
UC Irvine
ICS Technical Reports

Title
Supporting ongoing user involvement in development via expectation-driven event 
monitoring

Permalink
https://escholarship.org/uc/item/8cm6c29w

Authors
Hilbert, David M.
Robbins, Jason E.
Redmiles, David F.

Publication Date
1997
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8cm6c29w
https://escholarship.org
http://www.cdlib.org/


Notice; This Material

may be protected
by Copyright Law
(Title 17 U.S.G.)

c 3>

no. ^-7-11

Supporting Ongoing User Involvement in Development via
Expectation-Driven Event Monitoring

David M. Hilbert, Jason E. Robbins, David F. Redmiles

{dhilbertjrobbins,redmiles} @ics.uci.edu

Technical Report UCI-ICS-97-19
Department of Information and Computer Science

University of California, Irvine
Irvine, California, 92697-3425

April 1997

ABSTRACT

Involving end users in the development of interactive systems increases the likelihood those systems
will be useful and usable. User involvement, however, is both time and resource intensive. Intemet-
and World-Wide-Web-based software release models have magnified these problems. At the same
time, these practices have begun to blur the distinction between development and use and, in so
doing, have provided developers with unprecedented, andcurrently underutilized, opportunities for
increasing user involvement. We propose an approach — based on expectation-driven event moni
toring and expectation agents — that leverages these opportunities to support ongoing user involve
ment in the software development process.

Keywords event monitoring, expectation agents, usability engineering, interactive systems,
software engineering



1. INTRODUCTION

r-Involving end users in the development of
' interactive systems increases the likelihood

those systems will be useful and usable
(Nielsen 1993, Baecker 1995). User involve
ment, however, is both time and resource inten

sive. New development practices pose
challenges to traditional ideas about how to
involve users. Time-to-market has become so

critical that user involvement is sometimes sac

rificed altogether. If a development organiza
tion does not make this sacrifice, by the time it
has a product ready for release, the market may
already have become locked into a less usable
competing product (Arthur 1996).
New software release models now common on

the Internet and World-Wide-Web have magni
fied these pressures. Large-scale beta releases
are now used to reach as many potential cus
tomers as possible, as early as possible. The
amount of time spent on development prior to
release has decreased. Pressure to produce fre
quent upgrades also reduces time available for
involving users. While exacerbating the chal
lenges, these practices also present unprece
dented opportunities for increasing user
involvement.

In the past, most of the development cycle was
devoted to preparing a product for beta release.
Significantly less time was spent on transition-
ing it from beta to product release. Due to
increased pressures to reach beta customers
early, less of the development cycle is being
spent preparing the beta, and more time is
being spent in the period between beta and
product release. As a result, the distinction
between development and use is breaking
down. The product is already being used during
the preponderance of the development cycle.
Reduced cycle time between versions also con
tributes to this effect. Since new versions are

constantly being released, the product is essen
tially always in the development phase, as it is

being used. Thus, development and use are
concurrent, however user involvement is often

limited due to lack of effective tools and tech
niques for incorporating user feedback.
We offer an approach to address this problem
— based on distributed user event monitoring
— that takes advantage of the fact that usage
and development are concurrent in order to
support ongoing user involvement. Usage data
is collected from users and can be used by
developers in making decisions about potential
changes or enhancements. Thus, our approach
contributes to an empirically guided develop
ment process based on information gathered
from actual usage.
Section 2 discusses how usage expectations can
be treated explicitly in the software develop
ment process, and how this can help improve
the process and contribute to the development
of more usable systems. Section 3 describes an
implementation of this approach, and discusses
how it goes beyond traditional event monitor
ing in supporting extended, or indefinite, user
involvement in development. This is followed
by Discussion, Challenges, and Summary and
Conclusions sections.

This paper is expected to be of particular inter
est to developers of interactive applications,
researchers in software development, research
ers in applications of autonomous agents, and
anyone interested in new tools for capturing
user interactions. A working prototype has
been implemented in Java™, and is scheduled
for beta release in first quarter 1998.

2. APPROACH

Usability breakdowns occur when developers'
expectations about system usage do not match
users' expectations. Several benefits can be
realized when these mismatches are detected
and resolved.

A usage expectation determines whether a
given interaction (e.g., a sequence of mouse



clicks) is expected or unexpected. For example,
a developer may hold the usage expectation
that users will fill in forms from top to bottom
with minor variation, while a user may hold the
expectation that independent sections may be
filled out in any order.
Figure 1 shows a conceptual picture of expecta
tions held by two groups of stakeholders
(developers and users) and expectations
encoded in the system being used. Each lower
case "e" represents a tacit expectation held in
the mind of a person or in the code of a pro
gram. Developers get their expectations from
their knowledge of the requirements, past expe
rience in developing systems, domain knowl
edge, and past experience in using applications
themselves. Users get their expectations from
domain knowledge, past experience using
applications, and interactions with the system
at hand. The software system embodies
implicit assumptions about usage that are
encoded in screen layout, key assignments,
program structure, and user interface libraries.
Each uppercase "E" represents an explicit
expectation. Several usability methods seek to
make implicit expectations of developers and
users explicit (e.g., cognitive walk-throughs,
participatory design, and use cases). Expecta
tions embedded in the system can be made
explicit though representations that we discuss
below. Many expectations will remain implicit
despite these methods. We can treat such
expectations as unknowns and attempt to detect
mismatches by comparing observed usage
against expectations that have been made
explicit.
Once a mismatch between users' and develop
ers' expectations is detected it can be corrected
in one of two ways. Developers can change
their expectations about usage to better match
users' expectations, thus refining the system
requirements and eventually making a more
usable system. For example, features that were

^^BEEEE

Developer

System

EEEE^^m

'W
EEEE

Figure 1. Usabilityexpectationsin the developmentprocess.

expected to be used rarely, but are used often in
practice should be made easier to access. Alter
natively, users can adjust their expectations to
better match those of developers, thus learning
how to use the existing system more effec
tively. Leaming that they are not expected to
type full URL's in Netscape Navigator"^ can
lead users to omit characters such as "http://".
When developers expectations do not match
the expectations embedded in the system, they
can be made to match by adjusting one or the
other. The developers can change (or debug)
the system to make the expectations embodied
in it conform to theirs. For example, the devel
oper may remove a function from the toolbar if
it is expected to be used infrequently, or add
accelerator keys to functions that are expected
to be used often. Alternatively, the developers
can adopt the current expectations embedded in
the system if they are too hard to change, or if
they are based on usability knowledge embed
ded in libraries that enforce user interface

guidelines. For example, the system may be
easier to implement if it uses standard accelera
tor key assignments regardless of how often the
developer expects a function to be used.
When a user's expectations do not meet those
embedded in the system, the user may adapt to
the system, or the system may adapt to the user.
Users adapt to the system when they are leam
ing how to use it or when the tool enforces
proper usage as defined by stakeholders such as
customers, standards organizations, or regula-



tory agencies. For example, the user may take
breaks from typing every 50 minutes if the sys
tem reminds them to do so. The system may
adapt to the user through customizableexpecta
tions that are determined by explicit or implicit
user preferences. For example, a user writing in
a specific technical domain might configure
their spell checker to be used very differently
than users writing standard business letters.
In each case, detecting a breakdown or differ
ence in expectations is useful, but aligning
expectations requires knowledge of the other
expectations and the specific differences. For
developers to learn about users' expectations
they need specific details of actual usage,
including context, history, timing, and intent.
For users to learn of developers' expectations
they need clear documentation of the intended
system operation and rationale to be presented
to them at the time of breakdown. In either

case, dialog between users and developers can
help clarify and expose expectations.

3. IMPLEMENTATION

We support detecting and resolving mis
matches in expectations (as described above)
by allowing developers to specify their usabil
ity expectations in terms of user interface
events. These expectations are encoded in the
form of expectation agents, or EA's, that con
tinually monitor usage of the application and
perform various actions when encapsulated
expectations are violated.
In order to support this functionality, expecta
tion agents need access to events occurring in
an application's user interface. However, in
order for expectations to be expressed at an
appropriate level of abstraction, they need
access to higher level events than are produced
by the window system. As a result, expectation
agents are implemented on top of an expecta
tion-driven event monitoring substrate that pro
vides a multi-level event model.

Other authors have proposed event monitoring
as a means for collecting usability data, how
ever, existing approaches often suffer from one
or more of the following limitations: (1) low-
level semantics: events are captured and ana
lyzed at the window system level, or just
slightly above (Chen 1990), (2) decontextual-
ization: analysis is done post-hoc on raw event
traces - potentially relevant contextual cues are
lost. (3) "one-way" communication: data flows
from users to developers who must then infer
meaning - no "dialogue" is established to facil
itate mutual understanding, (4) batch orienta
tion: hypothesis formation and analysis is
performed after large amounts of (potentially
irrelevant) data have been collected - no means
for hypotheses to be analyzed and action taken
while users are engaged. (5) privacy issues:
arbitrary events are collected without any
explicit constraints on the purposes of collec
tion - no way to provide users with discretion
ary control over what information is collected
and what information is kept private.
In the following subsections we discuss how
our implementation addresses these issues and
goes beyond existing approaches in supporting
user involvement in development. We describe
our implementation in terms the following key
benefits: (1) multi-level event model, allowing
agents to compare usability expectations
against actual usage at reasonable levels of
abstraction, (2) contextualization: taking action
and collecting information while users are
engaged in using the application, (3) two-way
communication: helping initiate dialog
between users and developers when break
downs occur, and finally, (4) specializable
monitoring and analysis: promoting a shift
from batch-oriented data collection and analy
sis to hypotheses-guided collection and analy-



Goal/Problem-Related
(e.g. ordering new software)

Domain/Task-Related
(e.g. providing billinginformation)

Abstract Interaction Level
(e.g. providing values in input fields)

Application Level
(e.g. shtfts in editing attention)

Window System Events
(e.g. shifts in input focus, key events)

Input Device Events
(e.g. fwdware generated key or mouse interrupts)

Physical Events
(e.g. fingers pressing keys or harKlmoving mouse)

Figure 2. A multi-level model of user events.

3.1. A Multi-Level Event Model

We propose a multi-level event model to allow
event monitoring to be raised to the level of
expectations (Figure 2). At the lowest level are
physical events, such as pressing keys with
one's fingers or moving the mouse with one's
hand. Input device events, such as key and
mouse interrupts, are generated by hardware in
response to physical events. Window system
events associate input device events with win
dows and widgets on the screen.
Window system events are the lowest level
events that EA's can monitor. Events at this

level include button presses, list and menu
selections, focus events in input fields, and
window movements and resizing. An EA
could, for example, perform input field valida
tion when the "Submit" button is pressed on a
web-based input form.
Application level events are generated by the
expectation-driven event monitoring substrate
based on computations involving window sys
tem events and global window system state.
Events at this level are intended to indicate

changes in the application interface that corre
late with salient shifts in the users' state of

mind.

Consider a user editing a field at the top of a
form, then pressing tab repeatedly to edit a field
at the bottom of the form. In terms of window

system events, input focus shifted several times
between the first and last fields. In terms of

application level events, the user's editing
attention shifted directly from the top field to
the bottom field. Until the user starts actually
editing another application component, the
monitoring substrate assumes the user's editing
attention has not shifted.

Application level events are associated with
application components, groups of compo
nents, and application windows. To infer that
the user has shifted editing attention away from
a given component, group of components, or a
window, the monitoring substrate must look for
editing events in components outside of that
component, group of components, or window.
The event-monitoring substrate performs the
computations required to generate application-
level events so that agents can detect such
events on particular application components
without monitoring all components on the
screen. Not only does this simplify individual
EA's, it also factors code that would be com

mon across agents, and avoids redundant com
putation. ^
Other examples of events that could be defined
at the application level include ACCEPT and
DISMISS events. These events would indicate

changes in the user's state of mind when they
perform standard "Ok", "Apply", and "Cancel"
operations on dialogs. Other possibilities
include a SUBMIT event for web-based form

applications and a HELP event to indicate
when a user has requested help. This allows
EA's to be independent of the particular means
by which these functions are invoked, when
such independence is desired.

1.Onlyone lineofcodemustbe addedtoan application in orderto allow
^plication level events tobe^neraied. This isnecessary topass window
system events to theexpect^ion-driven eventmonitoring substrate.



\iAU 1..111IIW

R»

Oi^ Fom>(/gjH
Mai Mgj n>a»l

IW4 ami 1MriM

mmT^FsU
iava«NiP«nal
l»r4«illP«lri
lavaMPwi

I WM3t»«i/fpeia |(MliFa<nVii^
I ViAidDi>B««t{dM [oISTeei^
1 CaneMtfi/faaa |SM«raU

J CaiiiW« E*«a p<«ni<f«tl
i MExn |F0CUS,O<S

VMdh ]Qrd«*0i«»W9«Q

LME>M|FOaiS.auT
VatM |Om)M H*«i~

I a*«iniw

- iiii.*«p.t^

.; MiJwK

! tt—M»—~
;i .n—tlMMWi

P ShpvC^MI

Figure 3. Monitoring of a simple order form wizard.

Abstract interaction events occur when recur

ring, idiomatic patterns of user interface events
(from the window system and/or application
levels) are recognized. For example, an abstract
interaction event may be generated when a user
provides a value by manipulating an applica
tion component. If that component were an
input field, this would mean the field had been
edited, was no longer being edited, and now
contains data. The patterns of lower level
events that indicate an abstract interaction

event such as VALUE_PROVIDED will differ

from one type of application component to
another, and from one application domain to
another. This is why detection of abstract inter
action events is not performed directly by the
event monitoring substrate. Abstract interaction
event EA's can be defined to generate these
events when the lower level events indicating
them have occurred, so that other interested (or
higher level) agents can use them in their own
event monitoring.
In order for EA's to recognize abstract interac
tion events, they need access to arbitrary local
and/or global state to keep track of things such
as time, sequencing, and so on (e.g., to keep
track of position in a state machine representa
tion of the compound event). In order for
agents to cooperate as described, they need to

be able to generate events that can be detected
by one another
Domain/task-related and goal/problem-related
events are at the highest levels. Unlike previous
levels, these events indicate progress in the
user's tasks and goals. Detecting these events is
straightforward when interfaces provide
explicit support for structuring tasks or indicat
ing goals. For example, Wizards in Microsoft
Word™ lead users through a sequence of steps
in a predefined task. EA's can easily recognize
the user's progressby recognizing simple lower
level events, such as button presses on the
"Next" button. In other cases, task and goal
related events might be detected by EA's work
ing individually or in groups to recognize com
binations of lower level events. For example,
the goal of placing an order includes the task of
providing customer contact information. An
expectation agent could recognize the task-
related event CONTACT_INFO_PROVIDED
by recognizing the VALUE_PROVIDED
abstract interaction events generated for every
field in the contact information section of the

form. In order to allow EA's to understand task

and goal related events within the context of a
broader process, the event monitoring substrate
could be integrated with process and work-flow
modeling tools.
Our multi-level event model provides a hierar
chy of abstraction not provided by traditional
event monitoring approaches. Figure 3 shows a
simple wizard for filling out an order form that
has been connected to the event monitoring
substrate. Notice that while input focus has
shifted from the name field to the street field,
the eventmonitoring substrateis indicatingthat
the user's editing attention has not yet been
confirmed to have shifted.

3.2. Contextualization

Currently, users and developers bear full
responsibly for recognizing when breakdowns



occur, determining the reasons for the break
down, and deciding how to recover. Because
EA's operate within the context of use, they can
assist users and developers in making these
determinations.

When a breakdown occurs, EA's can provide
developers with important contextual informa
tion such as system state and event history.
They may also collect information from users
regarding the reasoning and incidents leading
up to breakdowns — while that information is
still fresh in users' minds. When breakdowns

are due to errors in the code, EA's can help pro
vide developers with much richer contextual
information for bug reporting purposes than
has typically been possible. EA's can help
make external bug reports as useful as inter
nally generated bug reports.
Another benefit of EA's is that they can operate
in real usage contexts. Because they don't sig
nificantly affect user interface operation, the
environmental context is true to actual usage.
Also, since monitoring is unobtrusive, EA's are
less likely than direct observation methods to
influence users' behavior.

3.3. Two-Way Communication

When unexpected breakdowns occur, it may
not be enough to simply provide context. Dia
logue between users and developers may need
to be established in order to evolve mutual

understanding. When an EA detects a break
down, it can prompt the user to communicate
with developers (Figure 4). The same facilities
can also be used to volunteer comments when

EA's fail to detect breakdowns experienced by
the user. Communication can be synchronous
or asynchronous, via voice, video, or electronic
mail.

Once communication has been initiated, ongo
ing dialogue between developers and users may
continue outside the scope of the agent-based
system. The communication policy appropriate

Figure 4. Anexpectation agentmessage dialog.

will depend on the development situation. For
instance, a direct video link might work well in
small-scale, in-house development situations,
while asynchronous policies might be prefera
ble in Web-based product development. When
users greatly outnumber developers, informa
tion gathered from EA's will need to be filtered
through information management mechanisms
before being presented to developers. Mediator
roles (Grudin 1991) may need to be established
to manage communication between users and
developers.

3.4. Specializable Monitoring and Analysis

Expectation-driven event monitoring represents
a shift from traditional batch-oriented
approaches to a more proactive, hypothesis-
guided approach. Instead of forming and ana
lyzing hypotheses after large amounts of
(potentially irrelevant) data have been col
lected, data collection can be tuned based on a-
priori hypotheses (or expectations) that are ana
lyzed while users are engaged. Our approach is
hypothesis-guided in that only data, and results
of analyses, thatare relevant to specific hypoth
eses (expectations) are reported.

2. EA's cansupport traditional event monitoring inaddition tothe
expectation-bas^ ^proach weadvocate here.



Specializablity makes monitoring tractable on
a larger scale than is possible with traditional
approaches. It is scalable in terms of the num
ber of users that can be monitored because it
allows analysis to be computed on the client-
side. This means that computation can be dis
tributed among potentially thousands of pro
cessors, and only relevant data, or results of
analyses, need to be reported to developers.
Thus, usability information can be captured on
a scale that is statistically significant, observa
tions can be categorized a-priori as well as a-
posteriori, and factor analysis is facilitated.
Specializable monitoring and analysis can thus
contribute to an empirically guided develop
ment process. Since developers often have
more candidate design changes than time to
implement them, effort can be focused on those
changes that will benefit the greatest number of
users, or resolve the greatest number of non-
trivial breakdowns. Also, the impact of pro
posed changes can be analyzed in terms of how
well they "agree" with existing user expecta
tions. For instance, before making a change, a
developer could deploy an agent to the current
user base to look for user expectations that
would be violated by introducing the change.
Since EA*s can be dynamically added or
removed, investment in EA's can be made

incrementally. There is no need to delay
deployment of a product until all EA's are in
place. Even a single EA can yield some useful
feedback.

4. DISCUSSION

In the proceeding sections we have primarily
focused on how EA's provide feedback to
developers, but EA's can also be used to yield
benefits to other stakeholders. Since EA's
actions can be customized, they can be used to
add new functionality to existing applications.
EA's could produce feedback for stakeholders
such as system administrators and organiza

tional training staff. For example, if a usercan
not access a certain web site, he or she can
volunteer comments to the local system admin-
isU-ator and that communication would include
the state and history of the application being
used.

EA's also provide a way for other stakeholders
to express expectations so that their interests
are represented to users. EA's can make organi
zational rules active. For example, when filling
in a travel reimbursement form, if the cost of
reimbursement is bellow some threshold, the
user could be advised to fill in an alternative
form (see Figure 4). EA's can help transform
the experience of individual users into active
guidance for other users. For example, users
who print multiple copies of a document can be
reminded by other users that photocopying is
faster, cheaper, and more courteous.
These benefits do not come without cost. In
each case, someone must take the time to
express their expectations in the form of EA's.
We cannot assume that EA's will be authored in
cases where the person paying the cost does not
derive some benefit. However, there appear to
be several situations in which incentives are in
fact in place. Developers can gain important
usability and bug-reporting information that
justifies the cost of authoring agents. Users
may author agents in order to save themselves
work by automatically representing their inter
ests to other users. Users may volunteer infor
mation if it gives thema chance to express their
frustration, especially if their past comments
have resulted in noticeable improvements in
new versions of the system.
No large-scale monitoring effort should be
employed if the risk to user's privacy out
weighs the potential benefit. Forexample, users
don't want private email shown to developers,
and corporations don't want strategy memos
shown to competitors. Our approach can sup
port privacy more fully than traditional event



monitoring. First, EA's collect only data
needed for specific purposes and reporting is
limited to expectation violations. In compari
son, traditional event monitoring approaches
report all events, potentially permitting data to
be used for purposes other than specified. Sec
ond, the user can better control violation
reporting than event reporting because the
reports are fewer and more specific.
Beside asking for permission to send reports,
EA's also interact with users to request com
ments and provide help. Thus they run the risk
of distracting the user from the task at hand.
Under most circumstances, we advocate a non-
disruptive feedback model that gives the user
an indication that an agent is requesting their
attention but allows the user to continue their

task. In cases where users are presented with
too many requests for their attention, we have
investigated various scheduling and control
mechanisms that can be used to limit agent exe
cution and filter agent feedback (Bobbins et al.
1996).

5. CHALLENGES

Three challenges in making our approach prac
tical include finding appropriate representa
tions for expressing usage expectations,
facilitating authoring of expectation agents by
various stakeholders, and addressing mainte
nance of expectation agents over time.

5.1. Representation

Tacit usage expectations must be converted into
an explicit representation before they can be
used to evaluate actual usage. Since there are a
wide variety of expectations, we seek to
employ a variety of representations.
State-based representations are well suited for
expressing expectations about sequences of
actions regardless of the values of input fields
or the state of the system. For example, the
expectation that users will fill in fields left to

right and top to bottom. State-based agents rely
primarily on the order of events at various lev
els in the multi-level event model. By register
ing interest in particular events, transitions can
be triggered when those events occur. Current
technologies for state-based systems are well
developed and used in both requirements engi
neering and coding (Wing 1991).
Rule-based representations (Girgensohn et al.
1994) are well suited for expressing expecta
tions that hold over entire interactions regard
less of the order of events. For example,
developers might expect users to not fill in
fields for both credit card payment and COD
(cash on delivery). Rule-based agents rely pri
marily on the value of input fields and the state
of the system. By registering interest in particu
lar fields, these agents can be triggered when
those fields change. Current technologies for
rule-based systems are also well developed.
Mode-transition-based representations incor
porate features of both rule-based and state-
based representations. They represent
expected behavior as tables of modes (i.e.,
states) and transitions which are guarded by
conditions (i.e., rules). For example, when an
airline customer representative is searching for
a group of seats on a single flight, they might
be expected to enter another query whenever
the previous query yielded less available seats
than was specified in the "number of travelers"
input field. Mode-transition-based technologies
have been well developed and are primarily
used in requirements engineering (Atlee and
Gannon 1993).
Each of these approaches is well-suited to
some aspects of expectation agent representa
tion. We hope to provide a range of options that
combine these approaches and extend them to
make use of interactions between agents.



5.2. Authoring

Stakeholders author expectation agents by
using an agent development tool that provides
them with means for specifying usage expecta
tions. Since there are a wide variety of stake
holders and expectations, we seek to employ a
variety of authoring techniques.
Developers can author EA's simply by writing
programming language source code that makes
calls to the expectation-based event monitoring
substrate. They can make use of existing CASE
tools that support the development of state-
based, rule-based, or mode-transition-based
software.

Users may find tools based on templates or pro-
gramming-by-demonstration more accessible.
(Girgensohn et al. 1994) describes a form for
defining agents consisting of a single triggering
event, a set of simple conditions combined with
an implicit logical-and, and a choice of one of
several predefined actions. Demonstrational
techniques could be especially accessible to
users because such approaches only demand
knowledge of how to use the system.

5.3. Maintenance

The intent of our approach is to enhance evolu
tion of usable systems. Any approach encour
aging change must consider the cost of
changes. Expectation agents are potentially
costly to maintain since they depend on the
very interactions that the approach seeks to
change.
Fortunately, several features mitigate this prob
lem: (1) Agents that look for higher-level
events are insulated by the multi-level event
model from low-level changes in widget label
ing, size, and position. Only those agents deal
ing specifically with layout issues will need to
be modified when the layout changes. (2)
When the interface changes there are ways to
automatically determine the subset of agents
that might be affected, since expectation repre

sentations contain references to specific (high-
or low-level) events and user interface compo
nents. (3) Changes to the interface tend to pro
duce corresponding changes in the
expectations. For example, if an interface is
being improved to shorten a common interac
tion by combining or removing widgets, then
affected expectations can be modified by com
bining or removing corresponding states.

6. SUMMARY AND CONCLUSIONS

In summary, we propose a conceptual model of
how usage expectations might be treated
explicitly in the software development process.
We discuss how this could help improve the
process and contribute to the development of
more usable systems. We describe an imple
mentation — based on expectation-driven
event monitoring and expectation agents —
that realizes facets of this conceptual model.
Our approach can be used to unobtrusively dis
cover how applications are being used, detect
and report discrepancies between actual and
expected usage, and report instances of errone
ous system behavior, unexpected failures, and
exceeded thresholds. When breakdowns or
mismatches occur, they can be used to initiate
communication between users and developers.
Our approach supports an empirically guided
development process in which developers can
strategically plan user interface changes based
on actual usage information.
We believe our technology is well-suited for
gathering and analyzing usability information
in the context of software testing activities,
focused experiments, usability testing, beta
testing, and in actual usage (both industrial and
in field studies). Once more progress has been
made addressing the issues raised in this paper,
we believe that much useful usability informa--
tion that is currently lost can be captured and '
used by developers and researchers to improve
the designs of interactive systems.



7. ACKNOWLEDGEMENTS

The authors are greatly indebted to A. Girgen-
sohn, F. Shipman, A. Lee, and A. Turner who
worked on precursors to this paper and con
tinue to provide insight and support. The
authors would also like to thank J. Grudin for

his thoughtful comments. This work is finan
cially supported by the National Science Foun
dation, grant number CCR-9624846.

8. REFERENCES

Arthur, W. B. (1996) Increasing Returns and the New
World of Business. Harvard Business Review. July-
August 1996.

Atlee J. M., and Gannon, J. (1993) State-based Model
checking of event-driven system requirements. IEEE
Transactions on Software Engineering. January 1993.

Baecker, R. M., Grudin, J., Buxton, W. A. S., Greenberg
S., eds. (1995) Readings in Human-Computer Interac

tion: Toward the Year 2000. Morgan Kaufinann Pub
lishers, Inc. San Francisco, CA, USA.

Chen, J. (1990) Providing Intrinsic Support for User
Interface Monitoring. In Human-Computer Interaction
- INTERACT -90.

Girgensohn, A., Redmiies, D. P..andShipman, F. M. III.
(1994) Agent-Based Support for Communication
between Developers and Users in Software Design. In
Proceedings of the Knowledge-Based Software Engi
neering Conference '94. Monterey. CA, USA.

Grudin, J. (1991) Interactive systems: bridging the gaps
between developers and users. IEEEComputer. April,
1991.

J. Nielsen. (1993) Usability Engineering. Academic
Press, Inc., Cambridge, MA, 1993.

Robbins, J. E.,Hilbert D. M.,and Redmiies, D. F. (1996)
UsingCritics to AnalyzeEvolving Architectures. In
Proceedingsof the SecondInternational Software
Architecture Workshop. San Francisco, CA, USA.
October, 1996.

Wing, J. A Specifier's Introduction to Formal Methods.
IEEE Computer. September, 1990.




