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Abstract

Effective in silico methods to predict protein corona compositions on engineered nanomaterials 

(ENMs) could help elucidate the biological outcomes of ENMs in biosystems without the need for 

conducting lengthy experiments for corona characterization. However, the physicochemical 

properties of ENMs, used as the descriptors in current modeling methods, are insufficient to 

represent the complex interactions between ENMs and proteins. Herein, we utilized the 

fluorescence change (FC) from fluorescamine labeling on a protein, with or without the presence 

of the ENM, as a novel descriptor of the ENM to build machine learning models for corona 

formation. FCs were significantly correlated with the abundance of the corresponding proteins in 

the corona on diverse classes of ENMs, including metal and metal oxides, nanocellulose, and 2D 

ENMs. Prediction models established by the random forest algorithm using FCs as the ENM 

descriptors showed better performance than the conventional descriptors, such as ENM size and 

surface charge, in the prediction of corona formation. Moreover, they were able to predict protein 

corona formation on ENMs with very heterogeneous properties. We believe this novel descriptor 

can improve in silico studies of corona formation, leading to a better understanding on the protein 

adsorption behaviors of diverse ENMs in different biological matrices. Such information is 

essential for gaining a comprehensive view of how ENMs interact with biological systems in ENM 

safety and sustainability assessments.
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1. Introduction

Increasing applications of engineered nanomaterials (ENMs) in industry, medical care, agri-

food and consumer goods raise concerns over the effects of ENMs on living systems 

(Wagner et al., 2006; Shi et al., 2017; Riehemann et al., 2009; Pirela et al., 2017; Vaze et al., 

2019a; Vaze et al., 2019b; Watson-Wright et al., 2017), triggering tremendous research 

efforts to study how ENMs behave in cells and tissues for the benefits of sustainable 

developments and safe implementation of ENMs (McClements et al., 2016; Stueckle et al., 

2017; Sotiriou et al., 2014; Gass et al., 2013; Gajewicz et al., 2017). While the detailed 

correlations between the properties of ENMs and their biological outcomes are not yet fully 

understood (Lynch et al., 2014; Walczyk et al., 2010), one important aspect that has been 

widely recognized as able to impact the ENM’s functions in biosystems is the protein layer 

adsorbed by the ENMs upon entering a biological environment, termed as the “protein 

corona”(Van Hong Nguyen, 2017; Corbo et al., 2017; Chen et al., 2017; Konduru et al., 

2017; Tsuda and Venkata, 2016). Full surface coverage by the protein corona establishes a 

new biological identity for the ENM (Monopoli et al., 2012; Caracciolo et al., 2017), which 

can be seen by other matrix molecules, cells, and tissues; the corona contributes to the 

biological behaviors of the ENM, including stability, cellular uptake, distribution, immune 

response, toxicity induction, etc. (Walczyk et al., 2010; Van Hong Nguyen, 2017; Monopoli 

et al., 2011; Lesniak et al., 2012; Yan et al., 2013; Saha et al., 2014; Lee et al., 2015; Walkey 

et al., 2014; Liu et al., 2015). Thus, protein corona has become an important property for 

ENM characterization in order to better evaluate ENMs’ biological outcomes. Although 

comprehensive “imaging” of the protein corona established on a particular type of ENM can 

be carried out by mass spectrometry (MS), sophisticated sample processing and complex 

data analysis are required, the speed and throughput of which are not aligned well with the 

ultrafast pace of ENM evolution (Li et al., 2010a; Smits and Vermeulen, 2016). Therefore, in 

silico methods have been explored to build prediction models for rapid characterization of 

the protein adsorption behaviors and corona formation (Findlay et al., 2018).

The majority of the previously developed prediction models have focused on the structure-

activity relationship (SAR) between corona formation and ENM properties (Ashby et al., 

2014; Durán et al., 2015; Clemments et al., 2015; Lundqvist et al., 2011; Natte et al., 2013; 

Hadjidemetriou and Kostarelos, 2017). In these studies, the physicochemical properties of 

ENMs, including core materials, sizes, surface charges, and functional groups, were 

precisely controlled; protein corona composition comparison was carried out by changing 

one property at a time while keeping the others the same. But some physicochemical 

properties of ENMs are entangled with each other, making it impossible to change only one 

without affecting others (Xu et al., 2018). Thus, despite successes in obtaining certain 

correlations between selected ENMs’ properties and the compositions of protein corona, 

these correlations have limited applicability on more diverse ENMs.

In order to overcome such challenges, inclusion of multiple physicochemical properties of 

ENMs in one prediction model have also been attempted, in which modern machine learning 

methods, e.g., random forest and hierarchical clustering, were applied to cope with large-

scale and high dimensional data (Findlay et al., 2018; Xu et al., 2018). For example, two 

properties of ENMs, the size and surface charge, were used as the descriptors of ENMs to 
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build a quantitative SAR (QSAR) model using random forest classification, while the 

properties of proteins were used as protein descriptors simultaneously (Findlay et al., 2018). 

This model could reasonably predict which protein in a complex biofluid (i.e., serum) could 

be enriched in the corona of the ENMs, however, the descriptors of the ENMs chosen (i.e., 

size, surface charge) were still a bottleneck, since relatively low contributions of these 

descriptors to the prediction accuracy of the model were observed (Findlay et al., 2018).

On the other hand, numerous kinds of modern descriptors for ENMs, including detailed 

structural and chemical properties computed by quantum mechanical calculation, have been 

proposed (Vaze et al., 2019b; Smits and Vermeulen, 2016; Findlay et al., 2018). However, 

they have shown to be successful at predicting the interactions of ENMs with small 

molecules, but not with proteins (Lynch et al., 2014; Apul et al., 2012; Mahmoudi, 2018). 

Proteins are much larger and more complex than small molecules, suggesting that the 

interactions between proteins and ENMs are not based on a single factor, but rather are 

established on the cooperative effect of multiple factors, including diverse types of 

interaction forces between the surface groups on the ENMs and the amino acid residues 

located at the ENM-protein binding interface. Moreover, proteins could undergo 

conformational changes upon interactions with ENMs, further increasing the difficulty to 

predict by models (Shang et al., 2007; Deng et al., 2011; Dominguez-Medina et al., 2016). 

Correspondingly, to improve prediction performance, these models require ENM descriptors 

that can represent the coordination and spatial distribution of different interaction forces 

with proteins, rather than focusing on one or two individual factors. This issue has been 

noted for the study of protein-ligand interactions with 3-dimensional (3-D) QSAR models, 

which have been developed to incorporate the spatial distribution of different factors 

(Kubinyi, 1997). However, it is very challenging, if not impossible, to routinely obtain the 

detailed surface structure of ENMs, which are prerequisites for the application of the 3-D 

QSAR models to study the interactions between ENMs and proteins.

One potential solution to characterize the overall effect of all spatially distributed factors on 

the surface of ENMs, is to employ suitable probes that can map the surface properties of 

ENMs with measurable responses and then use such responses as the descriptors of the 

ENMs. For instance, the biological surface adsorption index (BSAI) system was developed 

to use small molecules with diverse physicochemical properties as probes, and measure their 

adsorption coefficients on the ENM as the descriptors of the ENM’s surface chemistry (Xia 

et al., 2010; Chen et al., 2014). However, small molecules are very different from proteins, 

and therefore exploiting the interactions between small molecules and ENMs to describe 

protein adsorption on ENMs is unsuitable. In contrast, the application of proteins, instead of 

small molecules, as probes could be advantageous: the complex interaction between an 

ENM and each protein probe could be evaluated as an integrated entity, and subsequently 

could be used to represent the interactions of all other proteins with similar structural 

properties. If a set of proteins with reasonable diversity are selected as probes, a prediction 

model with decent generality could be obtained for the protein corona, which can be 

established via adsorption equilibria of heterogeneous proteins with different binding 

affinities and kinetics.
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Conversely, no endeavor has successfully utilized proteins as probes, partially due to the lack 

of methods that can screen such interactions rapidly, robustly and economically. Common 

methods that measure protein-ENM interactions, including analytical ultracentrifugation, 

capillary electrophoresis, size exclusive chromatography, surface plasma resonance, quartz 

crystal microbalance, isothermal titration calorimetry, enzyme-linked immunosorbent assay, 

etc., involve lengthy procedures, technically demanding operations, and/or expensive 

reagents (i.e., antibodies) (Casals et al., 2011; Cedervall et al., 2007; Li et al., 2010b; 

Hoshino et al., 2012; Yonamine et al., 2012). Recently, our group developed a method for 

high-throughput screening of protein-ENM interactions with the fluorogenic dye, 

fluorescamine (Ashby et al., 2015; Duan et al., 2017). The non-fluorescent fluorescamine 

rapidly reacts with primary amines on protein surfaces and becomes fluorescent. Because 

the interaction with the ENM could either block the primary amines on the protein surface 

from reacting with fluorescamine, or expose more amines to the surface by inducing a 

protein conformational change, the resultant fluorescence would differ before and after the 

protein binds to the ENM. We have proven that the fluorescence change (FC) of a set of 

selected proteins upon binding to various types of ENMs could differentiate the ENMs by 

their size or surface property and reflect binding strength (Ashby et al., 2015; Duan et al., 

2017). The close relationship between FCs and protein-ENM interactions yields FCs as a 

potentially new category of ENM descriptors to help build an accurate model for the 

prediction of the protein corona formed in biological matrices.

Herein, a series of proteins with an assortment of properties, were selected to interact with 

various types of ENMs. After the FCs were measured, a prediction model with machine 

learning algorithm was established (i.e., random forest classification or regression) using the 

FCs as the descriptors for the ENMs in addition to their physicochemical properties. We 

demonstrated that the inclusion of the FCs as the ENM descriptors could improve the 

prediction accuracy for protein corona composition. We also validated the power of the 

model by predicting the composition of corona formed on different ENMs in a biological 

matrix.

2. Materials and methods

2.1. Synthesis and characterization of ENMs

In this study, a panel of 22 ENMs were used (Xia et al., 2010; Chen et al., 2014; Casals et 

al., 2011; Cedervall et al., 2007; Li et al., 2010b; Hoshino et al., 2012; Yonamine et al., 

2012; Ashby et al., 2015; Duan et al., 2017; Zimmerman et al., 2019; Ahn et al., 2018; 

Beltran-Huarac et al., 2018; Righettoni et al., 2010). Specifically, 15 metallic, 3 cellulose-

based, and 4 two-dimensional ENMs were used for this work. The synthesis and 

characterization for each material are described below. These ENMs are part of the reference 

ENM repository established at Harvard as part of the Nanotechnology Health Implications 

Research Consortium established by the National Institute of Environmental Health Sciences 

(NIEHS).

2.1.1. Metallic ENMs—Fifteen metallic ENMs of near-spherical shape were used in this 

study. CuO, TiO2 (P25), ZnO were acquired from Sigma Aldrich, Acros Organics, and 
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Meliorum Technologies, Inc., respectively. V2O5 and ZnS NPs were both obtained from 

NanoShel LLC. The synthesis and characterization of the not-commercially available ENMs 

have been described by the authors elsewhere. In brief, citrate-capped Au ENMs, with a 

nominal diameter of 15 nm, were prepared using the Turkevich method as described by 

Zimmerman et al. (2019). Citrate-capped Ag ENMs, with a nominal diameter of 15 nm, 

were synthesized following a hydrothermal method as described by Ahn et al. (2018). CeO2 

(10 and 30 nm), SiO2, 1%, and 10% Ag-doped SiO2 (15, 11, and 8 nm, respectively), Al2O3 

(30 nm), Fe2O3 (10 nm), and Ag ENMs (20 nm) were synthesized using high-precision 

flame spray pyrolysis (FSP), as previously described in details by Beltran-Huarac et al. 

(2018). Tungsten oxide (WO3) was also synthesized by FSP, following a protocol introduced 

by Righettoni et al. (2010) with diethylene glycol monobutyl ether and ethanol as the 

solvents, and ammonium tungstate hydrate as the metal-containing precursor. All chemicals 

used in ENM preparation were purchased from Sigma-Aldrich and used without further 

processing. FSP took place using an open flame with the spraying conditions optimized to 

yield particles with desired diameters, while the content of oxygen and the molecular ratio of 

the precursor were adjusted in order to minimize the residual organic species on the surface 

of the particles.

2.1.2. Cellulose-based ENMs—Details on the exact synthesis parameters of all 

CNF-50, CNF-80, and CNC-250 have been previously published by Pyrgiotakis et al. 

(2018). In brief, cellulose nano-fibrils with nominal, single-fibril diameters of 50 and 80 nm 

(CNF-50 and CNF-80, respectively) were prepared by the controlled mechanical 

disintegration of bleached softwood fibers using an ultra-fine friction grinder. Cellulose 

nano-crystals with nominal length and diameter of 250 nm and 25 nm, respectively, were 

synthesized by the hydrolysis of the same starting material using 72% w/w H2SO4.

2.1.3. 2D ENMs—Graphene, hexagonal boron nitride (hBN), and molybdenum disulfide 

(MoS2) sheets were prepared by the authors using a liquid-phase exfoliation synthesis of the 

respective bulk materials in the presence of Na-cholate, similarly to what has been 

previously described for the graphene-based materials by Yi and Shen (2015). The reduced 

graphene oxide (rGO) used in this study was prepared following a two-step approach: first, 

endotoxin-free graphene oxide (GO) was synthesized as described by Parviz and Strano 

(2018) next, GO flakes were reduced in the presence of ascorbic acid, similar to what has 

been described by Fernández-Merino et al. (2010).

2.2. Characterization of ENMs

Following their synthesis or procurement, all ENMs employed in this study were 

characterized using various state-of-the-art analytical techniques and instruments. In brief, 

transmission and scanning electron microscopy (SEM and TEM, respectively) were used for 

size and shape measurements. X-Ray diffraction (XRD) was used to study the crystal 

structure of powders; N2 adsorption to measure particle density and surface area according 

to the Brunauer–Emmett–Teller (BET) theory; and X-Ray photoelectron spectroscopy (XPS) 

and attenuated total reflection Fourier-transform infrared spectroscopy (FTIR) to study their 

surface chemistry. The metal trace purity of the synthesized particles was measured by 

inductively coupled plasma mass spectrometry (ICPMS); and the residual carbon species 
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were determined by quantifying the elemental and organic carbon on the particles. It is also 

worth noting that the biological sterility of ENMs was assessed following the U.S. 

Pharmacopeia protocol for sterility (WHO document QAS/11.413) and their endotoxin load 

was assessed by using the Recombinant Factor C (rFC) assay with the Lonza PyroGene® kit 

following the manufacturer’s instructions. For the characterization of 2D ENMs, Raman 

spectroscopy was employed to record the unique vibrational modes of each material; ultra-

violet visible spectroscopy (UV–Vis) was measured to acquire the extinction spectra of 2D 

ENMs in suspension; and atomic force microscopy (AFM) was carried out to evaluate the 

thickness and number of sheets. Finally, single particle tracking (SPT) was used to obtain the 

hydrodynamic size distribution of the 2D ENMs in water and their mean lateral size was 

then calculated by applying an empirical model developed by Lotya et al. (2013).

2.3. ENM dispersion preparation and colloidal characterization

The dispersion of metallic ENMs in deionized water was performed following a detailed 

dispersion protocol by the authors (Cohen et al., 2014; DeLoid et al., 2014; Cohen et al., 

2018; DeLoid et al., 2017). Briefly, each ENM powder was added to deionized water at a 

final concentration of 0.5 mg/ml and the particles were then sonicated in a cup-horn 

sonicator until their respective critical sonication energy (DSEcr) had been delivered (i.e.: 

until there was no considerable (< 5%) change in their z-average, as measured by dynamic 

light scattering (Zetasizer Nano ZS)). At this point, the particles’ ζ-potential was also 

measured using folded capillary cells in the same instrument. All suspensions of metallic 

ENMs in deionized water were then diluted to a final concentration of 0.1 mg/ml and used 

as described below.

The dispersion of cellulose nano-fibrils and nano-crystals in deionized water were 

performed according to a protocol provided by Bitounis et al., 2019. In brief, high-speed 

vortexing was used to disperse the fibrils and crystals at 0.5 mg/ml. The z-potential values of 

the dispersed cellulose nanomaterials (CNMs) in deionized water were obtained as described 

above. The as-prepared suspensions were then diluted to a final concentration of 0.1 mg/ml 

with the addition of deionized water and were used as described below. Finally, 2D ENMs 

were synthesized in suspension and only had to be manually agitated before use. In 

particular, the as-synthesized suspensions were shaken until any deposited material on the 

bottom of the container was fully resuspended in the liquid volume. Their colloidal 

characterization was performed using SPT (NanoSight, Malvern) and their z-potential was 

measured using the method described above. Their final concentration before being used in 

this work was adjusted at 0.1 mg/ml with the addition of deionized water.

2.4. Chemicals and reagents

Proteins, fluorescamine, SYPRO Orange, urea, ammonium bicarbonate, 1,4-dithiothreitol 

(DTT), iodoacetamide (IAM), formic acid (FA), trypan blue, and pooled human serum were 

purchased from Sigma-Aldrich (St. Louis, MO). Ultrapure water with electric resistance > 

18.2 MΩ was produced in-house by the Millipore Milli-Q water purification system 

(Billerica, MA).
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2.5. Fluorescamine labeling at different temperatures

The ENMs at a concentration of 0.1 mg/ml were mixed with 0.2 mg/ml of protein in 1 × 

PBS buffer (pH 7.4) and incubated at 37 °C for 1 h. The mixture was then incubated at 37, 

60, or 80 °C for 5 min. After the mixture was quickly cooled to room temperature, an aliquot 

of fluorescamine in acetone was added to the solution at a final concentration of 1 mM. The 

solution was then diluted 10-fold with 1 × PBS and its fluorescence was measured in a 

Victor II plate reader without removing the unbound proteins.

2.6. Thermal stability screening

The same incubation step (stated above) was conducted by mixing 0.1 mg/ml of ENMs and 

0.2 mg/ml of the protein at 37 °C for 1 h. Next, SYPRO Orange dye was added to the 

solution at a final concentration of 4×. Then, the mixture was transferred into the CFX Real-

Time PCR instrument (Bio-Rad) and subjected to a temperature gradient increasing from 37 

to 98 °C, with an incubation period of 20s at each temperature before recording the 

fluorescence intensity. The excitation wavelength was 488 nm, and the range for the 

emission filter was 515-545 nm.

2.7. Serum protein corona identification

The ENMs at 0.1 mg/ml in 1× PBS were mixed with the same volume (20 μL) of human 

serum, and the mixtures were incubated for 1 h at 37 °C. Centrifugation at 15,000 ×g for 15 

min was used to pellet the ENMs carrying the adsorbed proteins. After two wash cycles with 

1 × PBS, 8 M urea in 50 mM ammonium bicarbonate was used to resuspend the ENMs. 

DTT was added into the solution at a final concentration of 5 mM and incubated for 40 min. 

at 56 °C. The solution was cooled to room temperature before 10 mM IAM was added. Then 

50 mM of ammonium bicarbonate was used to dilute the solution 8 folds, and trypsin was 

added to digest the proteins at a trypsin: protein mass ratio of 1:50. The ENMs were 

removed by centrifugation at 15,000 ×g for 15 min. After being lyophilized and desalted, the 

resultant peptides were injected into the Waters CapLC system, which was connected to a 

Finnigan LTQ MS with a nano-ESI ion source. Collision induced dissociation (CID) was 

used for fragmentation, and the mass range was set to 300–2000 Da. MSGF+ was used to 

search against the human or rabbit proteome downloaded from UniProt. Reversely ordered 

protein sequences were used as decoys, and false discovery rate (FDR) was set to 0.01. 

Spectra counting (SC), as a label-free semi-quantitative method, was used to calculate the 

relative abundance (RA) of the corresponding protein i with Eq. (1):

%RAi = SCi
SC × 100% (1)

The similarity or overlap of the protein corona between two ENMs (a, b) was calculated 

with Eq. (2):

Similarity = min RAa, RAb (2)
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2.8. Correlation and clustering

The FC values were calculated using Eq. (3), in which Fprotein-ENM and Fprotein represent the 

fluorescamine labeling intensity of each protein-ENM mixture and the protein itself, 

respectively. The influence of ENMs on fluorescence, e.g., quenching during of the inner 

filter effect (IFE), was evaluated by the ratio of F′HAS-ENM and FHSA, the fluorescence of 

the prelabeled HSA incubated with ENMs and that of HSA labeled by fluorescamine, 

respectively. This ratio was then used as the correction factor in our method to eliminate the 

IFE caused by ENMs.

FC = Fprotein − ENM Fprotein
F ′HSA − ENM FHSA

(3)

The FC of the standard proteins used in the fluorescamine screening of all ENMs tested 

were put into one individual array. Similarly, the relative abundance of each protein in the 

protein corona of one type of ENM (i) was considered yi, and the values for all ENMs were 

combined into another array (Y). Pearson’s correlation coefficient (r) between FC and Y was 

calculated by Eq. (4):

r FC, Y = FCi − FC yi − y
FCi − FC 2 yi − y 2 (4)

2.9. Machine learning model for serum protein corona prediction

The isoelectric point (pI), molecular weight (Mw), grand average of hydropathy (GRAVY), 

and percentage of negative/positive/aromatic amino acids, were used as the descriptors for 

each protein. The fluorescence changes of each ENM with all standard proteins measured at 

37, 60, 80 °C were used as the descriptors for ENMs. The RA of each protein (i) in the 

corona of ENMs (RAi
NM) was compared to that in the serum control (RAi

serum), and the 

abundance change (AC) of protein (i) was calculated in Eq. (5):

ACi = log2
RAi

NM

RAi
serum (5)

Student’s t-test was performed to test if AC was significantly different from 0 (i.e.: no 

change). For the classification model, the proteins with AC larger than 0 and p-value smaller 

than 0.05, were considered as enriched in the protein corona (i.e., “positive” or “1”); while 

the proteins with AC smaller than 0 and p-value smaller than 0.05, were labeled as decreased 

in the protein corona (i.e., “−1”); and all other proteins were classified as no change in the 

protein corona (i.e., “0”). For the regression model, the AC values were used as targets or 

dependent variables. Random forest was used for both classification and regression models. 

The running environment included python 2.7, scikit-learn v0.19.1, NumPy v1.15.0, and 

Pandas v0.23.4. The minimum number of samples in each leaf node was set to 3. One 

thousand trees were grown for the bootstrap. The data was randomly split into two sets: 
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training set containing 80% of the data, and testing set encompassing the other 20%. A 5-

fold cross validation was performed during the training of the model.

3. Results and discussion

3.1. Properties of synthesized and procured ENMs

This study employed diverse ENMs, including metal and metal oxide nanoparticles (NPs), 

cellulose-based ENMs, and 2D semi-conducting materials. Table S-1 summarizes the 

hydrodynamic diameter and zeta-potential properties for the ENMs used in this study, which 

were measured after the materials were dispersed in deionized water at 0.5 mg/ml following 

the protocol reported previously by the authors (DeLoid et al., 2017). Details on the 

characterization of the Fe2O3, CeO2, SiO2, Ag doped SiO2, Al2O3, and Ag NPs were 

reported elsewhere (Beltran-Huarac et al., 2018); characterization of the citrate-capped Ag 

and TiO2 NPs can be found in the work by Ahn et al. (2018), while that of the citrate-capped 

Au ENMs in Zimmerman et al. (2019). Complete morphological and physicochemical 

summary reports of the CuO, V2O5, WO3, ZnS, and ZnO NPs are shown in Tables S-3 to 

S-7, respectively. Most of these NPs were smaller than 50 nm in diameter, except for SiO2, 

ZnS, and V2O5 which were around 100–300 nm. Several of the metal oxides (i.e.: ZnO, 

CeO2, Fe2O3, and Al2O3) exhibited positive ζ-potential when dispersed in water, ranging 

from 19 mV for ZnO to 65 mV for the 30 nm CeO2.

Table S-1 includes the dimensions and surface potential of the cellulose-based ENMs: 

CNF-50, CNF-80, and CNC-250. Characterization of these ENMs has previously been 

reported by Pyrgiotakis et al. (2018) the mean single fibril diameter for CNF-50 and CNF-80 

were 64 ± 29 nm and 78 ± 25 nm, respectively whereas the mean crystal length and diameter 

for CNC-250 were measured at 267 ± 91 nm and 25 ± 9 nm, respectively.

As for the 2D materials, their lateral dimensions and surface charges are also reported in 

Table S-1. Complete summary reports of the morphological and physicochemical 

characterization of graphene, RGO, hBN, and MoS2 are presented in Tables S-8 to S-11, 

respectively. In brief, AFM proved that these ENMs are mostly organized in single or few-

layer sheets. The extrapolation of the average lateral dimensions from the SPT analyses 

suggested that graphene, rGO, hBN, and MoS2 had a lateral dimension of 109 nm, 411 nm, 

149 nm, and 428 nm, respectively.

Although such characterizations of ENM dispersed in the protein solutions were not 

performed because of technical limitations, it has been established that ENMs sonicated at 

DSEcr and immediately dispersed in protein-rich media are expected to form stable 

suspensions for at least 24 h due to steric stabilization of the particle agglomerates (Cohen et 

al., 2013).

3.2. Fluorescence changes being the descriptors of ENMs

Our previous works have confirmed that the fluorescence signal from fluorescamine labeling 

of a protein can change after the protein interacts with ENMs, like polystyrene, silica, and 

iron oxide nanoparticles with diameters ranging from 10 to 100 nm (Ashby et al., 2015; 

Duan et al., 2017). We proved that the FCs were indicative of the NP’s aptitude in protein 
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interactions and closely correlated with the NP’s physiochemical properties (Ashby et al., 

2015; Duan et al., 2017). Still, for the FCs to be effective ENM descriptors to build corona 

prediction models, they should be universally measurable on diverse types of ENMs and 

should preserve close correlations with the ENMs’ properties. Thus, in the present work, we 

acquired a good collection of ENMs from the HSPH-NIEHS Nanosafety Center, including 

metallic NPs, cellulose nanofibrils (CNFs) and nanocrystals (CNCs), two-dimensional (2D) 

ENMs, and a series of SiO2 NPs doped with different amounts of Ag (Table S-1). This 

collection of ENMs spanned a wide range of core compositions, sizes, shapes, and aspect 

ratios. These ENMs cannot be used to build conventional prediction models because they 

require well-controlled changes in only one or two physicochemical properties. In addition, 

a total of 11 proteins were judiciously chosen to represent the abundant proteins found in 

human serum (i.e., serum albumin, transferrin, and γ globulin (γG)) as well as those with a 

wide range of molecular weights (Mw), isoelectric points (pI), and hydrophobicity 

(GRAVY) (Table S-2).

Each protein was incubated with one type of the ENMs at a time, in a 2:1 mass ratio, for 1 h, 

which was found to be long enough to establish the binding equilibrium in our previous 

works (Tenzer et al., 2013). Following a short 5-min incubation at three different 

temperatures (37, 60, and 80 °C), the protein mixture was labeled by fluorescamine (Ashby 

et al., 2015; Duan et al., 2017). One advantage of this labeling method was the dispensability 

of the washing step, since the bound proteins were labeled by a different amount of 

fluorescamine compared to the unbound ones, due to surface blockage and unfolding. 

Moreover, the influence of the ENMs on the fluorescence signal was accessed and 

subtracted (Fig. S-1). Hence, the FC should represent different interactions between proteins 

and ENMs. As demonstrated in our previous work, the external pressure from heating could 

alter the FC values measured in our screening method, because protein-ENM interactions 

reduce or enhance protein thermal stability, thereby increasing the impact of interaction on 

protein conformation (Duan et al., 2019). Such phenomena were also observed with the 

ENMs employed in this work (Fig. S-2). As a result, larger FC values could be more 

valuable descriptors to discriminate different ENMs in modeling. This not only increases the 

predictability of the resulting model, but also minimizes the activity cliffs (Danishuddin; 

Khan, A. U, 2016). The resulting FCs measured for two proteins, with similar Mw (14.3 and 

14.1 kDa), but different pI values (11.3 and 4.5), lysozyme and lactalbumin, after incubation 

with individual ENMs are shown in Fig. 1. FCs for the remaining proteins are displayed in 

Fig. S-3. Each protein displayed distinct labeling profiles with the ENMs, agreeing with our 

previous work (Duan et al., 2017).

In order for the FCs to be good descriptors of ENMs in modeling, they should be reflective 

of the ENMs’ properties. Thus, we checked whether the FCs could differentiate different 

ENMs using principal component analysis (PCA). The scatter plots, using the first two 

principal components (PC), are shown in Fig. S-4. Interestingly, using FCs at either 

temperature, ENMs can be separated based upon their shapes (e.g. spherical ENMs, 2D 

ENMs, and cellulose based nanofibrils). These results are corroborated by our previous 

finding that FCs are correlated with the physical properties of ENMs (Ashby et al., 2015; 

Duan et al., 2017). The separation also suggested that the shape of the ENMs could 

constrain the applicability domain of FC usage for QSAR modeling. However, protein 
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corona compositions are evaluated based on individual ENMs, so superior discrimination 

effects of FCs are desired for them to serve as descriptors of ENMs. To represent the 

discriminability of the FCs, the averaged Euclidean distance between any two pairs of 

ENMs on the PCA plot were calculated. We found that, the FCs at 37 °C gave out an 

average Euclidean distance of 0.32, but the value for those acquired at 60 and 80 °C 

increased to 0.42 and 0.67, respectively, indicating higher discrimination power. The 

increase of averaged Euclidean distance was not caused by outliers, but by the overall 

shifted distributions (Fig. S-5). The contributions of the FCs of different proteins to ENM 

discrimination changed at elevated temperatures, as their component coefficients for PC1 

and PC2 varied substantially among the three temperatures, confirming the benefit of 

obtaining FCs across a wide temperature range. Indeed, the best discrimination of all ENMs 

tested was obtained using the FCs at all three temperatures, resulting in an averaged 

Euclidean distance of 0.83 (Fig. S-4D). For some ENMs that were reported as dissolvable, 

including ZnO and CuO NPs, the ratio of dissolved ions was quantified by ICP-MS (Fig. 

S6). There was negligible dissolution for either ENM after 1 h incubation in 1× PBS. Thus, 

the NPs remained intact during FC measurement and corona study.

We also attempted to correlate ENM properties with FCs. Due to the diverse properties of 

the consortium ENMs, systematic investigation of size-, surface charge-, or other well 

defined properties was not possible. Therefore, we evaluated Pearson’s correlations between 

any of the two ENMs using the FCs obtained from all proteins tested (Fig. S-7A). Some 2D 

ENMs, including the reduced graphene oxide (RGO), vanadium pentoxide flakes (V2O5) 

and molybdenum disulfide (MoS2), showed relatively low correlation coefficients (< 0.5) 

with any other ENMs; ENMs with at least one property similar between each other, like 

CNF-50 and CNF-80, which share the same core composition and comparable diameter but 

different lengths, exhibited a relatively high correlation coefficient (> 0.75). Moreover, the 

correlations between the size/ζ-potential of ENMs and FCs were evaluated (Table S-12), and 

the size of the ENMs showed a correlation coefficient larger than 0.5, suggesting the close 

relationship between the FCs and the property of ENMs, particularly the size.

Lastly, we tested the correlation between the FCs obtained by pairing two proteins randomly 

(Fig. S-7B), since highly correlated variables are not useful for modeling. Low correlation 

coefficients (< 0.5) were observed for most of the protein pairs’ FCs, suggesting that the 

proteins chosen in this study can provide unique FCs to be used as the descriptors of ENMs 

for modeling. Although relative high correlations (> 0.5) were observed for the FCs of few 

protein pairs, FCs obtained from all proteins tested were kept for modeling to maximize the 

multiplicities of the proteins.

3.3. FCs correlated with protein corona compositions

After confirming the capability of FCs as suitable descriptors for the ENMs, correlations of 

FCs with the abundance of individual proteins found in the ENMs’ protein coronas were 

examined. We incubated the ENMs with human serum for 1 h at 37 °C to form a stable 

protein corona. The corona proteins were identified by LC-MS/MS, and the relative 

abundance (RA) of each identified protein was calculated using Eq. (1) as the individual 

component of the corona profile. As shown in the clustergram (Fig. S-8), the protein profile 
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in the corona of each type of ENMs was obviously different from that of the serum control: 

abundant serum proteins, such as transferrin, were diminished in the corona, while 

hydrophobic proteins, including apolipoprotein A, were enriched. To better express the 

overall differences, the global similarity of the protein corona profiles was calculated with 

Eq. (2) and is shown in Fig. 2. For a majority of the ENMs, the protein corona shared a 

similarity < 40% with the serum control, suggesting that adsorption of the corona proteins 

by the ENMs was not simply due to the relatively higher abundance of specific proteins in 

serum. Instead, the adsorption was controlled by the properties of the ENMs and proteins. 

Moreover, ENMs with similar physicochemical properties shared relatively higher similarity 

in their protein corona compositions and were clustered closer together in terms of 

correlation distance (Fig. 2), such as the two cerium oxide NPs with different sizes 

(CeCO2-10 and CeCO2-30), the cellulose nanocrystals and nanofibrils (CNC-250, CNF-50, 

and CNF-80), the SiO2 NP and its Ag-doped variants (1% and 10% Ag-SiO2), ZnS and 

ZnO, as well as the citrate-capped Ag and Au NPs. The 2D materials, like hBN, graphene, 

and reduced graphene oxide (rGO), were grouped separately from the others (i.e.: spherical, 

metal-based ENMs and cellulose-based, and anisotropic ENMs). These similarity and 

clustering results reiterated the importance of surface chemistry, size and shape of the ENMs 

to the formation of their unique protein corona, agreeing with literature reports (Walkey et 

al., 2014; Xu et al., 2018).

Because both the FC and corona profile are determined by the properties of the ENMs, it 

was anticipated that there would be certain correlations between the FC of one protein, 

measured with a specific type of ENM, and its abundance in the corona if the protein is a 

component in the matrix. Several of the standard proteins used to acquire the FC profiles 

were also found in serum, like HSA and transferrin. Thus, we examined the correlations 

between FC and RA values of these proteins (Fig. 3). Interestingly, the absolute value of the 

Pearson’s correlation coefficient (|r|, from Eq. (4)) for the FC and RA values at one 

temperature was larger than 0.5, indicating certain levels of correlation. For example, the RA 

values of HSA and immunoglobulin (Ig), including IgG and IgM, in the protein corona were 

correlated with the FCs of HSA and γ-globulin at 60 °C with a |r| value of 0.55 and 0.54, 

respectively. The |r| between the RA of transferrin and the FC of transferrin at 37 °C was 

0.52. However, poor correlations were also observed, for example, between the RA of HSA 

and the FC of HSA at 37 or 80 °C, suggesting that the FCs by one single protein measured at 

one temperature was not enough to help reveal the compositions of the complex corona 

formed in biological matrices, probably because the competitive adsorption of different 

proteins on the ENMs could heavily impact the abundance of others. While it is impossible 

to obtain the pure form of each of the proteins found in biological matrices and measure 

their FCs for better prediction of the corona composition, we remained optimistic that a 

sophisticated prediction model, using machine learning approaches, and the FCs of a group 

of judiciously selected and representative proteins could be obtained.

3.4. Building machine learning model to predict corona compositions

The goal of this work was to develop a prediction model for protein corona compositions 

using FCs as ENM descriptors. We adopted random forest (RF), a supervised machine 

learning algorithm, in our model, because RF is an ensemble of decision trees, and has 
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shown less overfitting and better performance compared to other advanced machine learning 

algorithms, such as artificial neural networks (ANN) and support vector machine (SVM) 

(Findlay et al., 2018; Panapitiya et al., 2018).

Fig. 4 depicts the workflow for running the prediction model, in which the RA values from 

the proteins were used as the targets, while the descriptors for proteins and ENMs were used 

as the features. The physicochemical properties of the proteins identified in the corona, 

including Mw, pI, GRAVY, and the percentage of negative/positive/aromatic amino acids, 

were calculated by ProtParam and used as the descriptors of proteins, while the FCs were 

used as the descriptors of ENMs. All data points (i.e.: ENM-protein pairs) were randomly 

divided into the training set (80%) and the testing set (20%), so the performance of the 

model could be tested on an independent dataset to avoid overfitting. Both classification and 

regression tasks were implemented. As for classification, the model was to predict whether a 

protein could be enriched in the protein corona of the ENMs. The RA values of the corona 

proteins were compared with those measured in the serum control, and the abundance 

changes (ACs) were calculated using Eq. (5). Proteins were classified into three categories 

(e.g. AC > 1 (class “1”), AC < 1 (class “−1”), and all other proteins (class “0”)), which were 

used as targets for the classification model. In the regression model, a more challenging task, 

the AC value for each protein in the protein corona was predicted. Features selection was 

used to optimize the model in both phases, and five of the important FCs were selected 

(Figs. S-9, S-10).

3.4.1. FCs outperform physicochemical properties of ENMs in corona 
prediction—Since the physicochemical properties of ENMs (e.g. primary size, surface 

charge, ζ potential), are commonly used as descriptors for prediction models (Findlay et al., 

2018; Pan et al., 2016; Singh and Gupta, 2014), they were used as ENM descriptors to build 

the benchmark model to evaluate the performance of using FCs as the descriptors of ENMs 

for the modeling. Typically, multiple specific properties are needed for modeling to ensure 

that the selected properties include the factors that truly influence the behaviors of ENMs. In 

addition, one of the physicochemical properties is kept the same so that the structure-activity 

relationship can be revealed. For example, in keeping the charge or hydrodynamic diameter 

(HD) constant, and changing the shape of gold NPs (i.e.: gold nanospheres vs. gold 

nanorods), it was revealed that the shape was a more crucial determinant of the protein 

corona than the other two properties (Xu et al., 2018). The ENMs included in this study 

encompass a wide range of physicochemical properties, with differences in size, shape, core 

material, and coating. To simplify the modeling, and to evaluate the effectiveness of our 

model compared to results obtained with conventional approaches, one particular group of 

ENMs (i.e.: nanospheres such as metallic and metal oxide NPs) was chosen to build the 

benchmark model using physicochemical properties of ENMs as the descriptors. Data 

obtained from the cellulose materials and 2D ENMs, like graphene, rGO, hBN, MoS2, and 

V2O5, were not included in this step of the modeling. Another benchmark model was 

established using only the descriptors of proteins (DPs) and not the descriptors of ENMs.

The performance of the classification model was evaluated by the conventional confusion 

metrics including precision, recall, and f1 score (Table 1, Table S-14). Precision is the ratio 

of the correctly predicted proteins to the total predicted proteins, whereas recall measures 
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the ratio of the correctly predicted proteins to the proteins that should be in that class. The f1 

score is the weighted average of precision and recall; higher values represent more accurate 

prediction. The values for precision, recall, and f1 score were all equal to 0.80 using only 

protein descriptors. This result suggests that protein properties are very important for the 

formation of the protein corona and using them as the descriptors can already provide a 

certain level of accuracy. By including the size/charge of the ENMs, the values for precision, 

recall, and f1 score increased by 18%, 7%, and 11%, respectively, for the prediction of 

whether a protein could be enriched in the corona (class “1”). Substituting the size/charge 

descriptors with FCs further increased these values by 6%, 38%, and 22%; such benefits 

were verified by the slightly larger areas under the Receiver Operating Characteristic (ROC) 

curves (AUC) (Fig. S-11), which measure how well a parameter can distinguish between 

groups. But, using both size/charge and FCs as the ENM descriptors did not provide 

additional improvement in the prediction performance. A similar phenomenon was also 

observed for the regression model, which was evaluated by R2 (coefficient of 

determination), EVS (explained variance score), MAE (median absolute error), and MSE 

(mean squared error) (Table 1, Table S-15). The R2 increased from 0.77 with only protein 

descriptors to 0.78 by adding the size/charge of ENMs. Using FC as the ENM descriptor 

instead of size/charge resulted in the highest R2 (0.82), but no further improvement in 

prediction accuracy was observed by using both size/charge and FC. These results indicate 

that FC outperforms size/charge as an ENM descriptor in these two prediction models, 

hinting the possibility of modeling the corona formation on ENMs with diverse 

physicochemical properties once FC values are acquired.

3.4.2. Prediction model using FCs as descriptors works for a wide range of 
ENMs—The model was extended to include not only spherical, but also anisotropic ENMs, 

like cellulose-based crystals and fibrils, as well as 2D ENMs. The prediction models were 

built on the same procedure illustrated in Fig. 4. Model 1 was built using both FCs and the 

descriptors of proteins, and compared with Model 2, which was trained with only the protein 

descriptors. To optimize the performance of the model, feature selection was performed 

based on the relative importance of all features (Figs. S-9, S-10): the top 5 most important 

FCs – Tf-80 (Tf at 80 °C), γG-60, αC-37, La-80, and αCd-80 – were kept, while all other 

FCs were discarded.

For the classification task, the confusion metrics for both models at the threshold of 0.5 are 

shown in Table 1 and Table S-16. The precision, recall, and f1 score of Model 1 was 0.85, 

0.85, and 0.84, respectively, and higher than those resulting from Model 2 (0.80, 0.79, 0.79). 

The improved performance by using FCs was also verified by the ROC curves (Fig. 5). The 

area under ROC (AUROC) of Model 2 was 0.9, 0.85, and 0.93 for class “1”, “0”, and “−1”, 

respectively, and these values increased to 0.94, 0.92, and 0.97 by adding FCs as the ENM 

descriptors.

As for the regression task (Fig. 6, Table S-17), incorporating the FCs as descriptors (Model 

3) also greatly improved modeling accuracy, with the EVS, R2, MAE, and MSE being 0.81, 

0.81, 0.40, and 0.82, respectively. In contrast, the prediction accuracy without the FCs 

(Model 4) dropped substantially, with values changing to 0.71 (EVS), 0.71 (R2), 0.55 

(MAE), and 1.24 (MSE). The decreased EVS and R2 suggest a worse predictability, while 
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larger MAE and MSE suggest a more obvious deviation between the predicted and true 

values. Additionally, fitting the distributions of residual errors in prediction with the 

Gaussian function (Fig. 6C) resulted in a mean residual error for Model 3 of −0.07, much 

closer to 0 compared to that of Model 4 (−0.17), suggesting that the predicted AC values by 

Model 3 were less deviated from the actual values. Moreover, the distribution of the residual 

errors of Model 3 was narrower than that of Model 4, shown as a smaller σ value (0.38 vs 

0.54) and a higher maximum count. All these comparisons verified that the enhanced 

prediction performance of Model 3, compared to Model 4, were a result of the inclusion of 

FCs as the ENM descriptors.

To further validate the robustness of modeling with FCs as the ENM descriptors, Jackknife 

resampling was carried out; certain ENMs were chosen as the testing sets and checked 

against the models established using the rest of the ENMs as the training set for corona 

prediction. The 2D ENMs (i.e.: graphene, rGO, hBN, V2O5, or MoS2) or the cellulose-based 

ENMs (i.e.: CNF-50, CNF-80, or CNC-250) were chosen as the testing sets, because they 

are significantly different from other ENMs (i.e.: metal/metal oxide nanospheres) allowing 

the exploration of the applicability domain (AD) of the model. The remaining ENMs were 

used as the training sets to build the model. Both classification and regression models were 

established.

The prediction performance of the classification and regression models are shown in Table 2, 

Tables S-18/19, and Figs. S-12/13. Improvements in most of the performance parameters 

(e.g. larger f1 score and R2) were observed after using the FCs as ENM descriptors, and 

there were more obvious improvements on the regression model compared with the 

classification model. The improvements were not the same for different ENMs, due to the 

high heterogeneity of the ENMs included. Prediction performance of our model is better 

when using the ENMs with similar shapes as the ones in question to form the training set. If 

using cellulose and spherical ENMs as the train set, the accuracy of the model was 

significantly lower (Table 2). Such an outcome was consistent with that of the PCA analysis 

which revealed FCs were different for ENMs with various shapes: Fig. S-4 clearly shows 

that FCs of 2-Ds ENMs are quite different from those of cellulose or spherical ENMs, which 

thus were displayed as distinct points in the PCA scatter plots.

Nevertheless, the advantage of using FCs for modeling was still obvious. For example, 

graphene, hBN, and MoS2 had very different corona compositions compared to other ENMs 

(Fig. S-7A), but our modeling approach still resulted in good prediction accuracy (Table 2) 

and demonstrated the capability of the model to use FCs to make predictions on 

heterogeneous ENMs.

4. Conclusions

Protein corona composition is very important for the biological outcomes of ENMs. Herein, 

we developed a well performed prediction model using changes in fluorescence (FCs) as the 

novel descriptors of ENMs, which are capable of quickly and accurately predicting the 

protein corona compositions on diverse ENMs as demonstrated in our work. The FC values, 

obtained from fluorescamine labeling on a series of judiciously selected proteins at different 
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temperatures, were highly correlated with the protein interaction behaviors of the ENMs. 

The FC values were acquired in a high-throughput screening manner, and the labeling 

method was applicable to diverse ENMs. These features facilitate the evaluation of FCs 

compared to the ENM properties, like size and surface charge, which are measured by 

sophisticated instruments. In addition, FCs are superior descriptors of ENMs in corona 

modeling in contrast to traditional descriptors, and can successfully predict the protein 

corona formed on heterogeneous ENMs, which is very challenging for conventional 

modeling approaches that use well defined physicochemical properties of ENMs as 

descriptors. We expect this modeling approach can be employed to gain insights into the 

corona formation properties of newly synthesized ENMs before proceeding with detailed 

corona characterization. In silico comparison of the corona formed on a wide range of 

ENMs can potentially help focus follow-up studies to a handful of ENMs with the desired 

corona, instead of wasting time and efforts on a large number of ENMs. Future exploration 

will also be devoted to reveal potential correlation between protein corona and biological 

responses to ENMs, with the collegial efforts from research groups involved in the 

Nanotechnology Health Implications Research Consortium.

Still, the present model has its limitations, partially due to the very rough, semi-quantitative 

protein quantification method (i.e.: spectral counting employed in the present work for 

corona identification). We expect that a more accurate measurement of the corona 

composition could further improve our modeling approach. Collection of FC values for more 

representative proteins and inclusion of additional ENMs to build the model could also help 

enhance prediction accuracy. Moreover, with further understanding on how ENMs impact 

FCs or protein corona formation using first-principle calculation or molecular modeling 

techniques, this model can be used to guide the virtual design or optimization of ENMs for 

desired biological outcomes.
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Supplementary data to this article can be found online at https://doi.org/10.1016/
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Fig. 1. 
Fluorescence changes (F/F0) of (A) lysozyme and (B) lactalbumin after incubation with 

ENMs at different temperatures. The fluorescence signals of free proteins at different 

temperatures, were used as controls (F0), and the signals of protein-ENM (2:1 mass ratio) 

mixtures were measured as F.
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Fig. 2. 
The heatmap and hierarchical cluster of similarities of serum protein corona compositions 

for different ENMs. Human serum without ENMs was used as the control.
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Fig. 3. 
The absolute value of the correlation coefficient between the fluorescence change of one 

protein to the ENMs and the %RA of the 12 most abundant proteins identified in the corona, 

including HSA, Tf, immunoglobulin (Ig), apolipoprotein A (I and II), clusterin, histidine-

rich glycoprotein (HRG), α-1-antitrypsin (α-1-AT), and α-2-macroglobulin (α-2-MG). For 

the first column, characters before the dash line represent the protein name, and the adjacent 

number represents the temperature at which fluorescamine labeling was performed. Each 

cell was colored from dark blue to white based on decreasing values.

Duan et al. Page 23

NanoImpact. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The workflow followed to build the prediction model. The fluorescence changes of different 

proteins with ENMs at 37, 60, and 80 °C were used as descriptors for ENMs. The abundance 

change (AC) of each protein identified in serum protein corona was used as the target.
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Fig. 5. 
Receptor operation characteristic (ROC) curve for the prediction of (A) proteins with 

abundance change (AC) > 1, (B) proteins with AC between −1 and 1, and (C) proteins with 

AC < −1. The models with or without FCs were included for comparison. FPR: false 

positive rate. TPR: true positive rate.
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Fig. 6. 
The values predicted by the regression model (A) with and (B) without FCs, were plotted 

against the actual values of the testing dataset. (C) The normal distribution of residual errors 

of the prediction values by both models.
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Table 1

Performance of classification and regression models using different descriptors, for either only nanospheres or 

all ENMs.

Classification Regression

ENMs Descriptors f1 (average) f1 (class 1) R2

Nanospheres DP
a 0.8 0.61 0.77

DP + charge/size
b 0.83 0.68 0.78

DP + FC
c 0.83 0.75 0.82

DP + charge/size + FC 0.82 0.72 0.82

All ENMs DP 0.79 0.67 0.71

DP + FC 0.84 0.72 0.81

a
DP - descriptors of protein.

b
The primary size and surface charge of NPs.

c
Fluorescence changes.
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Table 2:

Performance of both classification (evaluated by f1 score) and regression models (evaluated by R2) using 

different descriptors for Jackknife resampling.

DP
a

DP + FC
b

f1 R2 f1 R2

CNF
c
50 0.76 0.65 0.81 0.85

CNF80 0.78 0.75 0.85 0.88

CNC
d
250 0.78 0.62 0.84 0.75

Cellulose-ENM all 0.76 0.60 0.78 0.68

Graphene
e 0.73 0.02 0.94 0.68

RGO
f 0.64 0.57 0.67 0.56

hBN
g 0.73 0.40 0.81 0.77

MoS2 0.71 0.39 0.84 0.68

V2O5 0.89 0.83 0.93 0.87

2D-ENM all 0.72 0.47 0.75 0.50

a
Descriptors of protein.

b
Fluorescence changes.

c
Cellulose nanofibril.

d
Cellulose nanocrystal.

e
Graphene.

f
Reduced graphene oxide.

g
Hexagonal boron nitride.
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