research topic due to the high articulation and degrees-of-freedom of a human hand.

Conventionally, a network of IMUs measures finger poses, but capturing haptic signals is

challenging due to hand deformation and a scarcity of force sensing hardware. In this work,

we use the tactile glove developed in [LXM17]. The glove uses IMUs to obtain the relative

poses of finger phalanges with respect to the wrist and develop a customized force sensor

using a soft piezoresistive material (Velostat) whose resistance changes under pressure; see

more hardware details in section 2.1.
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2.4.4.3 Robot Platform

We evaluate the learned model on a dual-armed 7-DoF Baxter robot mounted on a DataSpeed

mobility base. The robot is equipped with a ReFlex TakkTile gripper on the right wrist and a

Robotiq S85 parallel gripper on the left. The grippers have minimal haptic sensing capability;

they can only determine whether or not the gripper is in contact with an object. Therefore,

further force data on the robot is obtained from the 6-degree force and torque sensors located

in Baxter’s wrists. In addition, a Kinect One sensor is integrated for object pose estimation

and tracking. The entire system runs on ROS, and the arm motion is planned by MoveIt!.

2.4.4.4 Human Experiment Details and Demographics

Human participants were recruited from the University of California, Los Angeles (UCLA)

Department of Psychology subject pool and were compensated with course credit for their

participation. A total of 163 students were recruited, each randomly assigned to one of the

five experimental groups. Thirteen participants were removed from the analysis for failing to

understand the haptic display panel by not passing a recognition task. Hence, the analysis

included 150 participants (mean age of 20.7). The symbolic and haptic explanation panels

were generated as described in subsubsection 2.4.2.2. The text explanation was generated

by the authors based on the robot’s action plan to provide an alternate text summary of

robot behavior. Although such text descriptions were not directed yielded by the model,

they could be generated by modern natural language processing methods.

The human experiment included two phases: familiarization and prediction. In the famil-

iarization phase, participants viewed two videos showing a robot interacting with a medicine

bottle, with one successful attempt of opening the bottle and a failure attempt without

opening the bottle. In addition to the RGB videos showing the robot’s executions, different

groups viewed the different forms of explanation panels. At the end of familiarization, par-

ticipants were asked to assess how well they trusted/believed the robot possessed the ability

80



to open the medicine bottle; see subsubsection 2.4.5.5 and Figure 2.41 for the illustration of

the trust rating question.

Next, the prediction phase presented all groups with only RGB videos of a successful robot

execution; no group had access to any explanatory panels. Specifically, participants viewed

videos segmented by the robot’s actions; for segment i, videos start from the beginning of

the robot execution up to the ith action. For each segment, subjects were asked to predict

what action the robot would execute next; see subsubsection 2.4.5.5 and Figure 2.42 for an

illustration of the action prediction question.

Regardless of group assignment, all RGB videos were the same across all groups; i.e., we

show the same RGB video for all groups with varying explanation panels. This experimental

design isolates potential effects of execution variations in different robot execution models

presented in subsubsection 2.4.2.1; we only seek to evaluate how well explanation panels fos-

ter qualitative trust and enhance prediction accuracy and keep robot execution performance

constant across groups to remove potential confounding.

For both qualitative trust and prediction accuracy, the null hypothesis is that the ex-

planation panels foster equivalent levels of trust and yield the same prediction accuracy

across different groups, and therefore no difference in trust or prediction accuracy would

be observed. The test is a two-tailed independent samples t-test to compare performance

from two groups of participants, as we used between-subjects design in the study, with a

commonly used significance level α “ 0.05, assuming t-distribution, and the rejection region

is p ă 0.05.

2.4.5 Supplementary Materials

2.4.5.1 Additional Model Results

Figure 2.36 presents additional generalization experiment results using the improved GEP.

Each augmented 3D-printed cap generates a significantly different time-series haptic signal,
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indicating the haptic interactions are substantially different from one another. These results

demonstrate the GEP’s ability to transfer to bottles with haptic signals that are different

from the ones in the demonstration.

We qualitatively analyze one example in Figure 2.37 to further justify that the gener-

alization scenarios are significantly different from the testing scenarios by comparing the

haptic signals between the two. Specifically, given one haptic signal in testing and one in

generalization performing the very same action, we treat these two sets of haptic signals as

time series data and estimate the trend using kernel methods. After obtaining the trend,

a rigorous testing procedure [ZW11] for evaluating whether these two haptic signals have

the same distribution is performed by comparing the L2 distance between the curves. The

results indicate that the haptic signals of all bottles are significantly different from one an-

other; ∆ is not closed to 0. A comprehensive, quantitative analysis of more haptic signal

data is presented as a confusion matrix in Figure 2.38).

We also note that an alternative model commonly used for this type of analysis is the

ARIMA method. However, our observations (haptic signals) are mean non-stationary, which

is not suitable for ARIMA; ARIMA works well for an integrated process.

2.4.5.2 Additional Materials and Methods

Model Limitations Generating a smooth action sequence mapped from a human demon-

stration to a robot is a non-trivial task. In this work, for the symbolic planner, we simplified

this process by assuming each mapped action is executable by the Baxter robot; each atomic

action or motion primitive (terminal node in the grammar) is designed, not automatically

learned. However, this should not impact the overall contributions presented in the work, as

the mapping in a supervised fashion does not affect the experiments for evaluating human

trust. In addition, this embodiment problem is solvable in some instances if we introduce

the concept of “mirroring” [LZZ19].
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Our approach assumes that each robot action corresponds to an equivalent human ac-

tion. However, if adopted after learning the grammar, trajectory optimization methods

(e.g ., CHOMP [RZB09], STOMP [KCT11], and TrajOpt [SHL13]) could improve the ac-

tion/behavior of the robot to generate smoother action sequences, or even produce different

actions that are not the same as the human demonstrations. In addition, a grammar can, in

fact, generate sequences that are not seen in demonstrations because of the compositional

nature of the grammar rules; in other words, it is possible for the robot to solve the tasks

using different action sequences from human sampled from the grammar model. Neverthe-

less, a grammar has no inherent mechanism for the robot to discover entirely new actions

for the task.

2.4.5.3 Training Details of Embodied Haptic Model

In this section, we present the implementation detail for reproducibility.

Network Architecture The autoencoder is constructed with a multi-layer perceptron

(MLP); see Table 2.10. The human embedding can be obtained with a forward pass through

the network. The supervision for the autoencoder is the original human post-condition.

The loss is measured by the reconstruction error. The robot-human embodiment mapping

is implemented with an MLP; see Table 2.11. The embodiment mapping is trained using

equivalent human and robot post-conditions (equivalent here means the post-condition of

executing the same action successfully). The human post-condition is fed through the au-

toencoder to produce a human embedding, and this embedding serves as the supervision

target for the embodiment mapping network. The last major component of the embodied

haptic prediction model is the action predictor, also implemented with an MLP; see Ta-

ble 2.12. The supervision for the action predictor is the ground-truth human action labels.
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Training Details We adopt a two-step updating schema for the embodied haptic model.

In the first step, we feed forward the human post-condition data into the autoencoder. The

encoder will reduce the high-dimensional human data to a low-dimensional human embed-

ding; the encoder and the decoder are learned with hyper-parameter shown in Table 2.13.

The supervision for the autoencoder is the reconstructed original human post-condition.

In the second step, with the human embedding and the action labels, the action predic-

tor and the embodiment mapping are training jointly with the hyper-parameters shown

in Table 2.13. The embodiment mapping is trained using equivalent human and robot

post-conditions (equivalent here means the post-condition of executing the same action suc-

cessfully). The human post-condition is fed through the autoencoder to produce a human

embedding, and this embedding serves as the supervision target for the embodiment map-

ping network. The supervision for the action predictor is the ground-truth human action

labels.

2.4.5.4 Force Visualization

To visualize the forces imposed by the robot gripper, we first identify the max force mag-

nitude in all the force signal data collected from human demonstrations. Then, all force

data is normalized to the value between 0 and 1, where 0 corresponds to pure green in the

visualization, and 1 pure red. The value in between is interpolated linearly and displayed on

the robot’s palm.

2.4.5.5 Additional Human Experiment Details

The prediction phase evaluates how well each explanation panel imparts prediction ability

after observing a robot’s behaviors in solving the problem of opening a medicine bottle. Note

that during the familiarization phase, the robot explains its behavior through explanatory

panels, but during the prediction phase, subjects observe the robot executing the task with

84



only the RGB videos. Thus our prediction question asks “after familiarizing with explanatory

panels, how well are human subjects able to predict robot behavior when observing only RGB

robot executions?” The prediction accuracy is computed as the percentage of correct action

predictions in the sequence. This experimental design examines how well each explanatory

panel imparts prediction ability under new robot executions where no explanation panel is

available. For each question, participants selected from 8 actions: push on the cap, pinch

the cap, pull the cap, twist the cap, grasp the cap, ungrasp the cap, move the left robot arm

to grasping position, and nothing.

Qualitative Trust Prediction Accuracy
Mean Std. dev. Mean Std. dev.

Baseline 71.7 16.8 0.481 0.176
GEP 82.6 17.5 0.644 0.202

Symbolic 81.9 17.4 0.641 0.228
Haptic 75.7 16.2 0.541 0.231
Text 70.1 22.7 0.593 0.218

Table 2.9: Numerical results and standard deviations for human subject study; the same
data was used in Figure 2.34.

85



(a) Bottle 1, regular twist to open

(b) Bottle 2, regular twist to open

(c) Bottle 3, regular twist to open

Figure 2.11: Action sequences and visualizations of opening three types of bottles
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Figure 2.12: Force signals captured in palm (top) and the fingertip of thumb (middle), and
flexion angle of index finger’s MCP joint (bottom).
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Figure 2.13: (a) A sequence of movement primitive demonstrated by an agent for a manip-
ulation task–opening a medicine bottle captured by a tactile glove. (b) Reconstructed force
and pose data using the tactile glove. Our purposed method segments and parses the noisy
inputs of force and pose in an unsupervised fashion.

Figure 2.14: Unsupervised learning pipeline of hand-object motion recognition. After collect-
ing the raw data using a tactile glove, a spatial (HC (S)) and temporal (HC (T)) hierarchical
clustering is performed on both force and pose data. An aligned cluster analysis (ACA) is
adopted to further reduce the noise. Event segmentation (ES (S) and ES (T)) is achieved by
merging motion primitives based on the distance measured by DTAK. Finally, a grammar
is induced (GI) based on the segmented events, forming a T-AOG.
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Figure 2.15: Illustration of the T-AOG. The T-AOG is a temporal grammar in which the
terminal nodes are motion primitives of hand-object interactions.
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(a) (b)

Figure 2.16: (a) The experimental setup for data collection. We use Vicon system to obtain
the poses of human’s wrist and object’s parts. The camera is used to record the data
collection procedure. (b) Visualization of force vectors, which contains both pose and force
features.

Figure 2.17: Qualitative evaluation. Event segmentation and recognition of opening Bottle
1, 2, and 3, from left to right, respectively. P denotes pose only feature, F force only feature,
P/F force vector feature, PA with parsing, and GT ground truth. Each segment represents
one type of motion primitive which color is determined by the ground truth sequence.
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Figure 2.18: Key frames of opening various bottles with T-AOG. The numbers indicate the
cluster labels and the red arrows indicate the merges triggered by the parsing of T-AOG.
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(a) (b) (c)

(d) (e) (f)

Figure 2.19: Given a RGB-D-based image sequence (a), although we can infer the skeleton of
hand using vision-based methods (b), such knowledge cannot be easily transferred to a robot
to open a medicine bottle (c), due to the lack of force sensing during human demonstrations.
In this work, we utilize a tactile glove (d) and reconstruct both forces and poses from human
demonstrations (e), enabling robot to directly observe forces used in demonstrations so that
the robot can successfully open a medicine bottle (f).
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Figure 2.20: An example of grammar parsing with T-AOG. Actions are executed in temporal
order from left to right.

Figure 2.21: Bottles used in experiments with different safety mechanism: (1) push-and-
twist, (2) pinch-and-twist, (3) push-and-twist, and (4) push-and-twist. (5) Bottle with no
safety mechanism.
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Figure 2.22: We use a Vicon system to obtain the poses of human’s wrist and object’s
parts. The camera is used to record the data collection procedure. The data is collected
on bottles (2), (3) and (5), which require pinch-and-twist, push-and-twist and twist to open,
respectively.

Figure 2.23: The tactile glove computes the pose of human’s phalanxes according to the pose
of human’s wrist and measure the force applied on human’s hand.
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Figure 2.24: AOG induced from human demonstrations using 1 example (a), 5 examples
(b), 36 examples (c), and 65 examples (d). (d) also shows Figure 2.20 parsed in an AOG,
highlighted in red. Numbers indicate temporal ordering of atomic actions.
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Figure 2.25: (a) Autoencoder to project human demonstration into low-dimensional sub-
space. (b) Classifier used to plan the next action using a low-dimensional embedding of
human tactile feedback. (c) Embodiment mapping used to map robot states to equivalent
human demonstration states. Each rectangle represents a vector, and each corresponding
number is the length of the vector. The green rectangle represents the low-dimensional
human embedding vector.
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Figure 2.26: System architecture. Blue: action planning using fluents as a bottom-up pro-
cess. Red: action planning using AOG as a top-down process. Green: action planning.
Brown: robot execution.

(a) (b)

(c) (d)

Figure 2.27: (a) Robot opening bottle 3, showing actions approach, push, twist, and pull
from left to right. (b) Robot opening bottle 5, showing actions approach, grasp, twist, and
pull. Force-torque sensor readings while opening bottle 3 (c) and bottle 5 (d), showing clear,
distinguishable differences from raw sensor data.
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Figure 2.28: Overview of demonstration, learning, evaluation, and explainability.
By observing human demonstrations, the robot learns, performs, and explains using both a
symbolic representation and a haptic representation. (A) Fine-grained human manipulation
data is collected using a tactile glove. Based on the human demonstrations, the model learns
(B) symbolic representations by inducing a grammar model that encodes long-term task
structure to generate mechanistic explanations, and (C) embodied haptic representations
using an autoencoder to bridge the human and robot sensory input in a common space,
providing a functional explanation of robot action. These two components are integrated
using the (D) GEP for action planning. These processes complement each other in both (E)
improving robot performance and (F) generating effective explanations that foster human
trust.
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Figure 2.29: Illustration of learning embodied haptic representation and action
prediction model. An example of the force information in (A) the human state, collected
by the tactile glove (with 26 dimensions of force data), and force information in (C) the robot
state, recorded from the force sensors in the robot’s end-effector (with 3-dimensions of force
data). The background colors indicate different action segments. For equivalent actions, the
human and the robot may take a different amount of time to execute, resulting in different
action segment lengths. (B) Embodied haptic representation and action prediction model.
The autoencoder (yellow background) takes a human state, reduces its dimensionality to pro-
duce a human embedding, and uses the reconstruction to verify that the human embedding
maintains the essential information of the human state. The embodiment mapping network
(purple background) takes in a robot state and maps to an equivalent human embedding.
The action prediction network (light blue background) takes the human embedding and the
current action and predicts what action to take next. Thus, the robot imagines itself as a
human based on its own haptic signals and predicts what action to take next.

99



0.40 0.200.40

pull

grasp

ungrasp

approach

move

pushtwist unpush

0.39

0.61

approach

grasp

0.91

0.09

pull

0.82

0.18

twist

0.43

0.57

unpinch

pinch

ungraspmove

0.48

0.52

unpush

push

0.95

0.05

0.02

0.62

0.37

pull

grasp
2

ungrasp

6

move

7

approach
1

0.12

0.88

0.85

0.15

twist

0.33

0.67

0.670.33

push
3 4

unpush
 5 

0.44

0.56

9

   8

pinch

0.50

unpinch

0.50

BA C

Or node

And node

Terminal nodeTerminal Node

Or Node

And Node

Figure 2.30: An example of action grammar induced from human demonstrations.
Green nodes represent And-nodes, and blue nodes represent Or-nodes. Probabilities along
edges emanating from Or-nodes indicate the parsing probabilities of taking each branch.
Grammar model induced from (A) 5 demonstrations, (B) 36 demonstrations, (C) 64 demon-
strations. The grammar model in (C) also shows a parse graph highlighted in red, where
red numbers indicate temporal ordering of actions.
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Figure 2.31: Robot task performance on different bottles with various locking
mechanisms using the symbolic planner, haptic model, and the GEP that inte-
grates both. (A) Testing performance on bottles observed in human demonstrations. Bot-
tle 1 does not have a locking mechanism, Bottle 2 employs a push-twist locking mechanism,
and Bottle 3 employs a pinch-twist locking mechanism. (b) Generalization performance on
new, unseen bottles. Bottle 4 does not have a locking mechanism, and Bottle 5 employs
a push-twist locking mechanism. The bottles used in generalization have similar locking
mechanisms but evoke significantly different haptic feedback; see subsubsection 2.4.5.1. Re-
gardless of testing on demonstration or unseen bottles, the best performance is achieved by
the GEP that combines the symbolic planner and haptic model.
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Figure 2.32: Explanations generated by the symbolic planner and the haptic
model. (A) Symbolic (mechanistic) and haptic (functional) explanations at a0 of the robot
action sequence. (B), (C), and (D) show the explanations at times a2, a8, and a9, where
ai refers to the ith action. Note that the red on the robot gripper’s palm indicates a large
magnitude of force applied by the gripper, and green indicates no force; other values are
interpolated. These explanations are provided in real-time as the robot executes.
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E Summary of human subject groups and explanations presented 

Action sequence:
Approach à Grasp à Push à Twist à
Ungrasp à Move à Grasp à Push à
Twist à Ungrasp à Move à Grasp à
Push à Pull

Action choices: 
1) Approach 4) Ungrasp 
2) Pull 5) Twist
3) Push 6) Move
7) Grasp 8) Pinch

C

Figure 2.33: Illustration of visual stimuli used in human experiment. All five groups
observed the RGB video recorded from robot executions, but differed by the access to various
explanation panels. (A) RGB video recorded from robot executions. (B) Symbolic expla-
nation panel. (C) Haptic explanation panel. (D) Text explanation panel. (E) A summary
of which explanation panels were presented to each group.
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BA

Figure 2.34: Human results for trust ratings and prediction accuracy. (A) Qualita-
tive measures of trust: average trust ratings for the five groups. and (B) Average prediction
accuracy for the five groups. The error bars indicate the 95% confidence interval. Across
both measures, the GEP performs the best. For qualitative trust, the text group performs
most similarly to the baseline group. For a tabular summary of the data, see Table 2.9
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4 0.000 3.6e-04 6.8e-04 0.007 0.005 0.048 3.2e-04 0.001
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Figure 2.35: An example of the Generalized Earley Parser (GEP). (A) A classifier is applied
to a 6-frame signal and outputs a probability matrix as the input. (B) A table of the cached
probabilities of the algorithm. For all expanded action sequences, it records the parsing
probabilities at each time step and prefix probabilities. (C) Grammar prefix tree with the
classifier likelihood. The GEP expands a grammar prefix tree and searches in this tree. It
finds the best action sequence when it hits the parsing terminal e. It finally outputs the best
label “grasp, pinch, pull” with a probability 0.033. The probabilities of children nodes do
not sum to 1 because grammatically incorrect nodes are eliminated from the search and the
probabilities are not re-normalized [QJZ18].
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Figure 2.36: Additional generalization experiments on bottles augmented with different 3D-
printed caps. The GEP shows good performance across all bottles, indicating the GEP is able
to generalize to bottles with similar locking mechanisms as in the human demonstrations,
but significantly different haptic signals.
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An example of the haptic signal in the testing scenario
raw haptic data
estimated trend

An example of the haptic signal in the generalization scenario
raw haptic data
estimated trend

Figure 2.37: Examples of aligned haptic signals in time used in testing (top) and generaliza-
tion (down) data. The haptic data was collected by executing the same actions on various
bottles in testing and generalization scenarios. Light blue dots denotes raw noisy haptic
signals. The solid red line denotes the estimated trend for statistical analysis.
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Confusion matrix of Δ across different bottles 

Figure 2.38: The confusion matrix of ∆ across different bottles based on the haptic signals.
Higher ∆ values indicate lower similarity.
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Figure 2.39: Action grammars and grammar prefix trees used for parsing. (A) An
example action grammar. (B) A grammar prefix tree with grammar priors. The numbers
along edges are the prefix or parsing probabilities of the action sequence represented by the
path from the root node to the node pointed by the edge. When the corresponding child node
of an edge is an action terminal, the number along the edge represents a prefix probability;
when the corresponding child is a parsing terminal e, the number represents the parsing
probability of the entire sentence. In this example, the action sequence “grasp, push, twist,
pull” has the highest probability of 0.6. The root ϵ represents the empty symbol where no
terminals were parsed.

109



ε

grasp

0.600

e

0.000

ε

grasp

0.600

e

0.000

push

0.060

pinch

0.119

e

3.6e-5

ε

grasp

0.600

e

0.000

push

0.060

pinch

0.119

e

3.6e-5

twist

0.058

e

7.2e-4

ε

grasp

0.600

e

0.000

push

0.060

pinch

0.119

e

3.6e-5

twist

0.009

e

9.0e-5

twist

0.058

e

7.2e-4

ε

grasp

0.600

e

0.000

push

0.060

pinch

0.119

e

3.6e-5

twist

0.009

e

9.0e-5

twist

0.058

e

7.2e-4

pull

0.006

e

0.033

Figure 2.40: An illustration of the parsing process of the Generalized Earley Parser (GEP).
It performs a heuristic search in the prefix tree according to the prefix/parsing probability.
It iteratively expands the tree and computes the probabilities as it expands the tree. The
search ends when it hits a parsing terminal e. The paths in bold indicate the best candidates
at each search step.
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Algorithm 1: Algorithm of the improved Generalized Earley Parser (GEP) for
robot planning.

Input : Grammar G, Haptic Model H, Maximum Step T
InputStream : Haptic Signal ft
OutputStream: Robot Executable Action at`1

t “ 0
Initialize empty matrix y0
while t ă“ T do

if t ““ 0 then
ppat`1q “ uniformVectorpq

else
ft “ getHapticSignalpq

ppat`1q “ hapticPlannerpft, at;Hq // Equation 2.22

end

y
1

t`1 “ ryt; ppat`1qs // Append probability vector to one-hot matrix yt
at`1 “ prefixSearchpG, y

1

t`1q // Equation 2.28
yt`1 “ ryt; oneHotpat`1qs // Extend one-hot matrix from yt to yt`1

executeRobotAction(at`1)
if goalAchieved() then break
t “ t ` 1

end

Figure 2.41: Qualitative trust question asked to human subjects after observing two demon-
strations of robot execution. This question was immediately asked after the familiarization
phase of the experiment; in other words, we asked this question immediately after the sub-
jects had observed robot executions with access to the explanation panel (if the subject’s
group had access to an explanation panel; i.e. all groups except baseline).
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Table 2.10: Network architecture and parameters of the autoencoder. Network architecture
is defined from the top of the table to the bottom, with the first and last layer being input
and output, respectively.

Operator Params
Linear 80
ReLU
Linear 64
ReLU
Linear 16
ReLU
Linear 8
ReLU
Linear 16
ReLU
Linear 64
ReLU
Linear 80

Table 2.11: Network architecture and parameters for robot to human embedding. Network
architecture is defined from the top of the table to the bottom, with the first and last layer
being input and output, respectively.

Operator Params
Linear, Linear 3, 1
ReLU, ReLU
Linear, Linear 128, 128

ReLU
Linear 8

Table 2.12: Network architecture and parameters for action prediction. Network architecture
is defined from the top of the table to the bottom, with the first and last layer being input
and output, respectively.

Operator Params
Linear, Linear 8, 13
ReLU, ReLU
Linear, Linear 64, 64

ReLU
Linear 10
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Table 2.13: Hyper-parameters used during training.

Parameter Value
Autoencoder learning rate 5e-5
Action predictor learning rate 5e-5
Balance param. (β) 1
Batch size 16
No. of epochs 150

Table 2.14: Specifications of the computing platform used in the experiments.

Parts Description
Robot Baxter
Manipulator Right: ReFlex TackkTile gripper. Left: Robotiq S85 parallel gripper
Computer ZOTAC ZBOX-EN1070K: i5-7500T with GTX 1070
Vision sensor Kinect v2

Figure 2.42: Prediction accuracy question asked to human subjects after each segment of
the robot’s action sequence during the prediction phase of the experiment. No group had
access to explanation panels during the prediction phase; subjects had to predict the action
while only observing RBG videos of each action segment.

113



CHAPTER 3

Reasoning: Multi-Modal Visual Reasoning

3.1 Building A Dataset for Visual Analogy Reasoning

Dramatic progress has been witnessed in basic vision tasks involving low-level perception,

such as object recognition, detection, and tracking. Unfortunately, there is still an enormous

performance gap between artificial vision systems and human intelligence in terms of higher-

level vision problems, especially ones involving reasoning. Earlier attempts in equipping

machines with high-level reasoning have hovered around Visual Question Answering (VQA),

one typical task associating vision and language understanding. In this work, we propose

a new dataset, built in the context of Raven’s Progressive Matrices (RPM) and aimed at

lifting machine intelligence by associating vision with structural, relational, and analogical

reasoning in a hierarchical representation. Unlike previous works in measuring abstract

reasoning using RPM, we establish a semantic link between vision and reasoning by providing

structure representation. This addition enables a new type of abstract reasoning by jointly

operating on the structure representation. Machine reasoning ability using modern computer

vision is evaluated in this newly proposed dataset. Additionally, we also provide human

performance as a reference. Finally, we show consistent improvement across all models by

incorporating a simple neural module that combines visual understanding and structure

reasoning.
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3.1.1 Introduction

The study of vision must therefore include not only the study of how to extract

from images . . . , but also an inquiry into the nature of the internal representations

by which we capture this information and thus make it available as a basis for

decisions about our thoughts and actions.

— David Marr, 1982 [Mar82]

Computer vision has a wide spectrum of tasks. Some computer vision problems are

clearly purely visual, “capturing” the visual information process; for instance, filters in

early vision [CR68], primal sketch [GZW07] as the intermediate representation, and Gestalt

laws [KK79] as the perceptual organization. In contrast, some other vision problems have

trivialized requirements for perceiving the image, but engage more generalized problem-

solving in terms of relational and/or analogical visual reasoning [HHT96]. In such cases, the

vision component becomes the “basis for decisions about our thoughts and actions”.

Currently, the majority of the computer vision tasks focus on “capturing” the visual in-

formation process; few lines of work focus on the later part—the relational and/or analogical

visual reasoning. One existing line of work in equipping artificial systems with reasoning abil-

ity hovers around Visual Question Answering (VQA) [AAL15, JHM17a, RKZ15, YWG18,

ZGB16]. However, the reasoning skills required in VQA lie only at the periphery of the

cognitive ability test circle [CJS90]. To push the limit of computer vision or more broadly

speaking, Artificial Intelligence (AI), towards the center of cognitive ability test circle, we

need a test originally designed for measuring human’s intelligence to challenge, debug, and

improve the current artificial systems.

A surprisingly effective ability test of human visual reasoning has been developed and

identified as the Raven’s Progressive Matrices (RPM) [KMG13, Rav38, SCS13], which is

widely accepted and believed to be highly correlated with real intelligence [CJS90]. Unlike

VQA, RPM lies directly at the center of human intelligence [CJS90], is diagnostic of abstract
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Figure 3.1: (a) An example RPM. One is asked to select an image that best completes
the problem matrix, following the structural and analogical relations. Each image has an
underlying structure. (b) Specifically in this problem, it is an inside-outside structure in
which the outside component is a layout with a single centered object and the inside
component is a 2 ˆ 2 grid layout. Details in Figure 3.2. (c) lists the rules for (a). The
compositional nature of the rules makes this problem a difficult one. The correct answer is
7.

and structural reasoning ability [EKM84], and characterizes the defining feature of high-level

intelligence, i.e., fluid intelligence [JBJ08].

Figure 3.1 shows an example of RPM problem together with its structure representation.

Provided two rows of figures consisting of visually simple elements, one must efficiently derive

the correct image structure (Figure 3.1(b)) and the underlying rules (Figure 3.1(c)) to jointly

reason about a candidate image that best completes the problem matrix. In terms of levels

of reasoning required, RPM is arguably harder compared to VQA:
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‚ Unlike VQA where natural language questions usually imply what to pay attention to in

the image, RPM relies merely on visual clues provided in the matrix and the correspondence

problem itself, i.e., finding the correct level of attributes to encode, is already a major

factor distinguishing populations of different intelligence [CJS90].

‚ While VQA only requires spatial and semantic understanding, RPM needs joint spatial-

temporal reasoning in the problem matrix and the answer set. The limit of short-term

memory, the ability of analogy, and the discovery of the structure have to be taken into

consideration.

‚ Structures in RPM make the compositions of rules much more complicated. Unlike VQA

whose questions only encode relatively simple first-order reasoning, RPM usually includes

more sophisticated logic, even with recursions. By composing different rules at various

levels, the reasoning progress can be extremely difficult.

To push the limit of current vision systems’ reasoning ability, we generate a new dataset

to promote further research in this area. We refer to this dataset as the Relational and

Analogical Visual rEasoNing dataset (RAVEN) in homage to John Raven for the pioneering

work in the creation of the original RPM [Rav38]. In summary:

‚ RAVEN consists of 1, 120, 000 images and 70, 000 RPM problems, equally distributed in

7 distinct figure configurations.

‚ Each problem has 16 tree-structure annotations, totaling up to 1, 120, 000 structural labels

in the entire dataset.

‚ We design 5 rule-governing attributes and 2 noise attributes. Each rule-governing attribute

goes over one of 4 rules, and objects in the same component share the same set of rules,

making in total 440, 000 rule annotations and an average of 6.29 rules per problem.

The RAVEN dataset is designed inherently to be light in visual recognition and heavy in

reasoning. Each image only contains a limited set of simple gray-scale objects with clear-cut

boundaries and no occlusion. In the meantime, rules are applied row-wise, and there could

be one rule for each attribute, attacking visual systems’ major weaknesses in short-term
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memory and compositional reasoning [JHM17a].

An obvious paradox is: in this innately compositional and structured RPM problem,

no annotations of structures are available in previous works (e.g ., [BHS18, WS15]). Hence,

we set out to establish a semantic link between visual reasoning and structure reasoning in

RPM. We ground each problem instance to a sentence derived from an Attributed Stochastic

Image Grammar (A-SIG) [Fu74, LWP09, PZ15, WXZ07, ZWZ16, ZM07] and decompose the

data generation process into two stages: the first stage samples a sentence from a pre-defined

A-SIG and the second stage renders an image based on the sentence. This structured design

makes the dataset very diverse and easily extendable, enabling generalization tests in different

figure configurations. More importantly, the data generation pipeline naturally provides

us with abundant dense annotations, especially the structure in the image space. This

semantic link between vision and structure representation opens new possibilities by breaking

down the problem into image understanding and tree- or graph-level reasoning [KW16,

TSM15]. As shown in Section 4.2.5, we empirically demonstrate that models with a simple

structure reasoning module to incorporate both vision-level understanding and structure-

level reasoning would notably improve their performance in RPM.

The organization of this section is as follows. In Section 3.1.2, we discuss related work

in visual reasoning and computational efforts in RPM. Section 3.1.3 is devoted to a detailed

description of the RAVEN dataset generation process, with Section 3.1.4 benchmarking

human performance and comparing RAVEN with a previous RPM dataset. In Section 3.1.5,

we propose a simple extension to existing models that incorporates vision understanding

and structure reasoning. All baseline models and the proposed extensions are evaluated in

Section 3.1.6. The notable gap between human subjects (84%) and vision systems (59%)

calls for further research into this problem. We hope RAVEN could contribute to the long-

standing effort in human-level reasoning AI.
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<latexit sha1_base64="jhPsFuCqox3thqZ2m6YHNJKR6G0=">AAAB+HicbVA9T8MwEHX4LOWjAUaWiAqJqUq6wFjBwsBQJPohtVHluE5r1bEj+4wIUX8JCwMIsfJT2Pg3uG0GaHnSSU/v3enuXpRypsH3v5219Y3Nre3STnl3b/+g4h4etbU0itAWkVyqboQ15UzQFjDgtJsqipOI0040uZ75nQeqNJPiHrKUhgkeCRYzgsFKA7fSB/oIAPktzqSB6cCt+jV/Dm+VBAWpogLNgfvVH0piEiqAcKx1L/BTCHOsgBFOp+W+0TTFZIJHtGepwAnVYT4/fOqdWWXoxVLZEuDN1d8TOU60zpLIdiYYxnrZm4n/eT0D8WWYM5EaoIIsFsWGeyC9WQrekClKgGeWYKKYvdUjY6wwAZtV2YYQLL+8Str1WuDXgrt6tXFVxFFCJ+gUnaMAXaAGukFN1EIEGfSMXtGb8+S8OO/Ox6J1zSlmjtEfOJ8/snGTvg==</latexit><latexit sha1_base64="jhPsFuCqox3thqZ2m6YHNJKR6G0=">AAAB+HicbVA9T8MwEHX4LOWjAUaWiAqJqUq6wFjBwsBQJPohtVHluE5r1bEj+4wIUX8JCwMIsfJT2Pg3uG0GaHnSSU/v3enuXpRypsH3v5219Y3Nre3STnl3b/+g4h4etbU0itAWkVyqboQ15UzQFjDgtJsqipOI0040uZ75nQeqNJPiHrKUhgkeCRYzgsFKA7fSB/oIAPktzqSB6cCt+jV/Dm+VBAWpogLNgfvVH0piEiqAcKx1L/BTCHOsgBFOp+W+0TTFZIJHtGepwAnVYT4/fOqdWWXoxVLZEuDN1d8TOU60zpLIdiYYxnrZm4n/eT0D8WWYM5EaoIIsFsWGeyC9WQrekClKgGeWYKKYvdUjY6wwAZtV2YYQLL+8Str1WuDXgrt6tXFVxFFCJ+gUnaMAXaAGukFN1EIEGfSMXtGb8+S8OO/Ox6J1zSlmjtEfOJ8/snGTvg==</latexit><latexit sha1_base64="jhPsFuCqox3thqZ2m6YHNJKR6G0=">AAAB+HicbVA9T8MwEHX4LOWjAUaWiAqJqUq6wFjBwsBQJPohtVHluE5r1bEj+4wIUX8JCwMIsfJT2Pg3uG0GaHnSSU/v3enuXpRypsH3v5219Y3Nre3STnl3b/+g4h4etbU0itAWkVyqboQ15UzQFjDgtJsqipOI0040uZ75nQeqNJPiHrKUhgkeCRYzgsFKA7fSB/oIAPktzqSB6cCt+jV/Dm+VBAWpogLNgfvVH0piEiqAcKx1L/BTCHOsgBFOp+W+0TTFZIJHtGepwAnVYT4/fOqdWWXoxVLZEuDN1d8TOU60zpLIdiYYxnrZm4n/eT0D8WWYM5EaoIIsFsWGeyC9WQrekClKgGeWYKKYvdUjY6wwAZtV2YYQLL+8Str1WuDXgrt6tXFVxFFCJ+gUnaMAXaAGukFN1EIEGfSMXtGb8+S8OO/Ox6J1zSlmjtEfOJ8/snGTvg==</latexit><latexit sha1_base64="jhPsFuCqox3thqZ2m6YHNJKR6G0=">AAAB+HicbVA9T8MwEHX4LOWjAUaWiAqJqUq6wFjBwsBQJPohtVHluE5r1bEj+4wIUX8JCwMIsfJT2Pg3uG0GaHnSSU/v3enuXpRypsH3v5219Y3Nre3STnl3b/+g4h4etbU0itAWkVyqboQ15UzQFjDgtJsqipOI0040uZ75nQeqNJPiHrKUhgkeCRYzgsFKA7fSB/oIAPktzqSB6cCt+jV/Dm+VBAWpogLNgfvVH0piEiqAcKx1L/BTCHOsgBFOp+W+0TTFZIJHtGepwAnVYT4/fOqdWWXoxVLZEuDN1d8TOU60zpLIdiYYxnrZm4n/eT0D8WWYM5EaoIIsFsWGeyC9WQrekClKgGeWYKKYvdUjY6wwAZtV2YYQLL+8Str1WuDXgrt6tXFVxFFCJ+gUnaMAXaAGukFN1EIEGfSMXtGb8+S8OO/Ox6J1zSlmjtEfOJ8/snGTvg==</latexit>

Entity
<latexit sha1_base64="DheW/XW82PgaPGW4ch7oKorpmY4=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVZJudFkUwWUF+4A2lMl00g6dTMLMjRhDv8SNC0Xc+inu/BunbRbaemDgcM493DsnSATX6Lrf1tr6xubWdmmnvLu3f1CxD4/aOk4VZS0ai1h1A6KZ4JK1kKNg3UQxEgWCdYLJ9czvPDCleSzvMUuYH5GR5CGnBI00sCt9ZI+ImN9Ik86mA7vq1tw5nFXiFaQKBZoD+6s/jGkaMYlUEK17npugnxOFnAo2LfdTzRJCJ2TEeoZKEjHt5/PDp86ZUYZOGCvzJDpz9XciJ5HWWRSYyYjgWC97M/E/r5dieOnnXCYpMkkXi8JUOBg7sxacIVeMosgMIVRxc6tDx0QRiqarsinBW/7yKmnXa55b8+7q1cZVUUcJTuAUzsGDC2jALTShBRRSeIZXeLOerBfr3fpYjK5ZReYY/sD6/AGw4ZO9</latexit><latexit sha1_base64="DheW/XW82PgaPGW4ch7oKorpmY4=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVZJudFkUwWUF+4A2lMl00g6dTMLMjRhDv8SNC0Xc+inu/BunbRbaemDgcM493DsnSATX6Lrf1tr6xubWdmmnvLu3f1CxD4/aOk4VZS0ai1h1A6KZ4JK1kKNg3UQxEgWCdYLJ9czvPDCleSzvMUuYH5GR5CGnBI00sCt9ZI+ImN9Ik86mA7vq1tw5nFXiFaQKBZoD+6s/jGkaMYlUEK17npugnxOFnAo2LfdTzRJCJ2TEeoZKEjHt5/PDp86ZUYZOGCvzJDpz9XciJ5HWWRSYyYjgWC97M/E/r5dieOnnXCYpMkkXi8JUOBg7sxacIVeMosgMIVRxc6tDx0QRiqarsinBW/7yKmnXa55b8+7q1cZVUUcJTuAUzsGDC2jALTShBRRSeIZXeLOerBfr3fpYjK5ZReYY/sD6/AGw4ZO9</latexit><latexit sha1_base64="DheW/XW82PgaPGW4ch7oKorpmY4=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVZJudFkUwWUF+4A2lMl00g6dTMLMjRhDv8SNC0Xc+inu/BunbRbaemDgcM493DsnSATX6Lrf1tr6xubWdmmnvLu3f1CxD4/aOk4VZS0ai1h1A6KZ4JK1kKNg3UQxEgWCdYLJ9czvPDCleSzvMUuYH5GR5CGnBI00sCt9ZI+ImN9Ik86mA7vq1tw5nFXiFaQKBZoD+6s/jGkaMYlUEK17npugnxOFnAo2LfdTzRJCJ2TEeoZKEjHt5/PDp86ZUYZOGCvzJDpz9XciJ5HWWRSYyYjgWC97M/E/r5dieOnnXCYpMkkXi8JUOBg7sxacIVeMosgMIVRxc6tDx0QRiqarsinBW/7yKmnXa55b8+7q1cZVUUcJTuAUzsGDC2jALTShBRRSeIZXeLOerBfr3fpYjK5ZReYY/sD6/AGw4ZO9</latexit><latexit sha1_base64="DheW/XW82PgaPGW4ch7oKorpmY4=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVZJudFkUwWUF+4A2lMl00g6dTMLMjRhDv8SNC0Xc+inu/BunbRbaemDgcM493DsnSATX6Lrf1tr6xubWdmmnvLu3f1CxD4/aOk4VZS0ai1h1A6KZ4JK1kKNg3UQxEgWCdYLJ9czvPDCleSzvMUuYH5GR5CGnBI00sCt9ZI+ImN9Ik86mA7vq1tw5nFXiFaQKBZoD+6s/jGkaMYlUEK17npugnxOFnAo2LfdTzRJCJ2TEeoZKEjHt5/PDp86ZUYZOGCvzJDpz9XciJ5HWWRSYyYjgWC97M/E/r5dieOnnXCYpMkkXi8JUOBg7sxacIVeMosgMIVRxc6tDx0QRiqarsinBW/7yKmnXa55b8+7q1cZVUUcJTuAUzsGDC2jALTShBRRSeIZXeLOerBfr3fpYjK5ZReYY/sD6/AGw4ZO9</latexit>

… …… …… … … …

(a) (b)

(d) (e)

Modify constrained attributes to generate an answer set 

(c)

Noise Attributes

Center
<latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit>

Center
<latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit><latexit sha1_base64="Ni4/QsatCtXebIKLMZf16berMWg=">AAAB+HicbVBNTwIxFOziF+IHqEcvjcTEE9k1JnokcvGIiYAJbEi3vIWGbnfTvjXihl/ixYPGePWnePPfWGAPCk7SZDLzJu91gkQKg6777RTW1jc2t4rbpZ3dvf1y5eCwbeJUc2jxWMb6PmAGpFDQQoES7hMNLAokdIJxY+Z3HkAbEas7nCTgR2yoRCg4Qyv1K+UewiMiZg1QCHrar1TdmjsHXSVeTqokR7Nf+eoNYp5GNs4lM6bruQn6GdMouIRpqZcaSBgfsyF0LVUsAuNn88On9NQqAxrG2j6FdK7+TmQsMmYSBXYyYjgyy95M/M/rphhe+ZlQSYqg+GJRmEqKMZ21QAdCA0c5sYRxLeytlI+YZtx2YEq2BG/5y6ukfV7z3Jp3e1GtX+d1FMkxOSFnxCOXpE5uSJO0CCcpeSav5M15cl6cd+djMVpw8swR+QPn8weGvJOj</latexit>

Rules
<latexit sha1_base64="gE4rsE2OwDttfIGV71oEw08OGpg=">AAAB9XicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VjFfkAby2Y7aZduNmF3opbQ/+HFgyJe/S/e/Ddu2xy09cHA470ZZuYFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6eaQ53HMtatgBmQQkEdBUpoJRpYFEhoBsOrid98AG1ErO5wlIAfsb4SoeAMrXTfQXhCxOw2lWDG3VLZrbhT0EXi5aRMctS6pa9OL+ZpBAq5ZMa0PTdBP2MaBZcwLnZSAwnjQ9aHtqWKRWD8bHr1mB5bpUfDWNtSSKfq74mMRcaMosB2RgwHZt6biP957RTDCz8TKkkRFJ8tClNJMaaTCGhPaOAoR5YwroW9lfIB04yjDapoQ/DmX14kjdOK51a8m7Ny9TKPo0AOyRE5IR45J1VyTWqkTjjR5Jm8kjfn0Xlx3p2PWeuSk88ckD9wPn8AYjKTEg==</latexit><latexit sha1_base64="gE4rsE2OwDttfIGV71oEw08OGpg=">AAAB9XicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VjFfkAby2Y7aZduNmF3opbQ/+HFgyJe/S/e/Ddu2xy09cHA470ZZuYFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6eaQ53HMtatgBmQQkEdBUpoJRpYFEhoBsOrid98AG1ErO5wlIAfsb4SoeAMrXTfQXhCxOw2lWDG3VLZrbhT0EXi5aRMctS6pa9OL+ZpBAq5ZMa0PTdBP2MaBZcwLnZSAwnjQ9aHtqWKRWD8bHr1mB5bpUfDWNtSSKfq74mMRcaMosB2RgwHZt6biP957RTDCz8TKkkRFJ8tClNJMaaTCGhPaOAoR5YwroW9lfIB04yjDapoQ/DmX14kjdOK51a8m7Ny9TKPo0AOyRE5IR45J1VyTWqkTjjR5Jm8kjfn0Xlx3p2PWeuSk88ckD9wPn8AYjKTEg==</latexit><latexit sha1_base64="gE4rsE2OwDttfIGV71oEw08OGpg=">AAAB9XicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VjFfkAby2Y7aZduNmF3opbQ/+HFgyJe/S/e/Ddu2xy09cHA470ZZuYFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6eaQ53HMtatgBmQQkEdBUpoJRpYFEhoBsOrid98AG1ErO5wlIAfsb4SoeAMrXTfQXhCxOw2lWDG3VLZrbhT0EXi5aRMctS6pa9OL+ZpBAq5ZMa0PTdBP2MaBZcwLnZSAwnjQ9aHtqWKRWD8bHr1mB5bpUfDWNtSSKfq74mMRcaMosB2RgwHZt6biP957RTDCz8TKkkRFJ8tClNJMaaTCGhPaOAoR5YwroW9lfIB04yjDapoQ/DmX14kjdOK51a8m7Ny9TKPo0AOyRE5IR45J1VyTWqkTjjR5Jm8kjfn0Xlx3p2PWeuSk88ckD9wPn8AYjKTEg==</latexit><latexit sha1_base64="gE4rsE2OwDttfIGV71oEw08OGpg=">AAAB9XicbVBNS8NAEN34WetX1aOXxSJ4KokIeix68VjFfkAby2Y7aZduNmF3opbQ/+HFgyJe/S/e/Ddu2xy09cHA470ZZuYFiRQGXffbWVpeWV1bL2wUN7e2d3ZLe/sNE6eaQ53HMtatgBmQQkEdBUpoJRpYFEhoBsOrid98AG1ErO5wlIAfsb4SoeAMrXTfQXhCxOw2lWDG3VLZrbhT0EXi5aRMctS6pa9OL+ZpBAq5ZMa0PTdBP2MaBZcwLnZSAwnjQ9aHtqWKRWD8bHr1mB5bpUfDWNtSSKfq74mMRcaMosB2RgwHZt6biP957RTDCz8TKkkRFJ8tClNJMaaTCGhPaOAoR5YwroW9lfIB04yjDapoQ/DmX14kjdOK51a8m7Ny9TKPo0AOyRE5IR45J1VyTWqkTjjR5Jm8kjfn0Xlx3p2PWeuSk88ckD9wPn8AYjKTEg==</latexit>

Figure 3.2: RAVEN creation process. A graphical illustration of the grammar production
rules used in A-SIG is shown in (b). Note that Layout and Entity have associated attributes
(c). Given a randomly sampled rule combination (a), we first prune the grammar tree (the
transparent branch is pruned). We then sample an image structure together with the values
of the attributes from (b), denoted by black, and apply the rule set (a) to generate a single
row. Repeating the process three times yields the entire problem matrix in (d). (e) Finally,
we sample constrained attributes and vary them in the correct answer to break the rules and
obtain the candidate answer set.

3.1.2 Related Work

Visual Reasoning Early attempts were made in 1940s-1970s in the field of logic-based AI.

Newell argued that one of the potential solutions to AI was “to construct a single program

that would take a standard intelligence test” [New73]. There are two important trials:

(i) Evans presented an AI algorithm that solved a type of geometric analogy tasks in the

Wechsler Adult Intelligence Scale (WAIS) test [Eva62, Eva64], and (ii) Simon and Kotovsky

devised a program that solved Thurstone letter series completion problems [TT41]. However,

these early attempts were heuristic-based with hand-crafted rules, making it difficult to apply

to other problems.

The reasoning ability of modern vision systems was first systematically analyzed in the

CLEVR dataset [JHM17a]. By carefully controlling inductive bias and slicing the vision
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systems’ reasoning ability into several axes, Johnson et al . successfully identified major

drawbacks of existing models. A subsequent work [JHM17b] on this dataset achieved good

performance by introducing a program generator in a structured space and combining it with

a program execution engine. A similar work that also leveraged language-guided structured

reasoning was proposed in [HAR17]. Modules with special attention mechanism were latter

proposed in an end-to-end manner to solve this visual reasoning task [HM18, SRB17, ZZH17].

However, superior performance gain was observed in very recent works [CLL18, MTS18,

YWG18] that fell back to structured representations by using primitives, dependency trees,

or logic. These works also inspire us to incorporate structure information into solving the

RPM problem.

More generally, Bisk et al . [BSC18] studied visual reasoning in a 3D block world. Perez

et al . [PSD18] introduced a conditional layer for visual reasoning. Aditya et al . [AYB18]

proposed a probabilistic soft logic in an attention module to increase model interpretability.

And Barrett et al . [BHS18] measured abstract reasoning in neural networks.

Computational Efforts in RPM The research community of cognitive science has tried

to attack the problem of RPM with computational models earlier than the computer science

community. However, an oversimplified assumption was usually made in the experiments

that the computer programs had access to a symbolic representation of the image and the

operations of rules [CJS90, LF17, LFU10, LTF09]. As reported in Section 3.1.4.4, we show

that giving this critical information essentially turns it into a searching problem. Combining

it with a simple heuristics provides us an optimal solver, easily surpassing human perfor-

mance. Another stream of AI research [LLG12, MG14, MKG14b, MSD18, SG18b] tries to

solve RPM by various measurements of image similarity. To promote fair comparison between

computer programs and human subjects in a data-driven manner, Wang and Su [WS15] first

proposed a systematic way of automatically generating RPM using first-order logic. Barrett

et al . [BHS18] extended their work and introduced the PGM dataset by instantiating each
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rule with a relation-object-attribute tuple. Hoshen and Werman [HW17] first trained a CNN

to complete the rows in a simplistic evaluation environment, while Barrett et al . [BHS18]

used an advanced Wild Relational Network (WReN) and studied its generalization.

3.1.3 Creating RAVEN

Our work is built on prior work aforementioned. We implement all relations in Advanced

Raven’s Progressive Matrices identified by Carpenter et al . [CJS90] and generate the answer

set following the monotonicity of RPM’s constraints proposed by Wang and Su [WS15].

Figure 3.2 shows the major components of the generation process. Specifically, we use

the A-SIG as the representation of RPM; each RPM is a parse tree that instantiates from

the A-SIG. After rules are sampled, we prune the grammar to make sure the relations could

be applied on any sentence sampled from it. We then sample a sentence from the pruned

grammar, where rules are applied to produce a valid row. Repeating such a process three

times yields a problem matrix. To generate the answer set, we modify attributes on the

correct answer such that the relationships are broken. Finally, the structured presentation

is fed into a rendering engine to generate images. We elaborate the details below1.

3.1.3.1 Defining the Attributed Grammar

We adopt an A-SIG as the hierarchical and structured image grammar to represent the RPM

problem. Such representation is advanced compared with prior work (e.g ., [BHS18, WS15])

which, at best, only maintains a flat representation of rules.

See Figure 3.2 for a graphical illustration of the grammar production rules. Specifically,

the A-SIG for RPM has 5 levels—Scene, Structure, Component, Layout, and Entity. Note

that each grammar level could have multiple instantiations, i.e., different categories or types.

1See the supplementary material for production
rules, semantic meanings of rules and nodes, and more

examples.
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Figure 3.3: Examples of RPM that show the effects of adding noise attributes. (Left)
Position, Type, Size, and Color could vary freely as long as Number follows the rule.
(Right) Position and Type in the inside group could vary freely.

The Scene level could choose any available Structure, which consists of possibly multiple

Components. Each Component branches into Layouts that links Entities. Attributes are

appended to certain levels; for instance, (i) Number and Position are associated with Layout,

and (ii) Type, Size, and Color are associated with Entity. Each attribute could take a value

from a finite set. During sampling, both image structure and attribute values are sampled.

To increase the challenges and difficulties in the RAVEN dataset, we further append 2

types of noise attributes—Uniformity and Orientation—to Layout and Entity, respec-

tively. Uniformity, set false, will not constrain Entities in a Layout to look the same,

while Orientation allows an Entity to self-rotate. See Figure 3.3 for the effects of the noise

attributes.

This grammatical design of the image space allows the dataset to be very diverse and

easily extendable. In this dataset, we manage to derive 7 configurations by combining

122



Figure 3.4: Examples of 7 different figure configurations in the proposed RAVEN dataset.

different Structures, Components, and Layouts. Figure 3.4 shows examples in each figure

configuration.

3.1.3.2 Applying Rules

Carpenter et al . [CJS90] summarized that in the advanced RPM, rules were applied row-

wise and could be grouped into 5 types. Unlike Berrett et al . [BHS18], we strictly follow

Carpenter et al .’s description of RPM and implement all the rules, except that we merge

Distribute Two into Distribute Three, as the former is essentially the latter with a null

value in one of the attributes.

Specifically, we implement 4 types of rules in RAVEN: Constant, Progression, Arithmetic,

and Distribute Three. Different from [BHS18], we add internal parameters to certain rules

(e.g ., Progression could have increments or decrements of 1 or 2), resulting in a total of

8 distinct rule instantiations. Rules do not operate on the 2 noise attributes. As shown in

Figure 3.1 and Figure 3.2, they are denoted as [attribute:rule] pairs.

To make the image space even more structured, we require each attribute to go over one

rule and all Entities in the same Component to share the same set of rules, while different

Components could vary.

Given the tree representation and the rules, we first prune the grammar tree such that

all sub-trees satisfy the constraints imposed by the relations. We then sample from the tree

and apply the rules to compose a row. Iterating the process three times yields a problem

matrix.
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3.1.3.3 Generating the Answer Set

To generate the answer set, we first derive the correct representation of the solution and then

leverage the monotonicity of RPM constraints proposed by Wang and Su [WS15]. To break

the correct relationships, we find an attribute that is constrained by a rule as described in

Section 3.1.3.2 and vary it. By modifying only one attribute, we could greatly reduce the

computation. Such modification also increases the difficulty of the problem, as it requires

attention to subtle difference to tell an incorrect candidate from the correct one.

3.1.4 Comparison and Analysis

In this section, we compare RAVEN with the existing PGM, presenting its key features and

some statistics in Section 3.1.4.1. In addition, we fill in two missing pieces in a desirable RPM

dataset, i.e., structure and hierarchy (Section 3.1.4.2), as well as the human performance

(Section 3.1.4.3). We also show that RPM becomes trivial and could be solved instantly

using a heuristics-based searching method (Section 3.1.4.4), given a symbolic representation

of images and operations of rules.

3.1.4.1 Comparison with PGM

Table 3.1 summarizes several essential metrics of RAVEN and PGM. Although PGM is

larger than RAVEN in terms of size, it is very limited in the average number of rules

(AvgRule), rule instantiations (RuleIns), number of structures (Struct), and figure con-

figurations (FigConfig). This contrast in PGM’s gigantic size and limited diversity might

disguise model fitting as a misleading reasoning ability, which is unlikely to generalize to

other scenarios.

To avoid such an undesirable effect, we refrain from generating a dataset too large,

even though our structured representation allows generation of a combinatorial number of

problems. Rather, we set out to incorporate more rule instantiations (8), structures (4), and
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figure configurations (7) to make the dataset diverse (see Figure 3.4 for examples). Note

that an equal number of images for each figure configuration is generated in the RAVEN

dataset.

3.1.4.2 Introduction of Structure

A distinctive feature of RAVEN is the introduction of the structural representation of the

image space. Wang and Su [WS15] and Barrett et al . [BHS18] used plain logic and flat rule

representations, respectively, resulting in no base of the structure to perform reasoning on.

In contrast, we have in total 1, 120, 000 structure annotations (StructAnno) in the form of

parsed sentences in the dataset, pairing each problem instance with 16 sentences for both

the matrix and the answer set. These representations derived from the A-SIG allow a new

form of reasoning, i.e., one that combines visual understanding and structure reasoning.

As shown in [LF17, LFU10, LTF09] and our experiments in Section 4.2.5, incorporating

structure into RPM problem solving could result in further performance improvement across

different models.

3.1.4.3 Human Performance Analysis

Another missing point in the previous work [BHS18] is the evaluation of human performance.

To fill in the missing piece, we recruit human subjects consisting of college students from a

subject pool maintained by the Department of Psychology to test their performance on a

PGM [BHS18] RAVEN (Ours)

AvgRule 1.37 6.29
RuleIns 5 8
Struct 1 4

FigConfig 3 7
StructAnno 0 1,120,000
HumanPerf ✓

Table 3.1: Comparison with the PGM dataset.
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subset of representative samples in the dataset. In the experiments, human subjects were

familiarized by solving problems with only one non-Constant rule in a fixed configuration.

After the familiarization, subjects were asked to answer RPM problems with complex rule

combinations, and their answers were recorded. Note that we deliberately included all figure

configurations to measure generalization in the human performance and only “easily per-

ceptible” examples were used in case certain subjects might have impaired perception. The

results are reported in Table 3.2. The notable performance gap calls for further research into

this problem. See Section 4.2.5 for detailed analysis and comparisons with vision models.

3.1.4.4 Heuristics-based Solver using Searching

We also find that the RPM could be essentially turned into a searching problem, given the

symbolic representation of images and the access to rule operations as in [LF17, LFU10,

LTF09]. Under such a setting, we could treat this problem as constraint satisfaction and

develop a heuristics-based solver. The solver checks the number of satisfied constraints in

each candidate answer and selects one with the highest score, resulting in perfect perfor-

mance. Results are reported in Table 3.2. The optimality of the heuristic-based solver also

verifies the well-formedness of RAVEN in the sense that there exists only one candidate that

satisfies all constraints.

3.1.5 Dynamic Residual Tree for RPM

The image space of RPM is inherently structured and could be described using a symbolic

language, as shown in [CJS90, LF17, LFU10, LTF09, Rav38]. To capture this characteristic

and further improve the model performance on RPM, we propose a simple tree-structure

neural module called Dynamic Residual Tree (DRT) that operates on the joint space of

image understanding and structure reasoning. An example of DRT is shown in Figure 3.5.

In the DRT, given a sentence S sampled from the A-SIG, usually represented as a serial-
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ized n-ary tree, we could first recover the tree structure. Note that the tree is dynamically

generated following the sentence S, and each node in the tree comes with a label. With a

structured tree representation ready, we could now consider assigning a neural computation

operator to each tree node, similar to Tree-LSTM [TSM15]. To further simplify computa-

tion, we replace the LSTM cell [HS97] with a ReLU-activated [NH10] fully-connected layer

f . In this way, nodes with a single child (leaf nodes or OR-production nodes) update the

input features by

I “ ReLUpfprI, wnsqq, (3.1)

where r¨, ¨s is the concatenation operation, I denotes the input features, and wn the dis-

tributed representations of the node’s label [MSC13, PSM14]. Nodes with multiple children

(AND-production nodes) update input features by

I “ ReLU

˜

f

˜«

ÿ

c

Ic, wn

ff¸¸

, (3.2)

where Ic denotes the features from its child c.

In summary, features from the lower layers are fed into the leaf nodes of DRT, gradually

updated by Equation 3.1 and Equation 3.2 from bottom-up following the tree structure, and

output to higher-level layers.

Inspired by [HZR16], we make DRT a residual module by adding the input and output

of DRT together, hence the name Dynamic Residual Tree (DRT)

I “ DRTpI, Sq ` I. (3.3)
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Figure 3.5: An example computation graph of DRT. (a) Given the serialized n-ary tree
representation (pre-order traversal with / denoting end-of-branch), (b) a tree-structured
computation graph is dynamically built. The input features are wired from bottom-up
following the tree structure. The final output is the sum with the input, forming a residual
module.

3.1.6 Experiments

3.1.6.1 Computer Vision Models

We adopt several representative models suitable for RPM and test their performances on

RAVEN [BHS18, HZR16, KSH12, XCW15]. In summary, we test a simple sequential learning

model (LSTM), a CNN backbone with an MLP head (CNN), a ResNet-based [HZR16] image

classifier (ResNet), the recent relational WReN [BHS18], and all these models augmented

with the proposed DRT.

LSTM The partially sequential nature of the RPM problem inspires us to borrow the

power of sequential learning. Similar to ConvLSTM [XCW15], we feed each image feature

extracted by a CNN into an LSTM network sequentially and pass the last hidden feature

into a two-layer MLP to predict the final answer. In the DRT-augmented LSTM, i.e.,

LSTM-DRT, we feed features of each image to a shared DRT before the final LSTM.
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CNN We test a neural network model used in Hoshen and Werman [HW17]. In this model,

a four-layer CNN for image feature extraction is connected to a two-layer MLP with a softmax

layer to classify the answer. The CNN is interleaved with batch normalization [IS15] and

ReLU non-linearity [NH10]. Random dropout [SHK14] is applied at the penultimate layer

of MLP. In CNN-DRT, image features are passed to DRT before MLP.

ResNet Due to its surprising effectiveness in image feature extraction, we replace the

feature extraction backbone in CNN with a ResNet [HZR16] in this model. We use a publicly

available ResNet implementation, and the model is randomly initialized without pre-training.

After testing several ResNet variants, we choose ResNet-18 for its good performance. The

DRT extension and the training strategy are similar to those used in the CNN model.

WReN We follow the original paper [BHS18] in implementing the WReN. In this model,

we first extract image features by a CNN. Each answer feature is then composed with each

context image feature to form a set of ordered pairs. The order pairs are further fed to an

MLP and summed. Finally, a softmax layer takes features from each candidate answer and

makes a prediction. In WReN-DRT, we apply DRT on the extracted image features before

the relational module.

For all DRT extensions, nodes in the same level share parameters and the representa-

tions for nodes’ labels are fixed after initialization from corresponding 300-dimension GloVe

vectors [PSM14]. Sentences used for assembling DRT could be either retrieved or learned by

an encoder-decoder. Here we report results using retrieval.

3.1.6.2 Experimental Setup

We split the RAVEN dataset into three parts, 6 folds for training, 2 folds for validation,

and 2 folds for testing. We tune hyper-parameters on the validation set and report the

model accuracy on the test set. For loss design, we treat the problem as a classification
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Method Acc Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

LSTM 13.07% 13.19% 14.13% 13.69% 12.84% 12.35% 12.15% 12.99%
WReN 14.69% 13.09% 28.62% 28.27% 7.49% 6.34% 8.38% 10.56%
CNN 36.97% 33.58% 30.30% 33.53% 39.43% 41.26% 43.20% 37.54%
ResNet 53.43% 52.82% 41.86% 44.29% 58.77% 60.16% 63.19% 53.12%
LSTM+DRT 13.96% 14.29% 15.08% 14.09% 13.79% 13.24% 13.99% 13.29%
WReN+DRT 15.02% 15.38% 23.26% 29.51% 6.99% 8.43% 8.93% 12.35%
CNN+DRT 39.42% 37.30% 30.06% 34.57% 45.49% 45.54% 45.93% 37.54%
ResNet+DRT 59.56% 58.08% 46.53% 50.40% 65.82% 67.11% 69.09% 60.11%
Human 84.41% 95.45% 81.82% 79.55% 86.36% 81.81% 86.36% 81.81%
Solver‹ 100% 100% 100% 100% 100% 100% 100% 100%

Table 3.2: Testing accuracy of each model against human subjects and the solver. Acc
denotes the mean accuracy of each model, while other columns show model accuracy on
different figure configurations. L-R denotes Left-Right, U-D denotes Up-Down, O-IC denotes
Out-InCenter, and O-IG denotes Out-InGrid. ‹Note that the perfect solver has access to
rule operations and searches on the symbolic problem representation.

task and train all models with the cross-entropy loss. All the models are implemented in

PyTorch [PGC17] and trained with ADAM [KB14] before early stopping or a maximum

number of epochs is reached.

3.1.6.3 Performance Analysis

Table Table 3.2 shows the testing accuracy of each model trained on RAVEN, against the

human performance and the heuristics-based solver. Neither human subjects nor the solver

experiences an intensive training session, and the solver has access to the rule operations

and searches the answer based on a symbolic representation of the problem. In contrast, all

the computer vision models go over an extensive training session, but only on the training

set.

In general, human subjects produce better testing accuracy on problems with simple

figure configurations such as Center, while human performance reasonably deteriorates on

problem instances with more objects such as 2x2Grid and 3x3Grid. Two interesting obser-

vations:
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1. For figure configurations with multiple components, although each component in Left-Right,

Up-Down, and Out-InCenter has only one object, making the reasoning similar to Center

except that the two components are independent, human subjects become less accurate

in selecting the correct answer.

2. Even if Up-Down could be regarded as a simple transpose of Left-Right, there exists

some notable difference. Such effect is also implied by the “inversion effects” in cogni-

tion; for instance, inversion disrupts face perception, particularly sensitivity to spatial

relations [CM09, LMM01].

In terms of model performance, a counter-intuitive result is: computer vision systems

do not achieve the best accuracy across all other configurations in the seemingly easiest

figure configuration for human subjects (Center). We further realize that the LSTM model

and the WReN model perform only slightly better than random guess (12.5%). Such re-

sults contradicting to [BHS18] might be attributed to the diverse figure configurations in

RAVEN. Unlike LSTM whose accuracy across different configurations is more or less uni-

form, WReN achieves higher accuracy on configurations consisting of multiple randomly

distributed objects (2x2Grid and 3x3Grid), with drastically degrading performance in con-

figurations consisting of independent image components. This suggests WReN is biased to

grid-like configurations (majority of PGM) but not others that require compositional reason-

ing (as in RAVEN). In contrast, a simple CNN model with MLP doubles the performance

of WReN on RAVEN, with a tripled performance if the backbone is ResNet-18.

We observe a consistent performance improvement across different models after incorpo-

rating DRT, suggesting the effectiveness of the structure information in this visual reasoning

problem. While the performance boost is only marginal in LSTM and WReN, we notice a

marked accuracy increase in the CNN- and ResNet-based models (6.63% and 16.58% relative

increase respectively). However, the performance gap between artificial vision systems and

humans are still significant (up to 37% in 2x2Grid), calling for further research to bridge

the gap.
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3.1.6.4 Effects of Auxiliary Training

Barrett et al . [BHS18] mentioned that training WReN with a fine-tuned auxiliary task could

further give the model a 10% performance improvement. We also test the influence of

auxiliary training on RAVEN. First, we test the effects of an auxiliary task to classify the

rules and attributes on WReN and our best performing model ResNet+DRT. The setting

is similar to [BHS18], where we perform an OR operation on a set of multi-hot vectors

describing the rules and the attributes they apply to. The model is then tasked to both

correctly find the answer and classify the rule set with its governing attributes. The final

loss becomes

Ltotal “ Ltarget ` βLrule, (3.4)

where Ltarget denotes the cross-entropy loss for the answer, Lrule the multi-label classification

loss for the rule set, and β the balancing factor. We observe no performance change on

WReN but a serious performance downgrade on ResNet+DRT (from 59.56% to 20.71%).

Since RAVEN comes with structure annotations, we further ask whether adding a struc-

ture prediction loss could help the model improve performance. To this end, we cast the

experiment in a similar setting where we design a multi-hot vector describing the structure

of each problem instance and train the model to minimize

Ltotal “ Ltarget ` αLstruct, (3.5)

where Lstruct denotes the multi-label classification loss for the problem structure, and α

the balancing factor. In this experiment, we observe a slight performance decrease in

ResNet+DRT (from 59.56% to 56.86%). A similar effect is noticed on WReN (from 14.69%

to 12.58%).
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3.1.6.5 Test on Generalization

One interesting question we would like to ask is how a model trained well on one figure

configuration performs on another similar figure configuration. This could be a measure of

models’ generalizability and compositional reasoning ability. Fortunately, RAVEN naturally

provides us with a test bed. To do this, we first identify several related configuration regimes:

‚ Train on Center and test on Left-Right, Up-Down, and Out-InCenter. This setting

directly challenges the compositional reasoning ability of the model as it requires the model

to generalize the rules learned in a single-component configuration to configurations with

multiple independent but similar components.

‚ Train on Left-Right and test on Up-Down, and vice-versa. Note that for Left-Right and

Up-Down, one could be regarded as a transpose of another. Thus, the test could measure

whether the model simply memorizes the pattern in one configuration.

‚ Train on 2x2Grid and test on 3x3Grid, and vice-versa. Both configurations involve multi-

object interactions. Therefore the test could measure the generalization when the number

of objects changes.

The following results are all reported using the best performing model, i.e., ResNet+DRT.

Center Left-Right Up-Down Out-InCenter

51.87% 40.03% 35.46% 38.84%

Table 3.3: Generalization test. The model is trained on Center and tested on three other
configurations.

Left-Right Up-Down

Left-Right 41.07% 38.10%
Up-Down 39.48% 43.60%

Table 3.4: Generalization test. The row shows configurations the model is trained on and
the column the model is tested on.

Table 3.3, Table 3.4 and Table 3.5 show the result of our model generalization test. We

observe:
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2x2Grid 3x3Grid

2x2Grid 40.93% 38.69%
3x3Grid 39.14% 43.72%

Table 3.5: Generalization test. The row shows configurations the model is trained on and
the column the model is tested on.

‚ The model dedicated to a single figure configuration does not achieve better test accuracy

than one trained on all configurations together. This effect justifies the importance of the

diversity of RAVEN, showing that increasing the number of figure configurations could

actually improve the model performance.

‚ Table 3.3 also implies that a certain level of compositional reasoning, though weak, exists

in the model, as the three other configurations could be regarded as a multi-component

composition of Center.

‚ In Table 3.4, we observe no major differences in terms of test accuracy. This suggests that

the model could successfully transfer the knowledge learned in a scenario to a very similar

counterpart, when one configuration is the transpose of another.

‚ From Table 3.5, we notice that the model trained on 3x3Grid could generalize to 2x2Grid

with only minor difference from the one dedicated to 2x2Grid. This could be attributed to

the fact that in the 3x3Grid configuration, there could be instances with object distribution

similar to that in 2x2Grid, but not vice versa.

3.1.7 Conclusion

We present a new dataset for Relational and Analogical Visual Reasoning in the context

of Raven’s Progressive Matrices (RPM), called RAVEN. Unlike previous work, we apply

a systematic and structured tool, i.e., Attributed Stochastic Image Grammar (A-SIG), to

generate the dataset, such that every problem instance comes with rich annotations. This

tool also makes RAVEN diverse and easily extendable. One distinguishing feature that tells

apart RAVEN from other work is the introduction of the structure. We also recruit quality
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human subjects to benchmark human performance on the RAVEN dataset. These aspects

fill two important missing points in previous works.

We further propose a novel neural module called Dynamic Residual Tree (DRT) that

leverages the structure annotations for each problem. Extensive experiments show that

models augmented with DRT enjoy consistent performance improvement, suggesting the

effectiveness of using structure information in solving RPM. However, the difference between

machine algorithms and humans clearly manifests itself in the notable performance gap,

even in an unfair situation where machines experience an intensive training session while

humans do not. We also realize that auxiliary tasks do not help performance on RAVEN.

The generalization test shows the importance of diversity of the dataset, and also indicates

current computer vision methods do exhibit a certain level of reasoning ability, though weak.

The entire work still leaves us many mysteries. Humans seem to apply a combination of

the top-down and bottom-up method in solving RPM. How could we incorporate this into

a model? What is the correct way of formulating visual reasoning? Is it model fitting? Is

deep learning the ultimate way to visual reasoning? If not, how could we revise the models?

If yes, how could we improve the models?

Finally, we hope these unresolved questions would call for attention into this challenging

problem.

3.2 Approaching Visual Analogy Problem by Contrasting

“Thinking in pictures,” [Gra06] i.e., spatial-temporal reasoning, effortless and instantaneous

for humans, is believed to be a significant ability to perform logical induction and a crucial

factor in the intellectual history of technology development. Modern AI, fueled by massive

datasets, deeper models, and mighty computation, has come to a stage where (super-)human-

level performances are observed in certain specific tasks. However, current AI’s ability in

“thinking in pictures” is still far lacking behind. In this work, we study how to improve
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machines’ reasoning ability on one challenging task of this kind: RPM. Specifically, we

borrow the very idea of “contrast effects” from the field of psychology, cognition, and edu-

cation to design and train a permutation-invariant model. Inspired by cognitive studies, we

equip our model with a simple inference module that is jointly trained with the perception

backbone. Combining all the elements, we propose the Contrastive Perceptual Inference

network (CoPINet) and empirically demonstrate that CoPINet sets the new state-of-the-art

for permutation-invariant models on two major datasets. We conclude that spatial-temporal

reasoning depends on envisaging the possibilities consistent with the relations between ob-

jects and can be solved from pixel-level inputs.

3.2.1 Introduction

Among the broad spectrum of computer vision tasks are ones where dramatic progress

has been witnessed, especially those involving visual information retrieval [KSH12, HZR16,

RDG16, RHG15]. Significant improvement has also manifested itself in tasks associating

visual and linguistic understanding [AAL15, JHM17a, JHM17b, HAR17]. However, it was

only until recently that the research community started to re-investigate tasks relying heavily

on the ability of “thinking in pictures” with modern AI approaches [Gra06, Arn69, Gal83],

particularly spatial-temporal inductive reasoning [ZGJ19, HSB19, BHS18]; this line of work

primarily focuses on Raven’s Progressive Matrices (RPM) [Rav36, RC98]. It is believed that

RPM is closely related to real intelligence [CJS90], diagnostic of abstract and structural rea-

soning ability [EKM84], and characterizes fluid intelligence [Spe27, Spe23, Hof95, JBJ08]. In

such a test, subjects are provided with two rows of figures following certain unknown rules and

asked to pick the correct answer from the choices that would best complete the third row with

a missing entry; see Figure 3.6(a) for an example. As shown in early works [ZGJ19, BHS18],

despite the fact that visual elements are relatively straightforward, there is still a notable

performance gap between human and machine visual reasoning in this challenging task.

One missing ingredient that may result in this performance gap is a proper form of
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contrasting mechanism. Originated from perceptual learning [GG55, Gib14], it is well es-

tablished in the field of psychology and education [CH89, GG01, HDW09, GP92, HIO11]

that teaching new concepts by comparing with noisy examples is quite effective. [SG14]

summarize that comparing cases facilitates transfer learning and problem-solving, as well as

the ability to learn relational categories. [Gen83] in his structure-mapping theory points out

that learners generate a structure alignment between two representation when they compare

two cases. A more recent study from [SCO11] also shows that contrasting cases help foster

an appreciation of a deep understanding of concepts.

We argue that such a contrast effect [Bow61], found in both humans and animals [Mey51,

SH56, SV78, Law57, Ams62], is essential to machines’ reasoning ability as well. With access

to how the data is generated, a recent attempt [HSB19] finds that models demonstrate better

generalizability if the choice of data and the manner in which it is presented to the model

are made “contrastive.” In this work, we try to address a more direct and challenging ques-

tion, independent of how the data is generated: how to incorporate an explicit contrasting

mechanism during model training in order to improve machines’ reasoning ability? Specif-

ically, we come up with two levels of contrast in our model: a novel contrast module and

a new contrast loss. At the model level, we design a permutation-invariant contrast mod-

ule that summarizes the common features and distinguishes each candidate by projecting

it onto its residual on the common feature space. At the objective level, we leverage ideas

in contrastive estimation [GH10, SE05, DL17] and propose a variant of Noise-Contrastive

Estimation (NCE) loss.

Another reason why RPM is challenging for existing machine reasoning systems could

be attributed to the demanding nature of the interplay between perception and inference.

[CJS90] postulate that a proper understanding of one RPM instance requires not only an

accurate encoding of individual elements and their visual attributes but also the correct

induction of the hidden rules. In other words, to solve RPM, machine reasoning systems

are expected to be equipped with both perception and inference subsystems; lacking either
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component would only result in a sub-optimal solution. While existing work primarily fo-

cuses on perception, we propose to bridge this gap with a simple inference module jointly

trained with the perception backbone; specifically, the inference module reasons about which

category the current problem instance falls into. Instead of training the inference module

to predict the ground-truth category, we borrow the basis learning idea from [WSG10] and

jointly learn the inference subsystem with perception. This basis formulation could also be

regarded as a hidden variable and trained using a log probability estimate.

Furthermore, we hope to make a critical improvement to the model design such that it

is truly permutation-invariant. The invariance is mandatory, as an ideal RPM solver should

not change the representation simply because the rows or columns of answer candidates are

swapped or the order of the choices alters. This characteristic is an essential trait missed

by all recent works [ZGJ19, BHS18]. Specifically, [ZGJ19] stack all choices in the channel

dimension and feed it into the network in one pass. [BHS18] add additional positional tagging

to their WReN. Both of them explicitly make models permutation-sensitive. We notice in

our experiments that removing the positional tagging in WReN decreases the performance

by 28%, indicating that the model bypasses the intrinsic complexity of RPM by remembering

the positional association. Making the model permutation-invariant also shifts the problem

from classification to ranking.

Combining contrasting, perceptual inference, and permutation invariance, we propose

the Contrastive Perceptual Inference network (CoPINet). To verify its effectiveness, we

conduct comprehensive experiments on two major datasets: the RAVEN dataset [ZGJ19]

and the PGM dataset [BHS18]. Empirical studies show that our model achieves human-

level performance on RAVEN and a new record on PGM, setting new state-of-the-art for

permutation-invariant models on the two datasets. Further ablation on RAVEN and PGM

reveals how each component contributes to performance improvement. We also investigate

how the model performance varies under different sizes of datasets, as a step towards an

ideal machine reasoning system capable of low-shot learning.
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...<latexit sha1_base64="ocgiAjpDjkxJr5kPWC1BB+yVGnk=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbPZtGs3u2F3Uiih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLU8ENet63s7a+sbm1Xdop7+7tHxxWjo5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0Eqt3jhSaPqVqlfz5nBXiV+QKhRo9CtfvUjRLGESqSDGdH0vxSAnGjkVbFruZYalhI7IgHUtlSRhJsjn107dc6tEbqy0LYnuXP09kZPEmEkS2s6E4NAsezPxP6+bYXwT5FymGTJJF4viTLio3NnrbsQ1oygmlhCqub3VpUOiCUUbUNmG4C+/vEpalzXfq/kPV9X6bRFHCU7hDC7Ah2uowz00oAkUnuAZXuHNUc6L8+58LFrXnGLmBP7A+fwBy2+PQg==</latexit><latexit sha1_base64="ocgiAjpDjkxJr5kPWC1BB+yVGnk=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbPZtGs3u2F3Uiih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLU8ENet63s7a+sbm1Xdop7+7tHxxWjo5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0Eqt3jhSaPqVqlfz5nBXiV+QKhRo9CtfvUjRLGESqSDGdH0vxSAnGjkVbFruZYalhI7IgHUtlSRhJsjn107dc6tEbqy0LYnuXP09kZPEmEkS2s6E4NAsezPxP6+bYXwT5FymGTJJF4viTLio3NnrbsQ1oygmlhCqub3VpUOiCUUbUNmG4C+/vEpalzXfq/kPV9X6bRFHCU7hDC7Ah2uowz00oAkUnuAZXuHNUc6L8+58LFrXnGLmBP7A+fwBy2+PQg==</latexit><latexit sha1_base64="ocgiAjpDjkxJr5kPWC1BB+yVGnk=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbPZtGs3u2F3Uiih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLU8ENet63s7a+sbm1Xdop7+7tHxxWjo5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0Eqt3jhSaPqVqlfz5nBXiV+QKhRo9CtfvUjRLGESqSDGdH0vxSAnGjkVbFruZYalhI7IgHUtlSRhJsjn107dc6tEbqy0LYnuXP09kZPEmEkS2s6E4NAsezPxP6+bYXwT5FymGTJJF4viTLio3NnrbsQ1oygmlhCqub3VpUOiCUUbUNmG4C+/vEpalzXfq/kPV9X6bRFHCU7hDC7Ah2uowz00oAkUnuAZXuHNUc6L8+58LFrXnGLmBP7A+fwBy2+PQg==</latexit><latexit sha1_base64="ocgiAjpDjkxJr5kPWC1BB+yVGnk=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbPZtGs3u2F3Uiih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLU8ENet63s7a+sbm1Xdop7+7tHxxWjo5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0Eqt3jhSaPqVqlfz5nBXiV+QKhRo9CtfvUjRLGESqSDGdH0vxSAnGjkVbFruZYalhI7IgHUtlSRhJsjn107dc6tEbqy0LYnuXP09kZPEmEkS2s6E4NAsezPxP6+bYXwT5FymGTJJF4viTLio3NnrbsQ1oygmlhCqub3VpUOiCUUbUNmG4C+/vEpalzXfq/kPV9X6bRFHCU7hDC7Ah2uowz00oAkUnuAZXuHNUc6L8+58LFrXnGLmBP7A+fwBy2+PQg==</latexit>

Contrast Module
<latexit sha1_base64="Rd/43QclEV57Pg3ZMcR0OID8wGQ=">AAAB+HicbVBNS8NAEN34WetHox69LBbBU0l60WOxFy9CBfsBbSibzaZdutkNuxOhhv4SLx4U8epP8ea/cdvmoK0PBh7vzTAzL0wFN+B5387G5tb2zm5pr7x/cHhUcY9POkZlmrI2VULpXkgME1yyNnAQrJdqRpJQsG44ac797iPThiv5ANOUBQkZSR5zSsBKQ7fSVBI0MYDvVJQJNnSrXs1bAK8TvyBVVKA1dL8GkaJZwiRQQYzp+14KQU40cCrYrDzIDEsJnZAR61sqScJMkC8On+ELq0Q4VtqWBLxQf0/kJDFmmoS2MyEwNqveXPzP62cQXwc5l2kGTNLlojgTGBSep4AjrhkFMbWEUM3trZiOiSYUbFZlG4K/+vI66dRrvlfz7+vVxk0RRwmdoXN0iXx0hRroFrVQG1GUoWf0it6cJ+fFeXc+lq0bTjFziv7A+fwBqyKTEw==</latexit><latexit sha1_base64="Rd/43QclEV57Pg3ZMcR0OID8wGQ=">AAAB+HicbVBNS8NAEN34WetHox69LBbBU0l60WOxFy9CBfsBbSibzaZdutkNuxOhhv4SLx4U8epP8ea/cdvmoK0PBh7vzTAzL0wFN+B5387G5tb2zm5pr7x/cHhUcY9POkZlmrI2VULpXkgME1yyNnAQrJdqRpJQsG44ac797iPThiv5ANOUBQkZSR5zSsBKQ7fSVBI0MYDvVJQJNnSrXs1bAK8TvyBVVKA1dL8GkaJZwiRQQYzp+14KQU40cCrYrDzIDEsJnZAR61sqScJMkC8On+ELq0Q4VtqWBLxQf0/kJDFmmoS2MyEwNqveXPzP62cQXwc5l2kGTNLlojgTGBSep4AjrhkFMbWEUM3trZiOiSYUbFZlG4K/+vI66dRrvlfz7+vVxk0RRwmdoXN0iXx0hRroFrVQG1GUoWf0it6cJ+fFeXc+lq0bTjFziv7A+fwBqyKTEw==</latexit><latexit sha1_base64="Rd/43QclEV57Pg3ZMcR0OID8wGQ=">AAAB+HicbVBNS8NAEN34WetHox69LBbBU0l60WOxFy9CBfsBbSibzaZdutkNuxOhhv4SLx4U8epP8ea/cdvmoK0PBh7vzTAzL0wFN+B5387G5tb2zm5pr7x/cHhUcY9POkZlmrI2VULpXkgME1yyNnAQrJdqRpJQsG44ac797iPThiv5ANOUBQkZSR5zSsBKQ7fSVBI0MYDvVJQJNnSrXs1bAK8TvyBVVKA1dL8GkaJZwiRQQYzp+14KQU40cCrYrDzIDEsJnZAR61sqScJMkC8On+ELq0Q4VtqWBLxQf0/kJDFmmoS2MyEwNqveXPzP62cQXwc5l2kGTNLlojgTGBSep4AjrhkFMbWEUM3trZiOiSYUbFZlG4K/+vI66dRrvlfz7+vVxk0RRwmdoXN0iXx0hRroFrVQG1GUoWf0it6cJ+fFeXc+lq0bTjFziv7A+fwBqyKTEw==</latexit><latexit sha1_base64="Rd/43QclEV57Pg3ZMcR0OID8wGQ=">AAAB+HicbVBNS8NAEN34WetHox69LBbBU0l60WOxFy9CBfsBbSibzaZdutkNuxOhhv4SLx4U8epP8ea/cdvmoK0PBh7vzTAzL0wFN+B5387G5tb2zm5pr7x/cHhUcY9POkZlmrI2VULpXkgME1yyNnAQrJdqRpJQsG44ac797iPThiv5ANOUBQkZSR5zSsBKQ7fSVBI0MYDvVJQJNnSrXs1bAK8TvyBVVKA1dL8GkaJZwiRQQYzp+14KQU40cCrYrDzIDEsJnZAR61sqScJMkC8On+ELq0Q4VtqWBLxQf0/kJDFmmoS2MyEwNqveXPzP62cQXwc5l2kGTNLlojgTGBSep4AjrhkFMbWEUM3trZiOiSYUbFZlG4K/+vI66dRrvlfz7+vVxk0RRwmdoXN0iXx0hRroFrVQG1GUoWf0it6cJ+fFeXc+lq0bTjFziv7A+fwBqyKTEw==</latexit>

(c)
<latexit sha1_base64="BnImUGcxlpqBLXqmBu/x3UJlWp0=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoMQm3CXRsugjWVE8wHJEfY2e8mSvb1jd04IR36CjYUitv4iO/+Nm+QKTXww8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHqrsclCuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcquDBFTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP4sVjUo=</latexit><latexit sha1_base64="BnImUGcxlpqBLXqmBu/x3UJlWp0=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoMQm3CXRsugjWVE8wHJEfY2e8mSvb1jd04IR36CjYUitv4iO/+Nm+QKTXww8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHqrsclCuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcquDBFTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP4sVjUo=</latexit><latexit sha1_base64="BnImUGcxlpqBLXqmBu/x3UJlWp0=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoMQm3CXRsugjWVE8wHJEfY2e8mSvb1jd04IR36CjYUitv4iO/+Nm+QKTXww8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHqrsclCuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcquDBFTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP4sVjUo=</latexit><latexit sha1_base64="BnImUGcxlpqBLXqmBu/x3UJlWp0=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoMQm3CXRsugjWVE8wHJEfY2e8mSvb1jd04IR36CjYUitv4iO/+Nm+QKTXww8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHqrsclCuuDV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophtd+JlSSIldsuShMJcGYzP8mQ6E5Qzm1hDIt7K2EjammDG06JRuCt/ryOmnXa55b8+7rlcZNHkcRzuAcquDBFTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP4sVjUo=</latexit>

(b)
<latexit sha1_base64="A3/nS2rLohv9Q9aqPU4UtET9Omk=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoMQm3CXRsugjWVE8wHJEfY2e8mSvb1jd04IR36CjYUitv4iO/+Nm+QKTXww8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHqrB5aBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t3XK42bPI4inME5VMGDK2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwCJkI1J</latexit><latexit sha1_base64="A3/nS2rLohv9Q9aqPU4UtET9Omk=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoMQm3CXRsugjWVE8wHJEfY2e8mSvb1jd04IR36CjYUitv4iO/+Nm+QKTXww8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHqrB5aBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t3XK42bPI4inME5VMGDK2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwCJkI1J</latexit><latexit sha1_base64="A3/nS2rLohv9Q9aqPU4UtET9Omk=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoMQm3CXRsugjWVE8wHJEfY2e8mSvb1jd04IR36CjYUitv4iO/+Nm+QKTXww8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHqrB5aBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t3XK42bPI4inME5VMGDK2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwCJkI1J</latexit><latexit sha1_base64="A3/nS2rLohv9Q9aqPU4UtET9Omk=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoMQm3CXRsugjWVE8wHJEfY2e8mSvb1jd04IR36CjYUitv4iO/+Nm+QKTXww8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqEacJ9yM6UiIUjKKVHqrB5aBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDK/9TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKu1zy35t3XK42bPI4inME5VMGDK2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwCJkI1J</latexit>

(Gumbel-)SoftMax
<latexit sha1_base64="Bs6a72+UUGm/dJTlGTmwl9R9l+M=">AAAB+XicbVA9SwNBEN3zM8avU0ubxSDEwnCXRsughTZCRPMBSQh7m7lkyd7usbsXDEf+iY2FIrb+Ezv/jZvkCk18MPB4b4aZeUHMmTae9+2srK6tb2zmtvLbO7t7++7BYV3LRFGoUcmlagZEA2cCaoYZDs1YAYkCDo1geD31GyNQmknxaMYxdCLSFyxklBgrdV23eJNEAfDzswcZmjvy1HULXsmbAS8TPyMFlKHadb/aPUmTCIShnGjd8r3YdFKiDKMcJvl2oiEmdEj60LJUkAh0J51dPsGnVunhUCpbwuCZ+nsiJZHW4yiwnRExA73oTcX/vFZiwstOykScGBB0vihMODYST2PAPaaAGj62hFDF7K2YDogi1Niw8jYEf/HlZVIvl3yv5N+XC5WrLI4cOkYnqIh8dIEq6BZVUQ1RNELP6BW9Oanz4rw7H/PWFSebOUJ/4Hz+AHqekuU=</latexit><latexit sha1_base64="Bs6a72+UUGm/dJTlGTmwl9R9l+M=">AAAB+XicbVA9SwNBEN3zM8avU0ubxSDEwnCXRsughTZCRPMBSQh7m7lkyd7usbsXDEf+iY2FIrb+Ezv/jZvkCk18MPB4b4aZeUHMmTae9+2srK6tb2zmtvLbO7t7++7BYV3LRFGoUcmlagZEA2cCaoYZDs1YAYkCDo1geD31GyNQmknxaMYxdCLSFyxklBgrdV23eJNEAfDzswcZmjvy1HULXsmbAS8TPyMFlKHadb/aPUmTCIShnGjd8r3YdFKiDKMcJvl2oiEmdEj60LJUkAh0J51dPsGnVunhUCpbwuCZ+nsiJZHW4yiwnRExA73oTcX/vFZiwstOykScGBB0vihMODYST2PAPaaAGj62hFDF7K2YDogi1Niw8jYEf/HlZVIvl3yv5N+XC5WrLI4cOkYnqIh8dIEq6BZVUQ1RNELP6BW9Oanz4rw7H/PWFSebOUJ/4Hz+AHqekuU=</latexit><latexit sha1_base64="Bs6a72+UUGm/dJTlGTmwl9R9l+M=">AAAB+XicbVA9SwNBEN3zM8avU0ubxSDEwnCXRsughTZCRPMBSQh7m7lkyd7usbsXDEf+iY2FIrb+Ezv/jZvkCk18MPB4b4aZeUHMmTae9+2srK6tb2zmtvLbO7t7++7BYV3LRFGoUcmlagZEA2cCaoYZDs1YAYkCDo1geD31GyNQmknxaMYxdCLSFyxklBgrdV23eJNEAfDzswcZmjvy1HULXsmbAS8TPyMFlKHadb/aPUmTCIShnGjd8r3YdFKiDKMcJvl2oiEmdEj60LJUkAh0J51dPsGnVunhUCpbwuCZ+nsiJZHW4yiwnRExA73oTcX/vFZiwstOykScGBB0vihMODYST2PAPaaAGj62hFDF7K2YDogi1Niw8jYEf/HlZVIvl3yv5N+XC5WrLI4cOkYnqIh8dIEq6BZVUQ1RNELP6BW9Oanz4rw7H/PWFSebOUJ/4Hz+AHqekuU=</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="oDr5WU0sbuSdCqxsDp4dzhlqH5E=">AAAB7nicbZBLSwMxFIXv+Ky16ujWTbAIdWGZcaNLwYVuhIr2Ae1QMmmmDc1jSDLFMvSfuHGhiD/Hnf/G9LHQ1gOBj3MS7s2JU86MDYJvb219Y3Nru7BT3C3t7R/4h6WGUZkmtE4UV7oVY0M5k7RumeW0lWqKRcxpMx7eTPPmiGrDlHyy45RGAvclSxjB1lld36/cZiKm/PzsUSX2Hj93/XJQDWZCqxAuoAwL1br+V6enSCaotIRjY9phkNoox9oywumk2MkMTTEZ4j5tO5RYUBPls80n6NQ5PZQo7Y60aOb+fpFjYcxYxO6mwHZglrOp+V/WzmxyFeVMppmlkswHJRlHVqFpDajHNCWWjx1gopnbFZEB1phYV1bRlRAuf3kVGhfVMKiGDwEU4BhOoAIhXMI13EEN6kBgBC/wBu9e7r16H/O61rxFb0fwR97nDyiNkYM=</latexit><latexit sha1_base64="oDr5WU0sbuSdCqxsDp4dzhlqH5E=">AAAB7nicbZBLSwMxFIXv+Ky16ujWTbAIdWGZcaNLwYVuhIr2Ae1QMmmmDc1jSDLFMvSfuHGhiD/Hnf/G9LHQ1gOBj3MS7s2JU86MDYJvb219Y3Nru7BT3C3t7R/4h6WGUZkmtE4UV7oVY0M5k7RumeW0lWqKRcxpMx7eTPPmiGrDlHyy45RGAvclSxjB1lld36/cZiKm/PzsUSX2Hj93/XJQDWZCqxAuoAwL1br+V6enSCaotIRjY9phkNoox9oywumk2MkMTTEZ4j5tO5RYUBPls80n6NQ5PZQo7Y60aOb+fpFjYcxYxO6mwHZglrOp+V/WzmxyFeVMppmlkswHJRlHVqFpDajHNCWWjx1gopnbFZEB1phYV1bRlRAuf3kVGhfVMKiGDwEU4BhOoAIhXMI13EEN6kBgBC/wBu9e7r16H/O61rxFb0fwR97nDyiNkYM=</latexit><latexit sha1_base64="pli2bt5vccMzI+QZrfHt/oQZFCc=">AAAB+XicbVDLSgNBEJyNrxhfqx69LAYhHgy7XvQY9KAXIaJ5QBLC7KQ3GTKPZWY2GJb8iRcPinj1T7z5N06SPWhiQUNR1U13Vxgzqo3vfzu5ldW19Y38ZmFre2d3z90/qGuZKAI1IplUzRBrYFRAzVDDoBkrwDxk0AiH11O/MQKlqRSPZhxDh+O+oBEl2Fip67qlm4SHwM5OH2Rk7vBT1y36ZX8Gb5kEGSmiDNWu+9XuSZJwEIYwrHUr8GPTSbEylDCYFNqJhhiTIe5Dy1KBOehOOrt84p1YpedFUtkSxpupvydSzLUe89B2cmwGetGbiv95rcREl52UijgxIMh8UZQwz0hvGoPXowqIYWNLMFHU3uqRAVaYGBtWwYYQLL68TOrn5cAvB/d+sXKVxZFHR+gYlVCALlAF3aIqqiGCRugZvaI3J3VenHfnY96ac7KZQ/QHzucPef6S4w==</latexit><latexit sha1_base64="Bs6a72+UUGm/dJTlGTmwl9R9l+M=">AAAB+XicbVA9SwNBEN3zM8avU0ubxSDEwnCXRsughTZCRPMBSQh7m7lkyd7usbsXDEf+iY2FIrb+Ezv/jZvkCk18MPB4b4aZeUHMmTae9+2srK6tb2zmtvLbO7t7++7BYV3LRFGoUcmlagZEA2cCaoYZDs1YAYkCDo1geD31GyNQmknxaMYxdCLSFyxklBgrdV23eJNEAfDzswcZmjvy1HULXsmbAS8TPyMFlKHadb/aPUmTCIShnGjd8r3YdFKiDKMcJvl2oiEmdEj60LJUkAh0J51dPsGnVunhUCpbwuCZ+nsiJZHW4yiwnRExA73oTcX/vFZiwstOykScGBB0vihMODYST2PAPaaAGj62hFDF7K2YDogi1Niw8jYEf/HlZVIvl3yv5N+XC5WrLI4cOkYnqIh8dIEq6BZVUQ1RNELP6BW9Oanz4rw7H/PWFSebOUJ/4Hz+AHqekuU=</latexit><latexit sha1_base64="Bs6a72+UUGm/dJTlGTmwl9R9l+M=">AAAB+XicbVA9SwNBEN3zM8avU0ubxSDEwnCXRsughTZCRPMBSQh7m7lkyd7usbsXDEf+iY2FIrb+Ezv/jZvkCk18MPB4b4aZeUHMmTae9+2srK6tb2zmtvLbO7t7++7BYV3LRFGoUcmlagZEA2cCaoYZDs1YAYkCDo1geD31GyNQmknxaMYxdCLSFyxklBgrdV23eJNEAfDzswcZmjvy1HULXsmbAS8TPyMFlKHadb/aPUmTCIShnGjd8r3YdFKiDKMcJvl2oiEmdEj60LJUkAh0J51dPsGnVunhUCpbwuCZ+nsiJZHW4yiwnRExA73oTcX/vFZiwstOykScGBB0vihMODYST2PAPaaAGj62hFDF7K2YDogi1Niw8jYEf/HlZVIvl3yv5N+XC5WrLI4cOkYnqIh8dIEq6BZVUQ1RNELP6BW9Oanz4rw7H/PWFSebOUJ/4Hz+AHqekuU=</latexit><latexit sha1_base64="Bs6a72+UUGm/dJTlGTmwl9R9l+M=">AAAB+XicbVA9SwNBEN3zM8avU0ubxSDEwnCXRsughTZCRPMBSQh7m7lkyd7usbsXDEf+iY2FIrb+Ezv/jZvkCk18MPB4b4aZeUHMmTae9+2srK6tb2zmtvLbO7t7++7BYV3LRFGoUcmlagZEA2cCaoYZDs1YAYkCDo1geD31GyNQmknxaMYxdCLSFyxklBgrdV23eJNEAfDzswcZmjvy1HULXsmbAS8TPyMFlKHadb/aPUmTCIShnGjd8r3YdFKiDKMcJvl2oiEmdEj60LJUkAh0J51dPsGnVunhUCpbwuCZ+nsiJZHW4yiwnRExA73oTcX/vFZiwstOykScGBB0vihMODYST2PAPaaAGj62hFDF7K2YDogi1Niw8jYEf/HlZVIvl3yv5N+XC5WrLI4cOkYnqIh8dIEq6BZVUQ1RNELP6BW9Oanz4rw7H/PWFSebOUJ/4Hz+AHqekuU=</latexit><latexit sha1_base64="Bs6a72+UUGm/dJTlGTmwl9R9l+M=">AAAB+XicbVA9SwNBEN3zM8avU0ubxSDEwnCXRsughTZCRPMBSQh7m7lkyd7usbsXDEf+iY2FIrb+Ezv/jZvkCk18MPB4b4aZeUHMmTae9+2srK6tb2zmtvLbO7t7++7BYV3LRFGoUcmlagZEA2cCaoYZDs1YAYkCDo1geD31GyNQmknxaMYxdCLSFyxklBgrdV23eJNEAfDzswcZmjvy1HULXsmbAS8TPyMFlKHadb/aPUmTCIShnGjd8r3YdFKiDKMcJvl2oiEmdEj60LJUkAh0J51dPsGnVunhUCpbwuCZ+nsiJZHW4yiwnRExA73oTcX/vFZiwstOykScGBB0vihMODYST2PAPaaAGj62hFDF7K2YDogi1Niw8jYEf/HlZVIvl3yv5N+XC5WrLI4cOkYnqIh8dIEq6BZVUQ1RNELP6BW9Oanz4rw7H/PWFSebOUJ/4Hz+AHqekuU=</latexit><latexit sha1_base64="Bs6a72+UUGm/dJTlGTmwl9R9l+M=">AAAB+XicbVA9SwNBEN3zM8avU0ubxSDEwnCXRsughTZCRPMBSQh7m7lkyd7usbsXDEf+iY2FIrb+Ezv/jZvkCk18MPB4b4aZeUHMmTae9+2srK6tb2zmtvLbO7t7++7BYV3LRFGoUcmlagZEA2cCaoYZDs1YAYkCDo1geD31GyNQmknxaMYxdCLSFyxklBgrdV23eJNEAfDzswcZmjvy1HULXsmbAS8TPyMFlKHadb/aPUmTCIShnGjd8r3YdFKiDKMcJvl2oiEmdEj60LJUkAh0J51dPsGnVunhUCpbwuCZ+nsiJZHW4yiwnRExA73oTcX/vFZiwstOykScGBB0vihMODYST2PAPaaAGj62hFDF7K2YDogi1Niw8jYEf/HlZVIvl3yv5N+XC5WrLI4cOkYnqIh8dIEq6BZVUQ1RNELP6BW9Oanz4rw7H/PWFSebOUJ/4Hz+AHqekuU=</latexit><latexit sha1_base64="Bs6a72+UUGm/dJTlGTmwl9R9l+M=">AAAB+XicbVA9SwNBEN3zM8avU0ubxSDEwnCXRsughTZCRPMBSQh7m7lkyd7usbsXDEf+iY2FIrb+Ezv/jZvkCk18MPB4b4aZeUHMmTae9+2srK6tb2zmtvLbO7t7++7BYV3LRFGoUcmlagZEA2cCaoYZDs1YAYkCDo1geD31GyNQmknxaMYxdCLSFyxklBgrdV23eJNEAfDzswcZmjvy1HULXsmbAS8TPyMFlKHadb/aPUmTCIShnGjd8r3YdFKiDKMcJvl2oiEmdEj60LJUkAh0J51dPsGnVunhUCpbwuCZ+nsiJZHW4yiwnRExA73oTcX/vFZiwstOykScGBB0vihMODYST2PAPaaAGj62hFDF7K2YDogi1Niw8jYEf/HlZVIvl3yv5N+XC5WrLI4cOkYnqIh8dIEq6BZVUQ1RNELP6BW9Oanz4rw7H/PWFSebOUJ/4Hz+AHqekuU=</latexit>

O
<latexit sha1_base64="m1zCFXeFmUx6ehG3dT0b77LjCc4=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl0484K9gFtKJPppB06mQkzN0IJ/Qw3LhRx69e482+ctFlo64GBwzn3MueeMBHcoOd9O6W19Y3NrfJ2ZWd3b/+genjUNirVlLWoEkp3Q2KY4JK1kKNg3UQzEoeCdcLJbe53npg2XMlHnCYsiMlI8ohTglbq9WOCY0pEdj8bVGte3ZvDXSV+QWpQoDmofvWHiqYxk0gFMabnewkGGdHIqWCzSj81LCF0QkasZ6kkMTNBNo88c8+sMnQjpe2T6M7V3xsZiY2ZxqGdzCOaZS8X//N6KUbXQcZlkiKTdPFRlAoXlZvf7w65ZhTF1BJCNbdZXTommlC0LVVsCf7yyaukfVH3vbr/cFlr3BR1lOEETuEcfLiCBtxBE1pAQcEzvMKbg86L8+58LEZLTrFzDH/gfP4AhZSRZQ==</latexit><latexit sha1_base64="m1zCFXeFmUx6ehG3dT0b77LjCc4=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl0484K9gFtKJPppB06mQkzN0IJ/Qw3LhRx69e482+ctFlo64GBwzn3MueeMBHcoOd9O6W19Y3NrfJ2ZWd3b/+genjUNirVlLWoEkp3Q2KY4JK1kKNg3UQzEoeCdcLJbe53npg2XMlHnCYsiMlI8ohTglbq9WOCY0pEdj8bVGte3ZvDXSV+QWpQoDmofvWHiqYxk0gFMabnewkGGdHIqWCzSj81LCF0QkasZ6kkMTNBNo88c8+sMnQjpe2T6M7V3xsZiY2ZxqGdzCOaZS8X//N6KUbXQcZlkiKTdPFRlAoXlZvf7w65ZhTF1BJCNbdZXTommlC0LVVsCf7yyaukfVH3vbr/cFlr3BR1lOEETuEcfLiCBtxBE1pAQcEzvMKbg86L8+58LEZLTrFzDH/gfP4AhZSRZQ==</latexit><latexit sha1_base64="m1zCFXeFmUx6ehG3dT0b77LjCc4=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl0484K9gFtKJPppB06mQkzN0IJ/Qw3LhRx69e482+ctFlo64GBwzn3MueeMBHcoOd9O6W19Y3NrfJ2ZWd3b/+genjUNirVlLWoEkp3Q2KY4JK1kKNg3UQzEoeCdcLJbe53npg2XMlHnCYsiMlI8ohTglbq9WOCY0pEdj8bVGte3ZvDXSV+QWpQoDmofvWHiqYxk0gFMabnewkGGdHIqWCzSj81LCF0QkasZ6kkMTNBNo88c8+sMnQjpe2T6M7V3xsZiY2ZxqGdzCOaZS8X//N6KUbXQcZlkiKTdPFRlAoXlZvf7w65ZhTF1BJCNbdZXTommlC0LVVsCf7yyaukfVH3vbr/cFlr3BR1lOEETuEcfLiCBtxBE1pAQcEzvMKbg86L8+58LEZLTrFzDH/gfP4AhZSRZQ==</latexit><latexit sha1_base64="m1zCFXeFmUx6ehG3dT0b77LjCc4=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl0484K9gFtKJPppB06mQkzN0IJ/Qw3LhRx69e482+ctFlo64GBwzn3MueeMBHcoOd9O6W19Y3NrfJ2ZWd3b/+genjUNirVlLWoEkp3Q2KY4JK1kKNg3UQzEoeCdcLJbe53npg2XMlHnCYsiMlI8ohTglbq9WOCY0pEdj8bVGte3ZvDXSV+QWpQoDmofvWHiqYxk0gFMabnewkGGdHIqWCzSj81LCF0QkasZ6kkMTNBNo88c8+sMnQjpe2T6M7V3xsZiY2ZxqGdzCOaZS8X//N6KUbXQcZlkiKTdPFRlAoXlZvf7w65ZhTF1BJCNbdZXTommlC0LVVsCf7yyaukfVH3vbr/cFlr3BR1lOEETuEcfLiCBtxBE1pAQcEzvMKbg86L8+58LEZLTrFzDH/gfP4AhZSRZQ==</latexit>

O [ a1
<latexit sha1_base64="fITjMuAqpcbExb+xv1PpaufxGTY=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5KIoMuiG3dWsLXQhHAznbRDJ5MwMxFqKP6KGxeKuPU/3Pk3TtostPXAwOGce7lnTphyprTjfFuVpeWV1bXqem1jc2t7x97d66gkk4S2ScIT2Q1BUc4EbWumOe2mkkIccnofjq4K//6BSsUScafHKfVjGAgWMQLaSIF94MWghwR4fjPBHslSDIEb2HWn4UyBF4lbkjoq0QrsL6+fkCymQhMOSvVcJ9V+DlIzwumk5mWKpkBGMKA9QwXEVPn5NP0EHxulj6NEmic0nqq/N3KIlRrHoZkssqp5rxD/83qZji78nIk001SQ2aEo41gnuKgC95mkRPOxIUAkM1kxGYIEok1hNVOCO//lRdI5bbhOw709qzcvyzqq6BAdoRPkonPURNeohdqIoEf0jF7Rm/VkvVjv1sdstGKVO/voD6zPH8nXlMU=</latexit><latexit sha1_base64="fITjMuAqpcbExb+xv1PpaufxGTY=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5KIoMuiG3dWsLXQhHAznbRDJ5MwMxFqKP6KGxeKuPU/3Pk3TtostPXAwOGce7lnTphyprTjfFuVpeWV1bXqem1jc2t7x97d66gkk4S2ScIT2Q1BUc4EbWumOe2mkkIccnofjq4K//6BSsUScafHKfVjGAgWMQLaSIF94MWghwR4fjPBHslSDIEb2HWn4UyBF4lbkjoq0QrsL6+fkCymQhMOSvVcJ9V+DlIzwumk5mWKpkBGMKA9QwXEVPn5NP0EHxulj6NEmic0nqq/N3KIlRrHoZkssqp5rxD/83qZji78nIk001SQ2aEo41gnuKgC95mkRPOxIUAkM1kxGYIEok1hNVOCO//lRdI5bbhOw709qzcvyzqq6BAdoRPkonPURNeohdqIoEf0jF7Rm/VkvVjv1sdstGKVO/voD6zPH8nXlMU=</latexit><latexit sha1_base64="fITjMuAqpcbExb+xv1PpaufxGTY=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5KIoMuiG3dWsLXQhHAznbRDJ5MwMxFqKP6KGxeKuPU/3Pk3TtostPXAwOGce7lnTphyprTjfFuVpeWV1bXqem1jc2t7x97d66gkk4S2ScIT2Q1BUc4EbWumOe2mkkIccnofjq4K//6BSsUScafHKfVjGAgWMQLaSIF94MWghwR4fjPBHslSDIEb2HWn4UyBF4lbkjoq0QrsL6+fkCymQhMOSvVcJ9V+DlIzwumk5mWKpkBGMKA9QwXEVPn5NP0EHxulj6NEmic0nqq/N3KIlRrHoZkssqp5rxD/83qZji78nIk001SQ2aEo41gnuKgC95mkRPOxIUAkM1kxGYIEok1hNVOCO//lRdI5bbhOw709qzcvyzqq6BAdoRPkonPURNeohdqIoEf0jF7Rm/VkvVjv1sdstGKVO/voD6zPH8nXlMU=</latexit><latexit sha1_base64="fITjMuAqpcbExb+xv1PpaufxGTY=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5KIoMuiG3dWsLXQhHAznbRDJ5MwMxFqKP6KGxeKuPU/3Pk3TtostPXAwOGce7lnTphyprTjfFuVpeWV1bXqem1jc2t7x97d66gkk4S2ScIT2Q1BUc4EbWumOe2mkkIccnofjq4K//6BSsUScafHKfVjGAgWMQLaSIF94MWghwR4fjPBHslSDIEb2HWn4UyBF4lbkjoq0QrsL6+fkCymQhMOSvVcJ9V+DlIzwumk5mWKpkBGMKA9QwXEVPn5NP0EHxulj6NEmic0nqq/N3KIlRrHoZkssqp5rxD/83qZji78nIk001SQ2aEo41gnuKgC95mkRPOxIUAkM1kxGYIEok1hNVOCO//lRdI5bbhOw709qzcvyzqq6BAdoRPkonPURNeohdqIoEf0jF7Rm/VkvVjv1sdstGKVO/voD6zPH8nXlMU=</latexit>

O [ a8
<latexit sha1_base64="r3/3kEupziF2w5NVXeZPQS+qcXk=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5KIYJdFN+6sYB/QhHAznbZDJ5MwMxFqKP6KGxeKuPU/3Pk3TtostPXAwOGce7lnTphwprTjfFulldW19Y3yZmVre2d3z94/aKs4lYS2SMxj2Q1BUc4EbWmmOe0mkkIUctoJx9e533mgUrFY3OtJQv0IhoINGAFtpMA+8iLQIwI8u51ij6QJhqAe2FWn5syAl4lbkCoq0AzsL68fkzSiQhMOSvVcJ9F+BlIzwum04qWKJkDGMKQ9QwVEVPnZLP0UnxqljwexNE9oPFN/b2QQKTWJQjOZZ1WLXi7+5/VSPaj7GRNJqqkg80ODlGMd47wK3GeSEs0nhgCRzGTFZAQSiDaFVUwJ7uKXl0n7vOY6Nffuotq4Kuooo2N0gs6Qiy5RA92gJmohgh7RM3pFb9aT9WK9Wx/z0ZJV7ByiP7A+fwDUc5TM</latexit><latexit sha1_base64="r3/3kEupziF2w5NVXeZPQS+qcXk=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5KIYJdFN+6sYB/QhHAznbZDJ5MwMxFqKP6KGxeKuPU/3Pk3TtostPXAwOGce7lnTphwprTjfFulldW19Y3yZmVre2d3z94/aKs4lYS2SMxj2Q1BUc4EbWmmOe0mkkIUctoJx9e533mgUrFY3OtJQv0IhoINGAFtpMA+8iLQIwI8u51ij6QJhqAe2FWn5syAl4lbkCoq0AzsL68fkzSiQhMOSvVcJ9F+BlIzwum04qWKJkDGMKQ9QwVEVPnZLP0UnxqljwexNE9oPFN/b2QQKTWJQjOZZ1WLXi7+5/VSPaj7GRNJqqkg80ODlGMd47wK3GeSEs0nhgCRzGTFZAQSiDaFVUwJ7uKXl0n7vOY6Nffuotq4Kuooo2N0gs6Qiy5RA92gJmohgh7RM3pFb9aT9WK9Wx/z0ZJV7ByiP7A+fwDUc5TM</latexit><latexit sha1_base64="r3/3kEupziF2w5NVXeZPQS+qcXk=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5KIYJdFN+6sYB/QhHAznbZDJ5MwMxFqKP6KGxeKuPU/3Pk3TtostPXAwOGce7lnTphwprTjfFulldW19Y3yZmVre2d3z94/aKs4lYS2SMxj2Q1BUc4EbWmmOe0mkkIUctoJx9e533mgUrFY3OtJQv0IhoINGAFtpMA+8iLQIwI8u51ij6QJhqAe2FWn5syAl4lbkCoq0AzsL68fkzSiQhMOSvVcJ9F+BlIzwum04qWKJkDGMKQ9QwVEVPnZLP0UnxqljwexNE9oPFN/b2QQKTWJQjOZZ1WLXi7+5/VSPaj7GRNJqqkg80ODlGMd47wK3GeSEs0nhgCRzGTFZAQSiDaFVUwJ7uKXl0n7vOY6Nffuotq4Kuooo2N0gs6Qiy5RA92gJmohgh7RM3pFb9aT9WK9Wx/z0ZJV7ByiP7A+fwDUc5TM</latexit><latexit sha1_base64="r3/3kEupziF2w5NVXeZPQS+qcXk=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5KIYJdFN+6sYB/QhHAznbZDJ5MwMxFqKP6KGxeKuPU/3Pk3TtostPXAwOGce7lnTphwprTjfFulldW19Y3yZmVre2d3z94/aKs4lYS2SMxj2Q1BUc4EbWmmOe0mkkIUctoJx9e533mgUrFY3OtJQv0IhoINGAFtpMA+8iLQIwI8u51ij6QJhqAe2FWn5syAl4lbkCoq0AzsL68fkzSiQhMOSvVcJ9F+BlIzwum04qWKJkDGMKQ9QwVEVPnZLP0UnxqljwexNE9oPFN/b2QQKTWJQjOZZ1WLXi7+5/VSPaj7GRNJqqkg80ODlGMd47wK3GeSEs0nhgCRzGTFZAQSiDaFVUwJ7uKXl0n7vOY6Nffuotq4Kuooo2N0gs6Qiy5RA92gJmohgh7RM3pFb9aT9WK9Wx/z0ZJV7ByiP7A+fwDUc5TM</latexit>

...<latexit sha1_base64="ocgiAjpDjkxJr5kPWC1BB+yVGnk=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbPZtGs3u2F3Uiih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLU8ENet63s7a+sbm1Xdop7+7tHxxWjo5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0Eqt3jhSaPqVqlfz5nBXiV+QKhRo9CtfvUjRLGESqSDGdH0vxSAnGjkVbFruZYalhI7IgHUtlSRhJsjn107dc6tEbqy0LYnuXP09kZPEmEkS2s6E4NAsezPxP6+bYXwT5FymGTJJF4viTLio3NnrbsQ1oygmlhCqub3VpUOiCUUbUNmG4C+/vEpalzXfq/kPV9X6bRFHCU7hDC7Ah2uowz00oAkUnuAZXuHNUc6L8+58LFrXnGLmBP7A+fwBy2+PQg==</latexit><latexit sha1_base64="ocgiAjpDjkxJr5kPWC1BB+yVGnk=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbPZtGs3u2F3Uiih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLU8ENet63s7a+sbm1Xdop7+7tHxxWjo5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0Eqt3jhSaPqVqlfz5nBXiV+QKhRo9CtfvUjRLGESqSDGdH0vxSAnGjkVbFruZYalhI7IgHUtlSRhJsjn107dc6tEbqy0LYnuXP09kZPEmEkS2s6E4NAsezPxP6+bYXwT5FymGTJJF4viTLio3NnrbsQ1oygmlhCqub3VpUOiCUUbUNmG4C+/vEpalzXfq/kPV9X6bRFHCU7hDC7Ah2uowz00oAkUnuAZXuHNUc6L8+58LFrXnGLmBP7A+fwBy2+PQg==</latexit><latexit sha1_base64="ocgiAjpDjkxJr5kPWC1BB+yVGnk=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbPZtGs3u2F3Uiih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLU8ENet63s7a+sbm1Xdop7+7tHxxWjo5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0Eqt3jhSaPqVqlfz5nBXiV+QKhRo9CtfvUjRLGESqSDGdH0vxSAnGjkVbFruZYalhI7IgHUtlSRhJsjn107dc6tEbqy0LYnuXP09kZPEmEkS2s6E4NAsezPxP6+bYXwT5FymGTJJF4viTLio3NnrbsQ1oygmlhCqub3VpUOiCUUbUNmG4C+/vEpalzXfq/kPV9X6bRFHCU7hDC7Ah2uowz00oAkUnuAZXuHNUc6L8+58LFrXnGLmBP7A+fwBy2+PQg==</latexit><latexit sha1_base64="ocgiAjpDjkxJr5kPWC1BB+yVGnk=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbPZtGs3u2F3Uiih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLU8ENet63s7a+sbm1Xdop7+7tHxxWjo5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0Eqt3jhSaPqVqlfz5nBXiV+QKhRo9CtfvUjRLGESqSDGdH0vxSAnGjkVbFruZYalhI7IgHUtlSRhJsjn107dc6tEbqy0LYnuXP09kZPEmEkS2s6E4NAsezPxP6+bYXwT5FymGTJJF4viTLio3NnrbsQ1oygmlhCqub3VpUOiCUUbUNmG4C+/vEpalzXfq/kPV9X6bRFHCU7hDC7Ah2uowz00oAkUnuAZXuHNUc6L8+58LFrXnGLmBP7A+fwBy2+PQg==</latexit>

...<latexit sha1_base64="ocgiAjpDjkxJr5kPWC1BB+yVGnk=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbPZtGs3u2F3Uiih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLU8ENet63s7a+sbm1Xdop7+7tHxxWjo5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0Eqt3jhSaPqVqlfz5nBXiV+QKhRo9CtfvUjRLGESqSDGdH0vxSAnGjkVbFruZYalhI7IgHUtlSRhJsjn107dc6tEbqy0LYnuXP09kZPEmEkS2s6E4NAsezPxP6+bYXwT5FymGTJJF4viTLio3NnrbsQ1oygmlhCqub3VpUOiCUUbUNmG4C+/vEpalzXfq/kPV9X6bRFHCU7hDC7Ah2uowz00oAkUnuAZXuHNUc6L8+58LFrXnGLmBP7A+fwBy2+PQg==</latexit><latexit sha1_base64="ocgiAjpDjkxJr5kPWC1BB+yVGnk=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbPZtGs3u2F3Uiih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLU8ENet63s7a+sbm1Xdop7+7tHxxWjo5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0Eqt3jhSaPqVqlfz5nBXiV+QKhRo9CtfvUjRLGESqSDGdH0vxSAnGjkVbFruZYalhI7IgHUtlSRhJsjn107dc6tEbqy0LYnuXP09kZPEmEkS2s6E4NAsezPxP6+bYXwT5FymGTJJF4viTLio3NnrbsQ1oygmlhCqub3VpUOiCUUbUNmG4C+/vEpalzXfq/kPV9X6bRFHCU7hDC7Ah2uowz00oAkUnuAZXuHNUc6L8+58LFrXnGLmBP7A+fwBy2+PQg==</latexit><latexit sha1_base64="ocgiAjpDjkxJr5kPWC1BB+yVGnk=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbPZtGs3u2F3Uiih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLU8ENet63s7a+sbm1Xdop7+7tHxxWjo5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0Eqt3jhSaPqVqlfz5nBXiV+QKhRo9CtfvUjRLGESqSDGdH0vxSAnGjkVbFruZYalhI7IgHUtlSRhJsjn107dc6tEbqy0LYnuXP09kZPEmEkS2s6E4NAsezPxP6+bYXwT5FymGTJJF4viTLio3NnrbsQ1oygmlhCqub3VpUOiCUUbUNmG4C+/vEpalzXfq/kPV9X6bRFHCU7hDC7Ah2uowz00oAkUnuAZXuHNUc6L8+58LFrXnGLmBP7A+fwBy2+PQg==</latexit><latexit sha1_base64="ocgiAjpDjkxJr5kPWC1BB+yVGnk=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUQEPRa9eKxgP6ANZbPZtGs3u2F3Uiih/8GLB0W8+n+8+W/ctjlo64OBx3szzMwLU8ENet63s7a+sbm1Xdop7+7tHxxWjo5bRmWasiZVQulOSAwTXLImchSsk2pGklCwdji6m/ntMdOGK/mIk5QFCRlIHnNK0Eqt3jhSaPqVqlfz5nBXiV+QKhRo9CtfvUjRLGESqSDGdH0vxSAnGjkVbFruZYalhI7IgHUtlSRhJsjn107dc6tEbqy0LYnuXP09kZPEmEkS2s6E4NAsezPxP6+bYXwT5FymGTJJF4viTLio3NnrbsQ1oygmlhCqub3VpUOiCUUbUNmG4C+/vEpalzXfq/kPV9X6bRFHCU7hDC7Ah2uowz00oAkUnuAZXuHNUc6L8+58LFrXnGLmBP7A+fwBy2+PQg==</latexit>

Sampling
<latexit sha1_base64="njAQj444Og2vP6pxJWF5hHmGmMk=">AAAB73icbVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lhHNByRH2NvsJUt2987dOSGE/AkbC0Vs/Tt2/hs3yRWa+GDg8d4MM/OiVAqLvv/tra1vbG5tF3aKu3v7B4elo+OmTTLDeIMlMjHtiFouheYNFCh5OzWcqkjyVjS6mfmtJ26sSPQDjlMeKjrQIhaMopPa91S5LXrQK5X9ij8HWSVBTsqQo94rfXX7CcsU18gktbYT+CmGE2pQMMmnxW5meUrZiA54x1FNFbfhZH7vlJw7pU/ixLjSSObq74kJVdaOVeQ6FcWhXfZm4n9eJ8P4KpwInWbINVssijNJMCGz50lfGM5Qjh2hzAh3K2FDaihDF1HRhRAsv7xKmtVK4FeCu2q5dp3HUYBTOIMLCOASanALdWgAAwnP8Apv3qP34r17H4vWNS+fOYE/8D5/ACLVkAM=</latexit><latexit sha1_base64="njAQj444Og2vP6pxJWF5hHmGmMk=">AAAB73icbVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lhHNByRH2NvsJUt2987dOSGE/AkbC0Vs/Tt2/hs3yRWa+GDg8d4MM/OiVAqLvv/tra1vbG5tF3aKu3v7B4elo+OmTTLDeIMlMjHtiFouheYNFCh5OzWcqkjyVjS6mfmtJ26sSPQDjlMeKjrQIhaMopPa91S5LXrQK5X9ij8HWSVBTsqQo94rfXX7CcsU18gktbYT+CmGE2pQMMmnxW5meUrZiA54x1FNFbfhZH7vlJw7pU/ixLjSSObq74kJVdaOVeQ6FcWhXfZm4n9eJ8P4KpwInWbINVssijNJMCGz50lfGM5Qjh2hzAh3K2FDaihDF1HRhRAsv7xKmtVK4FeCu2q5dp3HUYBTOIMLCOASanALdWgAAwnP8Apv3qP34r17H4vWNS+fOYE/8D5/ACLVkAM=</latexit><latexit sha1_base64="njAQj444Og2vP6pxJWF5hHmGmMk=">AAAB73icbVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lhHNByRH2NvsJUt2987dOSGE/AkbC0Vs/Tt2/hs3yRWa+GDg8d4MM/OiVAqLvv/tra1vbG5tF3aKu3v7B4elo+OmTTLDeIMlMjHtiFouheYNFCh5OzWcqkjyVjS6mfmtJ26sSPQDjlMeKjrQIhaMopPa91S5LXrQK5X9ij8HWSVBTsqQo94rfXX7CcsU18gktbYT+CmGE2pQMMmnxW5meUrZiA54x1FNFbfhZH7vlJw7pU/ixLjSSObq74kJVdaOVeQ6FcWhXfZm4n9eJ8P4KpwInWbINVssijNJMCGz50lfGM5Qjh2hzAh3K2FDaihDF1HRhRAsv7xKmtVK4FeCu2q5dp3HUYBTOIMLCOASanALdWgAAwnP8Apv3qP34r17H4vWNS+fOYE/8D5/ACLVkAM=</latexit><latexit sha1_base64="njAQj444Og2vP6pxJWF5hHmGmMk=">AAAB73icbVA9SwNBEJ3zM8avqKXNYhCswl0aLYM2lhHNByRH2NvsJUt2987dOSGE/AkbC0Vs/Tt2/hs3yRWa+GDg8d4MM/OiVAqLvv/tra1vbG5tF3aKu3v7B4elo+OmTTLDeIMlMjHtiFouheYNFCh5OzWcqkjyVjS6mfmtJ26sSPQDjlMeKjrQIhaMopPa91S5LXrQK5X9ij8HWSVBTsqQo94rfXX7CcsU18gktbYT+CmGE2pQMMmnxW5meUrZiA54x1FNFbfhZH7vlJw7pU/ixLjSSObq74kJVdaOVeQ6FcWhXfZm4n9eJ8P4KpwInWbINVssijNJMCGz50lfGM5Qjh2hzAh3K2FDaihDF1HRhRAsv7xKmtVK4FeCu2q5dp3HUYBTOIMLCOASanALdWgAAwnP8Apv3qP34r17H4vWNS+fOYE/8D5/ACLVkAM=</latexit>

ResBlock
<latexit sha1_base64="SgwkI7UTpE7pBJfpALp6ege75og=">AAAB73icbVA9TwJBEJ3DL8Qv1NLmIjGxInc0WhJsLNHIRwIXsrfMwYa93XN3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvTDjTxvO+ncLG5tb2TnG3tLd/cHhUPj5pa5kqii0quVTdkGjkTGDLMMOxmygkccixE05u5n7nCZVmUjyYaYJBTEaCRYwSY6XuPeoGl3QyKFe8qreAu078nFQgR3NQ/uoPJU1jFIZyonXP9xITZEQZRjnOSv1UY0LohIywZ6kgMeogW9w7cy+sMnQjqWwJ4y7U3xMZibWexqHtjIkZ61VvLv7n9VITXQcZE0lqUNDloijlrpHu/Hl3yBRSw6eWEKqYvdWlY6IINTaikg3BX315nbRrVd+r+ne1Sr2Rx1GEMziHS/DhCupwC01oAQUOz/AKb86j8+K8Ox/L1oKTz5zCHzifP+imj90=</latexit><latexit sha1_base64="SgwkI7UTpE7pBJfpALp6ege75og=">AAAB73icbVA9TwJBEJ3DL8Qv1NLmIjGxInc0WhJsLNHIRwIXsrfMwYa93XN3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvTDjTxvO+ncLG5tb2TnG3tLd/cHhUPj5pa5kqii0quVTdkGjkTGDLMMOxmygkccixE05u5n7nCZVmUjyYaYJBTEaCRYwSY6XuPeoGl3QyKFe8qreAu078nFQgR3NQ/uoPJU1jFIZyonXP9xITZEQZRjnOSv1UY0LohIywZ6kgMeogW9w7cy+sMnQjqWwJ4y7U3xMZibWexqHtjIkZ61VvLv7n9VITXQcZE0lqUNDloijlrpHu/Hl3yBRSw6eWEKqYvdWlY6IINTaikg3BX315nbRrVd+r+ne1Sr2Rx1GEMziHS/DhCupwC01oAQUOz/AKb86j8+K8Ox/L1oKTz5zCHzifP+imj90=</latexit><latexit sha1_base64="SgwkI7UTpE7pBJfpALp6ege75og=">AAAB73icbVA9TwJBEJ3DL8Qv1NLmIjGxInc0WhJsLNHIRwIXsrfMwYa93XN3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvTDjTxvO+ncLG5tb2TnG3tLd/cHhUPj5pa5kqii0quVTdkGjkTGDLMMOxmygkccixE05u5n7nCZVmUjyYaYJBTEaCRYwSY6XuPeoGl3QyKFe8qreAu078nFQgR3NQ/uoPJU1jFIZyonXP9xITZEQZRjnOSv1UY0LohIywZ6kgMeogW9w7cy+sMnQjqWwJ4y7U3xMZibWexqHtjIkZ61VvLv7n9VITXQcZE0lqUNDloijlrpHu/Hl3yBRSw6eWEKqYvdWlY6IINTaikg3BX315nbRrVd+r+ne1Sr2Rx1GEMziHS/DhCupwC01oAQUOz/AKb86j8+K8Ox/L1oKTz5zCHzifP+imj90=</latexit><latexit sha1_base64="SgwkI7UTpE7pBJfpALp6ege75og=">AAAB73icbVA9TwJBEJ3DL8Qv1NLmIjGxInc0WhJsLNHIRwIXsrfMwYa93XN3z4Rc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvTDjTxvO+ncLG5tb2TnG3tLd/cHhUPj5pa5kqii0quVTdkGjkTGDLMMOxmygkccixE05u5n7nCZVmUjyYaYJBTEaCRYwSY6XuPeoGl3QyKFe8qreAu078nFQgR3NQ/uoPJU1jFIZyonXP9xITZEQZRjnOSv1UY0LohIywZ6kgMeogW9w7cy+sMnQjqWwJ4y7U3xMZibWexqHtjIkZ61VvLv7n9VITXQcZE0lqUNDloijlrpHu/Hl3yBRSw6eWEKqYvdWlY6IINTaikg3BX315nbRrVd+r+ne1Sr2Rx1GEMziHS/DhCupwC01oAQUOz/AKb86j8+K8Ox/L1oKTz5zCHzifP+imj90=</latexit>

MLP<latexit sha1_base64="Tp5PUTFLYQlboMmZKYE5joNznhk=">AAAB6nicbVC7SgNBFL0bXzG+opY2g0GwCrtpTBm0sVCIaB6QLDI7uZsMmZ1dZmaFsOQTbCwUsfWL7PwbJ8kWmnhg4HDOucy9J0gE18Z1v53C2vrG5lZxu7Szu7d/UD48aus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gfDXzO0+oNI/lg5kk6Ed0KHnIGTVWur+9aT6WK27VnYOsEi8nFchh81/9QczSCKVhgmrd89zE+BlVhjOB01I/1ZhQNqZD7FkqaYTaz+arTsmZVQYkjJV90pC5+nsio5HWkyiwyYiakV72ZuJ/Xi81Yd3PuExSg5ItPgpTQUxMZneTAVfIjJhYQpnidlfCRlRRZmw7JVuCt3zyKmnXqp5b9e5qlcZlXkcRTuAUzsGDC2jANTShBQyG8Ayv8OYI58V5dz4W0YKTzxzDHzifP9ucjX8=</latexit><latexit sha1_base64="Tp5PUTFLYQlboMmZKYE5joNznhk=">AAAB6nicbVC7SgNBFL0bXzG+opY2g0GwCrtpTBm0sVCIaB6QLDI7uZsMmZ1dZmaFsOQTbCwUsfWL7PwbJ8kWmnhg4HDOucy9J0gE18Z1v53C2vrG5lZxu7Szu7d/UD48aus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gfDXzO0+oNI/lg5kk6Ed0KHnIGTVWur+9aT6WK27VnYOsEi8nFchh81/9QczSCKVhgmrd89zE+BlVhjOB01I/1ZhQNqZD7FkqaYTaz+arTsmZVQYkjJV90pC5+nsio5HWkyiwyYiakV72ZuJ/Xi81Yd3PuExSg5ItPgpTQUxMZneTAVfIjJhYQpnidlfCRlRRZmw7JVuCt3zyKmnXqp5b9e5qlcZlXkcRTuAUzsGDC2jANTShBQyG8Ayv8OYI58V5dz4W0YKTzxzDHzifP9ucjX8=</latexit><latexit sha1_base64="Tp5PUTFLYQlboMmZKYE5joNznhk=">AAAB6nicbVC7SgNBFL0bXzG+opY2g0GwCrtpTBm0sVCIaB6QLDI7uZsMmZ1dZmaFsOQTbCwUsfWL7PwbJ8kWmnhg4HDOucy9J0gE18Z1v53C2vrG5lZxu7Szu7d/UD48aus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gfDXzO0+oNI/lg5kk6Ed0KHnIGTVWur+9aT6WK27VnYOsEi8nFchh81/9QczSCKVhgmrd89zE+BlVhjOB01I/1ZhQNqZD7FkqaYTaz+arTsmZVQYkjJV90pC5+nsio5HWkyiwyYiakV72ZuJ/Xi81Yd3PuExSg5ItPgpTQUxMZneTAVfIjJhYQpnidlfCRlRRZmw7JVuCt3zyKmnXqp5b9e5qlcZlXkcRTuAUzsGDC2jANTShBQyG8Ayv8OYI58V5dz4W0YKTzxzDHzifP9ucjX8=</latexit><latexit sha1_base64="Tp5PUTFLYQlboMmZKYE5joNznhk=">AAAB6nicbVC7SgNBFL0bXzG+opY2g0GwCrtpTBm0sVCIaB6QLDI7uZsMmZ1dZmaFsOQTbCwUsfWL7PwbJ8kWmnhg4HDOucy9J0gE18Z1v53C2vrG5lZxu7Szu7d/UD48aus4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gfDXzO0+oNI/lg5kk6Ed0KHnIGTVWur+9aT6WK27VnYOsEi8nFchh81/9QczSCKVhgmrd89zE+BlVhjOB01I/1ZhQNqZD7FkqaYTaz+arTsmZVQYkjJV90pC5+nsio5HWkyiwyYiakV72ZuJ/Xi81Yd3PuExSg5ItPgpTQUxMZneTAVfIjJhYQpnidlfCRlRRZmw7JVuCt3zyKmnXqp5b9e5qlcZlXkcRTuAUzsGDC2jANTShBQyG8Ayv8OYI58V5dz4W0YKTzxzDHzifP9ucjX8=</latexit>

Contrast Module
<latexit sha1_base64="Rd/43QclEV57Pg3ZMcR0OID8wGQ=">AAAB+HicbVBNS8NAEN34WetHox69LBbBU0l60WOxFy9CBfsBbSibzaZdutkNuxOhhv4SLx4U8epP8ea/cdvmoK0PBh7vzTAzL0wFN+B5387G5tb2zm5pr7x/cHhUcY9POkZlmrI2VULpXkgME1yyNnAQrJdqRpJQsG44ac797iPThiv5ANOUBQkZSR5zSsBKQ7fSVBI0MYDvVJQJNnSrXs1bAK8TvyBVVKA1dL8GkaJZwiRQQYzp+14KQU40cCrYrDzIDEsJnZAR61sqScJMkC8On+ELq0Q4VtqWBLxQf0/kJDFmmoS2MyEwNqveXPzP62cQXwc5l2kGTNLlojgTGBSep4AjrhkFMbWEUM3trZiOiSYUbFZlG4K/+vI66dRrvlfz7+vVxk0RRwmdoXN0iXx0hRroFrVQG1GUoWf0it6cJ+fFeXc+lq0bTjFziv7A+fwBqyKTEw==</latexit><latexit sha1_base64="Rd/43QclEV57Pg3ZMcR0OID8wGQ=">AAAB+HicbVBNS8NAEN34WetHox69LBbBU0l60WOxFy9CBfsBbSibzaZdutkNuxOhhv4SLx4U8epP8ea/cdvmoK0PBh7vzTAzL0wFN+B5387G5tb2zm5pr7x/cHhUcY9POkZlmrI2VULpXkgME1yyNnAQrJdqRpJQsG44ac797iPThiv5ANOUBQkZSR5zSsBKQ7fSVBI0MYDvVJQJNnSrXs1bAK8TvyBVVKA1dL8GkaJZwiRQQYzp+14KQU40cCrYrDzIDEsJnZAR61sqScJMkC8On+ELq0Q4VtqWBLxQf0/kJDFmmoS2MyEwNqveXPzP62cQXwc5l2kGTNLlojgTGBSep4AjrhkFMbWEUM3trZiOiSYUbFZlG4K/+vI66dRrvlfz7+vVxk0RRwmdoXN0iXx0hRroFrVQG1GUoWf0it6cJ+fFeXc+lq0bTjFziv7A+fwBqyKTEw==</latexit><latexit sha1_base64="Rd/43QclEV57Pg3ZMcR0OID8wGQ=">AAAB+HicbVBNS8NAEN34WetHox69LBbBU0l60WOxFy9CBfsBbSibzaZdutkNuxOhhv4SLx4U8epP8ea/cdvmoK0PBh7vzTAzL0wFN+B5387G5tb2zm5pr7x/cHhUcY9POkZlmrI2VULpXkgME1yyNnAQrJdqRpJQsG44ac797iPThiv5ANOUBQkZSR5zSsBKQ7fSVBI0MYDvVJQJNnSrXs1bAK8TvyBVVKA1dL8GkaJZwiRQQYzp+14KQU40cCrYrDzIDEsJnZAR61sqScJMkC8On+ELq0Q4VtqWBLxQf0/kJDFmmoS2MyEwNqveXPzP62cQXwc5l2kGTNLlojgTGBSep4AjrhkFMbWEUM3trZiOiSYUbFZlG4K/+vI66dRrvlfz7+vVxk0RRwmdoXN0iXx0hRroFrVQG1GUoWf0it6cJ+fFeXc+lq0bTjFziv7A+fwBqyKTEw==</latexit><latexit sha1_base64="Rd/43QclEV57Pg3ZMcR0OID8wGQ=">AAAB+HicbVBNS8NAEN34WetHox69LBbBU0l60WOxFy9CBfsBbSibzaZdutkNuxOhhv4SLx4U8epP8ea/cdvmoK0PBh7vzTAzL0wFN+B5387G5tb2zm5pr7x/cHhUcY9POkZlmrI2VULpXkgME1yyNnAQrJdqRpJQsG44ac797iPThiv5ANOUBQkZSR5zSsBKQ7fSVBI0MYDvVJQJNnSrXs1bAK8TvyBVVKA1dL8GkaJZwiRQQYzp+14KQU40cCrYrDzIDEsJnZAR61sqScJMkC8On+ELq0Q4VtqWBLxQf0/kJDFmmoS2MyEwNqveXPzP62cQXwc5l2kGTNLlojgTGBSep4AjrhkFMbWEUM3trZiOiSYUbFZlG4K/+vI66dRrvlfz7+vVxk0RRwmdoXN0iXx0hRroFrVQG1GUoWf0it6cJ+fFeXc+lq0bTjFziv7A+fwBqyKTEw==</latexit>

Contrast Loss
<latexit sha1_base64="LabNVc7XvZajDKfFXE7EYLUe45Y=">AAAB9HicbVA9TwJBEJ3zE/ELtbTZSEysyB2NlkQaCwtM5COBC9lbFtiwt3vuzpEQwu+wsdAYW3+Mnf/GBa5Q8CWTvLw3k5l5USKFRd//9jY2t7Z3dnN7+f2Dw6Pjwslpw+rUMF5nWmrTiqjlUiheR4GStxLDaRxJ3oxG1bnfHHNjhVaPOEl4GNOBEn3BKDoprGqFhlok99rabqHol/wFyDoJMlKEDLVu4avT0yyNuUImqbXtwE8wnFKDgkk+y3dSyxPKRnTA244qGnMbThdHz8ilU3qkr40rhWSh/p6Y0tjaSRy5zpji0K56c/E/r51i/yacCpWkyBVbLuqnkqAm8wRITxjOUE4cocwIdythQ2ooQ5dT3oUQrL68ThrlUuCXgodysXKbxZGDc7iAKwjgGipwBzWoA4MneIZXePPG3ov37n0sWze8bOYM/sD7/AG0W5IJ</latexit><latexit sha1_base64="LabNVc7XvZajDKfFXE7EYLUe45Y=">AAAB9HicbVA9TwJBEJ3zE/ELtbTZSEysyB2NlkQaCwtM5COBC9lbFtiwt3vuzpEQwu+wsdAYW3+Mnf/GBa5Q8CWTvLw3k5l5USKFRd//9jY2t7Z3dnN7+f2Dw6Pjwslpw+rUMF5nWmrTiqjlUiheR4GStxLDaRxJ3oxG1bnfHHNjhVaPOEl4GNOBEn3BKDoprGqFhlok99rabqHol/wFyDoJMlKEDLVu4avT0yyNuUImqbXtwE8wnFKDgkk+y3dSyxPKRnTA244qGnMbThdHz8ilU3qkr40rhWSh/p6Y0tjaSRy5zpji0K56c/E/r51i/yacCpWkyBVbLuqnkqAm8wRITxjOUE4cocwIdythQ2ooQ5dT3oUQrL68ThrlUuCXgodysXKbxZGDc7iAKwjgGipwBzWoA4MneIZXePPG3ov37n0sWze8bOYM/sD7/AG0W5IJ</latexit><latexit sha1_base64="LabNVc7XvZajDKfFXE7EYLUe45Y=">AAAB9HicbVA9TwJBEJ3zE/ELtbTZSEysyB2NlkQaCwtM5COBC9lbFtiwt3vuzpEQwu+wsdAYW3+Mnf/GBa5Q8CWTvLw3k5l5USKFRd//9jY2t7Z3dnN7+f2Dw6Pjwslpw+rUMF5nWmrTiqjlUiheR4GStxLDaRxJ3oxG1bnfHHNjhVaPOEl4GNOBEn3BKDoprGqFhlok99rabqHol/wFyDoJMlKEDLVu4avT0yyNuUImqbXtwE8wnFKDgkk+y3dSyxPKRnTA244qGnMbThdHz8ilU3qkr40rhWSh/p6Y0tjaSRy5zpji0K56c/E/r51i/yacCpWkyBVbLuqnkqAm8wRITxjOUE4cocwIdythQ2ooQ5dT3oUQrL68ThrlUuCXgodysXKbxZGDc7iAKwjgGipwBzWoA4MneIZXePPG3ov37n0sWze8bOYM/sD7/AG0W5IJ</latexit><latexit sha1_base64="LabNVc7XvZajDKfFXE7EYLUe45Y=">AAAB9HicbVA9TwJBEJ3zE/ELtbTZSEysyB2NlkQaCwtM5COBC9lbFtiwt3vuzpEQwu+wsdAYW3+Mnf/GBa5Q8CWTvLw3k5l5USKFRd//9jY2t7Z3dnN7+f2Dw6Pjwslpw+rUMF5nWmrTiqjlUiheR4GStxLDaRxJ3oxG1bnfHHNjhVaPOEl4GNOBEn3BKDoprGqFhlok99rabqHol/wFyDoJMlKEDLVu4avT0yyNuUImqbXtwE8wnFKDgkk+y3dSyxPKRnTA244qGnMbThdHz8ilU3qkr40rhWSh/p6Y0tjaSRy5zpji0K56c/E/r51i/yacCpWkyBVbLuqnkqAm8wRITxjOUE4cocwIdythQ2ooQ5dT3oUQrL68ThrlUuCXgodysXKbxZGDc7iAKwjgGipwBzWoA4MneIZXePPG3ov37n0sWze8bOYM/sD7/AG0W5IJ</latexit>

Inference Branch<latexit sha1_base64="6u7gkD3HOApUTvDQfXUsBl9+EIQ=">AAAB+XicbVA9SwNBEJ2LXzF+nVraLAbBKtyl0TLERrsI5gOSEPY2c8mSvb1jdy8QjvwTGwtFbP0ndv4bN8kVmvhg4PHeDDPzgkRwbTzv2ylsbe/s7hX3SweHR8cn7ulZS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAeTu4XfnqLSPJZPZpZgP6IjyUPOqLHSwHUfZIgKJUNSV1Sy8cAtexVvCbJJ/JyUIUdj4H71hjFLI5SGCap11/cS08+oMpwJnJd6qcaEsgkdYddSSSPU/Wx5+ZxcWWVIwljZkoYs1d8TGY20nkWB7YyoGet1byH+53VTE972My6T1NjnVovCVBATk0UMZMgVMiNmllCmuL2VsDFVlBkbVsmG4K+/vEla1YrvVfzHarlWz+MowgVcwjX4cAM1uIcGNIHBFJ7hFd6czHlx3p2PVWvByWfO4Q+czx8S3ZNG</latexit><latexit sha1_base64="6u7gkD3HOApUTvDQfXUsBl9+EIQ=">AAAB+XicbVA9SwNBEJ2LXzF+nVraLAbBKtyl0TLERrsI5gOSEPY2c8mSvb1jdy8QjvwTGwtFbP0ndv4bN8kVmvhg4PHeDDPzgkRwbTzv2ylsbe/s7hX3SweHR8cn7ulZS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAeTu4XfnqLSPJZPZpZgP6IjyUPOqLHSwHUfZIgKJUNSV1Sy8cAtexVvCbJJ/JyUIUdj4H71hjFLI5SGCap11/cS08+oMpwJnJd6qcaEsgkdYddSSSPU/Wx5+ZxcWWVIwljZkoYs1d8TGY20nkWB7YyoGet1byH+53VTE972My6T1NjnVovCVBATk0UMZMgVMiNmllCmuL2VsDFVlBkbVsmG4K+/vEla1YrvVfzHarlWz+MowgVcwjX4cAM1uIcGNIHBFJ7hFd6czHlx3p2PVWvByWfO4Q+czx8S3ZNG</latexit><latexit sha1_base64="6u7gkD3HOApUTvDQfXUsBl9+EIQ=">AAAB+XicbVA9SwNBEJ2LXzF+nVraLAbBKtyl0TLERrsI5gOSEPY2c8mSvb1jdy8QjvwTGwtFbP0ndv4bN8kVmvhg4PHeDDPzgkRwbTzv2ylsbe/s7hX3SweHR8cn7ulZS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAeTu4XfnqLSPJZPZpZgP6IjyUPOqLHSwHUfZIgKJUNSV1Sy8cAtexVvCbJJ/JyUIUdj4H71hjFLI5SGCap11/cS08+oMpwJnJd6qcaEsgkdYddSSSPU/Wx5+ZxcWWVIwljZkoYs1d8TGY20nkWB7YyoGet1byH+53VTE972My6T1NjnVovCVBATk0UMZMgVMiNmllCmuL2VsDFVlBkbVsmG4K+/vEla1YrvVfzHarlWz+MowgVcwjX4cAM1uIcGNIHBFJ7hFd6czHlx3p2PVWvByWfO4Q+czx8S3ZNG</latexit><latexit sha1_base64="6u7gkD3HOApUTvDQfXUsBl9+EIQ=">AAAB+XicbVA9SwNBEJ2LXzF+nVraLAbBKtyl0TLERrsI5gOSEPY2c8mSvb1jdy8QjvwTGwtFbP0ndv4bN8kVmvhg4PHeDDPzgkRwbTzv2ylsbe/s7hX3SweHR8cn7ulZS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAeTu4XfnqLSPJZPZpZgP6IjyUPOqLHSwHUfZIgKJUNSV1Sy8cAtexVvCbJJ/JyUIUdj4H71hjFLI5SGCap11/cS08+oMpwJnJd6qcaEsgkdYddSSSPU/Wx5+ZxcWWVIwljZkoYs1d8TGY20nkWB7YyoGet1byH+53VTE972My6T1NjnVovCVBATk0UMZMgVMiNmllCmuL2VsDFVlBkbVsmG4K+/vEla1YrvVfzHarlWz+MowgVcwjX4cAM1uIcGNIHBFJ7hFd6czHlx3p2PVWvByWfO4Q+czx8S3ZNG</latexit>

Perception Branch
<latexit sha1_base64="pHXB65wgneSYmPnYH7FTX/aLD0k=">AAAB+nicbVDLTgIxFL3jE/EFunTTSExckRk2uiS4cYmJPBIgpFPuQEOnM2k7GjLyKW5caIxbv8Sdf2MHZqHgSZqcnnPv7e3xY8G1cd1vZ2Nza3tnt7BX3D84PDoulU/aOkoUwxaLRKS6PtUouMSW4UZgN1ZIQ19gx5/eZH7nAZXmkbw3sxgHIR1LHnBGjZWGpXIT7aA4u5CGopJNhqWKW3UXIOvEy0kFcjSHpa/+KGJJiNIwQbXueW5sBilVhjOB82I/0RhTNqVj7FkqaYh6kC5Wn5MLq4xIECl7pCEL9XdHSkOtZ6FvK0NqJnrVy8T/vF5igutBymWcGJRs+VCQCGIikuVARlwhM2JmCWWK210Jm1BFmbFpFW0I3uqX10m7VvXcqndXq9QbeRwFOINzuAQPrqAOt9CEFjB4hGd4hTfnyXlx3p2PZemGk/ecwh84nz8Q3JPa</latexit><latexit sha1_base64="pHXB65wgneSYmPnYH7FTX/aLD0k=">AAAB+nicbVDLTgIxFL3jE/EFunTTSExckRk2uiS4cYmJPBIgpFPuQEOnM2k7GjLyKW5caIxbv8Sdf2MHZqHgSZqcnnPv7e3xY8G1cd1vZ2Nza3tnt7BX3D84PDoulU/aOkoUwxaLRKS6PtUouMSW4UZgN1ZIQ19gx5/eZH7nAZXmkbw3sxgHIR1LHnBGjZWGpXIT7aA4u5CGopJNhqWKW3UXIOvEy0kFcjSHpa/+KGJJiNIwQbXueW5sBilVhjOB82I/0RhTNqVj7FkqaYh6kC5Wn5MLq4xIECl7pCEL9XdHSkOtZ6FvK0NqJnrVy8T/vF5igutBymWcGJRs+VCQCGIikuVARlwhM2JmCWWK210Jm1BFmbFpFW0I3uqX10m7VvXcqndXq9QbeRwFOINzuAQPrqAOt9CEFjB4hGd4hTfnyXlx3p2PZemGk/ecwh84nz8Q3JPa</latexit><latexit sha1_base64="pHXB65wgneSYmPnYH7FTX/aLD0k=">AAAB+nicbVDLTgIxFL3jE/EFunTTSExckRk2uiS4cYmJPBIgpFPuQEOnM2k7GjLyKW5caIxbv8Sdf2MHZqHgSZqcnnPv7e3xY8G1cd1vZ2Nza3tnt7BX3D84PDoulU/aOkoUwxaLRKS6PtUouMSW4UZgN1ZIQ19gx5/eZH7nAZXmkbw3sxgHIR1LHnBGjZWGpXIT7aA4u5CGopJNhqWKW3UXIOvEy0kFcjSHpa/+KGJJiNIwQbXueW5sBilVhjOB82I/0RhTNqVj7FkqaYh6kC5Wn5MLq4xIECl7pCEL9XdHSkOtZ6FvK0NqJnrVy8T/vF5igutBymWcGJRs+VCQCGIikuVARlwhM2JmCWWK210Jm1BFmbFpFW0I3uqX10m7VvXcqndXq9QbeRwFOINzuAQPrqAOt9CEFjB4hGd4hTfnyXlx3p2PZemGk/ecwh84nz8Q3JPa</latexit><latexit sha1_base64="pHXB65wgneSYmPnYH7FTX/aLD0k=">AAAB+nicbVDLTgIxFL3jE/EFunTTSExckRk2uiS4cYmJPBIgpFPuQEOnM2k7GjLyKW5caIxbv8Sdf2MHZqHgSZqcnnPv7e3xY8G1cd1vZ2Nza3tnt7BX3D84PDoulU/aOkoUwxaLRKS6PtUouMSW4UZgN1ZIQ19gx5/eZH7nAZXmkbw3sxgHIR1LHnBGjZWGpXIT7aA4u5CGopJNhqWKW3UXIOvEy0kFcjSHpa/+KGJJiNIwQbXueW5sBilVhjOB82I/0RhTNqVj7FkqaYh6kC5Wn5MLq4xIECl7pCEL9XdHSkOtZ6FvK0NqJnrVy8T/vF5igutBymWcGJRs+VCQCGIikuVARlwhM2JmCWWK210Jm1BFmbFpFW0I3uqX10m7VvXcqndXq9QbeRwFOINzuAQPrqAOt9CEFjB4hGd4hTfnyXlx3p2PZemGk/ecwh84nz8Q3JPa</latexit>

. . .<latexit sha1_base64="PmPAlVRiI/Ad0a1xALfboBAV5Jw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3R+FCs2gWnPr7hxklXgFqUGB5qD61Q8Vy2KeIJPUmJ7npujnVKNgkk8r/czwlLIxHfKepQmNufHz+bVTcmaVkERK20qQzNXfEzmNjZnEge2MKY7MsjcT//N6GUbXfi6SNEOesMWiKJMEFZm9TkKhOUM5sYQyLeythI2opgxtQBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYweIRneIU3RzkvzrvzsWgtOcXMMfyB8/kDtf+PNA==</latexit><latexit sha1_base64="PmPAlVRiI/Ad0a1xALfboBAV5Jw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3R+FCs2gWnPr7hxklXgFqUGB5qD61Q8Vy2KeIJPUmJ7npujnVKNgkk8r/czwlLIxHfKepQmNufHz+bVTcmaVkERK20qQzNXfEzmNjZnEge2MKY7MsjcT//N6GUbXfi6SNEOesMWiKJMEFZm9TkKhOUM5sYQyLeythI2opgxtQBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYweIRneIU3RzkvzrvzsWgtOcXMMfyB8/kDtf+PNA==</latexit><latexit sha1_base64="PmPAlVRiI/Ad0a1xALfboBAV5Jw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3R+FCs2gWnPr7hxklXgFqUGB5qD61Q8Vy2KeIJPUmJ7npujnVKNgkk8r/czwlLIxHfKepQmNufHz+bVTcmaVkERK20qQzNXfEzmNjZnEge2MKY7MsjcT//N6GUbXfi6SNEOesMWiKJMEFZm9TkKhOUM5sYQyLeythI2opgxtQBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYweIRneIU3RzkvzrvzsWgtOcXMMfyB8/kDtf+PNA==</latexit><latexit sha1_base64="PmPAlVRiI/Ad0a1xALfboBAV5Jw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3R+FCs2gWnPr7hxklXgFqUGB5qD61Q8Vy2KeIJPUmJ7npujnVKNgkk8r/czwlLIxHfKepQmNufHz+bVTcmaVkERK20qQzNXfEzmNjZnEge2MKY7MsjcT//N6GUbXfi6SNEOesMWiKJMEFZm9TkKhOUM5sYQyLeythI2opgxtQBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYweIRneIU3RzkvzrvzsWgtOcXMMfyB8/kDtf+PNA==</latexit>

. . .<latexit sha1_base64="PmPAlVRiI/Ad0a1xALfboBAV5Jw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3R+FCs2gWnPr7hxklXgFqUGB5qD61Q8Vy2KeIJPUmJ7npujnVKNgkk8r/czwlLIxHfKepQmNufHz+bVTcmaVkERK20qQzNXfEzmNjZnEge2MKY7MsjcT//N6GUbXfi6SNEOesMWiKJMEFZm9TkKhOUM5sYQyLeythI2opgxtQBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYweIRneIU3RzkvzrvzsWgtOcXMMfyB8/kDtf+PNA==</latexit><latexit sha1_base64="PmPAlVRiI/Ad0a1xALfboBAV5Jw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3R+FCs2gWnPr7hxklXgFqUGB5qD61Q8Vy2KeIJPUmJ7npujnVKNgkk8r/czwlLIxHfKepQmNufHz+bVTcmaVkERK20qQzNXfEzmNjZnEge2MKY7MsjcT//N6GUbXfi6SNEOesMWiKJMEFZm9TkKhOUM5sYQyLeythI2opgxtQBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYweIRneIU3RzkvzrvzsWgtOcXMMfyB8/kDtf+PNA==</latexit><latexit sha1_base64="PmPAlVRiI/Ad0a1xALfboBAV5Jw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3R+FCs2gWnPr7hxklXgFqUGB5qD61Q8Vy2KeIJPUmJ7npujnVKNgkk8r/czwlLIxHfKepQmNufHz+bVTcmaVkERK20qQzNXfEzmNjZnEge2MKY7MsjcT//N6GUbXfi6SNEOesMWiKJMEFZm9TkKhOUM5sYQyLeythI2opgxtQBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYweIRneIU3RzkvzrvzsWgtOcXMMfyB8/kDtf+PNA==</latexit><latexit sha1_base64="PmPAlVRiI/Ad0a1xALfboBAV5Jw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3R+FCs2gWnPr7hxklXgFqUGB5qD61Q8Vy2KeIJPUmJ7npujnVKNgkk8r/czwlLIxHfKepQmNufHz+bVTcmaVkERK20qQzNXfEzmNjZnEge2MKY7MsjcT//N6GUbXfi6SNEOesMWiKJMEFZm9TkKhOUM5sYQyLeythI2opgxtQBUbgrf88ippX9Q9t+7dX9YaN0UcZTiBUzgHD66gAXfQhBYweIRneIU3RzkvzrvzsWgtOcXMMfyB8/kDtf+PNA==</latexit>

Encoder<latexit sha1_base64="EV4yW81Z5ZTI/hR7iGeb9Zwkl5s=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4Kkk96LEogscK9gPaUDabSbt0swm7G6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/nbX1jc2t7dJOeXdv/+CwcnTc1kmmGLZYIhLVDahGwSW2DDcCu6lCGgcCO8H4duZ3nlBpnshHM0nRj+lQ8ogzaqzUuZMsCVENKlW35s5BVolXkCoUaA4qX/0wYVmM0jBBte55bmr8nCrDmcBpuZ9pTCkb0yH2LJU0Ru3n83On5NwqIYkSZUsaMld/T+Q01noSB7Yzpmakl72Z+J/Xy0x07edcpplByRaLokwQk5DZ7yTkCpkRE0soU9zeStiIKsqMTahsQ/CWX14l7XrNu6zVH+rVxk0RRwlO4QwuwIMraMA9NKEFDMbwDK/w5qTOi/PufCxa15xi5gT+wPn8AUGSj4I=</latexit>

Figure 3.6: (a) An example of RPM. The hidden rule(s) in this problem can be denoted
as trOR, line, typesu, where an OR operation is applied to the type attribute of all lines,
following the notations in [BHS18]. It is further noted that the OR operation is applied
row-wise, and there is only one choice that satisfies the row-wise OR constraint. Hence the
correct answer should be 5. (b) The proposed CoPINet architecture. Given a RPM problem,
the inference branch samples a most likely rule for each attribute based only on the context
O of the problem. Sampled rules are transformed and fed into each contrast module in the
perception branch. Note that the combination of the contrast module and the residual block
can be repeated. Dashed lines indicate that parameters are shared among the modules. (c)
A sketch of the contrast module.

This work makes four major contributions:

‚ We introduce two levels of contrast to improve machines’ reasoning ability in RPM. At the

model level, we design a contrast module that aggregates common features and projects

each candidate to its residual. At the objective level, we use an NCE loss variant instead

of the cross-entropy to encourage contrast effects.

‚ Inspired by [CJS90], we incorporate an inference module to learn with the perception

backbone jointly. Instead of using ground-truth, we regularize it with a fixed number of

bases.

‚ We make our model permutation-invariant in terms of swapped rows or columns and shuf-

fled answer candidates, shifting the previous view of RPM from classification to ranking.

‚ Combining ideas above, we propose CoPINet that sets new state-of-the-art on two major

datasets.
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3.2.2 Related Work

Contrastive Learning Teaching concepts by comparing cases, or contrasting, has proven

effective in both human learning and machine learning. [Gen83] postulates that human’s

learning-by-comparison process is a structural mapping and alignment process. A later arti-

cle [GM94] firmly supports this conjecture and shows finding the individual difference is easier

for humans when similar items are compared. Recently, [SG14] conclude that learning by

comparing two contrastive cases facilitates the distinction between two complex interrelated

relational concepts. Evidence in educational research further strengthens the importance of

contrasting—quantitative structure of empirical phenomena is less demanding to learn when

contrasting cases are used [SCO11, CSS10, SM04]. All the literature calls for a similar treat-

ment of contrast in machine learning. While techniques from [CHL05, WS09, WG15] are

based on triplet loss using max margin to separate positive and negative samples, negative

contrastive samples and negative sampling are proposed for language modeling [SE05] and

word embedding [MSC13, KZS15], respectively. [GH10] discuss a general learning framework

called Noise-Contrastive Estimation (NCE) for estimating parameters by taking noise sam-

ples into consideration, which [DL17] follow to learn an effective image captioning model.

A recent work [HSB19] leverages contrastive learning in RPM; however, it focuses on data

presentation while leaving the question of modeling and learning unanswered.

Computational Models on RPM The cognitive science community is the first to in-

vestigate RPM with computational models. Assuming access to a perfect state represen-

tation, structure-mapping theory [Gen83] and the high-level perception theory of anal-

ogy [CFH92, Mit93] are designed with heuristics to solve the RPM problem at a symbolic

level [CJS90, LF17, LFU10, LTF09]. Another stream of research approaches the problem

by measuring the image similarity with hand-crafted state representations [LLG12, MG14,

MKG14b, MSD18, SG18a]. More recently, end-to-end data-driven methods with raw image

input are proposed [ZGJ19, HSB19, BHS18, WS15]. [WS15] introduce an automatic RPM
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generation method. [BHS18] release the first large-scale RPM dataset and present a rela-

tional model [SRB17] designed for it. [SLV18] propose a pretrained β-VAE to improve the

generalization performance of models on RPM. [ZGJ19] provide another dataset with struc-

tural annotations using stochastic image grammar [ZM07, PZ15, WXZ07]. [HSB19] take a

different approach and study how data presentation affects learning.

3.2.3 Learning Perceptual Inference by Contrasting

The task of RPM can be formally defined as: given a list of observed images O “ toiu
8
i“1,

forming a 3 ˆ 3 matrix with a final missing element, a solver aims to find an answer a‹

from an unordered set of choices A “ taiu
8
i“1 to best complete the matrix. Permutation

invariance is a unique property for RPM problems: (1) According to [CJS90], the same set

of rules is applied either row-wise or column-wise. Therefore, swapping the first two rows or

columns should not affect how one solves the problem. (2) In any multi-choice task, changing

the order of answer candidates should not affect how one solves the problem either. These

properties require us to use a permutation-invariant encoder and reformulate the problem

from a typical classification problem into a ranking problem. Formally, in a probabilistic

formulation, we seek to find a model such that

ppa‹|Oq ě ppa1
|Oq, @a1

P A, a1
‰ a‹, (3.6)

where the probability is invariant when rows or columns in O are swapped. This formulation

also calls for a model that produces a density estimation for each choice, regardless of its

order in A. To that end, we model the probability with a neural network equipped with

a permutation-invariant encoder for each observation-candidate pair fpO Y aq. However,

we argue such a purely perceptive system is far from sufficient without contrasting and

perceptual inference.
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3.2.3.1 Contrasting

To provide the reasoning system with a mechanism of contrasting, we propose to explicitly

build two levels of contrast: model-level contrast and objective-level contrast.

Model-level Contrast As the central notion of contrast is comparing cases [SG14, SCO11,

CSS10, SM04], we propose an explicit model-level contrasting mechanism in the following

form,

ContrastpFOYaq “ FOYa ´ h

˜

ÿ

a1PA
FOYa1

¸

, (3.7)

where F denotes features of a specific combination and hp¨q summarizes the common features

in all candidate answers. In our experiments, hp¨q is a composition of BatchNorm [IS15] and

Conv.

Intuitively, this explicit contrasting computation enables a reasoning system to tell distin-

guishing features for each candidate in terms of fitting and following the rules hidden among

all panels in the incomplete matrix. The philosophy behind this design is to constrain the

functional form of the model to capture both the commonality and the difference in each

instance. It is expected that the very inductive bias on comparing similarity and distinctness

is baked into the entire reasoning system such that learning in the challenging task becomes

easier.

In a generalized setting, each O Y a could be abstracted out as an object. Then the

design becomes a general contrast module, where each object is distinguished by comparing

with the common features extracted from an object set.

We further note that the contrasting computation can be encapsulated into a single neural

module and repeated: the addition and transformation are shared and the subtraction is

performed on each individual element. See Figure 3.6(c) for a sketch of the contrast module.

After such operations, permutation invariance of a model will not be broken.
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Objective-level Contrast To further enforce the contrast effects, we propose to use an

NCE variant rather than the cross-entropy loss commonly used in previous works [ZGJ19,

BHS18]. While there are several ways to model the probability in Equation 3.6, we use a

Gibbs distribution in this work:

ppa|Oq “
1

Z
exppfpO Y aqq, (3.8)

where Z is the partition function, and our model fp¨q corresponds to the negative poten-

tial function. Note that such a distribution has been widely adopted in image generation

models [ZWM98, WXL18, XLZ16].

In this case, we can take the log of both sides in Equation 3.6 and rearrange terms:

log ppa‹|Oq ´ log ppa1
|Oq “ fpO Y a‹q ´ fpO Y a1

q ě 0, @a1
P A, a1

‰ a‹. (3.9)

This formulation could potentially lead to a max margin loss. However, we notice in our

preliminary experiments that max margin is not sufficient; we realize it is inferior to make

the negative potential of the wrong choices only slightly lower. Instead, we would like to

further push the difference to infinity. To do that, we leverage the sigmoid function σp¨q and

train the model, such that:

fpO Y a‹q ´ fpO Y a1
q Ñ 8 ðñ σpfpO Y a‹q ´ fpO Y a1

qq Ñ 1, @a1
P A, a1

‰ a‹. (3.10)

However, we notice that the relative difference of negative potential is still problematic. We

hypothesize this deficiency is due to the lack of a baseline—without such a regularization,

the negative potential of wrong choices could still be very high, resulting in difficulties in

learning the negative potential of the correct answer. To this end, we modify Equation 3.10
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into its sufficient conditions:

fpO Y a‹q ´ bpO Y a‹q Ñ 8 ðñ σpfpO Y a‹q ´ bpO Y a‹qq Ñ 1 (3.11)

fpO Y a1
q ´ bpO Y a1

q Ñ ´8 ðñ σpfpO Y a1
q ´ bpO Y a1

qq Ñ 0, (3.12)

where bp¨q is a fixed baseline function and a1 P A, a1 ‰ a‹. For implementation, bp¨q could be

either a randomly initialized network or a constant. Since the two settings do not produce

significantly different results in our preliminary experiments, we set bp¨q to be a constant to

reduce computation.

We then optimize the network to maximize the following objective as done in [GH10]:

ℓ “ logpσpfpO Y a‹q ´ bpO Y a‹qqq `
ÿ

a1PA,a1‰a‹

logp1 ´ σpfpO Y a1
q ´ bpO Y a1

qqq. (3.13)

Connection to NCE If we treat the baseline as the negative potential of a fixed noise

model of the same Gibbs form and ignore the difference between the partition functions,

Equation 3.11 and Equation 3.12 become the G function used in NCE [GH10]. But unlike

NCE, we do not need to multiply the size ratio in the sigmoid function [DL17].

3.2.3.2 Perceptual Inference

As indicated in [CJS90], a mere perceptive model for RPM is arguably not enough. Therefore,

we propose to incorporate a simple inference subsystem into the model: the inference branch

should be responsible for inferring the hidden rules in the problem. Specifically, we assume

there are at most N attributes in each problem, each of which is subject to the governance

of one of M rules. Then hidden rules T in one problem instance can be decomposed into

ppT |Oq “

N
ź

i“1

ppti|Oq, (3.14)
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where ti “ 1 . . .M denotes the rule type on attribute ni. For the actual form of the probabil-

ity of rules on each attribute, we propose to model it using a multinomial distribution. This

assumption is consistent with the way datasets are usually generated [ZGJ19, BHS18, WS15]:

one rule is independently picked from the rule set for each attribute. In this way, each rule

could also be regarded as a basis in a rule dictionary and jointly learned, as done in active

basis [WSG10] or word embedding [MSC13, PSM14].

If we treat rules as hidden variables, the log probability in Equation 3.9 can be decom-

posed into

log ppa|Oq “ log
ÿ

T
ppa|T ,OqppT |Oq “ logET „ppT |Oqrppa|T ,Oqs. (3.15)

Note that writing the summation in the form of expectation affords sampling algorithms,

which can be done on each individual attribute due to the independence assumption.

In addition, if we model ppT |Oq as an inference branch gp¨q and sample only once from

it, the model can be modified into fpO Y a, T̂ q with T̂ sampled from gpOq. Following the

same derivation above, we now optimize the new objective:

ℓ “ logpσpfpO Y a‹, T̂ q ´ bpO Y a‹qqq `
ÿ

a1PA,a1‰a‹

logp1 ´ σpfpO Y a1, T̂ q ´ bpO Y a1
qqq. (3.16)

To sample from a multinomial, we could either use hard sampling like Gumbel-SoftMax [JGP16,

MMT16] or a soft one by taking expectation. We do not observe significant difference be-

tween the two settings.

The expectation in Equation 3.15 is proposed primarily to make the computation of the

exact log probability controllable and tractable: while the full summation requires OpMNq

passes of the model, a Monte Carlo approximation of it could be calculated in Op1q time.

We also note that if ppT |Oq is highly peaked (e.g ., ground truth), the Monte Carlo estimate

could be accurate as well. Despite the fact that we only sample once from an inference
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branch to reduce computation, we find in practice the Monte Carlo estimate works quite

well.

3.2.3.3 Architecture

Combining contrasting, perceptual inference, and permutation invariance, we propose a new

network architecture to solve the challenging RPM problem, named Contrastive Perceptual

Inference network (CoPINet). The perception branch is composed of a common feature

encoder and shared interweaving contrast modules and residual blocks [HZR16]. The encoder

first extracts image features independently for each panel and sum ones in the corresponding

rows and columns before the final transformation into a latent space. The inference branch

consists of the same encoder and a (Gumbel-)SoftMax output layer. The sampled results

will be transformed and concatenated channel-wise into the summation in Equation 3.7.

In our implementation, we prepend each residual block with a contrast module; such a

combination can be repeated while keeping the network permutation-invariant. The network

finally uses an MLP to produce a negative potential for each observation and candidate pair

and is trained using Equation 3.16; see Figure 3.6(b) for a graphical illustration of the entire

CoPINet architecture.

3.2.4 Experiments

3.2.4.1 Experimental Setup

We verify the effectiveness of our models on two major RPM datasets: RAVEN [ZGJ19]

and PGM [BHS18]. Across all experiments, we train models on the training set, tune

hyper-parameters on the validation set, and report the final results on the test set. All

of the models are implemented in PyTorch [PGC17] and optimized using ADAM [KB14].

While a good performance of WReN [BHS18] and ResNet+DRT [ZGJ19] relies on exter-

nal supervision, such as rule specifications and structural annotations, the proposed model
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achieves better performance with only O, A, and a‹. Models are trained on servers with four

Nvidia RTX Titans. For the WReN model, we use a public implementation that reproduces

results in [BHS18]2. We implement our models in PyTorch [PGC17] and optimize using

ADAM [KB14]. During training, we perform early-stop based on validation loss. We use the

same network architecture and hyper-parameters in both RAVEN and PGM experiments.

3.2.4.2 Results on RAVEN

There are 70, 000 problems in the RAVEN dataset [ZGJ19], equally distributed in 7 figure

configurations. In each configuration, the dataset is randomly split into 6 folds for training, 2

folds for validation, and 2 folds for testing. We compare our model with several simple base-

lines (LSTM [HS97], CNN [HW17], and vanilla ResNet [HZR16]) and two strong baselines

(WReN [BHS18] and ResNet+DRT [ZGJ19]). Model performance is measured by accuracy.

General Performance on RAVEN In this experiment, we train the models on all 42, 000

training samples and measure how they perform on the test set. The first part of Table 3.6

shows the testing accuracy of all models. We also retrieve the performance of humans and

a solver with perfect information from [ZGJ19] for comparison. As shown in the table, the

proposed model CoPINet achieves the best performance among all the models we test. For

the relational model WReN proposed in [BHS18], we run the tests on a permutation-invariant

version, i.e., one without positional tagging (NoTag), and tune the model also to minimize an

auxiliary loss (Aux) [BHS18]. While the auxiliary loss could boost the performance of WReN

as we will show later in the ablation study, we do not observe similar effects on CoPINet.

As indicated in the detailed comparisons in Table 3.6, WReN is biased towards images

of grid configurations and does poorly on ones demanding compositional reasoning, i.e.,

ones with independent components. We further note that compared to previously proposed

models (WReN [BHS18] and ResNet+DRT [ZGJ19]), CoPINet does not require additional

2https://github.com/Fen9/WReN
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information such as structural annotations and meta targets and still shows human-level

performance in this task. When comparing the performance of CoPINet and human on

specific figure configurations, we notice that CoPINet is inferior in learning samples of grid-

like compositionality but efficient in distinguishing images consisting of multiple components,

implying the efficiency of the contrasting mechanism.

Ablation Study One problem of particular interest in building CoPINet is how each com-

ponent contributes to performance improvement. To answer this question, we measure model

accuracy by gradually removing each construct in CoPINet, i.e., the perceptual inference

branch, the contrast loss, and the contrast module. In the second part of Table 3.6, we show

the results of ablation on CoPINet. Both the full model (CoPINet) and the one without the

perceptual inference branch (CoPINet-Contrast-CL) could achieve human-level performance,

with the latter slightly inferior to the former. If we further replace the contrast loss with the

cross-entropy loss (CoPINet-Contrast-XE), we observe a noticeable performance decrease

of around 4%, verifying the effectiveness of the contrast loss. A catastrophic performance

Method Acc Center 2x2Grid 3x3Grid L-R U-D O-IC O-IG

LSTM 13.07% 13.19% 14.13% 13.69% 12.84% 12.35% 12.15% 12.99%
WReN-NoTag-Aux 17.62% 17.66% 29.02% 34.67% 7.69% 7.89% 12.30% 13.94%
CNN 36.97% 33.58% 30.30% 33.53% 39.43% 41.26% 43.20% 37.54%
ResNet 53.43% 52.82% 41.86% 44.29% 58.77% 60.16% 63.19% 53.12%
ResNet+DRT 59.56% 58.08% 46.53% 50.40% 65.82% 67.11% 69.09% 60.11%
CoPINet 91.42% 95.05% 77.45% 78.85% 99.10% 99.65% 98.50% 91.35%

WReN-NoTag-NoAux 15.07% 12.30% 28.62% 29.22% 7.20% 6.55% 8.33% 13.10%
WReN-Tag-NoAux 17.94% 15.38% 29.81% 32.94% 11.06% 10.96% 11.06% 14.54%
WReN-Tag-Aux 33.97% 58.38% 38.89% 37.70% 21.58% 19.74% 38.84% 22.57%
CoPINet-Backbone-XE 20.75% 24.00% 23.25% 23.05% 15.00% 13.90% 21.25% 24.80%
CoPINet-Contrast-XE 86.16% 87.25% 71.05% 74.45% 97.25% 97.05% 93.20% 82.90%
CoPINet-Contrast-CL 90.04% 94.30% 74.00% 76.85% 99.05% 99.35% 98.00% 88.70%

Human 84.41% 95.45% 81.82% 79.55% 86.36% 81.81% 86.36% 81.81%
Solver 100% 100% 100% 100% 100% 100% 100% 100%

Table 3.6: Testing accuracy of models on RAVEN. Acc denotes the mean accuracy of each
model. Same as in [ZGJ19], L-R denotes the Left-Right configuration, U-D Up-Down, O-IC
Out-InCenter, and O-IG Out-InGrid.
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downgrade of 66% is observed if we remove the contrast module, leaving only the network

backbone (CoPINet-Backbone-XE). This drastic performance gap shows that the functional

constraint on modeling an explicit contrasting mechanism is arguably a crucial factor in

machines’ reasoning ability as well as in humans’. The ablation study shows that all the

three proposed constructs, especially the contrast module, are critical to the performance of

CoPINet. We also study how the requirement of permutation invariance and auxiliary train-

ing affect the previously proposed WReN. As shown in Table 3.6, sacrificing the permutation

invariance (Tag) provides the model a huge upgrade during auxiliary training (Aux), com-

pared to the one without tagging (NoTag) and auxiliary loss (NoAux). This effect becomes

even more significant on the PGM dataset, as we will show in subsubsection 3.2.4.3.

Dataset Size and Performance Even though CoPINet surpasses human performance

on RAVEN, this competition is inherently unfair, as the human subjects in this study never

experience such an intensive training session as our model does. To make the comparison

fairer and also as a step towards a model capable of human learning efficiency, we further

measure how the model performance changes as the training set size shrinks. To this end,

we train our CoPINet on subsets of the full RAVEN training set and test it on the full test

set. As shown on Table 3.8 and Table 3.7, the model performance varies roughly log-linearly

with the training set size. One surprising observation is: with only half of the amount of

the data, we could already achieve human-level performance. On a training set 16ˆ smaller,

CoPINet outperforms all previous models. And on a subset 64ˆ smaller, CoPINet already

outshines WReN.

3.2.4.3 Results on PGM

We use the neutral regime of the PGM dataset for model evaluation due to its diversity and

richness in relationships, objects, and attributes. This split of the dataset has in total 1.42

million samples, with 1.2 million for training, 2, 000 for validation, and 200, 000 for testing.
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Table 3.7: CoPINet on
RAVEN and PGM as the
training set size shrinks.

Training set size Acc

658 44.48%
1, 316 57.69%
2, 625 65.55%
5, 250 74.53%
10, 500 80.92%
21, 000 86.43%

Table 3.8: Model performance
under different training set
sizes on RAVEN dataset. The
full training set has 42, 000
samples.

Training set size Acc

293 14.73%
1, 172 15.48%
4, 688 18.39%
18, 750 22.07%
75, 000 32.39%
300, 000 43.89%

Table 3.9: Model performance
under different training set
sizes on PGM dataset. The
full training set has 1.2 million
samples.

We train the models on the training set, tune the hyperparameters on the validation set,

and evaluate the performance on the test set. We compare our models with baselines set

up in [BHS18], i.e., LSTM, CNN, ResNet, Wild-ResNet, and WReN. As ResNet+DRT

proposed in [ZGJ19] requires structural annotations not available in PGM, we are unable to

measure its performance. Again, all performance is measured by accuracy. Due to the lack

of further stratification on this training regime, we only report the final mean accuracy.

General Performance on PGM In this experiment, we train the models on all 1.2 mil-

lion training samples and report performance on the entire test set. As shown in Table 3.10,

CoPINet achieves the best performance among all permutation-invariant models, setting a

new state-of-the-art on this dataset. Similar to the setting in RAVEN, we make the previ-

ously proposed WReN permutation-invariant by removing the positional tagging (NoTag)

and train it with both cross-entropy loss and auxiliary loss (Aux) [BHS18]. The auxiliary loss

could boost the performance of WReN. However, in coherence with the study on RAVEN

and a previous work [ZGJ19], we notice that the auxiliary loss does not help our CoPINet. It

is worth noting that while WReN demands additional training supervision from meta targets

to reach the performance, CoPINet only requires basic annotations of ground truth indices

a‹ and achieves better results.
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Method CNN LSTM ResNet Wild-ResNet WReN-NoTag-Aux CoPINet

Acc 33.00% 35.80% 42.00% 48.00% 49.10% 56.37%

Table 3.10: Testing accuracy of models on PGM. Acc denotes the mean accuracy of each
model.

Ablation Study We perform ablation studies on both WReN and CoPINet to see how

the requirement of permutation invariance affects WReN and how each module in CoPINet

contributes to its superior performance. The notations are the same as those used in the

ablation study for RAVEN. As shown in the first part of Table 3.11, adding a proper aux-

iliary loss does provide WReN a 10% performance boost. However, additional supervision

is required. Making the model permutation-sensitive gives the model a significant benefit

by up to a 28% accuracy increase; however, it also indicates that WReN learns to shortcut

the solutions by coding the positional association, instead of truly understanding the differ-

ences among distinctive choices and their potential effects on the compatibility of the entire

matrix. The second part of Table 3.11 demonstrates how each construct contributes to the

performance improvement of CoPINet on PGM. Despite the smaller enhancement of the

contrast loss compared to that in RAVEN, the upgrade from the contrast module for PGM

is still significant, and the perceptual inference branch keeps raising the final performance.

In accordance with the ablation study on the RAVEN dataset, we show that all the proposed

components contribute to the final performance increase.

Method WReN-NoTag-NoAux WReN-NoTag-Aux WReN-Tag-NoAux WReN-Tag-Aux

Acc 39.25% 49.10% 62.45% 77.94%

Method CoPINet-Backbone-XE CoPINet-Contrast-XE CoPINet-Contrast-CL CoPINet

Acc 42.10% 51.04% 54.19% 56.37%

Table 3.11: Ablation study on PGM.

Dataset Size and Performance Motivated by the idea of fairer comparison and low-

shot reasoning, we also measure how the performance of the proposed CoPINet changes as
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the training set size of PGM varies. Specifically, we train CoPINet on subsets of the PGM

training set and test it on the entire test set. As shown in Table 3.9 and Table 3.7, CoPINet

performance on PGM varies roughly log-exponentially with respect to the training set size.

We further note that when trained on a 16ˆ smaller dataset, CoPINet already achieves

results similar to CNN and LSTM.

3.2.5 Conclusion and Discussion

In this work, we aim to improve machines’ reasoning ability in “thinking in pictures” by

jointly learning perception and inference via contrasting. Specifically, we introduce the

contrast module, the contrast loss, and the joint system of perceptual inference. We also

require our model to be permutation-invariant. In a typical and challenging task of this

kind, Raven’s Progressive Matrices (RPM), we demonstrate that our proposed model—

Contrastive Perceptual Inference network (CoPINet)—achieves the new state-of-the-art for

permutation-invariant models on two major RPM datasets. Further ablation studies show

that all the three proposed components are effective towards improving the final results,

especially the contrast module. It also shows that the permutation invariance forces the

model to understand the effects of different choices on the compatibility of an entire RPM

matrix, rather than remembering the positional association and shortcutting the solutions.

While it is encouraging to see the performance improvement of the proposed ideas on two

big datasets, it is the last part of the experiments, i.e., dataset size and performance, that

really intrigues us. With infinitely large datasets that cover the entirety of an arbitrarily

complex problem domain, it is arguably possible that a simple over-parameterized model

could solve it. However, in reality, there is barely any chance that one would observe all the

domain, yet humans still learn quite efficiently how the hidden rules work. We believe this

is the core where the real intelligence lies: learning from only a few samples and generalizing

to the extreme. Even though CoPINet already demonstrates better learning efficiency, it

would be ideal to have models capable of few-shot learning in the task of RPM. Without
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massive datasets, it would be a real challenge, and we hope this work could call for future

research into it.

Performance, however, is definitely not the end goal in the line of research on relational

and analogical visual reasoning: other dimensions for measurements include generalization,

generability, and transferability. Is it possible for a model to be trained on a single configu-

ration and generalize to other settings? Can we generate the final answer based on the given

context panels, in a similar way to the top-down and bottom-up method jointly applied by

humans for reasoning? Can we transfer the relational and geometric knowledge required

in the reasoning task from other tasks? Questions like these are far from being answered.

While [ZGJ19] show in the experiments that neural models do possess a certain degree of

generalizability, the testing accuracy is far from satisfactory. In the meantime, there are a

plethora of discriminative approaches towards solving reasoning problems in question an-

swering, but generative methods and combined methods are lacking. The relational and

analogical reasoning was initially introduced as a way to measure a human’s intelligence,

without training humans on the task. However, current settings uniformly reformulate it

as a learning problem rather than a transfer problem, contradictory to why the task was

started. Up to now, there has been barely any work that measures how knowledge on an-

other task could be transferred to this one. We believe that significant advances in these

dimensions would possibly enable Artificial Intelligence (AI) models to go beyond data fitting

and acquire symbolized knowledge.

While modern computer vision techniques to solve Raven’s Progressive Matrices (RPM)

are based on neural networks, a promising ingredient is nowhere to be found: Gestalt psy-

chology. Traces of the perceptual grouping and figure-ground organization are gradually

faded out in the most recent wave of deep learning. However, the principles of grouping,

both classical (e.g ., proximity, closure, and similarity) and new (e.g ., synchrony, element,

and uniform connectedness) play an essential role in RPM, as humans arguably solve these

problems by first figuring out groups and then applying the rules. We anticipate that modern
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deep learning methods integrated with the tradition of conceptual and theoretical founda-

tions of the Gestalt approach would further improve models on abstract reasoning tasks like

RPM.

3.3 Visual Language Reasoning with Commonsense Knowledge

Outside-knowledge visual question answering (OK-VQA) requires the agent to comprehend

the image, make use of relevant knowledge from the entire web, and digest all the informa-

tion to answer the question. Most previous works address the problem by first fusing the

image and question in the multi-modal space, which is inflexible for further fusion with a

vast amount of external knowledge. In this work, we call for an alternative paradigm for the

OK-VQA task, which transforms the image into plain text, so that we can enable knowledge

passage retrieval, and generative question-answering in the natural language space. This

paradigm takes advantage of the sheer volume of gigantic knowledge bases and the richness

of pre-trained language models. A Transform-Retrieve-Generate framework (TRiG) frame-

work is proposed3, which can be plug-and-played with alternative image-to-text models and

textual knowledge bases. Experimental results show that our TRiG framework outperforms

all state-of-the-art supervised methods by at least 11.1% absolute margin.

3.3.1 Introduction

The visual question answering (VQA) task is to provide a natural language answer to a natu-

ral language question given an image[AAL15]. This task has been well studied in the research

communities, and numerous cross-modal methods have achieved state-of-the-art performance

[SNS19, YYC19, JMR20, GXT21, YLL20, LBP19, CLY19, LYL20, ZLH21, LGN20]. The

knowledge-based visual question answering (KB-VQA) task requires more extensive learning

since the questions can be answered only by referring to external general knowledge[SMY19,

3The code of this work will be made public.
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Figure 3.7: An intuitive example of our TRiG framework on the OK-VQA problem. Our
Framework transform all information into language space and performs retrieved-based ques-
tion answering through generative language models.

WWS15, WWS17, LJZ18, SMY19]. Most KB-VQA datasets come with pre-defined knowl-

edge bases, and each question is annotated with at least one supporting knowledge fact.

Moreover, the recently proposed outside-knowledge visual question answering (OK-VQA)

task is the most open in the sense that any external knowledge can be used to answer the

questions.

Consider the example in Figure 3.7. As a human, one needs to first identify objects like

giraffes and trees in the image, and associate the giraffes to the word animal in the question.

Second, the human needs to apply his/her acquired commonsense knowledge about giraffe’s

characteristics and answer the question that giraffe is known for having a long neck. For

machine learning models to solve the same problem, there are several unique challenges.

First, in order to answer such a question, one has to align the image, the question, and

the vast amount of knowledge passages into one common space. One solution is to first

fuse the image and question information in the multi-modal space with pre-trained vision-

language models, and then inject knowledge into the multi-modal space. Most previous work
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on OK-VQA follow this paradigm, including directly injecting the knowledge embeddings

[GZA20, STD21] and fusing the output of a vision-language model with the knowledge

graph through graph convolutional network[MCP21]. However, this paradigm is at the cost

of squeezing the rich representation of the textual knowledge, in the magnitude of hundreds

of millions, into a much smaller multi-modal space. Comparing to knowledge corpus such as

BookCorpus (800M words) and English Wikipedia (2,500M words), multi-modal pretraining

datasets are much smaller such as Visual Genome with 0.01 million images and less than 2

million question-answer pairs[KZG17], which leads to less knowledge. Therefore, we argue

that it is possible to transform everything into the language space first, and then take

advantage of the tremendous amount of textual knowledge for question answering. Although

this seems counter-intuitive, our work proves its advantage. In this paradigm, the challenge

is to be able to transform the image into language with minimum information loss. In

order to tackle this, we propose three-level image-to-text transformations which significantly

outperform baselines that use only captions or object labels.

The second challenge of the OK-VQA task is how to effectively retrieve the most relevant

knowledge passages from gigantic knowledge bases. Previous work has explored various

retrieval methods such as term-based BM25[LZB21], and network-based ranking [LZB21,

WLS21]. In the OK-VQA dataset, this task is problematic in that there is no ground-

truth knowledge annotation for each question. The retrieval has to rely on either transfer

learning from similar knowledge-retrieval tasks or weak supervision from pseudo signals such

as whether the passage contains the answer tokens[QZY21]. Our preliminary study finds

that there is no guarantee that a passage containing the ground-truth answer will essentially

relate to the question or help the answer prediction. Such signals are very weak and may

introduce more noise than useful information into the retrieval model. Instead, we adopt the

state-of-the-art dense passage retrieval model (DPR) [KOM20] that is pre-trained on large

question-answering dataset Natural Questions (NQ) [KPR19] as our knowledge retriever,

which is shown to outperform the BM25 method in terms of retrieval coverage rate.

156



The third challenge of the OK-VQA task is to consolidate all the multi-source input,

namely the question, visual context, and the retrieved knowledge passages, to predict an-

swers. Since now everything is in the language space, the problem can be formulated as a

multi-passage question answering problem. More specifically, the model needs to not only

rank the retrieved passages but also predict an answer according to the ranked passages.

Most existing work utilizes extractive methods to predict the answer span in the passage

[RZL16, CFW17, CG17, RJL18, WNM19, LCT19, YXL19]. This is not applicable in the

OK-VQA dataset because there is neither annotation of ground-truth passage nor answer

span in any passage. Instead, we use the generative question answering model [IG20b] to

avoid the defect in span prediction. Furthermore, we use beam-search for robust answer

generation. Lastly, since the question-answering model is the last stage in the entire frame-

work, any information distortion or loss in the image-to-text transformation and knowledge

retrieval would propagate to the final question answering model. Therefore, it is important

for the final question answering model to be more transparent and interpretable to diagnose

the root cause of errors. We use cross-attention scores from the decoder of the generative

model to rank and highlight the top supporting knowledge passages, which helps to interpret

the results of the model.

To bridge the above-mentioned research gaps, we propose the Transform-Retrieve-Generate

(TRiG) framework for the OK-VQA task. At the high level, the framework aligns all the

information (image, question, and knowledge) into the language space in order to take ad-

vantage of the rich semantics of textual knowledge. The framework starts with three-level

image-to-text transformations, followed by dense passage retrieval to retrieve the most rel-

evant knowledge passages. Further, the TRiG aggregates the information from all passages

and generates an answer that is relatively easy to interpret. Our contributions are as follows:

‚ We propose a new paradigm shift for the OK-VQA task, from aligning all the infor-

mation in the multi-modal space, to first transforming an image into plain text and

performing knowledge retrieval and question answering all in language space.
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‚ We propose a robust framework Transform-Retrieve-Generate (TRiG), that achieves

new state-of-the-art performance on the OK-VQA dataset and leading other supervised

methods by 11.1%.

3.3.2 Related Work

Visual Question Answering (VQA) The conventional visual question answering (VQA)

task aims to answer questions pertaining to a given image. Multiple VQA datasets have been

proposed, such as Visual Genome QA[KZG16] VQA [AAL15], GQA[HM19], CLEVR[JHM17a],

MovieQA[TZS16] and so on. Many works have shown state-of-the-art performance on VQA

tasks, including task-specific VQA models with various cross-modality fusion mechanisms

[SNS19, YYC19, KJZ18, YYX18, JMR20, GXT21, YLL20] and joint vision-language mod-

els that are pretrained on large-scale vision-language corpus and finetuned on VQA tasks

[LBP19, CLY19, LYL20, ZLH21, LGN20, TB19, GCL20]. Please note that the conventional

VQA task does not require external knowledge by definition, although studies show some

VQA questions may require commonsense knowledge to answer correctly [AAL15].

Outside Knowledge-Based VQA (OK-VQA) Beyond the above paradigm, knowledge-

based visual question answering (KB-VQA) is proposed where a visual question cannot

be answered without external knowledge. Several knowledge-based VQA datasets are pro-

posed, each providing its own knowledge bases and ground-truth supporting fact [SMY19,

WWS17, LJZ18]. More recently, the dataset outside-knowledge visual question answering

(OK-VQA)[MRF19] is proposed where the usage of outside knowledge is open to the entire

web. Most existing work for OK-VQA rely on the pre-trained vision-language models as a

major workhorse for question answering[GZA20, STD21, MCP21, WLS21, LZB21, YGW21].

In [GZA20, STD21], learned knowledge embeddings are injected into vision-language models

to perform knowledge-aware question answering. Other work uses vision-language mod-

els as a knowledge-free VQA model first and later adjusts the predicted answers by fusion
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Figure 3.8: The overview of our TRiG framework. (1) T: Our TRiG framework transforms
all visual information into natural language space on three-levels: image-level captioning,
object-level dense labeling and text OCR. (2) R: Our dense knowledge retriever retrieve top-
k knowledge passages from Wikipedia that are relevant to the query. (3) G: Our generative
question answering model encode all question-context-knowledge tuples and fuses the output
to generate a final answer.

with knowledge graphs [MCP21] or answer validation with knowledge text [WLS21]. Some

also propose to directly learn vision-language representation for dense knowledge retrieval

[LZB21]. Different from the above, one recent work proposes to first convert the image into

text caption and tags and then perform prompt-based QA on GPT-3 model purely in the

language space [YGW21]. In addition, a concurrent work [GWH21] takes advantages of

GPT-3 to retrieve implicit knowledge. However, the accessibility to this super-large-scale

pre-trained language model is restricted, and it is challenging to interpret the QA result from

the generative GPT-3 model.

Open-Domain Question Answering in NLP Open-domain question answering (Open-

Domain QA) has been popular in the NLP community in recent years. The task is to answer a

question with external knowledge bases without any given context paragraphs[RJL18]. There

are mainly two streams of approaches, namely knowledge graph-based question answering

[SDZ18, LCC19, WKM19, FCL20, LGX20, YRB21] and knowledge retrieval-based question
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answering[RZL16, CFW17, CG17, RJL18, WNM19, LCT19, YXL19, IG20b]. For retrieval-

based methods, both elastic-search such as BM25[RZ09] and semantic search such as Dense

Passage Retrieval (DPR)[KOM20] are utilized to retrieve most relevant knowledge snippets

from knowledge bases. For question answering, most existing work adopt extractive methods

to predict the span of an answer in knowledge snippets [RZL16, CFW17, CG17, RJL18,

WNM19, LCT19, YXL19]. One most recent work proposes to use generative language models

for knowledge-based QA, which achieves state-of-the-art performances [IG20b].

3.3.3 Methodology

In this section, we introduce the details of our Transform-Retrieve-Generate (TRiG) frame-

work. Shown in Figure 3.8, our framework contains three stages: (i) image-to-text transfor-

mation, (ii) knowledge passage retrieval, (iii) multi-passages open-domain question answer

generation.

3.3.3.1 Image-to-Text Transformation

Contrary to existing work, we first transform the image into text and then perform all

downstream tasks in the language space. In order to minimize the information loss in

the process of transforming the image into plain text, three-levels of transformations are

performed (Equation 3.17). First, image-level information is transformed to caption text

with a state-of-the-art image captioning model[LYL20]. Second, object-level information is

translated to object and attribute labels[AHB18, HYH21]. Lastly, according to [JKK21],

some VQA questions can only be answered with optical character recognition (OCR). We

use an off-the-shelf OCR model to detect all possible texts in the images 4.

We denote Ci, Li, and Oi as the generated caption text, attribute and object text, and

OCR text from image Ii respectively. In the rest of the section, we will denote the visual

4https://github.com/JaidedAI/EasyOCR
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context vi “ pCi, Li, Oiq for the corresponding image Ii. Please note that our proposed

framework does not necessitate the use of the above-mentioned image-to-text transformation

models only. One could choose to plug-and-play alternative methods into the framework.

Ci “ pwc0, . . . , w
c
jq Ð fImageCaptioningpIiq

Li “ tpwattr0 , wobj0 q, . . . , pwattrn , wobjm qu Ð ftaggingpIiq

Oi “ twocr0 , . . . , wocrk u Ð focrpIiq

(3.17)

3.3.3.2 Knowledge Passage Retrieval

After the image is transformed into plain-text representation, we use the text representation

as the query to retrieve knowledge passages in the natural language space. In this work, we

use the Wikipedia dump as the knowledge base, which contains over 21 million Wikipedia

passages [LCT19]. We ensure that our framework is designed to be generic enough to support

other textual KBs such as GenericsKB[BAC20] or the surface forms of graph knowledge bases

such as ConceptNet[SCH17].

More specifically, given a textual query qi of an image Ii and a knowledge base K “ tpju

where each pj is a knowledge passage, the task is to retrieve top k knowledge passages

Pk “ rp1, p2, . . . , pks from K that are most relevant to the query qi, where k ! |K|. In this

work, we empirically use the query qi “ pQi, Ciq, where Qi is the original question and Ci is

the the generated caption of corresponding image Ii.

We use dense passage retrieval (DPR) to retrieve the knowledge passages [KOM20].

DPR encodes both query and passage with BERT layers that could better capture the

semantic similarity between them than term-based retrieval methods such as TF*IDF and

BM25[KOM20]. First, the query qi and a passage pk are encoded with two independent

pre-trained BERT encoders [DCL18]. We take the embedding of the [CLS] token xqi and

xpi in the BERT to represent qi and pk respectively. Second, a similarity scores simpqi, pkq is

calculated by taking the dot product of the two encoded dense vectors of the query qi and a
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passage pk.

xqi “ EQpqiq,xpi “ EP ppkq (3.18)

simpqi, pkq “ xTqi ¨ xpk (3.19)

Because of the tremendous amount of passages in the Wikipedia knowledge base, it

is time-consuming to retrieve the top k passages for each query from the knowledge base

with over 21 million passages. We leverage an open-sourced indexing engine FAISS[JDJ17],

an extremely efficient library to speed up the clustering and indexing of large number of

dense vectors. Given a query qi, the dense passage retrieval module will return k passages

Pk “ rp1, p2, . . . , pks from the entire knowledge base K where simpqi, p1q ą simpqi, p2q ą

¨ ¨ ¨ ą simpqi, pkq and k ! |K|. The retrieved passages Pk will be later used for downstream

question-answering.

3.3.3.3 Generative Multi-Passages QA

After aligning the visual information, the question, and the external knowledge into the

language space, we introduce our generative question-answering module. Our design of

the model takes the following into consideration. First, although previous work on joint

vision-language models formulates the task as an answer classification task [SCH17, MCP21,

WLS21], our preliminary studies show that language models seem to be less flexible in

classifying text into such high-dimensional answer space (over 100k) given a relatively small

dataset. Second, although most previous language QA models follow a span-based answer

prediction paradigm [RJL18, WNM19, LCT19, YXL19], it is impractical in our open-domain

setting since there is no ground-truth supporting fact in our task, let alone the ground-

truth answer span for prediction. On the other hand, recent work shows that a generative
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encoder-decoder network can achieve state-of-the-art performance on multiple open-domain

QA datasets [RSR19], and it avoids span prediction and directly generates a free-form answer.

To achieve this goal, we use a transformer-like encoder-decoder model T5 as the backbone

of our generative question answering module[RSR20]. It is impractical to include all top-k

passages in one T5 model. We use T5 model to encode each pquestion, visual context, knowledgeq

tuple independently and then fuse the k encoded representations to decode an answer fol-

lowing the idea in [IG20b].

Multi-Passages Question Answer Generation First, we feed the concatenated se-

quence of (Qi, vi, pi,k) into a self-attentive encoder to get per-position hidden embeddings

zQi,k , where qi is the question, vi is the visual context text and pi is one passage respectively.

zQi,k “ ESelfAttnpQi, vi, pi,kq

“ pz0, . . . , zLq

(3.20)

where zi is the hidden embedding of the i-th token in the sequence, zQi,k P R1ˆLˆh is the

hidden representation of the sequence, L “ |pQi, vi, pi,kq| is the length of the sequence and h

is the size of the hidden embedding.

Subsequently, we perform the same encoding operation on all k passages to derive k

hidden representations:

zQi “ pzQi,1 , . . . , zQi,kq (3.21)

where we concatenate the k hidden embeddings to zQi P Rpk¨Lqˆh. This operation is to fuse

all the information from different question-context-passage interactions together in order to

generate better answers. Then, we feed the concatenated hidden representation zQi into a

stacked self-attentive decoder to predict per-position word distribution over the vocabulary

space |V |:
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P pa1q, . . . , P palq “ σpDSelfAttnpzQiqq (3.22)

where σ is a non-linear function such as softmax, l is the length of the answer, and Qi P R|V |

is the word distribution over the vocabulary of size |V |. Finally, we use teacher-enforcing to

train the entire model with auto-regressive cross-entropy loss:

Lans “ ´
1

N ¨ l ¨ |V |
¨

N
ÿ

i“1

l
ÿ

j“1

|V |
ÿ

w“1

yi,j,w ¨ logpppai,j,wqq (3.23)

Inference of the Multi-Passage Generative Model During training, teacher-enforcing

is used to train the encoder-decoder model auto-regressively. During inference time, the

answer tokens are generated iteratively by feeding the previous token at´1 to the input of

the next token at. We apply both greedy-decode and beam-search for the answer decoding.

In greedy-decode, the best answer token is always selected with the highest probability at

each decoding step. In beam search, a beam of size m is maintained during decoding, and m

answer candidates are generated with ranked scores. We also take ensembles of the 6 TRiG

models trained on different splits of the top-100 passages, where the best answer is selected

by ranking the model answers with average log probability of all the generated tokens of the

predicted answer: a˚ “ arg maxnt1
l

řl
j lnP pan,jqu and n is the number of ensembles.

3.3.4 Experiments

In this section, we describe the implementation details of our method and report the exper-

imental results.
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3.3.4.1 Implementation Details

OK-VQA Dataset We use the OK-VQA dataset in this research work (version v1.15,

license CC-BY 4.06). It is one of the most challenging visual question answering datasets

that is open to all external knowledge usage[MRF19]. The dataset contains 14,055 visual

questions over 14,031 images from MSCOCO [LMB14]. The dataset split is 9,009 for training

and 5,046 for testing. Each entry contains an image, a question, and 10 ground-truth answers

annotated by human annotators.

Dense Passage Retrieval We use BERT-base encoders, EQ and EP , in the retrieval

module and initialize them with the checkpoints pre-trained on the NQ dataset[KPR19].

Due to the extremely large size of the Wikipedia knowledge base, we choose the HNSW

indexing algorithm instead of flat indexing for a much faster speed of queries with acceptable

accuracy trade-off. For more details, please refer to the implementation of [JDJ17]. Each

query is composed of the question Qi and the corresponding caption Ci. The number of

retrieved passages k “ 100 for the best possible QA performance.

Generative Multi-Passages QA We use a transformer-based[VSP17] encoder-decoder

T5-large[RSR20] model as the backbone. By default, the embedding size of the encoder

is 768. The maximum length of the input tokens is restricted to be 300. Padding to the

maximum length is applied for multiple questions batch training. Because the training of

the generative model with 100 passages is memory-intensive, the batch size is set to be 1

for each GPU. To optimize the QA model, we apply the following techniques: (i) AdamW

as the optimizer with a linearly scheduled learning rate starting from 1e ´ 4; (ii) Warm-

up of 2000 steps as the learning rate scheduler. We train the multi-passages QA model

for 20000 optimization steps on an 8xA100 GPU cluster for 12 hours. During inference,

both greedy-decode and beam-search are applied to get the best answers. Before evaluation,

5https://okvqa.allenai.org/download.html 6http://creativecommons.org/licenses/by/4.0/
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a normalization step is performed on the generated answers, including lower-casing and

removing articles, punctuation, and duplicated white space.

3.3.4.2 Empirical Results on OK-VQA

Performance of Knowledge Retrieval To evaluate the performance of the knowledge

passage retrieval module, we consider a question that has a hit in its retrieved knowledge

passages if at least one of its ground-truth answers appears in the retrieved passages. Then

the hit@k is defined as the percentage of questions in the entire dataset who get a hit in

their top k retrieved knowledge passages.

OK-VQA Train OK-VQA Test
Top-K hit@k hit@k
Top-5 42.72% 45.83%
Top-10 54.66% 57.88%
Top-20 68.76% 72.11%
Top-50 72.27% 80.49%
Top-100 83.76% 86.56%

Table 3.12: Hit@k of the dense passage retrieval (k = the number of retrieved knowledge
passages).

From Table 3.12, we can observe that the answer retrieval rate hit@k increases along

with the number of passages k from 42.7% to 83.7% as k increases from 5 to 100. A larger

k increases the probability that each question has access to at least one relevant knowledge

passage during inference. We experiment with different k for the downstream QA model,

which will be discussed in subsubsection 3.3.4.3.

Performance of the Generative QA Model The OK-VQA dataset has 10 annotated

answers for each question, and we consider both Exact Match and VQA Score as metrics to

evaluate the generative QA model. The Exact Match (EM) is defined as the percentage

of questions whose predicted answer exactly matches any of the 10 annotated answers. EM

metric considers every answer as equally ground-truth the same. On the other hand, VQA
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score defines a voting mechanism so that each annotated answer ai is assigned a score si

between 0 and 1[AAL15].

A generated answer âi would get si score if it matches the annotated ai. The VQA

metric is an average of the weighted scores over the entire test set. Arguably, the voting

mechanism of the VQA score may promote some ground-truth answers over others based on

the annotators’ consensus subjectively.

Comparison with Supervised-Learning SOTAs The performance of our proposed

TRiG framework with state-of-the-art models is reported in Table 3.13. Please note that

all the models in comparison are supervised-learning models. Several observations can

be made from the table. First, most previous methods utilize the vision-language model

as the backbone for question answering and then integrate it with external knowledge.

Some represent the knowledge in the form of graph (KRISP[MCP21], ConceptBert[GZA20],

RVLESK[STD21]) while others fuse the output of the vision-language model with textual

knowledge representation (MAVEx[WLS21]) or implicit knowledge from a language QA

mdoel[SAL21]. Second, a concurrent work, VRR[LZB21], transforms the image into cap-

tion text and performs span-based question answering on a trimmed knowledge base us-

ing Google search engine. Last and most importantly, all of the above methods achieve

very similar VQA scores between 38.60 and 39.4, despite usage of diverse sources of knowl-

edge bases such as ConceptNet[WLS21, MCP21, GZA20, STD21], Google Image[WLS21],

Google Web Search[LZB21] and Wikipiedia[WLS21] and pretraining on other datasets such

as VQA[GZA20, MCP21, STD21, WLS21] and Visual Genome[STD21].

Our proposed TRiG framework significantly outperforms all state-of-the-art supervised-

learning methods with at least a 11.1% margin. Our TRiG framework differs from the

existing methods as (i) instead of aligning representation of the vision-language QA model

with external knowledge in the multimodal space, TRiG transforms the image into text

information as accurately as possible and aligns all the information of the image, question,
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Model EM VQA Score
SOTA Methods
KRISP[MCP21] 32.31
ConceptBert[GZA20] 33.66
CBM[SAL21] 38.60
KRISP w/ VQA2.0 pretrained 38.70
MAVEx[WLS21] 38.70
RVLESK[STD21] 39.04
Weakly Supervised VRR[LZB21] 39.20
MAVEx w/(Ensemble 5) [WLS21] 39.40
Ours
TRiG w/ Q+C+DL+O, G 53.62% 49.24
TRiG w/ Q+C+DL+O, BS 53.59% 49.35
TRiG w/ Q+C+DL+O, G, E˚ 54.73% 50.50

Table 3.13: Comparison of supervised-learning methods on the OK-VQA dataset. In TRiG
Model, Q: Question, C: Caption, DL: Dense Labels, O: OCR Text, G: Greedy Decode, BS:
Beam-Search, E˚: Ensembles of the 6 TRiG models.

and knowledge in language space; (ii) the generative QA model in TRiG is not pre-trained on

other multimodal datasets, which helps the model to start learning to reason over external

knowledge, rather than inducing data bias from other multimodal datasets.

We would like to also highlight the Exact Match (EM) score of our TRiG models, which

are higher than the VQA scores. As in Figure 3.10, we observe that sometimes the generative

QA model predicts a reasonable answer but is not credited with the highest VQA score or

not even any score according to annotators’ voting.

Comparison with Prompt-Based SOTA We also compare our method with one very

recent prompt-based method on the OK-VQA problem [YGW21]. By taking advantage of

the super large-scale language model GPT-3 [BMR20], the proposed prompt-based method

(PICa) surpasses all existing supervised methods with sophisticated prompting. As shown

in Table 3.14, PICa achieves 43.3 VQA score with 16 prompts randomly selected from the

training data. By carefully selecting 16 prompts based on the similarity between testing

and training questions, PICa further achieves 46.5. With 5 ensembles of 16 prompts, PICa
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Model #Params VQA Score
SOTA Prompt Method[YGW21]
PICa w/16 RP C+T 175B 43.30
PICa w/16 SP C+T 175B 46.50
PICa w/16 SP C+T, 3ˆE 175B 47.70
PICa w/16 SP C+T, 5ˆE 175B 48.00
Ours
TRiG w/ Q+C+DL+O, G 0.77B 49.24
TRiG w/ Q+C+DL+O, BS 0.77B 49.35
TRiG w/ Q+C+DL+O, G, E˚ 0.77B 50.50

Table 3.14: Comparison of Proposed TRiG with SOTA Prompt-Based Method on the OK-
VQA Dataset. In[YGW21], RP: Random Prompt, SP Selected Prompt, C: Caption, T:
Image-Tagging, E: Prompt Ensemble. In TRiG model, Q: Question, C: Caption, DL:
Dense Labels, O: OCR Text, G: Greedy Decode, BS: Beam-Search, E˚: Ensembles of the
6 TRiG models.

reaches 48.0 VQA score.

Our method (TRiG) outperforms PICa with greedy-decode 49.24, beam-search decoding

49.35 and ensemble 50.50. Both PICa and our method share the same idea of unifying the

image, the visual question, and knowledge in language space and then performing question

answering with language models. The significant performance gain of both methods (9-

11.1% over SOTA) highlights the potential of this idea – if the image could be transformed

into plain text information faithfully, then one could take advantage of the vast volume of

external knowledge in text form and advanced language models pre-trained on rich variations

of human natural language to yield better answer prediction.

We would like to also highlight that our method outperforms PICa by a margin of 2.50%,

especially considering the among of parameters (175 billion over 0.77 billion of our model)

and accessibility of the GPT-3 model. Moreover, we argue that our prediction results are

relatively easier to interpret by selecting supporting knowledge passages, whereas in PICa

the explanation is generated by GPT-3 in a black-box manner. We use the averaged cross-

attention score of the generative model to select supporting facts[IG20a]. For concrete ex-

amples of such interpretability, please see the examples in Figure 3.10.
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3.3.4.3 Ablation Study

Variant Visual Context Input We investigate the empirical differences among the com-

bination of the visual contexts inputs to the generative QA model, namely image caption

(C), object label (L and DL), and OCR (O).

Inputs VQA Score
Question + K + C 42.54
Question + K + C + L 42.94
Question + K + C + L + O 43.53
Question + K + C + DL + O 49.35

Table 3.15: Ablation Study of the Different Variants of Text Input into the Generative QA
Model (K: Knowledge passages, C: Caption, L = Bottom-Up Labels[AHB18], DL = Dense
Labels, O = OCR Text).

Figure 3.9: Testing the QA model with varying number of passages.

As in Table 3.15, we find that adding caption (C) to the input yields decent performance

(42.5), suggesting that caption conveys basic information of the image. Adding sparse object

labels and attributes (L) also helps a little (42.9). By adding OCR, the performance is further

improved (43.5), which is in accord with previous findings that some questions in OK-VQA
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require understanding the text in the image through OCR[JKK21]. Interestingly, the largest

gain is achieved by replacing sparse object and attribute labels with more semantically

rich dense object labels (49.4), which again highlights that the faithfulness of image-to-text

transformation is a crucial prerequisite for downstream QA in the language space.

Generative Multi-Passages QA with Varying K passages We also investigate how

the generative QA model behaves with a different number of passages k. We apply our best

model trained on 100 passages and test it with varying k passages. From Figure 3.9-(a), we

can see that the testing performance of this model steadily increases along with the growing

number of passages k. However, the improvement becomes marginal after k=25 (47.62 to

49.35), while the coverage Hit@k still increases by 15% as Figure 3.9-(b). This also supports

our hypothesis that there may be a long-tail effect of the retrieval. Yet it is difficult to

quantify as to which passages are essentially relevant to the question-answering.

Figure 3.10: Examples of our TRiG model prediction together with the supporting passage.
Top: four examples where TRiG model makes correct predictions. Bottom: four examples
where TRiG model makes incorrect predictions. In each example: Q: question, GT: ground-
truth answers, Pred: predicted answer, C: image caption, DL: dense labels, O: OCR text,
K: top-1 supporting knowledge passage.
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3.3.4.4 Discussion

Error Analysis To investigate the behavior of our TRiG model, we conduct error analysis

with our best model using greedy-decoded predictions. The quantitative results are illus-

trated in Figure 3.11. We observe that answers with numerical values are harder to predict,

where the model could get into a blunt generation (Figure 3.11-(a)). Furthermore, as the

length of the answer increases, it is harder for the generative model to predict every token

in the phrase correctly (Figure 3.11-(b)).

We also manually reviewed 50 examples where TRiG makes wrong predictions. Among

these random examples, 50% of the errors are due to the information loss during image-to-

text transformation, such as in Figure 3.10-(h), where the caption and dense labels failed to

characterize the special features of the bird. We also found that 24% of the error are due to

the failure in retrieving highly-relevant passages. The high Hit@k value doesn’t guarantee

the passages are indeed relevant to the question. Note that some examples failed due to

multiple reasons including QA error (22%) or subjective human annotations (30%) as in

Figure 3.10(g).

Figure 3.11: Performance of Generative QA model by different answer types. Left: whether
numerical answers are harder to predict. Right: whether longer answers are harder to
predict.
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Interpretability To interpret the visual question-answering models, previous works at-

tempt to supervise the VQA models with visual grounding annotations[ZNS19, DAZ17,

DAZ17] or neural symbolic network[VDL19, YWG18, HAR17]. When it comes to knowledge-

based VQA, it is all the more challenging to interpret the model in multimodal space because

the knowledge has been transformed into a fused representation and loses its meaning.

Our TRiG framework alleviates this problem by providing transparent explanations in the

language space. In the top row in Figure 3.10, the image-to-text transformations provide

sufficient information for both the knowledge retrieval and QA model. Meanwhile, when

Figure 3.10(e, f, g, h) make wrong predictions, the QA model is still predicting the answer

according to the visual context and retrieved passages.

OK-VQA Evaluation Metrics Some researchers[LST21] also argue that the VQA score

metric is subjective. In one OK-VQA example, a model will achieve 1.0 VQA score for the

answer wetsuit but only 0.66 score for the answer wet suit . In daily language, the usage of

any of the semantically-similar answers is subtle and sometimes random. We also look at the

top-3 answers of our TRiG model using beam search, and the model achieves significantly

higher performance, i.e. 67.4 VQA score and 71.8% EM. We call for better VQA metrics

that probably compare two sets of answers instead of comparing only the top one answer or

other alternatives such as AAS that automatically expands the ground-truth answer set for

better matching[LST21].

3.3.5 Conclusion

In this work, we approach the OK-VQA task from a new perspective, where all the visual

information is aligned into the language space to take advantage of the comprehensiveness

in textual knowledge bases. Moreover, we propose a robust Transform-Retrieve-Generate

(TRiG) framework that outperforms state-of-the-art supervised methods by 11.1%. One

can plug-and-play with different image-to-text methods and textual knowledge bases into
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TRiG for potential further improvement. Our work has limitations that the dense passage

retrieval is not optimized for the OK-VQA task, due to the unavailability of ground-truth

supporting facts. We consider this as one of our future work, as well as improving the quality

of image-to-text transformation.

3.3.6 Supplementary Materials

3.3.6.1 Additional Details for Methodology

Hyper-parameters To better illustrate the implementation of the generative multi-passages

QA model, we introduce some key hyper-parameters in Table 3.16.

Hyper-Parameter Value

Max Input Length 300
Max Decoding Length 20
Early Stopping True
Pad to Max Length True
Max Number of Beams 3
Learning Rate 0.0001
LR Scheduler Linear
Total Optimization Step 20000

Table 3.16: Hyper-parameters of the generative multi-passages QA model, not including
hyper-parameters for T5 backbone.

Input Format Different from the default input format to the pre-train a T5 model, we use

a alternative formatting for the input sequences. We concatenate the question, the visual

context and one retrieved Wikipedia knowledge passage as the input sequence, without any

special token such as “[SEP]” between them. The question has a prefix “question: ” before

it. The visual context is the concatenation of image caption, dense labels and OCR text. The

knowledge passage consists of a Wikipedia title and a Wikipedia paragraph. The two are

concatenated by putting a prefix “title: ” and a prefix “context: ” before them respectively.
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Vocabulary We also want to highlight the effect of the different sizes of QA model vocab-

ulary. As in Table 3.17, we notice a trend that models with larger vocabulary sizes achieve

higher performance. In particular, models using the default vocabulary (PICa and TRiG)

perform better on OK-VQA dataset.

Method Size VQA Score

KRISP w/o VQA2 pre-train 2,250 32.31
Weakly Supervised VRR (C) 11,060 36.78
RVLESK 14,456 39.04
PICa (5 Ensembles) 50,257 48.00
Ours (6 Ensembles) 32,128 50.50

Table 3.17: The vocabulary size and performances of different SOTA methods on OKVQA.
(C) represents classification. Some numbers may not be public accessible and we only report
the numbers directly from the authors.

3.3.6.2 Additional Details for Ablation Study

Answer Accuracy in Beam-Search In this work, we argue that the ground-truth an-

swers of an OK-VQA question might be a semantically-similar cluster, such as (swimsuit,

bath suit, bikini). This may also hold true for the question answering models, in terms of both

classification models (top-k class prediction) and generative models (top-k beam prediction).

Exact Match VQA
Top-1 53.59% 49.35
Top-2 65.99% 61.61
Top-3 71.78% 67.48

Table 3.18: Ablation on Different k in Beam-Search Decoding.

We report the performance of our generative question answering model using top-1/2/3

beam-search decoding. As shown in Table 3.18, we can find that the both the Exact Match

(EM) and VQA score increase as the k of beam-search increase. This suggests that while the

top-one answers only achieve 49.35 VQA score, their semantically-similar candidates could

reach as high as 67.48 VQA score. Therefore, we call out for new metrics that compare two
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sets of answers instead of top-one answer versus many ground-truth answers.

Backbone Model Size To further illustrate the effectiveness and the efficiency of our

model, we also compare the performance with various backbone model size. In Table 3.19,

we show the VQA scores of different model backbones and highlights the approximate size

of them.

Method and Backbone Size/# Params VQA Score

MAVEx (VilBert) 1.02GB 39.04
VRR (RoBerta-Large) 1.33GB 39.20
PICa (GPT-3) 175B params 48.00
Ours (w/ T5-Base) 0.85GB 46.50
Ours (w/ T5-Large) 2.75GB 50.50

Table 3.19: Performances and size of the backbone models in different methods. Since GPT-
3 is not fully accessible, we only indicate the number of parameters of it which is 175 billion.

3.3.6.3 Additional Details for Error Analysis

To further understand the behavior of our TRiG framework, we conducted several error

analysis.

Question Keywords / Types First, we investigate whether the model is likely to predict

correctly over some question keywords than others. As in Figure 3.12-top, we can observe

that majority of the questions contain the keyword “what”, where our model is more likely

to make correct predictions. On the other hand, for questions containing keywords such as

“how” and “why”, our model is more likely to make mistakes. We hypothesize that the

“how” and “why” questions usually entail longer answers, which is harder for the generative

model to predict. For example, for the question why is this sign here? (a sign for animal

protection), the ground-truth answers are (protect animal, safety, don’t feed animal, direct).
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Figure 3.12: Distribution of correct/incorrect predictions. Top: Distributions of predictions
over different question keywords. Bottom: Distribution of predictions over different question
types.

Second, we report prediction distribution over 10 question types that are available from

the OK-VQA dataset. As in Figure 3.12-bottom, we can see that our model is more likely

to predict correctly on category of sports and recreation. On the contrary, our model makes

more mistakes in Vehicles and Transportation and Plants and Animals.

The Impact of Visual Context and Knowledge Passages First, we would like to

further investigate the effectiveness of the image-to-text transformation module, since it is

the first stage in our TRiG framework. Shown in Figure 3.13-A, we find that if the visual

contexts contain the ground-truth answers, the generative question answering model is more

likely to generate a correct answer. In contrast, the model makes more mistakes if the visual

contexts do not contain the ground-truth answers.

Second, we also investigate how the retrieved passages impact the generative question
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answering model. As is illustrated in Figure 3.13-B, we find that if the top-5 passages that

contain the ground-truth answers, our generative question answering model is much more

likely to predict correct answers. On the opposite side, if top-5 passages do not contain the

ground-truth answers, it is more likely for the QA model to make a wrong prediction.

Figure 3.13: Error Category Break-Down.

Manual Error Review We also conducted manual eye-balling on 50 random examples

where the model has made wrong predictions. We look into each example with all the avail-

able information (question, caption, dense labels, OCR text, knowledge passages, ground-

truth answers) and attribute each example to one or more error categories. A brief statistics

is shown in Table 3.20. Please note that the percentages of error types are not mutually

exclusive because some wrong cases may fall in multiple categories.

We can observe that the first contributing factor to the errors is in image-to-text trans-

formation (50%). The second category is the answer annotation ambiguity (30%), where

the predicted answers are reasonable according to human judgement, but do not match any

ground-truth answers. There are also failures related to dense passage retrieval (24%) and
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Category Percentage
Image-to-Text 50%
Annotation 30%
Dense Passage Retrieval 24%
Generative QA 22%

Table 3.20: Ablation on Different k in Beam-Search Decoding.

generative QA model (22%). For more details of each error category, please see the examples

in page 5-6.
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Correct Examples

Q: What location do these vehicles 
stop?
GT: station, train station, train stops
Pred: station

C: The old fashioned train is setting on the track.
DL: old black train | square closed rectangular small glass window |  orange 
yellow window | black engine |  yellow train | black pant railroad steel | 
empty train | gray metal track | train black yellow car 
K: " …Train station A train station, railway station, railroad station, or depot 
(see below) is a railway facility or area where trains regularly stop to load or 
unload passengers or freight. It generally consists of at least one track-side 
platform and a station building (depot) providing such ancillary services as 
ticket sales and waiting rooms… "

Q: Which object in the picture is 
described as sharp?

GT: scissors
Pred: scissor

C: A pair of black handled scissors lying on a roll of tape.
DL: plastic black handle | open round silver hole | round open plastic| black 
gray hole | black metal scissors | silver metal screw
K: " …Scissors are hand-operated shearing tools. A pair of scissors consists 
of a pair of metal blades pivoted so that the sharpened edges slide against 
each other when the handles (bows) opposite to the pivot are closed. 
Scissors are used for cutting various thin materials, such as paper, 
cardboard, metal foil, cloth, rope, and wire. blade angles ideal for cutting 
hair… "

Q: What is this machine used for?

GT: tell time, time tell, time, 
to tell time 
Pred: tell time

C: Signs are attached to a light pole, featuring a large clock.
DL: round white black clock | rectangular black white blue sign | clear blue 
sky | leafy large tall green tree | white brown sign green sign
O: Tojletlcs Funiculaire [ |Halle $' PIERRE Thouire Arenes
K: " …A clock is an instrument used to measure, keep, and indicate time. 
The clock is one of the oldest human inventions, meeting the need to 
measure intervals of time shorter than the natural units: the day, the lunar 
month, and the year. Devices operating on several physical processes have 
been used over the millennia… " 

Q: What video game was made with 
the name of arguably the most 
famous athlete in this sport?
GT: tony hawk, shaun white
Pred: tony hawk

C: The kid is skateboarding on the street while wearing a jacket
DL: growing green grass blue jean | gray blue skateboard | white blue hat | 
open white glass | closed window | stone brick building | wood pole black 
jacket | pink white shoe 
K: "... (with Tony Hawk, Michael Phelps, and Alex Rodriguez) in 2008 and 
(alongside Jimmy Kimmel) in 2010. In a 2008 video promoting Nike's 
Hyperdunk shoes, Bryant appears to jump over a speeding Aston Martin. 
The stunt was considered to be fake, and the "Los Angeles Times" said a real 
stunt would probably be a..."

Q: What is holding this dog here?

GT: leash, fire hydrant
Pred: leash

C: A dog is tied up to a fire hydrant.
DL: silver white fire hydrant | sitting brown dog | blue leash | brown black 
floppy ear | black number | black blue parked car … 
K: " …is a rope or similar material used to control an animal by attaching 
to it or to a separate object on it; some leashes clip or tie to a collar, 
harness, or halter, while others go directly around the animal's neck or 
head. Leashes take many forms; for example: There are also bicycle dog 
leashes, especially designed for people who enjoy taking their pet in a ride 
with the bike… "

Q: Who won the most trophies of 
this sport?
GT: serena Williams, ken rosewall,
roger federer
Pred: serena williams

C: There are four woman talking at a tennis game.
DL: green chair | walking sitting standing watching person | playing tennis | 
watching playing woman | gray blond hair |watching stadium
K: " …Williams sisters The Williams sisters are two professional American 
tennis players: Venus Williams (b. 1980), a seven-time Grand Slam title 
winner (singles), and Serena Williams (b. 1981), twenty-three-time Grand 
Slam title winner (singles), both of whom were coached from an early age 
by their parents Richard Williams and Oracene Price… "

Q: What food does this animal eat?

GT: plant, grass, vegetation 
Pred: vegetation

Q: Which part of the body might 
be particularly benefited by the 
use of this beverage?
GT: eye, brain
Pred: eye

C: Two glasses of juice are on a cutting board near diced vegetables. 
DL: small orange | sliced carrot | plastic white metal | silver sharp blade | cut 
red sliced orange carrot | black sharp metal silver knife | filled half full glass 
| full clear glass | cut orange sliced carrot 
K: "... juices which, unlike Western juices, usually depend on carrots and 
fruits instead of large amounts of tomato juice for their flavor. In general, 
vegetable juices are recommended as supplements to whole 
vegetables…which found that juices provide similar health benefits… "

C: a zebra standing on a dirt road with trees.
DL: striped standing black white zebra| bushy long black tail | short black 
white mane | white black striped head
K: " …zebras are highly water-dependent and are usually found within 
25km of a water source. In one study, the zebra's diet was estimated to be 
92% grass, 5% herbs, and 3% shrubs. Unlike many of the large ungulates of 
Africa, the plains zebra does not require (but still prefers) short grass to 
graze. It eats a wide range of different grasses, preferring young, fresh 
growth where available… "

Figure 3.14
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Correct Examples

Q: What sport might this animal 
be used for?

GT: horse race, race, polo
Pred: polo

C: Woman outside her car approaching to pet a horse in fence.
DL: driving black silver parked car | smiling standing woman | leafy tall 
large green tree | standing white gray horse | wood fence | short brown red 
hair | clear dark black glasses 
K: " …to bring race horses to the track, to accompany them as they warm up 
for exercise, and then pick them back up after they run. Pony riders are 
required to wear helmets and safety vests when on the track with their 
charges. control of the ponied horse. The pony horse must have a calm and 
steady disposition… "

Q: Why are they carving pumpkins?

GT: halloween
Pred: halloween

C: Two boys carving pumpkins while a lady watches.
DL: empty wine clear glass | big round large orange pumpkin | red bowl | 
standing woman | playing smiling young standing boy | blue jean | kitchen 
dark black glasses | brown wood cabinet
K: " …Pumpkins are commonly carved into decorative lanterns called jack-
o'-lanterns for the Halloween season in North America… The practice of 
carving pumpkins for Halloween originated from an Irish myth about a man 
named. The turnip has traditionally been used in Ireland and Scotland at 
Halloween… "

Q: What food do these animals eat?

GT: hay, grass
Pred: hay

C: A man walks a horse, while people take photographs.
DL: black brown horse | black pant long brown tail | pink purple flower | 
standing walking man | large black camera | blue saddle | gray black 
hoof|white bag | black shoe | cement stone | brown wood…
K:"... Horses are grazing animals, and their major source of nutrients is 
good-quality forage from hay or pasture. They can consume approximately 
2% to 2.5% of their body weight in dry feed each day. Therefore, a adult 
horse could eat up to of food. Sometimes, concentrated feed such as grain 
is fed in addition to pasture or hay..."

Q: What flavour of cake is this?

GT: vanilla, lemon, lemon vanilla 
Pred: vanilla

C: A tall white cake with red flowers on top and some orange pots.
DL: large white cake | yellow sign | frosted chocolate | white cupcake | 
white fence | frosted white chocolate cupcake 
O: Vanzlla LEMON
K: " …Additional ingredients can be used, such as orange juice, orange 
muscat, milk, white dessert wine, or Riesling wine, orange oil or 
tangerine oil (or both), almond extract and vanilla extract. Some 
variations exist, such as being prepared without the use of flour. It can 
also be prepared as an upside-down cake… "

Q: Why he is having an orange vest?

GT: safety, to be visible to other,
for protection, visibility in traffic
Pred: safety

C: A man is riding a motorcycle on a street in traffic.
DL: parked black blue car | yellow orange vest | parked gray silver car | 
white line | chrome round blue silver mirror...
O: TOYOTA
K: " …Orange is the colour most easily seen in dim light or against the 
water, making it, particularly the shade known as safety orange, the colour
of choice for life rafts, life jackets or buoys. Highway temporary signs about 
construction or detours in the United States are orange, because of its 
visibility and its association with danger… "

Q: What is the purpose of this 
vehicle?
GT: transportation, travel
transport good, carry freight
Pred: transport good

C: A train makes its way down a train track.
DL: long red yellow train | circular small round window | cloudy blue sky | 
large clear glass windshield | yellow black engine | tall gray metal pole | 
black yellow front black yellow stripe | gray metal pole train 
K: "... goods. Overland trains are used to carry cargo over rough terrain. 
Much of the world's freight is transported by train, and the rail system in 
the United States is used mostly for transporting freight rather than 
passengers  and also more energy efficient than transporting freight by 
road. Rail freight is most economic when goods… "

C:  A hotdog on a plate with two green things.
DL: cooked brown long hot dog | white paper | white table | white black 
shadow | round white plate | cast black dark shadow
K: " …Japanese Fusion Dogs are not actually from Japan but are a Pacific 
Northwest invention that pairs hot dogs with Japanese and Asian 
condiments like wasabi, kimchi and teriyaki. In October 2016 the Malaysian 
Islamic Development Department ruled that hot dog vendors must rename 
their product or risk not getting halal certification… "

Q: When was this sport invented?

GT: 1850, 1700s’, 1930
Pred: 1850

C: A skiier skiing down a slope with their skiis.
DL: long gray silver black ski | black glove | white snow black boot | 
standing young skiing boy | black blue jacket | black glove | black hat gray 
black boot | gray blue leg
K: " …History of skiing Skiing, or traveling over snow on skis, has a history 
of at least eight millennia. Originally purely utilitarian, starting in the mid-
1800s skiing became a popular recreational activity and sport, becoming 
practiced in snow-covered regions worldwide, and providing a market for 
the development of ski resorts and their related communities… "

Q: "What nationality is this food?

GT: american, germany
Pred: american

Figure 3.15
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Failures Related to Image-to-Text Transformation Failures Related to Dense Knowledge Retrieval

Q: What kind of trees are 
shown?

GT: evergreen, pine, fir
Pred: maple

C: Fenced in field of snow with mountains and overcast sky.
DL: white wire metal fence | leafless bare tree | covered snowy snow | 
covered mountain | white blue cloudy gray sky
K:   "…The forests in the national park, which exhibit the characteristics of 
European-Siberian vegetation...Other notable trees include broadleaves 
such as oak (5%), alder, aspen, maple, dogwood... Coniferous trees 
predominate in the hemiboreal zone, but a significant number of deciduous 
species, such as aspens, oaks, maples... "

Q: In what language is the 
background advertisement being 
shown in?
GT: spanish, italian
Pred: english

C: A tennis player winds up a backhand.
DL: white short | empty black chair | playing watching standing man | large 
black letter | yellow orange red shirt | yellow tennis black racket | gray pant | 
green wall | yellow headband |metal fence | brown clay orange court 
O: BOSS RIBAST VP BOss OSS napol
K: "...Tennis shot was pioneered in the 1970s by Guillermo Vilas and Yannick 
Noah,... Forward-facing between-the-legs shots are also occasionally 
employed; they are sometimes called front tweeners. The Bucharest Backfire 
is an over-the-shoulder backward shot, generally used to recover lobs. ..."

Q: What type of beer is that?
GT: craft, stella artois, stout, beer
Pred: budweiser

C: A glass of beer sitting next to a laptop.
DL: wine full clear tall glass | white gray silver keyboard | open blue on 
screen laptop | apple gray mouse pad | brown silver wood white table
K: "Beer writer Michael Jackson proposed a five-level scale for serving 
temperatures: well chilled for light beers (pale lagers)...Pale ale is a beer 
which uses a top-fermenting yeast and predominantly pale malt. It is one of 
the world's major beer styles...Budweiser Budweiser is an American-style 
pale lager produced by Anheuser-Busch ...it has grown to become one of the 
largest selling beers in the United States..."

Q: What is the meat called on the 
sandwich?
GT: pulled pork, brisket, pork, meat
Pred: beef

C: A plate of food that has some french fries and a burger.
DL: silver white napkin | slice cut sliced pickle | wine clear glass | metal 
silver fork | white bun | round white plate | golden french fries | brown 
white label 
O: JQNes
K:"...The corned beef sandwich is a sandwich prepared with corned beef. 
The salt beef style corned beef sandwiches are traditionally served with 
mustard and a pickle..."

Q: Name the material used to 
make this skating board shown in 
this picture?
GT: fiberglass, plastic
Pred: wood

C: A person is skiing down a mountain next to a blue line in the snow.
DL: red white ski | blue line | snowy white snow | black blue white green vest 
| red blue white pant | white black helmet
K:   "...Skateboard A skateboard is a type of sports equipment used primarily 
for the sport of skateboarding. It usually consists of a specially designed 
maplewood board combined with a polyurethane coating used for making 
smoother slides and stronger durability... Snowboards are generally 
constructed of a hardwood core which is sandwiched between multiple 
layers of fibreglass…"

Q: How would you cook this side 
dish?

GT: steam, steamed, pan fry, boil
Pred: grill

C: A white plate with some broccoli and meat.
DL: cooked green broccoli | dark shadow burnt sliced brown cooked grilled 
fish | white plate 
K: "...fries known as steak fries. Chili, rice, pasta, or beans are also common 
sides. A side salad or a small serving of cooked vegetables often 
accompanies the meat and side, with corn on the cob, green beans, creamed 
spinach, asparagus, tomatoes, mushrooms, peas, and onion rings being 
popular... New side orders introduced within the past decade, such as rice 
and couscous, have grown to be quite popular throughout Europe..."

Q: Where is this bus headed to?
GT: acton, london, high street
Pred: taipei

C: A double deckered bus on a city street.
DL: double decker red bus | brick paved concrete gray sidewalk | parked red 
car | old brick white building | metal black pole | electronic digital yellow 
number | metal black bus stop | red mirror open black bus stop 
O: 427 Acton Orjalan VN37365 First TEFDL5Z 
K:"... double-decker buses on longer-distance routes, most notably 
commuter buses crossing the Bosphorus Bridge linking the European and 
the Asian sides of the city...."

Q: Who staged this room?
GT: staged 4 more, design, 
stage4more
Pred: home depot

C: The dog is resting on the floor in the living room.
DL: an brown dog | beige white wall | stacked book | tan white gray pillow | 
illuminated lit on lamp | colorful multi colored red rug | gray green couch | 
framed large mirror | open white window | brown wood coffee table 
O: Before Staging After Staging stagedl more HOME STAGING REDESIGNS
K: "...Prior to filming, director Guillem Morales worked hard on a story 
board. For Shearsmith, the small space added to the need to meticulously 
plan the production process...Gleen Forbes, the set designer, thought that 
this made the show look cheap..."

Figure 3.16
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Failures Related to Generative Question Answering Failures Related to Ambiguous Answer Annotation

Q: Is this red wine or grape juice?

GT: red wine, wine
Pred: grape juice

C: A woman holding two wine glasses, one in each of her hands.
DL: empty clear wine glass | checkered plaid red scarf | silver gold ring | 
happy eating young smiling woman | big smiling white teeth | open dark 
brown eye | big large nose | short blond brown hair 
O: bohemiantnaveler com
K: "...Some common types of wine glasses are described below. Glasses for 
red wine are characterized by their rounder, wider bowl...A wine glass is a 
type of glass that is used to drink and taste wine. ..."

Q: What type of car is this? 

GT: old, vintage, wood car, station 
wagon
Pred: t

C: A classic car with a lady inside sitting in a parking lot. 
DL: white surfboard | closed open green door | white brown brick building | 
green black tire | hanging white black sign | tinted clear open glass 
windshield | parked old green car | looking smiling sitting woman 
O: 49 Juelytly| SealouGe
K: "...A classic car is an older automobile; the exact definition varies around 
the world. The common theme is of an older car with enough historical 
interest to be collectable and worth preserving... Division by separate eras 
include: antique cars (brass era cars such as the Ford Model T)..."

Q: What is the name of this type 
of small oven?
GT: toaster, toaster oven, 
microwave oven, ge
Pred: convection

C: A tray of muffins sits in an open oven while two more sit on plates. 
DL: metal silver oven | marble tile white tiled countertop | brown small 
muffin | square white small plate | brick stone gray wall | metal silver 
microwave | fried cooking sliced cooked brown muffin | black silver metal 
tray 
K: "... Toaster ovens function the same as a small-scale conventional oven. 
Toaster ovens typically have settings to toast bread and a temperature 
control... A convection microwave oven is a combination of a standard 
microwave and a convection oven…"

Q: What is the object of this game? 

GT: score, hit ball run base, 
computation, run base
Pred: run

C: A baseball player is running to a base.
DL: black belt | black helmet | red gray white pant | white line | standing 
man | sitting baseball watching player | red white jersey | green baseball 
dugout | white black shoe | baseball green grass 
O: PAC _ IFIC
K: "...The objectives of the offensive team are to hit the ball into the field of 
play, and to run the bases, having its runners advance counter-clockwise 
around four bases to score what are called 'runs'..."

Q: Name the model of train shown in 
this picture? 
GT: subway, lionel, passenger, cummuter
Pred: commuter

C: A red train traveling past a white train. 
DL: red train | blue white train | red door open glass red window | yellow 
line | steel railroad | empty train | white green sign |  gray yellow platform | 
white green sign | empty train station
O: DLR Station
K:   "...Passenger operations include Amtrak, Metra, the Chicago Transit 
Authority’s 'L' and Chicago’s South Shore Line trains. The museum had an 
earlier model railroad layout..."

Q: What is the man doing with his phone?

GT: watch video, picture, video tape, take 
photo
Pred: take picture

C: A person is holding up their cell phone to take a picture.
DL:  up raised open holding white hand | raised up extended bent long 
thumb | red black phone | thin light hairy wrist 
K: "...A selfie is a self-portrait photograph, typically taken with a 
smartphone which may be held in the hand or supported by a selfie 
stick...Smartphones can use their front camera (of lesser performance as 
compared to rear camera) facing the user for purposes like self-portraiture 
(selfie) and videoconferencing..."

Q: How might this be prepared?

GT: fried, pan, frypan
Pred: grilled

C: A plate of french toast and breakfast potatoes.
DL: grilled sliced fried cooked potato | brown wood table | sliced toasted 
grilled fried fish | silver white napkin | silver knife | glass dark black bottle | 
cooked red bacon
K: "...A baked potato, or jacket potato, is a potato that has been baked for 
eating. When well cooked, a baked potato has a fluffy interior and a crisp 
skin...French toast French toast is a dish made of bread soaked in eggs and 
milk, then fried..."

Q: How would you dress for this 
setting?

GT: short, bath suit, bikini, summer
Pred: swimsuit

C: A lot of seagulls flying around at the beach.
DL:  sitting standing small walking black gray bird | cast black dark shadow 
cloudy white blue sky | standing walking person | small white cloud | gray 
calm large blue water | black sandy wet sand | white flying gray seagull
K: "...Beach balls are also a popular prop used in swimsuit photography and 
to promote or represent beach-themed events or locations...The video 
featured one dancer and Kumi sporting several fashions, including a crop 
top with black shorts and gold chains and a bustier with tight-fitting 
leggings..."

Figure 3.17
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CHAPTER 4

Planning: Interactive Environment and Hierarchical

Reinforcement Learning

4.1 A Virtual Testbed for Physical and Interactive AI

We propose VRGym, a virtual reality (VR) testbed for realistic human-robot interaction.

Different from existing toolkits and VR environments, the VRGym emphasizes on build-

ing and training both physical and interactive agents for robotics, machine learning, and

cognitive science. VRGym leverages mechanisms that can generate diverse 3D scenes with

high realism through physics-based simulation. We demonstrate that VRGym is able to (i)

collect human interactions and fine manipulations, (ii) accommodate various robots with a

ROS bridge, (iii) support experiments for human-robot interaction, and (iv) provide toolkits

for training the state-of-the-art machine learning algorithms. We hope VRGym can help to

advance general-purpose robotics and machine learning agents, as well as assisting human

studies in the field of cognitive science.

4.1.1 Introduction

The past decade has witnessed a rapid development of categorical classification for objects,

scenes, and actions, fueled by large datasets and benchmarks, discriminative features, and

machine learning methods. Similarly, successes have also been achieved in many other

domain-specific tasks, largely due to the ever-growing vast amount of labeled data and

rapidly increasing computing power, combined with supervised learning methods (in par-
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ticular, deep learning [HS06]). The performance of certain tasks has reached a remarkable

level, even arguably better than human in control [DCH16, MKS15], grasp [MLN17, LLS15],

object recognition [HZR15], learning from demonstration (LfD) [ACV09], and playing the

game of go [SHM16] and poker [MSB17, BS18].

Despite the impressive progress, these data-driven feed-forward classification methods

have well-known limitations, hindering the advancement towards a more general AI that can

interact with human: (i) needing large labeled training datasets ; (ii) often task-specific and

view-dependent, which makes it difficult to generalize; (iii) lacking an explicit representation

and structure to handle large variations exhibited in and outside of the training data.

In contrast, the hallmark of machine intelligence is the capability to rapidly adapt to

new tasks and “achieve goals in a wide range of environments [LH07]”. To achieve such

intelligence, recent years have seen the increasing use of synthetic data and simulation plat-

forms1. Advantages include: (i) the structure of the data is efficiently encoded without the

need for human labeling as the simulation inherently comes with the ground truth; (ii) can

accommodate different embodied agents (e.g ., humans, humanoid robots, or turtle-bots);

and (iii) benchmark generalization in various tasks at a low cost.

Empowered by the gaming industries, tremendous amount of game contents, including

scenes and objects, are made available for the virtual environment. Meanwhile, more so-

phisticated physics-based simulation engines and rendering techniques have enabled more

realistic simulations. These characteristics allow a growing number of tasks to be performed

using synthetic data in simulation platforms. Furthermore, some simulation platforms also

become publicly available, such as AirSim [SDL18], AI2THOR [KMG17], Gibson [XZH18],

etc., promoting the further explorations and applications. In short, it is both the research

and the engineering efforts that make it possible to achieve considerable successes in some

AI tasks and applications.

1See a brief review in the supplementary.
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Figure 4.1: (a) VRGym integrates three types of input devices, providing human manipula-
tion in an increasing resolution using Oculus Touch, LeapMotion, and a data glove, from top
to bottom. (b) The VRGym-ROS bridge allows physical human/robot agent meet virtual
agents inside a virtual world, providing the capability of social interactions. (c) The train-
ing of the robot navigation using reinforcement learning (RL) inside VRGym. The robot
successfully navigates to the goal without collisions after about 10,000 episodes. (d) The
learning of object manipulation using human demonstrations (leftmost) and inverse rein-
forcement learning (IRL) (right three) inside VRGym.

However, prior work often lacks the human involvement, especially in high-level tasks. For

instance, although some virtual platforms (e.g ., OpenAI Gym [BCP16] and Mujoco [TET12])

allow to train a virtual robot to perform many manipulation tasks, they lack a human in-the-

loop, thus cannot handle critical tasks like intention prediction and social interaction. Hence,

having a simulation environment where a robot can interact realistically with a human and

evolve incrementally could facilitate the robotics developments.

In this section, we propose VRGym—a virtual reality testbed, which combines VR with

virtual training for both physical and interactive AI agents. By putting human in-the-loop,

VRGym goes beyond the traditional synthetic data and simulation platforms by simulating

a human-robot co-existing environment.

Specifically, VRGym tries to fill in the gap between the new advancement of VR and the

need for training virtual agents to collaborate with human. In particular, we hope to address
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Figure 4.2: System architecture of VRGym, consist of three major components: (i) Hardware
modules for human data input. (ii) Scene modules batch import various category of scenes as
well as diverse objects, derived from different resources such as 3D modeling tools, scanned
models, and automatically generated synthetic data. (iii) VR environment serves as an ideal
testbed, where both a human and a robot can perform diverse tasks. The inherent physics-
simulation engine enables realistic human-scene interactions and robot-scene interactions.

three critical issues. First, what is the best way to reflect human embodiment in VR; i.e.,

how humans can genuinely interact with robots and how the robots can perceive related data

that are sufficiently close to those in real life? Second, how to take advantages of current

well-developed algorithms and models? Third, to which level of unique interactions the VR

simulations can afford? To answer these questions, VRGym is designed to push the limits

of current akin simulators by offering the following characteristics.

Fine-grained human embodiment representation Adding a real human in the sim-

ulation is not a trivial task. Most of the current simulation platforms only support either

scripted or limited remote-controlled human models. In VRGym, we integrate a multi-sensor

setup as alternatives to traditional VR input devices. Our setup is capable of providing a

whole-body sensing and reflecting the measured data on a detailed human avatar. As a result,
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the simulation can account for both body and hand poses during interactions. Figure 4.1a

shows different resolutions of manipulations in VRGym.

High compatibility with existing robotics systems and algorithms In VRGym, we

build an efficient bi-directional communication interface with the Robot Operating System

(ROS). Figure 4.1b depicts an example of how a person interacts with a robot in VRGym,

supported by the VRGym-ROS bridge. As a result, all ROS-compatible resources can be used

in VRGym with little effort, which allows easy setups, training, evaluations, and benchmark.

Multiple levels of interactions By providing the fine-grained human embodiment rep-

resentation and the ROS integration, various interactions between humans and autonomous

agents are made possible in different resolutions. VRGym supports interactions as simple as

only providing visual/perception information and as sophisticated as learning complex robot

grasping from human demonstrations. Figure 4.1c shows how an agent obtains a navigation

policy using RL, and Figure 4.1d shows learning a grasp policy using IRL.

VRGym makes the three contributions:

‚ A comprehensive simulation platform that integrates UE4 built-in functions, e.g ., scene,

physics-based simulation, rendering, basic human inputs, with customized developments,

aiming to facilitate a variety of AI researches.

‚ A multi-sensor hardware and software setup that allows the whole body sensing and reflects

human subjects to virtual embodiments with great details. The generated data can be

seamlessly logged for online and offline training purposes.

‚ VRGym-ROS bridge enables a bi-directional data communication. Through this inter-

face, AI researchers can take advantages of the existing robotics models and algorithms.

Similarly, robotics researchers can utilize more sophisticated physics-based simulation.
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4.1.2 VRGym System Architecture

Figure 4.2 illustrates the system architecture of the VRGym. VRGym offers a variety of

realistic scenes and tasks for both humans and robots, and provide automatic logging of the

data during agents performing tasks. This capability is provided by the integration of three

main modules: (i) scene module which renders user-specified 3D scenes and objects, (ii)

VR environment based on UE4 with physics-simulation engine, introducing various physical

properties that enrich tasks and data, and (iii) VR hardware module that imports a human

agent’s state and command to the VRGym. We now further elaborate each module in the

following subsections.

4.1.2.1 Scene Module

Scenes and objects are the building blocks for a simulation environment. In order to increase

the variety of environments for VRGym, we develop several pipelines to import or create

scenes into VRGym based on the users’ specifications. The scene module enriches static

environments for VRGym. Note that the ground truth of RGB image, depth image, surface

normal, and object label come automatically with the scene module in real-time, enabling

the training for machine learning models and robotics applications.

Specifically, VRGym can directly import the entire 3D scenes provided in large open-

source datasets, either collected from the web [SYZ17, CDF17] or automatically generated

from a given set of objects [YYT11, QZH18, JQZ18] (see top of Figure 4.2). Additionally,

VRGym also supports manually constructed scenes (see Figure 4.4) for more specific tasks,

where neither the open-source scene dataset or the automatically generated scenes could

satisfy such constraints.

Similarly, individual objects can be imported to VRGym from mesh files, which can be

obtained from open-source CAD datasets (e.g ., [CFG15, CWS15]). Customized or complex

objects can be manually created or scanned using a RGB-D sensor to import to VRGym for
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Figure 4.3: Examples of various physics-based simulation for diverse tasks in VRGym be-
yond merely rigid-body simulation in other 3D virtual environments. (Top) Pouring water.
(Bottom) Folding clothes.

specific tasks. After the import, users can further adjust static meshes, textures, materials,

and collision boundaries of the objects.

4.1.2.2 Real-time Physics-based Simulation

We choose UE4 as the simulation engine for VRGym for its advanced real-time physics-

based simulation. Unlike previous 3D virtual environments that mostly focus on rigid body

simulation or symbolic-level event simulation, VRGym integrates the advanced simulation

provided by UE4 to enable a large set of various simulations, including rigid body, soft body,

collision, fluid, cloth, slicing, and fracture. Some examples are shown in Figure 4.3 and

the center of Figure 4.2. As a result, subtle object state or fluent [NC36] changes due to

the virtual agent’s actions are realistic and diversify. Integrating with such sophisticated

physics-based simulations, VRGym not only increases the task complexity and improves the

visual experience of human agents, but also affords more complicated task simulations for

both virtual and physical robots.
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4.1.3 Human Embodiment in VRGym

Compared to other similar 3D virtual environments, VRGym has another distinct feature;

i.e., introducing the capability to represent the physical human agent’s embodiment in real-

time as an avatar in the virtual environment. To reflect human movements and manipulations

accurately, the physical human agent is tracked in real-time, resulting in a humanoid mesh

that can deform accordingly based on the underlying tracked body skeleton and the hand

poses.

Specifically, the setup includes: (i) A Kinect One RGB-D sensor to map human skeleton

to the avatar in real-time through a customized-built Kinect plugin developed in UE4, (ii) an

Oculus headset to record the head pose, (iii) a dance pad to navigate the avatar inside a large

virtual world, and (iv) three types of input devices that provide manipulation information

in different resolutions. Compared to other platforms, VRGym emphasizes the capability

for users to interact with virtual environments. Depending on the needs, the user can use

one of the three input devices for manipulation:

‚ Oculus Touch Controller offers an attachment-based approach; i.e., the virtual object will

automatically attach to the virtual controller/hand once the user triggers the grasp event.

It enables a firm-grip manipulation, providing a firm but the least realistic grasp during

the human-object interaction. Such manipulation is effective in the event-level tasks where

the fine-grained hand pose is not required; e.g ., pick and place.

‚ The commercial hand pose sensing products (e.g ., LeapMotion) provide the vision-based

gesture recognition. It is a low-cost and off-the-shelf solution that can be easily set up by

mounting the sensor on the head-mounted display. However, it is difficult to have a firm

grasp due to occlusions and sensor noises. Note that the hand tracking will fail if the hand

is not within the view.

‚ An open-sourced glove-based device [LZX19] is also compatible with VRGym to provide

the finest-grained manipulation. It requires a Vive Tracker to provide global positioning
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Figure 4.4: A human agent performs a series of actions in a virtual scene using Oculus Touch
controllers. (Left) Action sequence from a top view of a virtual indoor environment. (Right)
Sequences of the performed actions. Specifically, the human agent starts at the red dot as
shown in the left, (1) pushes a door, (2) navigates along the hall, (3) twists a door to enter
the kitchen, and (4)-(7) makes a cup of coffee. This process involves (i) large movements
using the human embodiment provided in VRGym (navigating along the hallway), (ii) com-
plex operations (operating the coffee maker), (iii) fine-grained manipulations (twisting the
doorknob), and (iv) physics-rich controls (pouring milk).

of the hand, and an IMU network in the glove to measure the rotation of each phalanx

and calculate the hand poses using forward kinematics. Although glove-based devices are

costly compared to other alternatives, they allow reliable hand pose sensing, which is vital

for the tasks with detailed, complex and subtle hand manipulations.

4.1.4 Software Interface Design

VRGym has two major software interfaces developed to enable training and benchmarking

both physical and interactive AI agents. The first interface is the human data logging

system that builds on top of the hardware setups to collect the data generated during the

interactions between the avatar and the environment. Another interface, a VRGym-ROS

bridge, is introduced to allow seamlessly import of robot models and robotics algorithms
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from ROS. The collected data together with the VRGym-ROS bridge could be used for a

variety of AI applications; see examples in subsection 4.1.5.

To demonstrate the functions of these two interfaces, we consider a task-rich environ-

ment built for the VRGym. Figure 4.4 depicts an environment in VRGym that provides

semantically-diverse tasks to the agent. Note that although such environment could be con-

structed in the real world to perform the demonstrated tasks, sensing and logging the detailed

data generated during the interactions between the agent and objects would be extremely

difficult in practice.

In such a typical virtual environment in VRGym, an agent (a human as an avatar or a

virtual robot) is initially placed on the starting point, indicated as the red dot in Figure 4.4.

The final goal for the agent is to reach the kitchen located at the far-end, and accomplish

several sub-tasks. At the beginning, the agent has to push to open the first door and

navigate along the corridor, requiring large movements. Then the agent must go through

another door to enter into the kitchen, and the only solution is to twist the doorknob using

complex manipulations. Inside the kitchen, the agent is required to make a cup of coffee with

milk, which needs to grasp and move a mug, operate the coffee maker by pushing several

buttons in a certain order. The entire procedure requires the task planning empowered by

the physics-based simulation.

4.1.4.1 Human Data Logging

When a user performs a task, data generated by the interactions between an avatar and the

environment can be directly logged with ground-truth labels in VRGym. In this section, we

showcase two scenarios where the data is logged and used in other applications.

Grasping Finer-grained manipulation is made feasible in VRGym using a glove-based

device [LZX19]; see Figure 4.5a for some results. By collecting a set of subjects’ grasp

data on a variety of objects, we can merge all the collected grasp data to form heat maps on
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Figure 4.5: (a) Grasp a mug, a tennis racket, and a bowl. The red area indicates the contact
force between the virtual hands and the object. (b) Visualization of the collected human
grasp data. Top: a set of 3D objects. Bottom: the average grasp heat map generated by
multiple subjects. (c) Visualization of footprint from different subjects.

different objects to visualize the likelihood of grasp points on man-made objects. Specifically,

the grasp data shown in Figure 4.5b is the averaging data of heat maps collected from 10

human subjects, where the hotter the area is, the denser the grasp points are, and the more

likely a human agent would grasp around that area.

Footprints VRGym provides the function to log an agent’s footprints or the odometry

data. Figure 4.5c shows the recorded odometry data from 5 human subjects who have

limited VR experience. Each of the participants navigates from the starting point to the

kitchen room along the corridor using Oculus Touch controllers.

194



4.1.4.2 ROS Interface

The VRGym is compatible with the popular ROS framework through a customized VRGym-

ROS communication bridge. This bridge allows the off-the-shelf ROS robot models to com-

municate with the simulations and human agents in VRGym with minimal efforts; e.g ., the

diverse scenes rendered in VRGym can also be exported to the Gazebo simulator, which is

highly compatible with ROS.

Implementation We develop a ROS interface, VRGym-ROS bridge, based on the TCP/IP

protocol in order to enable VRGym to communicate with the existing popular robotics plat-

forms. Through this interface, robot body parts can be easily imported to VR environments

as mesh files and control signals, and a data stream can be seamlessly transferred between the

VRGym and the robot platforms using ROS to communicate with either physical or virtual

robots. We organize all data types (i.e., ROS topics) in a unified JSON format and construct

JSON parsers in both VRGym and ROS to further improve the compatibility. Each port in

the protocol supports a stream of data, making it possible to present multiple agents from

ROS into the VRGym. With the VRGym-ROS bridge, we present two examples of training

and evaluating human robot interactions (HRI) inside VRGym in subsection 4.1.5, which

incorporates direct human reactions and involvements. Such capability is largely missing in

the current robotics simulators such as Gazebo or V-Rep. The benchmark in subsection 4.1.5

is also supported by this VRGym-ROS bridge.

Evaluation We evaluate the VRGym-ROS bridge on a navigation task (see Figure 4.4)

using a Clearpath Husky robot. This navigation task is performed in VRGym, whereas

the robot model is imported from ROS, making it possible to evaluate a number of SLAM

algorithms and path planning approaches. In Figure 4.6a, the mapping result is obtained

using the conventional GMapping package in ROS. The red curve indicates the planned path,

whereas the black curve is the actual odometry of the Husky robot. Figure 4.6b shows the

195



(a) (b)

Figure 4.6: VRGym-ROS bridge. (a) The robot navigation in the scene imported into the
Gazebo, exported from the VRGym. The red curve indicates the path planned by the robot’s
global planner. The black curve is the actual trajectory executed by the robot. (b) A Husky-
UR5 robot is imported into VRGym from ROS to guide the way and open the door for a
human agent.

user’s view when the robot is moving. This VRGym-ROS bridge fills in the gap between the

diverse scenes in VRGym and the existing fine-tuned algorithms provided in ROS.

Communication Bandwidth To evaluate the reliability and efficiency of the VRGym-

ROS bridge, we conduct an experiment by sending packages with the size of 512Kb2.

4.1.5 Experiments

In this section, we demonstrate the performance and capability of the VRGym from four

different perspectives3. Two human robot interaction (HRI) applications are conducted,

including a human intention prediction task and a social interaction task. Like other testbeds,

we also benchmark the performance popular machine learning algorithms (e.g ., reinforcement

learning and IRL) in the VRGym.

2See a detailed evaluation in supplementary.

3See a video demo at Vimeo.
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4.1.5.1 Experiment 1: Intention Prediction

Predicting human intention is difficult when training on a physical robot since this task has

very small error tolerance; wrong predictions may endanger both the human and the robot.

It is particularly interesting to study human intention prediction in VRGym, since this prob-

lem involves complicated inference process that many types of data can be useful: human

trajectories, human poses, object positions, object states, and first/third-person vision in-

puts, etc. Predicting intention is made possible in VRGym as our unique multi-sensor setup

reflects human poses, and the odometry data provided by the data logging system indicates

human’s trajectories.

In the experiment, we analyze different human intention prediction algorithms to demon-

strate the potential of VRGym as a testbed for both physical and virtual AI agents. Ad-

ditionally, we show the unification of both the learning and the inference enabled by the

VRGym. 20 subjects are recruited. The virtual environment is set up as a virtual kitchen,

in which more than 20 objects are placed on top of three long tables. The layout of the

kitchen is shown in Figure 4.7, where the agent starts from the entrance of the room (red

dot) and performs the task with at least 4 steps: grasp a mug, operate the coffee maker,

add milk, and add sugar. Note these tasks can perform in different orders. The resulting

footprint from one subject is plotted in Figure 4.7. All subjects are required to perform a

coffee-making task—making a cup of coffee using the available objects.

Figure 4.7e illustrates the comparisons among these three methods. The qualitative

results are shown in Figure 4.7a-d to reveal the intention of the agent as the heat maps

during the process of making coffee, where hotter color (red) indicates higher probability.

This high-level semantic prediction is inferred given multiple human demonstrations as logged

navigation and grasp data collected from the agent using VRGym.
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Figure 4.7: Intention predictions in a coffee-making task. (a) Grab a cup. (b) Use the coffee
machine. (c) Pour milk. (d) Add sugar. (Right) Visualization of three intention prediction
algorithms. Blue and Red: sampled paths from the grammar model [QHW17]. Green:
straight-line distance. Yellow: prediction by shortest perpendicular distance (dashed lines)
from objects to the ray direction (solid arrow) based on avatar’s location.

4.1.5.2 Experiment 2: Social Interaction

Social interactions or social HRI is a vital topic enabling human-robot co-existing environ-

ment, since the robot needs to understand and respond properly to human’s social behaviors,

such as waving and hand-shaking. Although the current robot simulators (e.g ., Gazebo and

V-Rep) provide a suite of features, one key element these simulation platforms still largely

missing is the direct human involvement which is crucial for human-robot interaction studies.

Participants A total of 10 subjects were recruited. We implemented the algorithm pro-

posed in [SGR17] for robot learning social affordance. The algorithm is briefly described as

follows; we refer the readers to the original paper for more technical details.

Results Qualitative results are shown in Figure 4.8. Concretely, the robot starts hand-

waving in response to the agent’s hand waving (Figure 4.8a), illustrated by a virtual hand
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Figure 4.8: Human robot interactions in VRGym. A Baxter robot (a) waves hands and (b)
shake hands with a virtual human agent.

model. The robot stretches out its manipulator to make a handshake with the virtual agent

(Figure 4.8b). Technically, when the virtual Baxter inside the VRGym perceives the action

signals from a virtual human such as hand shaking or hand stretching out, it sends the action

signals to ROS through the VRGym-ROS bridge. In ROS, the motion planning will generate

corresponding body parts transformations and send the computed transformation data back

to the virtual Baxter inside VRGym, such that it will then act with the appropriate responses

to the virtual human agent. In this sense, the proposed VRGym enables a new approach

to study social human-robot interaction without using a costly physical robot or having a

physical contact between a subject and robots, which in some cases could be dangerous.
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4.1.5.3 Experiment 3: RL Algorithms Benchmark

We introduce a playground as a sub-module (Figure 4.9) inside the VRGym, aiming to train

robots to navigate in a 3D maze-like indoor corridor. The overall goal is to teach the robot

agent itself by trial and error to obtain a navigation policy, reaching the final goal of the

maze. The learning strategy applied on the virtual robot follows the standard RL framework.

A Baxter robot is integrated into the VRGym and controlled by off-the-shelf ROS packages.

Compared to other virtual playgrounds (e.g ., OpenAI Gym), the proposed VRGym differs

in two primary aspects.

‚ Sophisticated Interactions. With the advanced physics-based simulator, the VRGym offers

realistic interactions between the virtual agent and the virtual environment.

‚ Physical RL Agent. Since the VRGym is capable of importing both the physical and the

virtual robot model to the virtual scene, it is feasible to transfer RL model trained inside

the virtual environment directly to a physical robot agent.

We conduct four state-of-the-art deep RL algorithms to demonstrate the VRGym’s capa-

bility in RL related tasks. These algorithms are DDPG [LHP16], DQN [MKS15], Actor-

Figure 4.9: Settings for the RL training inside VRGym environment for an indoor maze
navigation task. (a) First-person view of a virtual robot. (b) The robot collides with a wall,
triggering negative rewards. (c) An eagle view of the indoor navigation task. (d) Rewards
assigned in different color zones (red, yellow, green and blue) from low to high. (e) The
performances of the tested RL algorithms.
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Figure 4.10: Learning human grasping demonstration with different IRL frameworks.

Critic [MBM16], and Dueling DQN [WSH16]. All four algorithms use the pixel-input from

the first-person camera view. The quantitative comparison of the above four algorithms in

VRGym is plotted in Figure 4.9e.

4.1.5.4 Experiment 4: IRL for Learning Grasp

Grasp is an imperative capability for an interactive agent. In this experiment, we adopt an

inverse reinforcement learning (IRL) framework to enable a virtual robot learning to grasp

from human demonstrations. This task primarily involves both the data logging function

in VRGym and a ROS motion planer communicated by the VRGym-ROS bridge. The

robot is expected to learn how to successfully grasp an unknown object based on the hand

trajectories demonstrated by the human subjects, collected through tele-operations using

the Oculus Touch Controller inside the VRGym.

The trajectories of the human demonstrations are logged and used to infer the model and

its parameters. Later, with the learned model and its parameters, the robot can be executed

using the motion planner in ROS to grasp an unknown objects in the virtual environment.

Three IRL algorithms are implemented in the VRGym: Bayesian-IRL [RA07], Maximum

Entropy-IRL [ZMB08], and Semi-supervised-IRL [VGL12]. Qualitative results are shown in

Figure 4.10.
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4.1.6 Conclusion

In this section, we introduce the VRGym as a promising simulation platform for training and

evaluating autonomous agents to build the physical and interactive AI. VRGym can repre-

sent a fine-grained human embodiment as a virtual avatar using a range of hardware setups

for body and manipulation sensing. Existing robotics systems and algorithms developed in

ROS can also be integrated to VRGym through a customized VRGym-ROS bridge. Multiple

evaluations indicate that the VRGym has a robust performance at the system level and in the

communication with ROS. Our experiments have demonstrated that four different robotics

interactive tasks can be successfully trained using RL and IRL inside VRGym. Specifically,

we showcase how the data logged from the VRGym is useful in several interaction tasks, com-

bining with the functions (e.g ., motion planners, robot models) provided by ROS through

the VRGym-ROS bridge. The successful implements of RL and IRL for robotics interactive

tasks in VRGym also support the training capability offered by VRGym in training robots

with advanced machine learning methods. We believe VRGym could have further potential

applications and it will benefit future research on the physical and interactive AI.

4.2 Exploration-Efficient Hierarchical Reinforcement Learning

In this work, We adopt the Boltzmann Policy [SB98] to generalized Boltzmann policy (GBP)

in order to leverage additional knowledge for exploration in a unified formulation. Further-

more, we integrate the GBP with a simple yet effective hierarchical reinforcement learn-

ing (HRL) [KNS16] framework. Both theoretical and empirical analyses are provided to

justify the (i) exploration efficiency and (ii) dynamic balance between exploration and ex-

ploitation for the proposed method. Experiments are conducted in various 2D grid-world

environments under the sparse-reward circumstance, in which discovering reward is difficult

due to the delayed reward and long horizon. The results show significant improvements in

exploration efficiency across the hierarchy comparing to the vanilla HRL framework.
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4.2.1 Introduction

A reinforcement learning (RL) agent learns a policy to maximize long-term accumulated

reward. Interacting with the environment, the agent collects experiences (exploration) and

learns from them (exploitation). Such “trial and error” procedure is driven by a reward

function which is usually crafted. [SB98]. Researchers have proposed classic solutions for RL,

such as Q-Learning [Wat89], policy gradient [SMS00], etc. Recent success in deep learning

also boosts the research of RL, providing a powerful functional approximation [MKS15].

RL models heavily hinge on the design of the reward function. On one hand, hand-crafted

reward functions are oftentimes not suitable for complex tasks as a poorly designed reward

function would potentially confuse the RL agent, dragging it into a dilemma. On the other

hand, simple reward functions also baffle the RL agent; e.g ., a “0-1” reward can be extremely

difficult for an RL agent to learn since the agent would receive the reward if and only if it

reaches a long-term goal, before which the agent has no clue about the task. Such cases are

so-called sparse-reward or reward-delay circumstances, requesting for a more efficient way to

explore the state-action space.

Additionally, it is challenging to balance the exploration and the exploitation in RL. To

alleviate this difficulty, one commonly adopted trick is to empirically set a schedule, such

as ϵ-greedy in Q-Learning. Nevertheless, the drawback of a manual exploration schedule is

fatal. The RL agent could hardly achieve the optimal policy if one does not have sufficient

exploration, while the late stop of the exploration causes a plight to seldom converge to a

deterministic or optimal policy. Therefore, it is advantageous that the RL agent, through

learning, could properly balance the exploration and exploitation by itself without any man-

ual intervenes.

In this work, we adopt Boltzmann Policy [SB98] to generalized Boltzmann policy (GBP)

by taking the advantages of auxiliary information to (i) improve the exploration efficiency,

especially under sparse-reward environments. Such auxiliary information can be interpreted
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Figure 4.11: An illustration of the proposed method. The example task requires the agent to
visit the key points in the order of blue, red, yellow, green to get the reward. The dashes and
the bar-charts represents the auxiliary information in GBP for low- and high-level policies
respectively. The dashes inspire the low-level policies to explore along meaningful directions
while the bar-charts encourage the high-level policy to explore towards unfamiliar sub-tasks.

accordingly as heuristics e.g. euclidean distance, a pre-trained policy etc.. Furthermore,

in order to balance the exploration and exploitation, we introduce a preference factor, a

learnable parameter, to control the exploration and exploitation.

In the literature, the challenges caused by the sparse reward serve as one of the major

motivations to propose the hierarchical reinforcement learning (HRL) framework [DH93,

SPS99, Pre00, CBS05, PR98]. The main idea of HRL is to construct two (but could be

more) layers of policies, responsible for different granularity of tasks. The high-level policy

is designed to arrange the sketch of the task and to decompose a complex task into multiple

but simple sub-tasks. Policies on the low-level layer are assigned to achieve various sub-

tasks, controlling the details of executions. In such HRL frameworks, policies on both

layers can be learned individually using typical RL methods, but the reward function is

designed differently. Low-level policies receive an artificial reward, namely the intrinsic
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reward [CBS05], when a low-lever policy finishes its sub-task. The high-level policy will

receive the actual reward from the environment—the extrinsic reward, when policies on

both layers jointly complete the correct sketch of sub-tasks.

Although the HRL framework alleviates the reward-delay problem to some extent by

decomposing it into sub-tasks, it still struggles if the task complexity increases due to (i)

the absent or insufficient information exchanges between high- and low-level policies, result-

ing in (ii) the inefficient exploration across the hierarchy, wasting computational efforts on

insignificant sub-tasks.

Such deficiencies widely exist in the current HRL approaches. Crucially, policies from

different layers in the hierarchy explore individually without using the information from

other layers to prune the space, leading to a low exploration efficiency.

To remedy such drawback, an exemplar of the hierarchy would enable the communications

across the hierarchy: low-level policies should be able to receive hints guided by the high-

level policy, while the high-level policy focuses on the transitions of sub-tasks. As shown in

Figure 4.11, we introduce generalized Boltzmann policy (GBP) as the representation of the

policy on different layers, enabling HRL frameworks with proper communications across the

hierarchy.

Specifically, we improve HRLs by fusing GBP in two aspects: (i) GBP is capable of

accommodating auxiliary information of the task, making it possible to inject information

from another layer. Such auxiliary formulated as a reference policy, guiding the policy on

a different layer to explore more deliberately, i.e., narrowing down the exploration space.

(ii) Because GBP affords a learnable mechanism to dynamically balance the exploration and

the exploitation, it can further improve exploration efficiency in HRL. Intuitively, for high-

level layer, GBP not only encourages the high-level policy to explore insufficiently learned

sub-tasks, but also rolls out the sub-tasks which are not critical to the entire task with

probabilities. For low-level layer, GBP integrates information from high-level policy into its

reference policy, which guides the low-level exploration towards more meaningful directions.
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See details in subsection 4.2.4.

This work makes two major contributions:

‚ We adopt the generalized Boltzmann policy (GBP), making use of auxiliary information to

explore more efficiently. Meanwhile, GBP is able to dynamically balance the exploration

and the exploitation.

‚ We introduce GBP to serve as an unified representation of policies on both high- and low-

level layers in the hierarchical reinforcement learning (HRL), enriching the information

exchange, thereby improving the exploration efficiency across the hierarchy.

4.2.2 Related Work

Reinforcement Learning with Auxiliary Information is designed to have an im-

proved exploration strategy by utilizing existing knowledge to better guide the exploration.

Early work uses heuristics-based methods. [IRC98, MRI04] propose supervised RLs that

assign weights to different exploration steps based on the prior knowledge obtained. [SBP04]

proposes the supervised actor-critic model, which adds a supervisor and attempts to find a

balance between the supervisor and the critic for policy learning. [AHL07] proposes several

exploration methods based on the rule of “exploring the most unvisited state”.

More recently, one important line of research uses curiosity-driven methods [SP12, BSO16]—

to explore the spaces which are infrequently visited. Usually, it requires a proper division of

the task space, making it tricky to assign the granularity for sub-spaces.

In contrast, the proposed GBP incorporates auxiliary information in a more versatile

form, i.e., a stochastic policy. There are other approaches that also adopt an exponential

form of policy, e.g ., max-entropy inverse reinforcement learning [ZMB08] and soft Q-Learning

[HTA17]. The GBP is motivated differently: we want to incorporate auxiliary information

to guide exploration.
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Hierarchical Reinforcement Learning (HRL) has been intensively studied in the RL

community. One important line of work is the formulation of semi-MDPs and the options.

[SPS99, CBS05, SLB10, Pre00] proposed a semi-MDP planning method by considering the

sequential transitions within sub-tasks, and the option has been proven to be an effective

method to build hierarchies, capable of discovering the differences between action-values and

option-values. Although recent work on options achieves impressive performance [BHP17],

there are still unresolved challenges. In such a formulation, the options and terminal con-

ditions lie within the same environment for the agent to discover. This setup requires the

agent to explore immersively in the environment to distinguish options and actions, which

in turn generates the hierarchy [MMH04, MB01, SWB05, MMS02].

To improve this hierarchical learning scheme, several directions have been investigated.

Efforts have been made to propose more explicit representations of hierarchies. For instance,

[DH93] proposes a model using various levels of granularity, in which policies on higher levels

make decisions for lower layers until tasks cannot be further decomposed. Similar work

introduces other methods to decompose tasks [Die00, GKP03], including some recent work

with promising results using deep neural networks [VOS17]. Despite the granular hierarchical

representation, the true sub-goals are still left for the agent to discover. Such a setting could

improve the learning efficiency of an HRL agent, but would still suffer from the inefficient

exploration.

In another stream of work, [PR98] uses a high-level representation of the entire task

to represent the joint policy as an automaton. [MB01, MRL05] integrate RL to fulfill the

low-level details of high-level symbols; such symbols are usually manually engineered. In

more recent works, [KNS16, TGZ17] follow the same idea to leverage high-level state rep-

resentations to improve HRL training. Different from HAM framework, instead of using a

planner for the high-level symbolic planning, these works use RL policies in both the high-

and low-level layers, but only explore individually. Meanwhile, [AKL17, SXS18] propose the

idea of “policy sketch” to guide the low-level learning. Different from HAM, the high-level
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policy rolls out the useless sketches, expediting the exploration. [BSO16] uses a count-based

curiosity for a more efficient exploration of the policy on the high-level layer. However, the

high-level representations used in such methods still only help decide which low-level policies

to use, barely improving the exploration efficiency for each individual low-level policy.

We argue that an ideal HRL should enable proper bi-directional communications between

high- and low-level of layers to explore more efficiently. In the proposed method, the high-

level policy provides guidance for the low-level policies to efficiently finish sub-tasks through

GBP, formulated as a reference policy guided exploration in a sub-task space. Meanwhile, the

transition of low-level sub-tasks can be passed to high-level policy to encourage explorations

of the sub-tasks that are crucial for the entire task.

4.2.3 Generalized Boltzmann Policy

4.2.3.1 Preliminaries and Notations

A standard reinforcement learning (RL) agent learns a policy to maximize its accu-

mulated rewards through exploration. This process can be interpreted as a Markov deci-

sion process (MDP), formally defined as a five-tuple pS,A,P, r, γq, where S denotes the

state space, A the action space, r “ rps, aq the reward of taking the action a at the

state s, and γ the discount factor. The agent’s policy π : S Ñ PpAq is a mapping

from states to a probability distribution over actions. At time t, the action-value function

Qπps, aq “ E rrps, aq ` γ ¨ Rpst`1, at`1q ` . . . |st “ s, at “ a, πs. The goal of RL is to find an

optimal policy π˚ that corresponds to the optimal Q function Q˚ps, aq “ maxπQ
πps, aq.

Q-learning [Wat89], an off-policy RL method, is updated by the temporal-difference

error (TD-error) δtd

δtd “ prpst, atq ` γmax
at`1

Qpst`1, at`1q ´ Qpst, atq. (4.1)
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The Q function can be parameterized as Qθ with functional approximations using a neural

network [MKS15], in which θ can be learned through gradient descent

θ “ θ ` αδtd∇θQθpst, atq, (4.2)

where α is the learning rate.

Policy gradient method [SMS00] is used to optimize a parameterized policy πλ by the

objective function

Jpλq “ Eτ„πλpτqr

T
ÿ

t“1

rpst, atqs, (4.3)

where r is the accumulated reward from time step t, and τ is the trajectory of state-

action pairs. In order to maximize the objective function, i.e., maximizing the accumulated

rewards, gradient ascent can be applied

λ “ λ ` η∇λJpλq, (4.4)

where η is the learning rate.

The Boltzmann policy is a particular type of the soft-max action preference policies,

formally defined as

πpa|s; θq “
1

z
e

1
T
Qps,a;θq, (4.5)

where z is the normalizing constant, T the temperature, and Qps, a; θq the Q function pa-

rameterized by θ.

4.2.3.2 Generalized Boltzmann Policy

Theoretically, the standard Boltzmann policy could eventually approach the optimal Q˚

as the temperature T decreases. However, the annealing of T usually requires a delicate

schedule, often set empirically for different tasks. In HRL, another challenge emerges—the
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Figure 4.12: Illustration of the generalized Boltzmann policy (GBP). Instead of exploring
randomly, the idea is to explore the space deliberately according to auxiliary information
of the task (i.e., the reference policy qpa|sq). Starting from this stochastic policy, we tilt
the reference policy qpa|sq to a more deterministic policy, which gradually converges to Q˚.
Preference factor λ with respect to Q adjusts how deterministic the policy is.

Boltzmann policy cannot benefit from the learning of other levels of hierarchy, as it starts

from a uniform distribution and explores inefficiently. To overcome these difficulties in the

standard Boltzmann policy, we propose the generalized Boltzmann policy:

πpa|s;λ, θq “
1

Z
eλQps,a;θqqpa|sq 9 eλQps,a;θq´Ups,aq, (4.6)

where qpa|sq 9 e´Ups,aq is a reference distribution that can be interpreted from two dif-

ferent views: (i) From the perspective of exploration, qpa|sq can be treated as an initial

exploration policy. It can be generated by auxiliary information (e.g ., prior knowledge) of

the task, which potentially provides a good initial policy for exploration. (ii) We can also

view qpa|sq as a hidden cost of each action in a certain state. When qpa|sq is a uniform

distribution, the GBP degenerates to the standard Boltzmann policy and random explores

at the beginning. In this case, each available action has the exactly the same cost. In con-

trast, in the proposed GBP, the policy could be optimized from any distribution as an initial

exploration, even a pre-trained stochastic policy.
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Same as the standard Boltzmann policy, we use Qps, a; θq as the action preference. Unlike

the vanilla Boltzmann policy, we use a learnable preference factor λ to replace the temper-

ature term 1
T

. It weights the learned action preference against the initial exploration policy

qpa|sq. Rather than empirically setting the preference factor, we propose an algorithm to

dynamically balance Qps, a; θq and ´Ups, aq.

4.2.3.3 Learning

We describe the learning algorithm for (i) θ, the parameter of the state-action value function

Qθps, aq, and (ii) λ, a learnable preference factor, replacing the pre-scheduled temperature

factor 1
T

in the vanilla Boltzmann policy.

Learning Action Value Function Qθps, aq The action value function Qθ is learned

using Q-Learning (see Equation 4.1 and Equation 4.2). The action value function is repre-

sented by a deep neural network, making it possible to use stochastic gradient descent (SGD)

to optimize Qθ with respect to θ.

Learning Preference Factor λ We propose a learning algorithm for the preference

factor λ that is fundamentally different from adjusting the temperature factor 1
T

in the

standard Boltzmann policy. The overall role of these two types of factors are the same:

as the policy becomes better, λ should gradually increase to help the policy approach the

deterministic optimal policy. Intuitively, we adjust λ by measuring how well the current

Q function performs: λ should increase if the current Q function performs well; otherwise

decrease. In this way, the algorithm can minimize the negative effect of a poorly learned

Q function at an early stage during training, thereby achieving a good balance between the

exploitation of the Q function and the exploration guided by the reference policy q, achieved

by performing a policy gradient with respect to λ.

With Equation 4.3, the preference factor λ can be adjusted by maximizing the following
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objective function:

Jpλq “ Eτ„πλ,θpτqr

T
ÿ

t“1

rpst, atqs, (4.7)

where πpa|s;λ, θq “ 1
Z
eλQps,a;θqqpa|sq, and τ is the trajectory of state-action pairs.

Then the gradient of the preference factor λ is derived as

∇λJpλq “
1

N

N
ÿ

i“1

«˜

T
ÿ

t“1

∇λ log πλ,θpai,t|si,tq

¸ ˜

T
ÿ

t“1

rpsi,t, ai,tq

¸ff

, (4.8)

where N is the number of trajectories sampled from the current policy. The gradient of the

action log-likelihood over preference factor λ can be derived as:

∇λ log πλ,θpat|stqq “
B

Bλ
log

1

Zpλq
eλQθpst,at;qqpat|stq

“ Qθpst, atq ´
B

Bλ
logZpλq “ Qθpst, at; gq ´

1

Zpλq

B

Bλ
Zpλq

“ Qθpst, atq ´
ÿ

a

pλ,θpa|stqQpst, aq,

(4.9)

where Qθps, aq is fixed while updating the preference factor λ, and λ is adjusted by gradient

ascent (see Equation 4.4).

As shown in Equation 4.9, the gradient of the preference factor λ in GBP equals to the

difference of the current Q value and its expectation with respect to the policy. The interpre-

tation of the Equation 4.9 (see Figure 4.12) matches our intuition—λ should be increased if

the current Q value is better than the current policy; otherwise it should be reduced. More

concretely, Equation 4.9 steers the direction of the update, and the accumulated rewards

along the sampled trajectories determines the volume of adjustment.

Convergence to Deterministic Policy In a proper learning algorithm, Qps, aq converges

to Q˚ps, aq if all state-action pairs are visited during exploration [Wat89]. Therefore, the

preference factor λ is guaranteed to make the policy approach a deterministic policy, same
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as the temperature factor 1
T

in the vanilla Boltzmann policy. By substituting the Q function

in Equation 4.9 with Q˚, we have

∇λ log πλ,θ “ Q˚
pst, atq ´

ÿ

a

pλ,θpa|stqQ
˚
pst, aq ě 0. (4.10)

Assuming that all the rewards are non-negative, we have ∇λJpλq ě 0 according to

Equation 4.8. In fact, when Q is optimal, the gradient will be strictly positive except that

Q˚pst, atq “
ř

a pλ,θpa|stqQ
˚pst, aq, which indicates pλ,θpa|stq has already coincided with the

optimal deterministic policy. Hence, λ will keep increasing, and the policy will converge to

the optimal deterministic policy.

Note that although the parameters θ and λ need to be learned in GBP, they are not being

updated simultaneously. In fact, they are updated within their own learning interval. As

mentioned above, ideally, GBP can converge to a deterministic policy and acts as the same

as Q˚. For a smoother learning progress, the update interval of θ should be reasonably longer

than the update interval of λ. According to Equation 4.10, a better Q function makes the

policy more deterministic. In contrast, an ill-learned Q function could potentially degenerate

GBP to the reference policy qpa|sq.

4.2.4 HRL with Generalized Boltzmann Policy

4.2.4.1 Setup

Our method follows the setup of [KNS16] in which the sub-tasks are specified. A two-layer

hierarchy is constructed: the high-level policy decides what sub-tasks to take and the low-

level policies fill in the details of each sub-tasks respectively. The agent will be granted an

intrinsic rewards once a low-level policy accomplishes a sub-task. We use a “0-1” intrinsic

reward, but it is slightly different from the conventional definition [CBS05, SLB10]: the

intrinsic reward is only used for learning the policies for sub-tasks instead of considering it
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with high-level planning. The high-level policy takes an empirically designed abstraction

based on conducted sub-tasks as input (see subsubsection 4.2.5.1) and selects the next sub-

task to be accomplished. On the low-level layer, there is a policy bank in where each policy

directly takes the observation from the environment as input and outputs the legal actions

of the task. A final “0-1” reward will be granted to the high-level policy as soon as it reaches

the goal state of the task.

4.2.4.2 Overall Mechanism

Policies represented by GBP on both high- and low-level layers in the hierarchy collaborate

together, achieving the final goal. Although both levels of policies use the same repre-

sentation, the GBP, the underlying mechanism and notation of them are different. The

information exchange is implemented via the reference policy in GBP. The learning process

for both layers of policies follows subsubsection 4.2.3.3.

Policy on Low-level Layer The form of policies on low-level layers can be represented

as

πlow
λ,θ pa|slow; gq “

1

Z
eλQθpslow,aqqqlowpa|slow; gq,

qlowpa|slow; gq9e´Upslow,a;gq,

(4.11)

where Z is the normalization constant. As mentioned in subsubsection 4.2.4.1, slow is the

feedback from the environment, a the available actions of the task, and qlowpa|slow; gq the ref-

erence policy which guides exploration in low-level space. Usually, it is sub-optimal but better

than random policy. Such stochastic policy can be described by a hidden cost ´Upslow, a; gq.

Intuitively, the goal of a sub-task g is given by the high-level policy, therefore the corre-

sponding low-level policy should explore related directions towards the sub-goal g instead of

picking random actions. Technically, any “hints” can be used to form such reference policy.

For example, treating heuristics (used in our experiments) as the hidden cost to generate the

reference policy according to Equation 4.11. Additionally, a pre-trained stochastic policy

214



Algorithm 2: High-level Training for Agent Toward G

Hyperparameters: Learning rates α, η for θ, λ, Maximum episode T ,
Maximum training step k, Training interval ∆, λ update interval δ,
Recent episode window ϵ
Input: High-level policy πpθ,λq to goal G, Memory D “ H, Environment E
Result: Learned high-level policy πpθ,λq

Init: i Ð 0
while i ă k do

shight Ð shigh0 , slowt Ð slow0 , t Ð 0
while slow is NOT terminated and t ď T and rG ‰ 0 do

Rg “ ´
řjg

maxpjg´ϵ,iq rjg , see jg in algorithm 3

gt „ 1
Z
eλQθpshight ,gqqhighpg|shight ;Rgq, see Equation 4.12

pslowt`1, s
high
t`1 , rgt , rGq Ð Execute algorithm 3 with slowt , gt

if rg ‰ 0 then

D Y pshight , gt, s
high
t`1 q, rG, shight Ð shight`1

end
slowt Ð slowt`1

if i “ ∆ then
if i “ δ then

update λ with Equation 4.4 and Equation 4.9
end
else

update θ with Equation 4.1 and Equation 4.2
end

end

end

end

can serve as the initial exploration. Note that the reference policies on the low-level layer

are designed with a distance-related heuristics. An automatic pipeline for converting g into

a reference policy is desirable. Eventually, the low-level policies are expected to learn the

optimal policy for accomplishing the sub-tasks.

Policy on High-level Layer Taking different representation as the input, the high-level

policy selects a proper sub-task for corresponding low-level policy to accomplish. We formu-
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late it in the form of GBP:

πhigh
λ,θ pg|shigh;Rlow

q “
1

Z
eλQθpshigh,gqqpg|shigh;Rlowq,

qpg|shigh;Rlow
q9e´Upshigh,g;Rlowq,

(4.12)

where Z is the normalization constant. The input of high-level policy is an abstraction

of a state reported by the environment. The state abstraction contains the information

of visited sub-goals (see more detail in subsubsection 4.2.5.1). Ideally, such abstraction

should be nominated automatically. In this work, we manually design the form of state

abstraction. The reference policy qhighpg|shigh;Rlowq of the high-level policy is serving for the

same purpose, i.e., narrowing down the exploration space, but with different interpretation

and implementation. The hidden cost ´Upshigh, g;Rlowq can be given by the average intrinsic

rewards achieved in a recent time window by the corresponding low-level policies. In short,

the more likely one low-level policy can complete a sub-task, the less probable for a high-level

policy to select this sub-task in a certain abstraction state.

The idea behind it is that we hope the high-level policy to explore its space with the

unskilled sub-tasks policies. Such sub-tasks may be critical to the entire task, therefore the

agent is required to master it. If these sub-tasks are parts of the optimal path to the goal

state, the agent will acquire the final reward. Such experiences help to learn Qθps
high, gq in

the high-level policy. As a result, the better the Q function is, the more deterministic (λ

increases) the policy will be according to subsubsection 4.2.3.3. In other words, the high-level

policy learns to conduct correct sub-tasks sequence to achieve the final reward.

4.2.4.3 Algorithm

The algorithm of the proposed method is described in algorithm 2 and algorithm 3. Specifi-

cally, both levels of policies are represented by GBP, learned using the method described in

subsubsection 4.2.3.3. The episode denotes the maximum number of steps that is allowed in
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Algorithm 3: Low-level Training for Agent Towards g

Hyperparameters: Learning rates α, η for θg, λg, Maximum episode T ,
Maximum training step k, Training interval ∆, λ update interval δ
Input: Low-level policy πpθg ,λgq to subgoal g, current low-level state slow0g ,
Memory Dg “ H, Environment E
Result: Learned low-level policy πpθg ,λgq

Init: jg Ð 0
while jg ă k do

slowt Ð slow0g , t Ð 0, rg Ð 0, rG Ð 0

while slow is NOT terminated and t ď T and rg, rG ‰ 0 do

at „ 1
Z
eλgQθg pslowt ,a;gqqlowpa|st; gq

pslowt`1, s
high
t`1 , rg, rG, gq Ð Epslowt , shight , atq

Dg Y tpslowt , at, s
low
t`1, rgqu

slowt Ð slowt`1, s
high
t Ð shight`1 , t Ð t ` 1

if jg “ ∆ then
if jg “ δ then

update λg with Equation 4.4 and Equation 4.9
end
else

update θg with Equation 4.1 and Equation 4.2
end

end

end
jg Ð jg ` 1

yield pslowt , shight , rg, rGq, see Python for yield
end

a single trail. termination is defined as a terminal non-goal state. Note that the episode, α,

η on high- and low-level are different from each other. For simplicity, they are sharing the

same symbols. Additionally, the λ-update period and Q-update period are not the same in

high- and low-level policies’ training.
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4.2.5 Experiments

4.2.5.1 Experimental Setup

Environment We evaluate our method on a 2D grid world game in various scales. An

illustrative example of this kind of game is shown in Figure 4.13. In order to achieve the

final reward, the agent needs to conduct a sequence of sub-tasks in a correct order. For each

environment, there is a unique path to obtain the final goal. Another challenge of this type

of task is that the agent is not only asked to accomplish the task on symbolic level but also

fulfill the details of the sub-task. In summary, the agent is required to go through certain

landmarks in the maps with correct orders.

Game Setting In our setting, we manually define a certain number of sub-goals and the

unique order of them to the final reward. The environment returns a state (position) as an

input for the agent. The agent takes two different inputs. For high-level policy, the input is

an abstraction state which is an one-hot vector, indicating the most recently and correctly

achieved sub-goal. We assume that the high-level state transition will only take place when

the agent correctly discovers the first remaining sub-goal. To level up the difficulty of the

game, we bring in different types of obstacles and traps that the agent might need to jump on,

or avoid to encounter (see supplementary for further descriptions). The size of valid actions

set of our environment is as the same as the one in OpenAI Gym [BCP16]. Following the

conventional RL setup, terminal conditions are set to be (i) the agent triggers the traps,

or (ii) it exceeds the maximum steps limits for a single trail. Two types of rewards will be

granted: (i) a “0-1” intrinsic reward for each low-level who accomplishes a sub-task; (ii) a

“0-1” final reward can be achieved by the high-level policy if it successfully produces the

correct sequence of sub-tasks.
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Figure 4.13: A simplified sketch of the tasks in different scales of grid-worlds: 7 ˆ 7, 10 ˆ 10,
15 ˆ 15, 20 ˆ 20, respectively. We conduct the experiments on these 4 environments where
the agent needs to both achieve the final reward with correct order and accomplishing each
sub-task.

4.2.5.2 Implementation Details

In our experiments, the state-action value function Q in GBP is implemented as a feed-

forward neural network with ReLU as a nonlinear activation. For high-level policy, the

input is the abstract one-hot state vector defined in section 4.2.5.1, and the output is the

next sub-goal. For low-level policies, the input is the current position, and the output is

the next action. The details of the network configurations are described in supplementary

materials. We set the learning rate as 2ˆ10´4 for learning high-level policies, and 6.25ˆ10´5

for learning low-level policies. The discount factor γ for the low- and high-level learning are

0.95 and 0.5, respectively. For the high-level GBP learning, we update Qpshigh,gq for 90

episodes, followed by the λ for 10 episodes. For the low-level GBP learning, we update

Qgps
lowq for 990 episodes, followed by the λg update for 10 episodes. The hidden cost

Upshigh, gq in the high-level policy is implemented as the average count of successful trials in

finishing low-level policies in the most recent 200 episodes. The reference policy for low-level

policies follows distance-related heuristics, for example the L2-distance.
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(a) (b)
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Figure 4.14: The performance of the proposed model and the baselines under dif-
ferent scales and difficulties of tasks. (a) 7 ˆ 7 grid-world, (b) 10 ˆ 10 grid-world, and (c)
15 ˆ 15 grid-world, (d) 20 ˆ 20 grid-world.

4.2.5.3 Empirical Results and Analysis

We evaluate the proposed method in 4 different 2D grid-world environments. As shown in

Figure 4.13, scaling up the tasks increases the difficulty of them. Therefore, we can exam the

exploration efficiency of our method on them. Besides, we compare the performance of our

method with a popular HRL framework [KNS16] the same set of tasks. To further analyze

our method, especially GBP, we provide ablation studies below.
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Performance Evaluation and Analysis The results for the proposed method are shown

in Figure 4.14. We implement [KNS16] to be the baseline for comparison. The experimental

results show that the proposed method has significant performance advantages in difficult

environments. In the simplest task, the baseline framework achieves similar performance

comparing to our method. However, as the tasks scale up, the proposed method outperforms

the baseline by a larger and larger margin. Specifically, the reasons are two-fold: (i) the

fast convergence of low-level learning, and (ii) the fast learning of the high-level policy.

Fundamentally, the exploration across the hierarchy in our method is much more efficient

than the baseline framework. (i) The reference policies on low-level layer in the hierarchy

help the low-level policies to explore towards the sub-goal, therefore it collects experiences

with rewards more effectively. In difficult tasks, such an initial exploration strategy can

achieve the sparse reward with much higher probability. In contrast, the low-level policies

in the baseline method can hardly reach the sub-goal states. (ii) The preference factor λ

and the reference policy of the high-level policy encourage to learn unskilled but important

sub-tasks and roll out sub-tasks that are not critical to the task. Hence, according to the

results shown in Figure 4.15, the high level policy can learn the optimal path faster. For

h-DQN model, it can be extremely difficult to propagate the value in such a sparse reward

setup if the scale of the task is too large.

Ablation Study of Preference Factor λ In addition, Figure 4.16 shows the trend of

the preference factor λ in the adopted GBP. In subsection 4.2.3, we introduce a preference

factor λ and discuss the learning algorithm of it subsubsection 4.2.3.3. The results shown

in Figure 4.16 affirm our hypothesis that the preference should increase over the learning

progress, making the policy deterministic. The gradually smoothed curve of λ also empir-

ically implies Equation 4.10. The gradient of λ decreases when the policies are gradually

approaching optimal, slowing down the trend to increase λ.
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(a) (b)

Figure 4.15: The performance of the proposed method with or without λ in GBP of
the high-level policy. Results are shown in two (a),(b) tasks in different scales and difficulties.

(a) (b)

Figure 4.16: Trend of preference factor λ in both high- and low-level policies in the
proposed method. (a) shows the trend of λ located on the high-level layer. (b) reflects the
trend of 3 λ on the low-level policies for a certain sub-task.

Ablation Studies of Different Reference Policy In the adopted GBP model, Ups, aq

is defined as the hidden cost for taking a specific action a in state s. In experiments,

we implement the hidden cost Upslow, a; gq of the low-level policies with distance-related

heuristics between the state slow and the sub-goal location g, e.g ., L2-distance. Here, we

discuss the performance of the low-level policies based on the experimental results using
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different heuristics to construct the reference policies. Four different heuristics are compared

for constructing the reference policy. (i) Euclidean distance (L2-distance) (ii) Manhattan

distance (L1-distance) (iii) L2-distance with random shuffle (iv) random exploration, i.e.

uniform reference distribution. We also compare the above models with the ablation model

which disables the learning of preference factor λ. For euclidean distance with random

shuffle, the reference policy does not always reflect the heuristic. The reference policy will

randomly pick an available action at time t according to Equation 4.13; the probability is

set to 0.2. We also compare these heuristics and the ϵ-greedy exploration.

qpa|sq “

$

’

&

’

%

qpa|sq if 1 ´ p

random action if p

(4.13)

As shown in Figure 4.17, in most of the cases, GBP with different kinds of heuristics shares

similar performances. Comparing the ϵ-greedy strategy, GBP demonstrates its exploration

efficiency, even with random exploration. One thing worth noticing is in Figure 4.17c, L1-

distance seems not to perform well as in other cases. We argue that this is caused by the

aggressiveness of L1-distance measure compared to L2-distance. We design some obstacles

and traps on purpose to prevent reference policy from getting to the goal directly. Such

setting can lead to aggressive exploration, being trapped in a dilemma. Note that the

preference factor λ in the GBP encourages the policy to be deterministic, making faster

convergence. We argue that this experiment justifies the robustness of the adopted GBP

when potentially misleading reference policy is provided.

4.2.6 Conclusion

The experiments on various setup of tasks justify the effectiveness and efficiency of the

proposed integration of GBP and HRL comparing to the vanilla framework. The empirical

results show significant improvement comparing to a popular HRL framework. In conclusion,
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Figure 4.17: The performance of different heuristics for low-level policies in the
20 ˆ 20 grid-world. In most cases, GBP with heuristics significantly outperforms the normal
DQN with ϵ-greedy as exploration strategy.

GBP has shown promising results to improve the HRL framework.
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CHAPTER 5

Conclusion

In this dissertation, we introduce our contributions to developing early-stage techniques for

an intelligent robot by exploring three domains: robot imitation learning, visual abstraction,

and visual language reasoning, and robot planning.

In chapter 2, we study robot imitation learning by demonstrating a series of works. We

proposed a prototype of a tactile glove for collecting human demonstration data. The tactile

glove expands the spectrum from vision-only demonstration to multi-modal demonstration,

including human pose and force sensing. We develop an unsupervised segmentation method

to build hierarchical clusters of the collected human demonstration data. In order to learn

from human demonstration, we proposed a method for imitation learning. It combines

symbolic and neural network representations. The symbolic-based grammar planner can

help to achieve better long-term planning, while the NN-based planner is more accurate in

action prediction with tactile feedback. By using GEP, we fuse these two planners to achieve

reasonable performance. We prove that the proposed imitation learning method successfully

enables a humanoid robot to learn from the human demonstration in medicine bottle opening

tasks. In addition, we investigate enhancing human’s trust in robots’ behavior. We conduct

human studies and successfully show that the proposed imitation learning method gains

human trust well.

We study visual reasoning in two different tasks in chapter 3. The first task, the human

IQ test, namely RPM is a challenging task. In order to build a computer system that can

tackle this task, we first propose a method that can systematically generate RPM. We
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also benchmark the generated RPM dataset, RAVEN. Furthermore, we introduce a DL-

based method with a contrasting mechanism to solve the RPM. We show that our method

successfully solves the RAVEN dataset, even with a relatively small amount of data. On the

other hand, we also study the visual language reasoning problem. We choose to approach

one of the most difficult tasks, outside knowledge visual question answering. We propose a

method that transforms multi-modal domain information into a natural language domain for

later reasoning and question-answering. This method successfully outperformed all SOTAs

by the time it was made public.

In chapter 4, we introduce two attempts for a better robot planning system. We first

develop a virtual testbed for robot agents. This environment is physically realistic. Addi-

tionally, robots can interact with virtual human demonstrators. Given these two advantages,

our virtual platform is able to provide a more realistic robot training environment so that

we can keep closing the gap between a simulator and the real world. We also demonstrate

the idea of using RL-based methods for robot navigation tasks. This method makes use of

heuristics and integrates it with hierarchical RL, showing promising performances.

To this end, we want to discuss some of the future research directions that are inspired

by this dissertation:

Better Robot Imitation Learning: Current robot imitation learning methods heavily

rely on cleaned data and environment. Most of them are also data-hungry. To relieve, we may

want to apply techniques such as unsupervised learning or self-supervised learning with better

representations. In addition, few-shot learning, even one-shot or zero-shot learning, could

be the trend. As mentioned, we want the robot to learn with fewer examples. Therefore,

few-shot techniques could help. In order to achieve it, we may need to apply large models

pre-trained with large amount of knowledge. one could possibly build an imitation learning

model that is able to quickly adapt to new tasks without forgetting learned knowledge.
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More Efficient Multi-Modal Reasoning: The human IQ test actually inspires us to

use smaller data to learn a relatively small model. However, it is still too restricted and

simple compared to real-world scenarios. Tasks such as outside knowledge visual question

answering require much more knowledge. Therefore, current methods all use huge models

to tackle it. Unfortunately, the performance is yet unsatisfied, and using larger models is

not sustainable. We argue that we should build a model for better efficiency of reasoning.

It is possible to build a model that can think with an abstract representation. Just like how

human does in IQ test, we just need a small amount of data to solve big tasks.

Author Contribution This dissertation is a combination of work that the author, Feng

Gao, led and participated in during his Ph.D. study.

chapter 2 complies with four published papers in which Feng Gao is one of the authors.

‚ In [LXM17], Feng Gao contributes to the human demonstration data collection, exper-

iments, and paper writing.

‚ In [XLE18], Feng Gao contributes to experiments and paper writing.

‚ In [EGX17], Feng Gao is the joint first author who takes the lead in key ideas, modeling,

coding, robot platform development, experiments, and paper writing.

‚ In [EGL19], Feng Gao is the joint first author, and he is the student leader in modeling,

coding, experiments, and robot platform development. He also participates in running

human subject studies and paper writing.

chapter 3 complies with three published papers in which Feng Gao is one of the authors.

‚ In [ZGJ19], Feng Gao is the joint first author who contributes to the key idea, coding,

experiment, and paper writing.

‚ In [ZJG19], Feng Gao contributes to experiments, evaluation, and paper writing.
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‚ In [GPT22], Feng Gao is the first author who is in charge of key ideas, modeling,

coding, experiments, and paper writing.

chapter 4 complies with one published paper and one pre-printed manuscript in which

Feng Gao is one of the authors or main contributors.

‚ In [XLZ19], Feng Gao contributes to the coding, experiment, and paper writing.

‚ In section 4.2, Feng Gao is the main contributor who is in charge of key ideas, modeling,

coding, experiments, and paper writing.
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