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Finished Genome Sequence of the Indole-3-Acetic Acid-
Catabolizing Bacterium Pseudomonas putida 1290

Tyler S. Laird,a Johan H. J. Leveaua

aDepartment of Plant Pathology, University of California, Davis, Davis, California, USA

ABSTRACT Use of indole-3-acetic acid (IAA) as a carbon, nitrogen, and energy
source by Pseudomonas putida 1290 is linked to the possession of a gene cluster
that codes for conversion to catechol. Here, we present the genomic context of this
iac gene cluster, which includes genes for IAA chemotaxis/transport and catechol ca-
tabolism.

Originally isolated from the pear phyllosphere (1), Pseudomonas putida 1290 was the
first bacterium for which the ability to grow at the expense of the plant hormone

indole-3-acetic acid (IAA) was linked to a gene cluster designated iacABCDEFG-R-HI,
which allows the enzymatic conversion of IAA to catechol for further channeling into
central metabolism via the beta-ketoadipate pathway (2). P. putida 1290 also exhibits
positive chemotaxis toward IAA (3). To better understand the genomic context within
which the iac gene cluster operates in this strain, we sequenced the genome of P.
putida 1290.

Genomic DNA was extracted from a single-colony culture of P. putida 1290 grown
overnight in LB, using a DNeasy blood and tissue kit (Qiagen, Valencia, CA) to construct
a 10-kb library for PacBio RS II sequencing on 3 single-molecule real-time (SMRT) cells
using P4-C2 chemistry at the UC Davis Genome Center. The total number of reads was
160,877, covering a total of 597,416,768 bp (average subread length, 3,713 bp; N50

subread length, 5,224 bp). De novo assembly was accomplished with Hierarchical
Genome Assembly Process (HGAP) version 3 within SMRT Analysis software v2.2.0
(Pacific Biosciences) (4). Default parameters were used for this and all other software.
Assembly correction was performed with Quiver and Gepard v1.30 (5), resulting in two
circularized contigs, a 6,495,886-bp chromosome (G�C content, 63.14%; 62.26� cov-
erage) and a 114,265-bp, major facilitator superfamily (MFS)-type I plasmid (6) desig-
nated pPput1290 (G�C content, 54.59%; 25.17� coverage). Pairwise average nucleo-
tide identity values based on fastANI (7) showed the closest genomic match (87.4%)
with soil isolate P. putida DRA525 (8). The plasmid most similar to pPp1290 in the PLSDB
database (9) was pGRT1 from P. putida DOT-T1E (10). Gene prediction by RAST (11)
revealed 6,048 coding sequences, 77 tRNA genes, and 20 rRNA genes on the chromo-
some and 123 coding sequences on pPp1290.

We identified an open reading frame (ORF), directly upstream of the iacABCDEFG-
R-HI gene cluster in P. putida 1290, coding for a LysR-type transcriptional regulator, a
partial duplication of the iac gene cluster (iacCDF), genes predicted to code for an
OprD-like outer membrane protein, an ATP-binding protein belonging to the ABC
family of transporters, and an MFS-type transporter similar to IacT1 from Paraburkhold-
eria phytofirmans PsJN, implicated in the transport of an IAA degradation pathway
intermediate (12). Also upstream of the iac gene cluster, an ORF predicted to code for
a methyl-accepting chemotaxis protein possibly involved in the chemotaxis of P. putida
toward IAA (3) and a catR-catBCA gene cluster for catechol catabolism (3) were found.
Interestingly, the iac gene cluster appears to be part of an approximately 30-kb
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genomic island predicted by the IslandPick algorithm in IslandViewer v4 (13) and
encompassing multiple genes for the utilization of plant-derived compounds other
than IAA, including methylamine (14), phenylacetaldehyde (15), and opines (16). The
presence of aldA and aldB homologs (17) on the chromosome is consistent with IAA
production reported for P. putida 1290 (2). Plasmid pPp1290 harbors multiple insertion
sequence (IS)-like elements, as well as genes related to aromatic compound degrada-
tion, stress tolerance, fluoride efflux, and conjugal transfer.

Data availability. The P. putida 1290 chromosome and plasmid sequences are
available under GenBank accession numbers CP039371 and CP039372, respectively.
Raw reads from the three SMRT cells are available under the SRA accession number
SRP195595.
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