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Abstract

We propose a semi-automatic algorithm for the segmentation of vertebral bodies in magnetic 

resonance (MR) images of the human lumbar spine. Quantitative analysis of spine MR images 

often necessitate segmentation of the image into specific regions representing anatomic structures 

of interest. Existing algorithms for vertebral body segmentation require heavy inputs from the user, 

which is a disadvantage. For example, the user needs to define individual regions of interest 

(ROIs) for each vertebral body, and specify parameters for the segmentation algorithm. To 

overcome these drawbacks, we developed a semi-automatic algorithm that considerably reduces 

the need for user inputs. First, we simplified the ROI placement procedure by reducing the 

requirement to only one ROI, which includes a vertebral body; subsequently, a correlation 

algorithm is used to identify the remaining vertebral bodies and to automatically detect the ROIs. 

Second, the detected ROIs are adjusted to facilitate the subsequent segmentation process. Third, 

the segmentation is performed via graph-based and line-based segmentation algorithms. We tested 

our algorithm on sagittal MR images of the lumbar spine and achieved a 90% dice similarity 

coefficient, when compared with manual segmentation. Our new semi-automatic method 

significantly reduces the user’s role while achieving good segmentation accuracy.
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1. Introduction

Low back pain is a common disease in modern society [1,2]. As a multifactorial disease, 

numerous lumbar components including intervertebral discs, paraspinal muscle, or 

alterations of the vertebral body may contribute to low back pain. Magnetic resonance (MR) 

imaging is a noninvasive imaging modality that is widely used for both morphological and 

quantitative evaluation of the human lumbar spine. Evaluation of the vertebral bodies in MR 

images (Figure 1a) plays a key role in the diagnosis and establishing treatment strategies. 

Vertebral body segmentation on MR images provides clinically useful information including 

quantitative biomarkers, volume, and shape. Previous methods for vertebral body 

segmentation are inherently challenging, owing to the similar signal intensity of the vertebral 

body and anatomically contiguous tissues and the inconsistent boundaries [3,4].

The segmentation of grayscale medical images has been extensively researched [5]. Some of 

the classical methods are described here. Histogram-based segmentation is one of the most 

commonly used methods [6,7]; it uses only pixel intensity to segment the image by applying 

a threshold. However, this method faces many limitations, because it does not include shape 

or position information. Another conventional method is the region-growing method that 

begins by placing a seed [8–11]. This seed point grows on the basis of the similarity of its 

neighboring pixels and extends out to fill a region of interest (ROI). This method is also 

based on pixel intensity, which is disadvantageous in the case of noisy images. Another 

approach employs an edge detection algorithm. For example, the Canny edge-detection 

algorithm obtains vertical and horizontal gradients using various kernels after limitation of 

noise via medial or Gaussian filters [12]. Subsequently, non-maximum suppression is used 

to make the edge thinner and more precise, whereas thresholding and edge tracking further 

improves the edge. Clustering is another commonly used method. The K-means clustering 

algorithm determines the number of clusters, k, with the initial center position of the clusters 

and repeats the process until the center position of the clusters and their corresponding data 

converge [13–15]. The fuzzy C-means algorithm is another clustering method that sets the 

number of clusters and the objective function with initial values and repeats the calculation 

until the objective function is minimized [16–19].

The actively investigated segmentation method in recent medical imaging is the graph-cut 

algorithm. This algorithm transforms an image into a graph G = (V, E), where V (node) is 

the actual spatial element to be segmented and E (edge) is the similarity of each pixel [20–

24]. Depending on how V and E are specified, various graphs can be created. The generated 

graph is transformed into a similarity matrix to perform division. Various algorithms, such as 

the min-cut max-flow algorithm, are used for the division [25,26]. Use of the graph-cut 

algorithm for medical image segmentation has shown good results. Egger and Kapur 

reported a 91% Dice similarity coefficient (DSC) [27], whereas Schwarzenberg and 

Freisleben reported an 81% DSC using the graph-cut method for vertebral body 

segmentation [3]. However, in both these studies, each vertebral body was individually 

segmented, and the method required repeated user inputs to assign a seed point at the center 

of each vertebral body. Furthermore, because the performance of the algorithm depends on 

the number of nodes and the connection method, the method requires the user to calibrate 

multiple parameters for each segmentation.
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The most recent approaches are the deep-learning-based methods, which exhibit superior 

performance over existing mathematical algorithms. Ronneberger reported successful 

segmentation of medical images using a U-net image segmentation network [28]. Korez also 

showed the possibility of a deep learning segmentation for vertebral bodies in MR lumbar 

spine images [29]. However, these deep neural networks require a large amount of data and 

use a large amount of memory, which is a key limitation. For example, it might be difficult 

for a single graphics processing unit (GPU), sold in the market, to learn and use the U-net 

with a 512 × 512 size image matrix. Furthermore, a repeated heavy training processes may 

be required for the segmentation of different types of images (e.g., use of different contrasts, 

sequences, or different MR scanners). On the other hand, mathematical algorithms do not 

require a large amount of training datasets and can be applied to large sized images. Unlike 

common optical images, the acquisition of a large amount of data is a key limitation in 

medical imaging. Therefore, the segmentation methods that employ mathematical 

algorithms for medical image processing are still needed.

Our proposed method aims to reduce user inputs to a minimum while still achieving high 

accuracy in a short execution time during the segmentation of vertebral bodies. We first 

reduce the number of user inputs for vertebral body selection (i.e., a rectangular ROI 

containing a single vertebral body) to just one for the whole image. The remaining vertebral 

bodies are automatically detected using a correlation algorithm without any further user 

inputs. Subsequently, the boundary of the vertebral body inside each ROI is automatically 

segmented using the graph-cut and line-based methods together with the incorporation of the 

Hough transform and edge-detection algorithm. No additional user input is required. A 

preliminary study of this paper was partially presented at the annual meeting of International 

Conference on Electronics, Information, and Communication in 2017 [36].

This paper comprises four sections. Section 2 describes the details of our proposed 

algorithm. Section 3 presents the experimental results. Finally, Section 4 discusses the study 

as a whole and concludes the article.

2. Materials and Methods

2.1. Materials

This cadaveric study was exempted from institutional review board approval. Nineteen 

lumbar spines (L1 through L5) from cadaveric donors (age range 46–60 years) were 

obtained from a local tissue bank. MR imaging was performed on a 3-Tesla system (General 

Electric Signa HDx, San Diego, CA, USA). The cadaveric spines were placed in the supine 

position to ensure vertical alignment of the vertebral bodies in the MR images. Our 

segmentation algorithm was developed on the basis of this position, which is typically used 

in many MR imaging protocols. A T2-weighted fast spin echo sequence was used with the 

following parameters: Mid-sagittal plane; repetition time (TR) = 2000 ms; echo time (TE) = 

7.6 ms; field of view (FOV) = 180 − 220 mm; pixel spacing= 0.39 mm; slice thickness = 3 

mm; flip angle= 90°; and bandwidth = ±62.5 kHz. Image processing and test experiments 

were conducted using Matlab R2012b (The Mathworks Inc., Natick, MA, USA).
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2.2. ROI Detection

The first part of our algorithm requires minimal user inputs regarding the location of one of 

the vertebral bodies and the size of the rectangular ROI window (width: lx and height: ly); 

the automated algorithm then searches other locations with the same window for the 

remaining vertebral bodies. This ROI detection step is necessary to increase the efficiency of 

the subsequent segmentation process by setting uniform ROIs, each of which contains only 

one vertebral body. When the user defines a rectangular area containing a single vertebral 

body along with some of the surrounding tissues, as shown in Figure 1a, the correlation 

algorithm [30] obtains a correlation map (Figure 1b) between the user-defined ROI and other 

candidate ROIs throughout the image.

When examining the correlation map (Figure 1b), the highest correlation value is easily 

found at the center position (p1) of the user specified ROI. The next vertebral body location 

is searched by finding the second highest correlation value. However, the pixels in the 

immediate vicinity of p1 tend to have high correlation values that are close to the correlation 

value of p1. Therefore, correlation values in the immediate neighborhood of p1 (equivalent 

to 1/3 of the ROI size) are disregarded. Then, the search continues for the next highest 

correlation value and the corresponding location of the next vertebral body, p2. After finding 

p2, the neighborhood of p2 in the correlation map is also disregarded to search for the next 

vertebral body locations. In this case, we use a reference distance, d, defined as the distance 

between p1 and p2 (Figure 1c) for subsequent searches. The searching area can be reduced 

to the small area whose width and height are lx and ly, respectively, because the reference 

distance provides the approximate locations of the upper or lower vertebral bodies. Through 

this process, vertebral body positions are found in the entire image and each ROI for the 

individual vertebral body is set for subsequent fine segmentation, as described in the next 

section.

The information on the intervertebral disc can also be used to further refine the vertebral 

body location. The searched locations are corrected again using these intervertebral discs 

that are sandwiched between the vertebral bodies. Assuming that an intervertebral disc ROI 

exists in the lx/2 portion just above the vertebral body ROI, locations of other intervertebral 

discs can also be obtained in the same manner (Figure 1). The horizontal locations of the 

vertebral bodies and the intervertebral discs are generally similar. Therefore, if the horizontal 

location of a searched vertebral body ROI is significantly different from the horizontal 

location of the surrounding intervertebral disc, the horizontal location of a searched vertebral 

body ROI needs to be adjusted. When the difference between the horizontal locations of the 

searched vertebral body and the intervertebral disc is larger than 10% of ly, the horizontal 

location of the searched vertebral body ROI is replaced with that of the searched 

intervertebral disc ROI.

2.3. Roi Fine Tuning—Hough Transform and Canny Edge Filtering

The vertebral bodies are slightly different in size and these may be rotated with respect to 

each other due to kyphosis or lordosis [31]. Therefore, after identifying ROIs for the 

vertebral bodies, the ROIs need to be fine-tuned to make the orientation and size of the 
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vertebral bodies similar to each other for ease of segmentation. Canny edge filtering and the 

Hough transform [12,32] are used for this purpose.

2.3.1. ROI Fine Tuning—Orientation Adjustment—First, Canny edge filtering is 

applied to the vertebral body region R to extract the edge components E of the region. 

Second, a Hough transform is applied to E to estimate the rotation angle of the vertebral 

body. H is the Hough transformed image of E, as shown in Figure 2c. The x-axis of H is a 

rotation angle, and the y-axis of H is the distance from origin. Assuming that the shape of 

the vertebral body is similar to a rectangle, the y-axis value of H has the smallest value at 0°. 

However, when the vertebral body rotates, the x-coordinates of the smallest H deviates from 

0°; the degree of deviation indicates the rotation angle of the vertebral body. Therefore, the 

ROI can be adjusted by rotating it in the direction opposite to that of the estimated rotation 

angle.

2.3.2. ROI fine Tuning—Boundary Adjustment—Define Px(x) as the result of 

projecting E on the x-axis, and Py(x) as the result of projecting E on the y-axis. lx and ly 

represent the size of the vertebral body ROI. As the vertebral body is rectangular, the 

minimum values of Px and Py are Px lx
2  and Py ly

2 . On the other hand, the projection of the 

left and right sides of the vertebral body edge will be at both ends of Px, having 

considerably larger values than Px lx
2 . Similarly, the point at which the upper and lower 

sides of the vertebral body edge are projected will be at both ends of Py, having larger 

values than Py ly
2 . Therefore, if max Px 2 < i < lx

2 < αPx lx
2 , it implies that the ROI does 

not include the left side of the vertebral body, and hence, the ROI should extend to the left. 

Likewise, if max Px lx
2 < i ≤ lx − 2 < αPx lx

2 , the ROI should extend to the right. This rule 

is also applied to the relationships between Py and both the upper and lower sides of the 

ROI, such that the ROI can contain the vertebral body within a specified interval. This 

process allows us to adjust vertebral body ROIs so that they contain all the necessary 

boundaries of the vertebral body, thereby increasing the effectiveness of the subsequent 

segmentation.

2.4. Segmentation

During the ROI fine tuning process, we can determine the approximate position of the 

vertebral body boundary.

bL = argmax
i

Px 1 < i < lx
2 (1)

bR = argmax
i

Px lx
2 < i ≤ lx (2)
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bU = argmax
i

Py 1 < j < ly
2 (3)

bD = argmax
i

Py ly
2 < j ≤ ly (4)

where (bL, bU), (bR, bU), (bL, bD), and (bR, bD) are approximate vertices of the vertebral 

body boundary. Then, we draw lines connecting each dot at points spaced inward and 

outward from the approximate vertices, as shown in Figure 3a. Using these points, the 

vertebral body ROI is divided into eight areas, as illustrated in Figure 3b, and different 

segmentation methods are applied to these areas. Figure 4 shows the flowchart of the 

segmentation process. Areas U and D detect boundaries using the graph-cut based method. 

U and D are converted to graph G = (V,E). As G should be divided into the top and bottom, 

the nodes n V and edges e ∈ E are set along the x-axis. Intervals between each pixel along 

the x-axis are set to the nodes n ∈ V and pixel intensities between the nodes are set to the 

edges e ∈ E [25]. As a result, boundaries that can properly distinguish the top and bottom in 

the x-direction of U and Dare detected.

Because L and R contain the background, applying the graph-cut to find the minimum route 

is difficult. In this case, segmentation is performed by capturing boundary points for each 

line of the ROI. First, k-means clustering is performed to divide the total ROI into 10 

clusters. Let YL be the clustered L, whose size is (lx, ly) and YLi be the i-th line of YL. At 

this time, the base value BLi is ly or the peak point nearest to ly, and the reference value RLi 

= ceil(YLi(BLi)/2). YLi can be divided into three cases. Case 1 has one or more deep valleys 

and peaks between BLi and 1, and the peak value far from BLi is larger than RLi. Case 2 is 

similar to the case 1, but the peak values are smaller than RLi. Case 3 is the case without a 

valley. For each case, the boundary point ELi is as follows:

Case 1:   ELi  = argmin
j

YLi PLi < j < ly (5)

Case 2,3:   ELi  =  MLi (6)

PLi denotes the peak point closest to BLi which has a valley smaller than RLi towards BLi 

and having a larger value than the valley by 2 cluster stages or more. MLi is the point closest 

to BLi among the points having the value of ceil(YLi(BLi)/3). The case of region R is 

similar to the case of L, but performed in the opposite direction. YR is the clustered R, 

whose size is (rx, ry) and let YRi be the i-th line of YR. BRi is 1 or the peak point nearest to 

1, and the reference value RRi = ceil(YRi(BRi)/2). Case 1 has one or more deep valleys and 

peaks between BRi and ry, and the peak value far from BRi is larger than RRi. Case 2 is 
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similar to case 1, but the peak values are smaller than RRi. Case 3 is the case without a 

valley. For each case, the boundary point ERi is as follows:

Case 1:   ERi =  argmin
j

YRi 1 < j < PRi (7)

Case 2,3:   ERi  =  MRi (8)

PRi denotes the peak point closest to BRi, which has a valley smaller than RRi towards BRi 

and having larger value than the valley by 2 cluster stages or more. MRi is the point closest 

to BRi among the points having the value of ceil(YRi(BRi)/3).

Before the segment the UL1, UL2, UR1, UR2, DL1, DL2, DR1, and DR2 have to change 

their triangular shape to parallelograms by copying points. Subsequently, the segmentation 

method of U and D is applied to UL1, UR1, DL1, and DR1 areas, and the segmentation 

method of L and R is applied to the UL2, UR2, DL2, and DR2 areas.

Finally, when all edge points are found, the cubic function is fitted for each side of the 

boundary to remove the edge points above the error range. The points that deviate by a 

regular distance from the cubic function curve are replaced with points on the function 

curves, and finally the segmentation process is ended by connecting all the points.

3. Results and Discussions

3.1. ROI Detection

We tested the ROI detection algorithm using the whole image and user-defined ROI as the 

minimum user input. The first test was performed with only vertebral body correlation maps, 

and the second test was performed with both correlation maps of the vertebral body and 

intervertebral disc. For all 85 vertebral bodies in 19 MR spine images, the number of 

detection failure cases in the vertebral body test was three, whereas the vertebral body and 

intervertebral disc test was zero. Detection error of the vertebral body and the intervertebral 

disc test was 10.41 pixels, which was 19.36% lower than that of the vertebral body test 

(12.91 pixels). Therefore, it is clear that the use of both ROIs yields better results and that 

the intervertebral disc exhibits more precise information of location as compared with the 

vertebral body. Figure 5 also shows that the use of the intervertebral discs adjusts the ROI 

detection more closely. Detection of ROIs using the vertebral body ROI offered by the user 

poses a difficulty only in finding other vertebral bodies of the MR spine images; however, 

more precise detection can be performed if the intervertebral disc ROI is additionally used 

for ROI detection. In addition, when the user ROI was set to the central vertebral body, there 

was no detection failure case. On the other hand, when the ROI was set to the uppermost 

vertebral body, the detection failure case occurred 0.93 times per image, and when the ROI 

was set to the undermost vertebral body, the detection failure case occurred 0.77 times per 

image.

Kim et al. Page 7

Appl Sci (Basel). Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In most cases, the vertebral bodies and intervertebral discs are at a similar position in the 

horizontal direction. In other words, knowing the position of the intervertebral discs helps to 

understand the horizontal position of the vertebral bodies. As the intervertebral discs have 

more compact and unique shapes than the vertebral body, their correlation with other tissues 

is quite small. Therefore, more accurate locations of vertebral bodies can be found using 

correlation maps of the intervertebral discs.

Aligning the ROIs with a fixed size cannot completely cover all the vertebral bodies because 

the vertebral bodies have various sizes and shapes. The ROI fine tuning process adjusts the 

ROIs to be fitted for each of these various vertebral bodies and aligns them to the center of 

the ROIs. When the ROI fine tuning process was not applied, there were several cases in 

which a part of the vertebral body was not included within the ROI, on average, of 1.31 

cases per image.

3.2. Segmentation Results

Segmentation experiments were performed on 19 MR spine images including 85 vertebral 

bodies. All user ROIs were manually specified vertebral body regions. The DSC was used to 

evaluate the accuracy of segmentation, and the references were manually obtained by an 

expert [33]. DSC is defined as

DSC =  
2 Fmanual ∩ Fresult
Fmanual +   Fresult

(9)

where Fmanual represents the manual references and Fresult represents the segmentation 

results of the proposed method. Table 1 shows the DSC results for 19 MR spine images.

The average DSC was 89.91% (Table 1). This is a valuable result as it is comparable to the 

90.97% achieved by Egger et al. who used the square-cut algorithm that requires more user 

inputs than the proposed method [27]. Further, it is higher than the 81.33% reported by 

Schwarzenberg et al. who used the cube-cut algorithm [3]. The standard deviation score 

2.77% is similar to that reported by Egger et al. (2.2%) [27] and much smaller than that 

reported by Schwarzenberg et al. (5.07%) [3]. For the number of voxels and the vertebral 

body volume, the square-cut algorithm showed a difference of 3.83% on both, compared 

with manual segmentation results [27], and the cube-cut algorithm showed differences of 

15.95% and 5.97%, respectively, compared with manual segmentation results [3]. Our 

method, on the other hand, showed differences of 3.05% and 2.78% respectively, compared 

with manual segmentation results. Our results are lower than the cube-cut algorithm and 

square-cut algorithm. While a direct comparison of the results obtained with different 

algorithms is difficult, owing to differences with respect to image contrast type, resolution, 

image quality, and the number of test datasets used in each study, it generally suggests a 

comparable performance range of our algorithm. The square-cut and cube-cut algorithms, 

which are based on the graph-cut method, have no ROI detection processes; therefore, these 

algorithms require the locations of all vertebral bodies. Furthermore, because the results 

depend on the cost of constructing the graph, these algorithms require users to adjust the 
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parameters such as the number of nodes and edges according to the circumstances. On the 

other hand, the proposed method requires the user to draw just one vertebral body ROI. 

Table 2 shows the comparison of the user inputs between Square-cut and Cube-cut 

algorithms and our method. Square-cut and Cube-cut algorithms requires four parameters to 

adjust and seed points for all vertebral bodies, but our method only needs a single vertebral 

body ROI. This suggests that our method can maintain or improve the segmentation 

performance despite reduction in the number of user inputs, and the automated portion of the 

whole segmentation process increases, as compared with the existing methods.

Figure 6 shows a representative segmentation result, wherein Figure 6b shows the manually 

segmented areas, and Figure 6c shows the results of the proposed method. Figure 6d shows 

the difference between the manual references and the result of the proposed method. The 

results of the proposed method are generally similar with the manual references. It can be 

seen that four vertebral bodies are correctly identified and segmented and that most regions 

are recognized as vertebral bodies. Nonetheless, there are some limitations. The results of 

the proposed method have non-smooth boundaries, as compared with the manual references. 

When examining each vertebral body, the top and bottom boundaries are smooth and match 

well with the actual reference, whereas the left and right boundaries are not entirely smooth 

and have protruding parts. Based on these experiments and evaluations, it seems that the 

results of the line-based algorithm are not as good as those obtained with the graph-based 

algorithm.

Figure 7 shows eight different examples of the results of the proposed method. It can be 

observed that the overall performance looks good in terms of ROI detection and the 

subsequent segmentation has an average DSC of 89.91 (Table 1). These results show that the 

proposed method has successfully reduced the user’s role while maintaining a performance 

comparable to existing methods. There are slight differences between the manual references 

and the results of the proposed method with respect to the upper and lower parts of the 

images. The proposed method performs segmentation depending on the relative contrast of 

pixel intensities in the ROI. Therefore, the proposed method may not be able to achieve 

accurate segmentation if the contrast of the images is not good as shown in the upper and 

lower parts of the images in Figure 7. This problem may arise with most segmentation 

algorithms depending on the image contrast.

For additional experiments, the data augmentation technique using a rotation process was 

applied to the original sample images. 19 MR images were rotated by 10°, 20°, and 30° with 

respect to the vertical axis. Therefore, a total of 51 rotated images were obtained. Table 3 

shows the segmentation results for them. The average DSC scores were 89–90 in all the 

cases, and the standard deviations of the DSC scores were about three, which was similar to 

the results of the original sample MR images. Both results in Table 1 and Table 3 

demonstrate the robustness of our method.

4. Conclusions

Obtaining information about the vertebral bodies in the lumbar spine is very important for 

the diagnosis and treatment of low back pain [34]. In this study, we proposed a semi-
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automatic algorithm for vertebral body segmentation that requires the user to specify only a 

single ROI. Our method overcomes the disadvantages of the existing algorithms that require 

multiple user inputs, such as clicking on each vertebral body, assigning ROIs for each 

vertebral body, or adjusting multiple parameters depending on circumstances. In our method, 

only one user-defined-ROI is required to identify the ROIs for all vertebral bodies in the 

image. Additionally, the detected ROIs were finely adjusted using the edge-detection 

algorithm and Hough transformation to consider the orientation and size of the vertebral 

bodies. The subsequent automatic segmentation was performed by combining both the line-

based and graph-cut-based methods depending on the parts of the bodies. The experimental 

results demonstrate comparable or an even higher performance than the existing methods, 

even though the automated portion of the entire segmentation process is increased. 

Furthermore, our method does not require a heavy training dataset necessary for deep-

learning-based methods and can be applied regardless of the image size.

In future studies, we will apply this technique to in vivo datasets and evaluate its 

performance for various types of contrast images obtained from living patients. The in vivo 

datasets may have different noise levels, field of views, contrasts, and resolutions. Motion-

related artifacts and abnormality of the vertebral bodies and discs with spinal injuries or 

diseases should be further investigated. The application of dorsal vertebrae, which was not 

included in this study, can be a good future topic to expand and evaluate our technique. A 

three-dimensional (3D) extension of this technique is also one of our future studies. 3D 

extension of other approaches has yielded better results than those obtained via two-

dimensional (2D) methods [28,35]. Our 3D extension is also expected to improve the overall 

segmentation performance.
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Figure 1. 
Protocol to find vertebral body ROIs using minimum user input. (a) T2-weighted spin echo 

MR image of a cadaveric lumbar spine and a user-defined ROI placement. (b) Correlation 

map and the location of the user-defined ROI (the first location, p1 by the maximum value). 

(c) Determination of the second location, p2, of the next closest vertebral body and the 

reference distance, d. (d) Detection of the other remaining ROI locations utilizing the 

reference distance, p1, and p2. Black pixels in (c) and (d) are disregarded pixels for the next 

ROI search.
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Figure 2. 
Analysis for the ROI refinement of the vertebral body. (a) Vertebral body ROI. (b) Edge of 

the vertebral body ROI. (c) Hough transformed image of the vertebral body ROI. (d) Length 

of nonzero area at each angle.
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Figure 3. 
Partitioning area. (a) Pointing base vertices. (b) Partitioned area.

Kim et al. Page 15

Appl Sci (Basel). Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Flow chart of segmentation process.
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Figure 5. 
Results of the ROI detection. Green boxes are the results of using only vertebral body ROI, 

and brown boxes are the results of using both vertebral body ROI and intervertebral disc 

ROI.
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Figure 6. 
Result of the segmentation algorithm. (a) Original image. (b) Manual segmentation result. 

(c) The result of the proposed segmentation algorithm. (d) The comparison between (b) and 

(c).
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Figure 7. 
Segmentation results for other magnetic resonance (MR) spine images. Manual 

segmentation results (red line). Simulation results (green line).
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Table 1.

DSC results of the experiments.

No.
Volume of Vertebral Body (mm3) Number of Voxels

DSC (%)
The Proposed Manual The Proposed Manual

1 2347.58 2134.11 5723.00 5379.40 90.96

2 2069.50 2059.26 5298.25 5265.50 94.11

3 2904.11 2731.39 7435.00 6882.25 90.50

4 1363.59 1468.81 3491.00 4037.00 88.11

5 2028.70 2034.23 5193.80 5263.20 93.77

6 2422.79 2360.53 6202.75 6003.50 91.01

7 1858.32 1843.76 4757.60 4864.00 86.94

8 2247.85 2136.49 5231.20 4847.00 87.79

9 1762.97 1520.00 4102.80 3548.40 86.58

10 1658.64 1686.57 3860.00 3933.60 85.30

11 2412.74 2172.44 6177.00 5408.00 88.82

12 2376.49 2240.58 6084.20 5695.20 90.20

13 2148.50 2127.33 5500.50 5432.75 92.80

14 3222.66 2872.19 8689.50 7508.25 86.43

15 2667.37 2445.22 7192.25 6443.50 88.81

16 2264.05 2365.08 6104.75 6445.25 93.33

17 2212.97 2296.04 5967.00 6247.00 93.51

18 2494.64 2662.20 6726.50 7231.25 91.34

19 2385.87 2425.71 6433.20 6694.60 87.92

μ ± σ 2255.23 ± 429.94 2188.52 ± 377.83 5798.44 ± 1265.49 5641.56 ± 1110.66 89.91 ± 2.77
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Table 2.

Comparisons of the user inputs between existing algorithms and the proposed method

Square-Cut & Cube-Cut The Proposed Method

Parameter tuning

The number of rays

None
The number of nodes

Maximum length of the rays

Delta value

Necessary inputs Seed points for each vertebral body A single vertebral body ROI
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Table 3.

Dice similarity coefficient (DSC) results of the additional experiments.

Images Rotated by 10° Images Rotated by 20° Images Rotated by 30°

μ 89.15 89.70 89.55

σ 3.45 2.96 3.18
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