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Extensive androgen receptor enhancer het-
erogeneity in primary prostate cancers
underlies transcriptional diversity
and metastatic potential

Jeroen Kneppers 1, Tesa M. Severson1,2, Joseph C. Siefert1,2, Pieter Schol1,
Stacey E. P. Joosten1, Ivan Pak Lok Yu3, Chia-Chi Flora Huang 3, Tunç Morova3,
Umut Berkay Altıntaş 4, Claudia Giambartolomei 5,6, Ji-Heui Seo6,7,
Sylvan C. Baca7, Isa Carneiro8, Eldon Emberly9, Bogdan Pasaniuc6,
Carmen Jerónimo8, Rui Henrique 8, Matthew L. Freedman 7,10,
Lodewyk F. A. Wessels 2, Nathan A. Lack3,4,11, Andries M. Bergman 1,12 &
Wilbert Zwart 1,13

Androgen receptor (AR) drives prostate cancer (PCa) development and pro-
gression. AR chromatin binding profiles are highly plastic and form recurrent
programmatic changes that differentiate disease stages, subtypes and patient
outcomes. While prior studies focused on concordance between patient
subgroups, inter-tumor heterogeneity of AR enhancer selectivity remains
unexplored. Herewe report high levels of AR chromatin binding heterogeneity
in human primary prostate tumors, that overlap with heterogeneity observed
in healthy prostate epithelium. Such heterogeneity has functional con-
sequences, as somatic mutations converge on commonly-shared AR sites in
primary over metastatic tissues. In contrast, less-frequently shared AR sites
associate strongly with AR-driven gene expression, while such heterogeneous
AR enhancer usage also distinguishes patients’ outcome. These findings indi-
cate that epigenetic heterogeneity in primary disease is directly informative
for risk of biochemical relapse. Cumulatively, our results illustrate a high level
of AR enhancer heterogeneity in primary PCa driving differential expression
and clinical impact.

Androgen receptor usage is heterogeneous in primary prostate
cancer patients
Prostate cancer (PCa) has the second highest incidence in men
worldwide1 and depends on androgen receptor (AR) signaling to drive
proliferation2. As a hormone-driven transcription factor, chromatin
binding is a critical component of AR action, and genomic binding
selectivity directly impacts AR-controlled gene expression repertoires.
Recently, we reported an integrative epigenetic taxonomy of primary

PCa tissues using RNA-seq coupled with ChIP-seq of histone post-
translational modifications and AR, yielding a total universe of 69,330
AR binding sites (ARBS) found in 88 prostate tissues3. Our work
revealed three distinct epigenetics-based PCa subtypes, differentiating
tumors by oncogenic drivers and transcriptional programs. Other
studies revealed robust programmatic plasticity in AR enhancer action
during tumor development4, metastasis formation5, and treatment
resistance5,6, while remaining largely similar between different

Received: 18 January 2022

Accepted: 18 November 2022

Check for updates

A full list of affiliations appears at the end of the paper. e-mail: a.bergman@nki.nl; w.zwart@nki.nl

Nature Communications |         (2022) 13:7367 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-6548-2480
http://orcid.org/0000-0002-6548-2480
http://orcid.org/0000-0002-6548-2480
http://orcid.org/0000-0002-6548-2480
http://orcid.org/0000-0002-6548-2480
http://orcid.org/0000-0002-2150-3139
http://orcid.org/0000-0002-2150-3139
http://orcid.org/0000-0002-2150-3139
http://orcid.org/0000-0002-2150-3139
http://orcid.org/0000-0002-2150-3139
http://orcid.org/0000-0002-0861-5013
http://orcid.org/0000-0002-0861-5013
http://orcid.org/0000-0002-0861-5013
http://orcid.org/0000-0002-0861-5013
http://orcid.org/0000-0002-0861-5013
http://orcid.org/0000-0003-2786-1225
http://orcid.org/0000-0003-2786-1225
http://orcid.org/0000-0003-2786-1225
http://orcid.org/0000-0003-2786-1225
http://orcid.org/0000-0003-2786-1225
http://orcid.org/0000-0003-3171-4666
http://orcid.org/0000-0003-3171-4666
http://orcid.org/0000-0003-3171-4666
http://orcid.org/0000-0003-3171-4666
http://orcid.org/0000-0003-3171-4666
http://orcid.org/0000-0002-0151-1238
http://orcid.org/0000-0002-0151-1238
http://orcid.org/0000-0002-0151-1238
http://orcid.org/0000-0002-0151-1238
http://orcid.org/0000-0002-0151-1238
http://orcid.org/0000-0002-1656-6995
http://orcid.org/0000-0002-1656-6995
http://orcid.org/0000-0002-1656-6995
http://orcid.org/0000-0002-1656-6995
http://orcid.org/0000-0002-1656-6995
http://orcid.org/0000-0001-5223-2549
http://orcid.org/0000-0001-5223-2549
http://orcid.org/0000-0001-5223-2549
http://orcid.org/0000-0001-5223-2549
http://orcid.org/0000-0001-5223-2549
http://orcid.org/0000-0002-9823-7289
http://orcid.org/0000-0002-9823-7289
http://orcid.org/0000-0002-9823-7289
http://orcid.org/0000-0002-9823-7289
http://orcid.org/0000-0002-9823-7289
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35135-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35135-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35135-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35135-2&domain=pdf
mailto:a.bergman@nki.nl
mailto:w.zwart@nki.nl


metastatic lesions from the same patient7. Cumulatively, these reports
provide evidence for PCa progression through robust, reproducible,
and programmatic epigenetic reprogramming4–7.

In this work, we investigate the extent and consequences of inter-
tumor heterogeneity in AR chromatin binding using our aforemen-
tioned ARBS universe3. We identify a high level of AR chromatin
binding heterogeneity between different primary PCa samples, with
<5% of all AR binding sites (ARBS) shared by half of the tumors ana-
lyzed, which rigorous QC analyses support. Through computational
integration of clinical data and a rich spectrum of PCa genomic
datasets4,5,8,9, including somatic mutation data from 200 primary10 and
101 metastatic PCa tumors11, functional AR enhancer activity mapping
of 20,790 ARBS through massive parallel reporter assays12, enhancer
CRISPR screening13, single-cell chromatin accessibility sequencing data
from PCa cells14 and 3D-genome data5,14 (Supplementary Table 1), we
deeply characterize the biological basis and consequences of AR
enhancer heterogeneity in PCa and assess its clinical impact on patient
metastatic progression.

Results
AR enhancer usage is highly heterogeneous in primary PCa
Previously, we reported a total universe of 69,330 ARBS in a cohort of
88 primary prostate cancers with a mean tumor cell percentage >80%,
averaging 7394 peaks per tumor with FRiP scores >1.5 (Supplementary
Tables 2–4)3, which were processed in a standardized manner mini-
mizing cell death and optimizing sample quality (see the “Methods”
section). To annotate inter-tumor heterogeneity of enhancer usage, we
ranked ARBS based on detected peaks in the fraction of tumors ana-
lyzed, revealing an unexpected high level of AR enhancer hetero-
geneity between tumors (Fig. 1a), with typical AR-inducible genes
FKBP5 and KLK3 regulated by highly ranked ARBS enhancers 129 and
343 (enhID, Source Data), respectively. Based on ARBS prevalence in
patients, we binned these ARBS in three categories: shared (SH; in AR
sites identified in 68% ormore of the patients), partially shared (PS; AR
sites found in 2–67%ormoreof thepatients) anduniquepeaks (UN;AR
peaks observed in merely one patient).

Towhich degree does AR binding in frequently-used PCa cell lines
represent the enhancer heterogeneity found in tumors? We over-
lapped AR ChIP-seq data from treatment sensitive8,15 and resistant15–17

PCa cell lines with all ranked ARBS, displaying enrichment of com-
monly shared ARBS for all tested PCa cell lines and AR-transduced
normal prostate LSHAR cells4. However, as a control for prostate
selectivity, we observe that overlap of ARBS from PCa was largely
absent in monocytic THP-1 cells18 and molecular apocrine ER−/AR+

MDA-MDB453 breast cancer cells19(Fig. 1b, c, Supplementary Table 5).
Of note, we observe a further shift towards SH-ARBS enrichment in the
acquisition of therapy resistance for both bicalutamide-resistant
LNCaPBR and enzalutamide-resistant LNCaP derivative 42DENZR. In nor-
mal epithelial prostate tissues (n = 15), we observed a highly similar
heterogeneous ARBS ranking (n = 27,850, Fig. 1b, Supplementary
Fig. 1A). Tumor and normal ranked ARBS rankings follow strikingly
similar distributions considering the genetic heterogeneity of
tumors10,11, suggesting that AR enhancer heterogeneity is not tumor-
intrinsic, but instead patient-intrinsic (Fig. 1d, Supplementary Fig. 1G),
corroborating our previous case-study identifying high inter-
metastatic AR binding overlap from the same patient7.

As ChIP-seq data quality and peak calling can be impacted by
technical limitations20, we performed extensive quality control ana-
lyses (NSC, RSC, FrIP, GC%, MSPC, and single mapped reads/AR ChIP-
seq read correlation tests, Supplementary Figs. 1, 2) to test whether the
observed inter-tumor AR heterogeneity results from technical arti-
facts. Samples contained comparable high fractions of tumor cells
(Supplementary Table 2) and although total ARBS identified per sam-
ple fluctuated, AR expression levels for each sample did not correlate
with the total number of AR ChIP-seq peaks, nor did read depth (RD)

correlate with the total AR ChIP-seq peaks per sample, indicating
biological variation between samples as opposed to technical variation
(Supplementary Table 3, Supplementary Fig. 1E, F).

Strong ChIP-seq signals were found at SH-ARBS, while such signal
on the individual patient level was weaker or absent at PS-ARBS.
Interestingly, we identify UN-ARBS with clearly distinguishable signal
from the background and of generally comparable intensity as PS-
ARBS, showing that peak calling correctly identified UN-ARBS (exem-
plified in Fig. 1e, aggregate peaks quantified in Fig. 1f). Moreover, we
detected occurrence of UN-ARBS in PCa cell lines (Fig. 1b) and alter-
nativemultiple sample peak calling (MSPC, see the “Methods” section)
of ranked ARBS with multiple testing correction confirmed hetero-
geneous peaks as highly significant true-positives with comparable GC
content, ARBS peak distribution and specific UN-ARBS signal over
background (Supplementary Fig. 1B, C, E, H). Samples with low RD
according to ENCODE4 Transcription Factor (TF) ChIP-seq standards
had similar UN-ARBS andARmotif score distributions as those coming
from samples with high RD (Supplementary Fig. 2). Moreover, no
correlation was observed between samples with different RD quality
categories and FRiP, NSC or RSC metrics (Supplementary Fig. 2A, C).
Finally, UN-ARBS in quality outlier sample P349T did not contribute
significantly to overall analyses (Supplementary Fig. 1E and Supple-
mentary Fig. 2F, G).

As expected and previously reported3,4,21, ~80% of ARBS are pre-
sent in introns or intergenic regions that are generally considered
putative enhancers with cis-regulatory potential22 (Fig. 1g, Supple-
mentary Fig. 1D). Interestingly, genomic distributions of ARBS were
not equally distributed over consensus, with higher promoter enrich-
ment in more heterogeneously occupied ARBS. Moreover, in all three
ARBS categories, we found motifs for AR as well as canonical AR-
interactors FOXA123 and HOXB134 (Fig. 1h, i, Supplementary Fig. 2H).
Additionally, distributions of AR motif scores detected in UN-ARBS
usingMISPmotif screen were equal for RD categories (Supplementary
Fig. 2I). We tested our ARBS universe for significant overlaps in
GIGGLE24 (see the “Methods” section), which analyses over 14,000
individual ChIP-seq databases for TF binding overlap, and confirmed
binding of these classical prostate lineage TFs for SH- and PS-ARBS
(Supplementary Fig. 1H). Cumulatively, these data support genuine
enrichment of heterogeneous ARBS in sequencing analysis, with co-
enrichment of TFs associated with canonical AR action. Interestingly,
MED1 and RNA Polymerase II subunits, but not AR nor its classical
interactors, were enriched in UN-ARBS in GIGGLE (Supplementary
Fig. 1H). Like PS-ARBS, UN-ARBS are mostly associated with active TSS
and enhancers (Supplementary Fig. 1J), whereas this analysis was
uninformative for SH-ARBS due to the relatively small group size
(n = 1201). Taken together, these GIGGLE analyses indicate occupancy
by functional enhancer-binding proteins on patient-unique ARBS and
stress their context-dependent nature.

Ranked ARBS have functional divergence on enhancer activity
and mutation frequency
We tested ranked ARBS for bona fide enhancer activity and hormone
dependency using available data from amassive parallel reporter assay
testing enhancer potential for 7422 ARBS in LNCaP25 in vehicle versus
DHT conditions (Fig. 2a), resulting in ARB’s enhancer potential that
could be classified as inactive, inducible or constitutively active. Most-
commonly shared ARBS were enriched for hormone-dependent
enhancer activity (n = 286), relative to constitutively activate (n = 463)
or inactive sites (n = 2467), suggesting hierarchical functional con-
sequences of ARBSheterogeneity (Fig. 2b, c). The total set of 7422ARBS
analyzed in STARR-seq was expanded to 20,790 regions using a
machine learning-based ARBS annotation, confirming our original
conclusions with a more complete representation of total ARBS het-
erogeneity (Fig. 2b, c)25. To confirm these results, we performed addi-
tional STARR-seq targeted at 2495 randomly sampled heterogeneous
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ARBS to validate predictions of heterogeneous enhancer activity and
confirmed the presence of active enhancers in heterogeneous ARBS,
suggesting that a subset of these ARBS function as enhancers (Fig. 2b, c,
Supplementary Fig. 3A, B). Finally, individual ARBS activity was vali-
dated for a subset of regions represented in the STARR-seq library for
each element designation (inducible, constitutive and inactive) through
luciferase assays, which confirmed their previously identified activity

status and hormonal dependency (Supplementary Fig. 3C, D, Supple-
mentary Table 6).

Having established an association of AR enhancer heterogeneity
in PCa with biological consequences on enhancer activity, we next
investigated the impact of 764 risk single nucleotide polymorphisms
(rSNPs)26–28 and single nucleotide variation (SNV) reported previously
in primary PCa (n = 278,209)10 and in metastatic PCa (mPCa,
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n = 1,048,576)11 on primary ranked ARBS as SNVs accumulate during
PCa progression. Moreover, we included germline allelic imbalance
SNP data (cQTL, n = 4454; q <0.05) which was called from our primary
AR ChIP-seq data in a recent Cistrome-Wide Association Study
(CWAS)29. Overlap of rSNPs with primary ranked ARBS was limited (52
out of 764 unique rSNPs) without any enrichment on particular ARBS,
while germline cQTL SNPs and somatically acquired SNVs in primary
and metastatic PCa are enriched in primary SH-ARBS (n = 1201, Fig. 2d,
e), and these sites were previously associated with AR occupancy30.

Highly actively transcribed regions are characterized by high
levels of clustered H3K27 acetylation regions, referred to as ‘super-
enhancers’31,32, and describe tissue-specific-binding profiles that are
typically AR-positive in PCa cell lines and tissue. These super-
enhancers encompass ARBS found throughout ranked ARBS (Fig. 2f),
as exemplified by recently reported VCaP SEs at PCAT1/2 regulating
MYC expression during CRPC33, which is constituted by PS- and UN-
ARBS that are affected by rSNPs and SNVs (Fig. 2g). Collectively these
data show that rankedARBS exposehierarchical enhancer activity, and
display enrichment of primary and metastatic SNVs in SH-ARBS. Con-
trarily, super-enhancers are found scattered throughout the ARBS
ranking, suggesting that PS- and UN-ARBS can functionally drive
oncogenic processes.

Enhancer-specific copy number alterations at heterogeneous
ARBS drive transcriptional output in metastatic disease
Next to SNVs, large structural events like copy number alterations
(CNAs) are frequently observed in mPCa as drivers of progression11,34.
In metastatic disease, CNAs of enhancers with tumor-driving potential
for AR11,13,35, FOXA136, and HOXB135 have been reported. A previously
reported large sequencing database of 101mPCa tissues11 reported
that 23mPCa patients had known CNA gains at exclusively the AR
enhancer locus, of which PS- and UN-ARBS were previously identified
as tumor-associated4 and metastatic-associated5 ARBS (Fig. 3a, Sup-
plementary Table 7, Source Data). We reconfirmed previously repor-
ted promoter–enhancer interactions by integrating rankedARBSusing
H3K27ac Hi-ChIP data5,37. Numerous ARBS are in close proximity to a
single promoter in 3D genome space, confirming previously reported
VCaP AR ChIA-PET data38. For example, we identify chromatin loops
between PS- and UN-ARBS and the AR promoter (Fig. 3a). As expected,
large CNA gains and losses in mPCa patients11 affect ARBS with
enhancer–promoter interaction irrespective of ranking, including PS-
and UN-ARBS, that potentially affect the expression of tumor-driving
genes (Fig. 3b, Supplementary Fig. 4). Moreover, we observe a multi-
tude of structural variations (SVs) in these sites, most notably dele-
tions, inversions or tandem duplications at well-described PCa SV
loci like tumor suppressors SPOPL at chr2q and DCC/BCL2 at
chr18q (Fig. 3b).

To globally assess tumor-driving enhancer amplifications and
losses, we used the cancer gene dependency repository (DepMap)39

and investigated whether CNA-affected ARBS interact with gene loci

regulating essential genes in PCa cell lines (VCaP, 22Rv1, and LNCaP,
Supplementary Table 8). Based on these analyses, we found 25
essential genes interacting with CNA-affected ARBS, including pre-
viously described PCa drivers AR11,13, GRHL240, and HOXB135 (Fig. 3c).
These genes interact with PS- and UN-ARBS with a majority of ARBS
found in <20 patients (Fig. 3d). Importantly, CNAs at exclusively these
ARBS frequently altered corresponding mPCa gene expression11 to a
comparable extent as CNAs at exclusively gene coding sequences
(Fig. 3e), as was evident for AR-upregulated (AR and ZBTB10) and AR-
downregulated (IDI1, CITED2, and BCCIP) genes. These findings
underline how mPCa CNA-affected ARBS are only found in a minority
of primary PCa tissues, which later during mPCa have transcriptional
consequences for critical PCa tumor-driving genes.

Transcriptional variation is associated with less-commonly
shared ARBS
We predicted which ARBS influence gene expression most in
our cohort by modeling H3K27ac-based HiChIP interacting
ARBS–promoter pairs and matched gene expression from 88 primary
patients in a generalized linear model (GLM), which generalizes linear
regression of ARBS occupancy in patients to their transcriptional
response. For example, the complete ARBS landscape of CITED2 (PCa
tumor-driving gene, Fig. 3e) has a high degree of ARBS heterogeneity
includingmany PS- andUN-ARBS scattered between individual tumors
on Chr6 (Fig. 4a).

The CITED2GLM shows that an ARBS found in 54 primary tumors,
and not themost-commonly shared site found in 80 tumors, wasmost
significantly associatedwith gene expressiondifferences (Fig. 4b),with
model assumptions such as linearity of points and limited individual
point influence holding (Supplementary Fig. 5A). Additionally, as
expected from trends observed in genome-wide AR ChIP-seq peak
strengths in the three ARBS categories (Supplementary Fig. 1E, F), we
find a clear negative correlation between ChIP-seq peak strength and
ARBS category across all ARBSandpatients (Supplementary Fig. 5B,C).
In total, 2026 ARBS regulating 1901 unique genes were identified by
GLMs to significantly associate genome-wide AR ChIP-seq with
expression differences (p <0.001).

As these observations are from bulk measurements, single-cell
assay for transposase-accessible chromatin sequencing (scATAC-seq)
from LNCaP14 was used to infer promoter–enhancer interactions and
ARBS accessibility throughout cell cycle phases. Although few ARBS
were cell-cycle phase-specific in arrested bulk LNCaP41 and AR activity
fluctuates among scATAC-seq clusters, there is an enrichment of
ranked ARBS and de novo AR and FOXA1 motifs in differentially
accessible chromatin (Supplementary Fig. 6). Links are observed
between most heterogeneously bound ARBS and the CITED2 pro-
moter in LNCaP (Fig. 4c), in agreement with LNCaP H3K27ac Hi-
ChIP data5.

Subsequently, for CITED2 we assessed which proximal ARBS have
a functional impact on transcriptional output. For this, we genetically

Fig. 1 | AR enhancer usage is heterogeneous in primary and normal PCa tissue.
a Schematic overview: AR ChIP-seq identifies 69,330 AR Binding Sites (ARBS) in 88
patient tumor tissues ranked and binned on prevalence in patients, shared sites
observed in 60–88patients (SH-ARBS, blue), partially shared sites observed in 2–59
patients (PS-ARBS, yellow) and unique sites observed in 1 patient (UN-ARBS, pur-
ple).bARBS ranking for 88 primary PCa tumors (blue, n = 69,330)with tumor ARBS
presence in a panel of AR+ cell lines (red) and ARBS ranking for 15 normal prostate
epithelium (orange, n = 27,500) with normal ARBS presence in a panel of AR+ cell
lines (green). Sidebars indicate the percentage of cell line ARBS found in primary
PCa tumors. c Boxplot quantification of primary tumor ranked ARBS (n = 69,330)
presence in cell lines. Centerline, median; upper and lower quartiles; whiskers,
1.5 × interquartile range; points, outliers. Two-tailed Student’s t-test of means
compared to LSHAR cells, ****p <0.0001. Enrichment in SH-ARBS calculated by
hypergeometric test, ****p <0.0001, non-significant ns. d ARBS ranking normalized

for a number of samples, comparing primary tumor (blue) and normal epithelium
(orange). eChIP-seq signal examples for peaks inARBS categories, SH-ARBS enhID 1
which occurs in88/88patients, PS-ARBSenhID2855 andobserved in 45/88patients
andUN-ARBS enhID 47,348 in 1/88 patients. fGenome-wide ARChIP-seq intensities
for ARBS categories in individual tumors, line and secondary y-axis in blue on the
right: SH-ARBS, line and secondary y-axis in yellow on the right: PS-ARBS, line in
purple: UN-ARBS. g Genomic location distribution of ARBS for consensus of ARBS
over all 88 tumors, gray: unstable consensus due to small amount of ARBS.
h Transcription factor motif family enrichment at top 5% (SH), middle 5% (PS), and
bottom 5% ARBS (UN) with z-score indicating prevalence. i Transcription factor
motif presence for AR, FOXA1, and HOXB13 at ranked ARBS (top) and distribution
across ranked ARBS (bottom). Centerline, median; upper and lower quartiles;
whiskers, 1.5× interquartile range; points, outliers. Source data are provided in
Source Data.
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deleted the entire ARBS through CRISPR-Cas9-mediated genome
editing by transducing LNCaPwith Cas9 and confirming its activity in a
polyclonal population (Supplementary Fig. 7A, B), designing guide
pairs and combining these in pools to maximize the chance of a KO in
case of a non-effective single guide. Guide pairs and pools were tar-
geted to ARBS edges identified with scATAC-seq, which had AR bind-
ing in LNCaP (Fig. 4d) and we confirmed successful Cas9 deletion
through genomic DNA PCR. We observed a concomitant drop in
CITED2 expression for the CITED2 enhancer found in 54 primary
tumors (CI54), which was predicted to most significantly affect

transcription, although effect sizes varied between guide pair and
guide pools (Fig. 4e, Supplementary Fig. 7D). Additionally, as an
orthogonal method for Cas9 deletion, we employed CRISPR inter-
ference through a modified Suntag-system42 which enables recruit-
ment of 10 repressive KRAB effectors at a locus through sgRNAs
(Suntag-KRAB, validated in Supplementary Fig. 7A, C). Suntag-KRAB
repression at the CITED2 enhancers confirms that CI54 most sig-
nificantly affects transcription (Supplementary Fig. 7F), while Cas9-
mediatedCI54deletion in theCITED2 expressingAR+ breast cancer cell
lineMDA-MB453did not result in a transcriptional decrease, as this cell

Fig. 2 | Ranked ARBS have functional divergence on AR enhancer activity,
mutational frequency, andpresence of super enhancers in cell lines and tissue.
a Enhancer activity for ranked ARBS found in EtOH over DHT LNCaP conditions in
STARR-seq, machine learning predicted ARBS, and the second set of designed
ARBS. Inset: zoomed-in STARR-seq regions for ARBS ranked 1–15,000.
bDistribution of ARBSwith enhancer activity identified in STARR-seq experiments.
Inducible n = 286, constitutive n = 463, inactive n = 2467, predicted inducible
n = 1237, predicted constitutiven = 1671, activen = 149ARBS.Two-tailed Student’s t-
test of means. Centerline, median; upper and lower quartiles; whiskers, 1.5× inter-
quartile range; points, outliers. c ARBS ranking with presence of PCa risk single
nucleotide polymorphisms (rSNP, and single nucleotide variations (SNV) identified
in primary prostate cancer (cistrome Quantitative Trait Locus, cQTL; primary SNV,

pSNV) and metastatic SNV, mSNV. Inset: distribution of rSNPs at ARBS among
patients. Centerline,median; upper and lower quartiles; whiskers, 1.5× interquartile
range; points, outliers. d Observed over expected background primary or meta-
static mutation rate for ARBS rankings. Two-tailed Fisher’s exact test on untrans-
formed values, *p <0.05, **p <0.01, ****p <0.0001, ns = non-significant. e Ranked
ARBS identified at super-enhancer genomic locations for PCa cell lines and tissue as
reported by SEdb, SH-ARBS hypergeometric test of enrichment, ****p <0.0001.
f Genomic snapshot of PCAT1 and PCAT2 locus on Chr8 with ARBS prevalence in
patients (blue numbers), rSNP rs710886 (black), primary SNVs (yellow), metastatic
SNVs (purple), and VCaP SE (names in orange) presence. Source data are provided
in Source Data.
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line does not use enhancer CI54 (Supplementary Fig. 7A, G, H). These
data suggest that less-frequently shared ARBS can have the largest
impact on transcriptional output, which could be attributed to varying
degrees of functional redundancy among ARBS.

To further confirm these findings, we focused on the AR locus, for
which numerous inter-tumor heterogeneous ARBS loop to the TSS

(Fig. 3a) and with confirmed AR binding and transcriptional activity in
our primary patient cohort (Supplementary Fig. 8A). Using two
orthogonal CRISPR drop-out screens tiling 878 sgRNAs across the
entire AR enhancer region on ChrX13, AR13 (found in 13 primary
tumors) provedmost-critical for tumor cell proliferation, in contrast to
the more-commonly shared AR23 or less-common AR2 (Fig. 4f, g).
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Jointly, these data further confirm that heterogeneous ARBS can
impact cellular fitness to a larger degree than more commonly shared
ARBS. Interestingly, exclusively AR13 shows strong HOXB13 motif
enrichment (Supplementary Fig. 8B), and HOXB13 was detected at
AR13 for LNCaP and 22Rv1 cells using ChIP-seq15 (Supplementary
Fig. 8C), providing a possible explanation for these observations given
HOXB13’s critical nature in regulating AR-transcriptional function5.

To further investigate this, we confirmed the differential pro-
liferation effects of AR23 and AR13 enhancer perturbation using
LNCaP:Suntag-KRAB and observed similar trends in proliferation
defects (Supplementary Fig. 8D, Fig. 4f, g), with AR13 perturbation
having the biggest impact on cell proliferation as opposed to AR23,
underlining the impact of heterogeneous ARBS on cellular fitness.
Finally, we performed HOXB13 ChIP-qPCR on LNCaP:Suntag-KRAB
with either NT or AR13 sgRNAs and observed that perturbation of
AR13 through KRAB-mediated heterochromatinization leads to a
sharp decrease of HOXB13 binding at this locus compared to NT
(Supplementary Fig. 8E). These results confirm that HOXB13 bind-
ing at AR13 influences PCa cellular fitness through enhancing AR
transcription.

Metastasis-associated heterogeneous ARBS in poor-outcome
primary tumors drive tumor-promoting gene expression
pathways
Prior studies have identifiedARBS found selectively enriched innormal
tissue (NARBS) over primary tumors (TARBS)4, metastasis-associated
sites (met-ARBS), or those found in primary PCa5 and ARBS linked to
good and poor outcomes8. As such, ARBS alterations specific to dif-
ferent states of PCa progression and disease outcomes have been
established. With TARBS representing a general feature of primary
PCa, we observe an expected TARBS enrichment for SH-ARBS, with
NARBS poorly represented in our tumor samples. In contrast, met-
ARBS are found mostly in heterogeneous ARBS, suggesting that het-
erogeneous ARBS contribute to disease progression (Fig. 5a, Supple-
mentary Fig. 9A). In agreement with this observation, good outcome
ARBS are more prevalent at SH-ARBS as compared to poor outcome
ARBS (Supplementary Table 9). Our 88-patient cohortwas designed as
a case-control study basedon biochemical recurrence (BCR)3, enabling
us to independently confirm the clinical implications of AR enhancer
heterogeneity.We observed a significant difference between cases and
controls in good/poor outcome ARBS ratios (Fig. 5b, Supplementary
Fig. 9B ratios good:poor: (1) >1.2 good, (2) 1.2 >mixed >0.8, (3)
poor < 0.8), independently confirming poor outcome ARBS being
more-heterogeneously distributed among tumors andhighlighting the
predictive power of these previously reported sites.

Finally, we investigated whether heterogeneous ARBS plays a role
in PCa progression to metastatic disease. We observed a striking
enrichment of met-ARBS at PS- and UN-ARBS over primary disease
TARBS (Fig. 5c). Moreover, we separated TARBS and met-ARBS based
on their presence in patients with a high chance of BCR (case) orwith a
low chance of BCR (control), and observed a significant enrichment of
met-ARBS in cases over control patients in PS- and UN-ARBS, whereas
no difference in TARBS enrichment is found in both patient popula-
tions (Fig. 5d).

We observed that met-ARBS were selectively enriched in PS- and
UN-ARBS in patients whose tumors ultimately progressed. To confirm
these observations on the transcriptional level, we calculated Gene
Ontology Regulatory Potential (GO-RP) scores of the bottom 10% of
case-specific and control-specific met-ARBS (RPscore > 0.05, Supple-
mentary Fig. 9C, D), identifying distinct sets of genes (Fig. 5e) repre-
senting different kinds of pathways (Fig. 5f). GO-RP uses not the only
distance between enhancers and promoters, but also adjusts these
scores and ranks elements based on the integration of ChIP-seq and
expression data to accurately identify target genes. Notably, hetero-
geneous case met-ARBS regulate hallmarks of cancer pathways
involved in cholesterol synthesis43, mTORC1 signaling44, androgen
response, andWNT beta-catenin signaling44, whereas the P53 pathway,
which is often inactivated inmPCa10,45, was activated by heterogeneous
control met-ARBS. Moreover, individual metastasis-promoting genes
such as proto-oncogene RET46 or migration and invasiveness-related
genes like CDH17, CDH18, ITGB5, and ITGB7, or osteoclast-promoting
TF FOS2L47 involved in the formation of bone metastases are found in
this set and are regulated by heterogeneous met-ARBS detected in
cases. With comparable enrichment for TF motifs for both groups
(Fig. 5g), transcriptomics data fromTaylor48 andGrasso49 cohorts show
that the most-heterogeneous ARBS found in primary tumors that
ultimately relapse regulate genetic programs selectively altered in
mPCa (Fig. 5e, h, Supplementary Fig. 9E).

Discussion
Ranging in the order of 20,000–70,000 ARBS for PCa cell lines15–17 or
tumors3–5, the collection of experimentally reported ARBS is smaller
compared to the total number of AR consensus motifs found
throughout the human genome50. Indeed, AR chromatin binding
requires a permissive epigenetic environment for AR-modulated gene
expression, and reproducible epigenetic changes in PCa disease state
transitions are associated with AR binding plasticity at these sites4,5.
While highly recurrent state-specific alterations in AR chromatin pro-
files are gradually becoming established, inter-tumor heterogeneity of
AR enhancer action remains largely unexplored.

We report a high level of ARBS heterogeneity between PCa pri-
mary tumors, which occurs in the same proportion in normal prostate
epithelium. SuchARBSheterogeneity hasbiological consequences and
clinical implications. First, while commonly shared ARBS are enriched
for somatic mutations and exhibit AR-driven functionality, ARBS that
are associated with biochemical recurrence and are thus clinically
relevant were specifically acquired in metastatic disease (met-ARBS),
uncommon in the patient population, and often unique to patients.
As only ~30% of primary PCa patients show tumor relapse after
radical prostatectomy, the majority of patients do not progress
postoperatively51. In agreement with this, ARBS enriched in metastatic
diseasewere not observed in the commonly shared fraction of primary
ARBS. Second, since UN-ARBS are frequently depleted for enhancer
activity in hormone-responsive LNCaP STARR-seq, heterogeneous
metastasis-associated ARBS in primary PCa may lack transcription
complex components essential for selective enhancer function before
activation during progression, in line with our previous observations
on AR plasticity in mCRPC5. Third, although SNVs at ARBS rarely alter

Fig. 3 | Enhancer-specific copy number alterations at ranked ARBS affect
transcription at interacting PCa-dependent genes in metastatic disease.
a Genomic snapshot of enhancer region upstream of AR locus with H3K27ac Hi-
ChIP interaction data, number of primary patients with ARBS, primary tumor ARBS
(TARBS), metastasis-associated ARBS and metastatic patient enhancer-specific
copy number gains (23/101 patients). b ARBS ranking showing H3K27ac Hi-ChIP
interactions with gene promoters and ARBS affected by copy number gains and
losses and SVs such as deletions, inversions, and tandem duplications. False color
scale for CNAs and SVs indicate occurrence. c PCa cell line VCaP, 22Rv1, and LNCaP
gene dependencies (CERES effectivity score) for interacting ARBS affected by copy

number gains (red) and loss (blue). The predominant CNA is shown, i.e. copy
number gains for oncogenes occur atmuch higher frequencies than losses.d ARBS
interacting with promoter of essential PCa genes, plotted for prevalence in patients
with color denoting predominant copy number gains (red) and losses (blue) at
these loci. eMetastatic PCa patient RNA-seq log2fold expression changes over copy
number neutral samples (ref call) for patients with CNAs exclusively at ARBS or
exclusively at gene coding sequences. ^ denotes only single patient expression
value in mPCa cohort, dark gray not present in mPCa cohort. Source data are
provided in Source Data.
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the linked gene’s expression33, here we show that large-scale CNAs in
mPCa affect a subset of ARBS linked to the expression of genes on
which PCa cell lines are dependent. Such ARBSmay not be apparent in
primary PCa, but later during disease progression contribute strongly
to mPCa phenotypes as illustrated by the regulation of clinically rele-
vant genes such as RET46 or FOSL247 that separate primary from
metastatic disease in independent patient cohorts. Finally, AR

enhancer plasticity is affectedbyprotein-coding somaticmutations, as
described for FOXA152 and TMPRSS2-ERG fusions53. Importantly, the
resulting distinct AR chromatin interaction profiles have been linked
with resistant PCa phenotypes, which switch ARBS usage under the
pressure of potent AR inhibition14,54.

Other potential underlying biological causes for ARBS hetero-
geneity include pioneer factor FOXA1 mutations that alter its
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cistrome55–57, disease stage-specific epigenetic states (either induced
by therapy or not)4,5,58, and clonal heterogeneity arising from tumor
multifocality59,60. As such, the heterogeneity of ARBS present in pri-
mary PCa could be seen as a potential pool of patient-intrinsic ARBS
driving clinically relevant phenotypes by influencing transcription in
later-stage disease, emphasizing the clinical impact of ARBS variations
among tumors. In contrast, we observed a shift towards SH-ARBS in
bicalutamide and enzalutamide-resistant PCa cell lines, underlining
how currently available cell line models do not recapitulate the clini-
cally observed ARBS heterogeneity.

Interestingly, AR enhancer chromatin accessibility varies between
specific cell-cycle phases41, and in our analysis of scATAC-seq data,
which suggests that cell-cycle differences in accessibility could form
another partial source of ARBS heterogeneity. Additionally, we limit
our focus on ARBS that most significantly impact the expression of
their target genes, while recent work shows enhancer cooperativity
and mechanisms of synergism in modulating transcriptional output61,
warranting further study to dissect individual contributions of het-
erogeneousARBS in enhancer-promoter landscapes. Indeed, genes are
regulated by different numbers of enhancers acting at varying levels of
redundancy and genomic distances, further complicating the cross-
comparison of enhancer influence between individual genes.

Along similar lines, we grouped ARBS into three categories as we
reasoned that SH-ARBS should occur in more than two-thirds of our
cohort while UN-ARBS are defined by occurrence in a single patient.
However, upon shifting the definition of SH-ARBS to occurrence in half
of our cohort (n = 3113), our conclusions remain similarly statistically
supported. Although we excluded false negatives and positives to the
best of our abilities, some UN-ARBS could in fact be PS-ARBS or vice
versa, as peaks could have been erroneously called. Importantly, such
occurrences would not significantly alter our analysis of clinical con-
sequences as this analysis is based on the lowest decile of ARBS rather
than only UN-ARBS, and as such underline the robustness of conclu-
sions drawn from categorizing ARBS. Finally, we employ machine
learning to classify patient ARBS in a grouped analysis using LNCaP
STARR-seq12, which has limitations to interpretability due to con-
textual differences between patients, constructs, and cell lines. How-
ever, we have recently observed a strong correlation between LNCaP
STARR-seq data andH3K27ac signals in patient samples62,making such
a predictive model relevant for clinical activity.

In summary, we report an immense level of AR enhancer hetero-
geneity in normal tissue and primary PCa with functional con-
sequences on gene expression during PCa progression. We provide
evidence that heterogeneous ARBS are affected by somatic mutations
and that CNAs acquired during PCa progression functionally con-
tribute to malignant phenotypes to drive different gene expression
programs involved in mPCa. Critically, heterogeneous AR enhancer
usage in subsets of patients distinguishes patients on the outcome,
indicating that epigenetic heterogeneity may be relevant in disease

progression and could provide important opportunities to the field in
advancing and personalizing PCa screening or treatment.

Methods
Ethics statement
No new patient samples were used in this study. The AR ChIP-seq data
on 88 primary prostate cancers have been described previously3, for
which informed consent and IRB approval were given.

Supplementary table of databases used in this study
All GEO accession numbers and references of publicly available data
used in this study are summarized in Supplementary Table 1.

Sample collection
All prostate tumor samples described in this study, have previously
been reported3 and have been collected at the Department of Pathol-
ogy of Portuguese Oncology Institute of Porto. Sample collection was
performed in a highly standardized and optimized setup. After sur-
gery, all radical prostatectomy samples were directly processed by the
same dedicated uropathologist in a standardized manner. In brief, the
whole prostate was cut transversally to the main axis into slices of
~6–7mm thickness. Each slice was subsequently cut into quadrants
and the fragment of each quadrant was halved, producing twin frag-
ments, of which one was immediately snap-frozen and the other
immediately placed in a cassette and immersed in neutral buffered
formalin after which it was processed for paraffin embedding, routine
histopathological assessment, and immunohistochemistry. This pro-
cedure minimized cell death and autolysis due to technical work-up,
which is validated onH&E staining, as no artifacts of poor fixationwere
disclosed. Fragments were stained for standard neuroendocrine mar-
kers Chromogranin A and Synaptophysin and assessed for normal
epithelium low expression levels (~1%). Samples were assessed for
tumor cell percentage and lower tumor cell-containing samples were
enriched through macro-dissection prior to cryo-sectioning to avoid
significant tissue heterogeneity.

Statistics and reproducibility
This study is designed as 97 patients with either a high or low risk of
biochemical recurrence, and whose tissues had 88 AR ChIP-seq sam-
ples passing quality control3. SH-ARBS sample size was chosen as ARBS
occurring in 60/88 samples, PS-ARBS sample size was chosen as all
other ARBS except for ARBS occurring once in this cohort, which were
defined as UN-ARBS.

ChIP-seq ARBS calling, ranking, and data analysis
Chromatin Immunoprecipitation sequencing data fromprimary tumor
tissues were called using DFilter (v1.5, bs = 50, ks = 30, refine,
nonzero)63 and MACS (v1.4, p-value cutoff 10e−7)64, and only peaks
identified using both algorithms were considered for further

Fig. 4 | Transcriptional variability is associated with less-commonly shared
ARBS. a Primary PCa tumor AR ChIP-seq log-transformed MACS peak scores for
ARBSwith H3K27ac HiChIP interaction with CITED2 gene promoter. Gray: no ARBS
detected in AR ChIP-seq, Right: Matched log-transformed TMM-normalized RNA-
seq expression levels for patients. b Generalized linear model (GLM) -log(p-values)
from fitting log-transformed MACS peak scores (predictor) with CITED2 gene
expression (response), ARBS were filtered for overlapping H3K27ac presence in
LNCaP. Top: Observed model p-value and simulated p-value obtained from per-
mutation tests (n = 1000) based on likelihood ratio test. c LNCaP single-cell chro-
matin accessibility for three cell clusters at CITED2 locus with filtered CICERO co-
accessibility scores of links for CITED2 enhancers in 80, 54, 10, 8, and 1 patient(s).
d Genomic snapshot of CITED2 locus with LNCaP AR ChIP-seq, ranked ARBS from
tissue ChIP-seq with CITED2 H3K27ac Hi-ChIP promoter–enhancer pairs found in
80, 54, 10, 8, and 1 patient(s) and design of Cas9 sgRNApairs (orange, 2 sgRNAs per
arrow). e Normalized expression levels of CITED2 over β-actin as measured by RT-

qPCR 40 days after infection with non-targeting control (N), sgRNA pair 12 (12), the
pool of all sgRNAs guides (p) with gDNA PCR verification of cas9 cut from the same
isolate for CITED2 interacting ARBS found in 80, 54, 10, 8, and 1 patient(s). Orange
arrows denote cut DNA fragments, nt = nucleotide weight. Representative experi-
ment, center line, mean; error bars, SD; two-tailed Student’s t-test of means on
technical replicates, *p <0.05, **p <0.01, ***p <0.001. f LNCaP proliferation z-score
for 878 sgRNAs targeted at AR enhancer locus in Cas9 perturbation or dCas9-KRAB
inhibition tiling assay with dotted lines denoting ranked ARBS in 2, 13, 1, and 23
primary tumors. Shaded areas denote 95% confidence interval. g LNCaP prolifera-
tion z-score for sgRNAs in ARBS found in 2, 13, 1, and 23 primary tumors, with
control comprising z-scores of all other sgRNAs in this region. sgRNAs per ARBS,
AR2: 29, AR13: 49, AR23: 49, AR1: 4, ctrl: 1573. Centerline, median; upper and lower
quartiles; whiskers, 1.5× interquartile range; points, outliers. Two-tailed Student’s
t-test of means with AR23 as reference group, *p <0.05, **p <0.01,***p <0.001
****p <0.0001, ns non-significant. Source data are provided in Source Data.
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Fig. 5 | Metastasis-associated heterogeneous ARBS in poor-outcome primary
tumors drive different gene expression pathways. a Normal tissue and tumor
enriched ARBS (NARBS and TARBS, respectively), primary sites, metastatic asso-
ciated ARBS (met-ARBS), good and poor outcome sites presence in ranked ARBS.
SH-ARBS (blue) or PS +UN-ARBS (yellow) enrichment through a two-sided hyper-
geometric test of enrichment, ****p <0.0001, non-significant ns. Inset: zoom-in on
outcome sites for rankedARBS 1 through 15,000.bDistributionof ratioof outcome
sites per primary PCa patient split for BCR development (case) or not (control).
Ratios good:poor; (1) >1.2 good (blue), (2) 1.2 >mixed > 0.8 (purple), (3) poor < 0.8
(red). Two-sided Fisher’s exact test, *p <0.05. c Distribution of TARBS (T, red dot-
ted line) and Met-ARBS (M, purple line) in ranked ARBS. Centerline, median; upper
and lower quartiles; whiskers, 1.5× interquartile range; points, outliers. Two-tailed

Student’s t-test of means, ****p <0.0001 dHistograms of TARBS (red) or Met-ARBS
(purple) counted in patients, split for BCR development (case) or not (control).
Two-sided Kolmogorov–Smirnov test of distribution, ****p <0.0001. e Euler dia-
gram of a number of genes with GO regulatory potential score >0.5 for met-ARBS
which are specific for primary patients with biochemical recurrence (BCR) devel-
opment (case) or without (control). f Gene set enrichment analysis (GSEA) for
hallmarks of cancer collection using GO RP score >0.05, for genes linked to case-
(left) and control-specific (right) met-ARBS in less than 10% of patients.
gTranscription factormotif analysisof case/control specificmet-ARBSwithmotif z-
scores. h Heatmap clustering (k = 2) for Taylor (FDR<0.01) and Grasso cohort z-
score expression levels from patient tissues filtered for case-specific met-ARBS
genes <10% of patients. Source data are provided in Source Data.
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downstream analyses after extensive quality control3. All reported
genomic locations in this study are in GrCh37/hg19 and when required
for analysis were lifted over from GRCh38/hg38 using ucsc-liftover
(v366) command-line and hg38ToHg19.over.chain file. Transcriptional
Start Sites (TSS) including promoter regions were removed by
excluding 1000bp fromall gene TSS in all patient ARBS peaklists using
BEDtools(v2.29)65. ARBS peaklists were then intersected and peak
occurrence in the total population was counted using BEDtools.
Tumor ARBS were ranked for patient occurrence, then for genomic
location, and subsequently used to intersect with other databases
(Source Data) using BEDtools and plotted for the co-occurrence of
ARBS in both sets in a heatmap by R package NMF(v0.23.0)66. ARBS
were grouped into three categories based on ARBS prevalence in the
entire cohort, with SH-ARBS defined as occurring in 60 or more
patients (68% of patients), PS-ARBS defined as occurring in 2–59
patients (2–67% of patients) and UN-ARBS defined as occurring in only
one patient. Normal prostate epithelium ARBS peaklists were pooled
from two databases4,5 and processed similarly and the tumor and
normal ARBS rankings were normalized by patients for comparison
(Supplementary Table 6). Differences in the spread between normal
and tumor ARBS ranking in cell lines were statistically compared using
two-tailed Student’s t-test of means. Enrichment of ARBS in ranked
ARBS groups was calculated using hypergeometric test with P(X > x)
condition.

Tumor-ranked ARBS consensus were generated sequentially
withminimal ARBS overlap starting at peaks found in 88 patients and
then found in one less patient for each consensus using
DiffBind(v3.4)67 and resulting genomic regions were annotated using
ChIPpeakAnno(v3.28.0)68. Genomic peak snapshots were taken using
IGV-Web(v1.6.3)69. ARBS ChIP-seq tornado plots and aggregate
genomic ChIP-seq signal plots were generated using Easeq(v1.03)70,
bams around ARBS genomic locations were gated for ARBS cate-
gories and normalized across the genome. Multiple testing correc-
tions and quality control of ranked ARBS as true-positives were
performed using MSPC(v5.4.0)71 with default settings. TF binding
overlap of ranked ARBS per category with publicly available ChIP-seq
data fromENCODE, RoadmapEpigenomics, andGTExwasperformed
using transcription factor GIGGLE (http://dbtoolkit.cistrome.org/)24.
Ranked ARBS were analyzed for TF motifs using Cistrome SeqPos72

and screened for AR, FOXA1, or HOXB13 motif presence using Cis-
trome MISP73, and the validity of results was checked through inde-
pendently running MEME-MAST74 on ARBS with standard settings.
Permutation tests of equality on density distributions were per-
formed using R package sm(v2.2)75 through function sm.density.-
compare() with model assumption = ‘equal’, n = 1000 permutations
with ngrid = 100 for plotting estimates.

Cell culture
LNCaP cells (ATCC, CRL-1740) were grown in RPMI medium (Gibco)
with 10% fetal bovine serum and 1% penicillin–streptomycin (PS). HEK
cells (ATCC, CRL-3216)were grown inDMEMmedium (Gibco)with 10%
fetal bovine serum and 1% penicillin–streptomycin. LNCaP and HEK
cells were dissociated with 0.05% trypsin solution. For experiments in
different hormonal conditions, cells were cultured for 3 days in RPMI
medium containing 5% dextran-coated charcoal (DCC)-stripped FBS
and 1% PS. Themediumwas replacedwithRPMImediumcontaining 5%
charcoal-stripped FBS, 1% PS, and 10 nM synthetic androgen R1881 or
an equal amount of DMSO. After 4 h in the R1881-containing medium,
cells were harvested for simultaneous total RNA and gDNA isolation.
All cell lines have been authenticated through STR profiling and were
regularly found to test negative for mycoplasma contamination.

STARR-seq and luciferase validation
STARR-seq was performed and analyzed for EtOH or DHT-stimulated
LNCaP cells12, which were electroporated using a library focused on

commonclinical ARBS (NARBS andTARBS)4.Machine learningofARBS
activity was performed12, excluding predicted inactive sites while
intersecting predicted constitutively active and predicted inducible
ARBS with ranked ARBS using BEDtools. Additional STARR-seq sites
were designed in an unbiased manner among the entire ranked ARBS
universe by randomly sampling ARBS, resulting in a library of STARR-
seq constructs containing more homogeneously spread ARBS
throughout the ranking than our previous targeted NARB and TARB
library. Additional STARR-seq ARBSwere electroporated in LNCaP and
treated with either EtOH or 10 nMDHT for 4 h and harvested 72 h post
electroporation. To determine additional ARBSwith STARR activity we
first downsampled 2 replicate LNCaP vehicle (ethanol) STARR-seq files
to equivalent read counts andmerged them into one filewith samtools
(v1.8)76. Kmeans clustering was carried out using deepTools (v2.0)
bamCoverage, computeMatrix, and plotHeatmap functions77. Those
ARBSwith signals in the top 1 and 2of 3 clusterswere considered active
(n = 149). All other ARBS found in cluster 3 were considered inac-
tive (n = 2346).

For performing luciferase assays, regions of interest were PCR
amplified from pooled male human genomic DNA (Promega) with
overhangs added for Gibson assembly. The amplified regions were
then cloned into a modified STARR luciferase validation vector ORI
empty plasmid (Addgene #99298) using the NEBuilder HiFi DNA
Assembly master mix (NEB). Primers used to amplify the regions are
described in Supplementary Data 1. All insert sequences were verified
by Sanger sequencing using RV Primer 4 and SV40pA-R. Then, 1.5 × 105

LNCaP cells were seeded in phenol red-free RPMI-1640media (Gibco),
supplemented with 10% charcoal dextran-stripped FBS (Gibco, US
origin) without any antibiotics in PEI-coated 24MW plates. 24 h fol-
lowing seeding, cells were transfected using 500ng of reporter DNA
per well in 50μl of Opti-MEM (Gibco) along with 5 ng of pRL-CMV
Renilla reporter plasmid as a transfection control, usingMirus TransIT-
2020 transfection reagent (Mirus Bio) at a 1:3DNA:transfection reagent
ratio according to the manufacturer’s protocols. 48 h post-transfec-
tion, cells were treated with 10 nM of DHT or an equivalent amount of
100% ethanol (vehicle control) for another 24 h prior to harvest using
200μl of 1× passive lysis buffer (Promega). 20μl lysate was used for
eachassay using theDualGlo LuciferaseAssaykit (Promega) according
to the manufacturer’s instructions using the M200Pro TECAN Lumin-
ometer in technical triplicate with a minimum of three biological
replicates. For data analysis, technical triplicates were averaged after
which firefly luciferase (FLuc) values were normalized to the Renilla
luciferase (RLuc) values.

Somatic mutations, mutation rate, and super-enhancers
Publicly available rSNP (Supplementary Table 178–80), primary and
metastatic prostate cancer SNV data (Supplementary Table 1, Source
Data) was downloaded and intersected with ranked ARBS using BED-
tools. Observed over background mutation rate in the whole genome
was calculated and statistically compared to mutation rates in ARBS
using Fisher’s exact test. Super-enhancer genomic location data was
downloaded from SEdb9 and dbSUPER81 for prostate cancer cell lines
and tissues and intersected with ranked ARBS using BEDtools. Addi-
tional cQTL rSNP data was inferred from allelic imbalance observed in
AR ChIP-seq sample, of which p-values were adjusted using R package
q-value (v.2.28.0), with significant imbalance called when peaks con-
tained one or more SNPs at q <0.05.

Genomic interaction data handling, CNA data partitioning, and
gene dependency data
H3K27ac HiChIP sequencing regions from LNCaP cells5 were down-
loaded andfiltered forpromoter-enhancer (PE) or enhancer–promoter
(EP) interactions. Filtered anchorswere intersected with ranked tumor
ARBS using BEDtools. Copy Number Alteration and normalized RNA-
seq data from 101 metastatic PCa patients11 were downloaded, with
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CNAs merged and intersected with ranked ARBS using BEDtools for
each patient. Genomic ranges spanning copy number alterations
exclusively inside gene coding sequences or exclusively at intergenic
regions for each patient were calculated using GRanges (v1.47.0,
Source Data)82, and matched RNAseq log2fold change values were
coupled. Cancer gene dependencies for cell lines were downloaded
from DepMap (https://depmap.org/portal/, ACH codes used in Sup-
plementary Table 8)39,83,84, with essential genes and AR-independent
differentially expressed genes filtered out. Dependencies for VCaP,
LNCaP, and 22Rv1 cell lines were plotted for ARBS with H3K27ac
HiChIP interactions with dependent gene promoters, and color-coded
for enhancer region and general CNA status in the 101mPCa patient
cohort. Dependent genes were defined with CERES effectivity score <
−0.5 and plotted for a selection of dependent genes with all linked
ARBS and their occurrence in primary patients. The predominantly
occurring copy number alteration for any dependent gene was taken
to plot expression for either CNA-affected gene sequences or enhan-
cers, i.e. gains were looked at when such alterations were more pre-
valent for the gene and enhancer loci.

General linear model and statistics
Using base R(v4.1.1) function glm, the transcriptional response of
patients at H3K27ac HiChIP interacting ARBS-promoter pairs was
modeled as a Gaussian distribution determined by a linear combina-
tion of ChIP-seq log-transformed MACS score in each patient.
Response vector consisted of TMM normalized and matched RNAseq
data corresponding to gene of interest. For this, R functions were
written to extract ARBS identifiers and ChIP-seq scores from each
patient individually, which were combined for each gene in the gen-
ome. GLMs were then ran in parallel for every gene ARBS landscape.
Interactor p-values were extracted from each GLM and plotted for
CITED2 with a significance cut-off p < 0.001. Linear regression was
plotted for a selection of log-transformed ARBS peak scores versus
RNA expression for all patients in the primary cohort. Simulated p-
values were empirically calculated using glmperm package(v1.05) with
n = 1000 permutations85.

scRNA and scATAC-seq data analysis and CICERO accessibility
interaction prediction
LNCaP-DMSO scRNA-seq and scATAC-seq datawere downloaded14 and
processed using Seurat(v4.0.5)86 and Signac(v1.4.0)87. The scRNA-seq
data were filtered to include cells with features >2000, RNA counts
<60,000, and mitochondrial reads <20%. The counts were log-
transformed and scaled, the 2000 most variable features were selec-
ted, principal component analysis was performed, and the top 30
principal components were retained for analysis. The k-nearest
neighbor and shared nearest-neighbor graphs were constructed at
k = 20 and cells were clustered with the original Louvain algorithm at a
resolution of 0.6.

The scATAC fragments were lifted over from hg38 to hg19 using
ucsc-liftover (v366) command-line tools with hg38ToHg19.over.chain
file. The peaks were lifted over from hg38 to hg19 using with same
chain file and rtracklayer (v1.54.0), then the count matrix was adjusted
to include counts for peaks mapping to only one location in hg19.
Annotations were obtained from EnsDb.Hsapiens.v75 and the nucleo-
some signal and TSS enrichment were calculated with Signac. Cells
were filtered based on data distribution heuristics to include cells with
2000–50,000 fragments, a fraction of reads in peaks > 0.9, blacklisted
regions <0.03%, nucleosome signal <4, and TSS enrichment > 1. Dif-
ferentially abundant peaks were identified by logistic regression using
the fragments as latent variables. Significant peaks were identified by
an adjusted p-value < 0.05 and logFC >0.1 (Source Data). AR activity
was assessed using chromVar(v1.16.0)88. Enrichment of ARBS in sig-
nificant differentially abundant peaks was performed by permutation
test using regioneR(v1.26.0)89 with all peaks as background.

Co-accessibility analysis was performed using Cicero(v1.12.0)90

andmonocle3(v1.1.0)91,92. The distance parameter was estimated using
a distance constraint of 2.5Mb with a window size of 5Mb. Cicero
models were constructed, connections assembled, and the cis-co-
accessibility networks were generated at a cutoff of 0.1. Midpoints of
the connected elements identified by cicero were linked and links with
score < 0.05 were filtered out.

Oligonucleotides
Supplementary Data 1 gives an overview of all used oligonucleotides.

sgRNA design and production
Guide RNAs for CRISPR/Cas9 deletion was designed to closely flank
ARBS of interest and maximize both MIT and Doench scores for
optimal guide efficiency during mammalian lentiviral transduction.
Guides were annealed and cloned in lentiguide-puro plasmid
(Addgene, 52963)93,94. All sgRNA lentiguide-puro sequences were
Sanger sequences verified using U6-forward primer. gRNA pairs and
pools for CRISPR/Cas9 ARBS deletion were pooled equimolalrly prior
to outgrowth, as confirmed by PCR with U6-F primer and a corre-
sponding reverse sgRNA oligo (Supplementary Data 1, detailed pro-
tocol available at https://portals.broadinstitute.org/gpp/public/
resources/protocols).

CRISPR-Cas9 deletion
LNCaP cells were infected with a lentivirus encoding Cas9-eGFP
(Addgene, 63592) andGFP-positive cells wereflow cytometry selected,
after which presence of Cas9 in GFP+ cells was confirmed by western
blot with antibodies Cas9 (Cell Signaling #14697, clone 7A9-3A3,
diluted 1:1000, positive cell line included) and actin (Sigma Aldrich
A2228, clone C4, diluted 1:1000). Cas9 activity was confirmed by len-
tivirally infecting GFP-Cas9+ cells with a GFP promoter-targeting gRNA
pair after which cells were analyzed on a flow cytometer.

sgRNA-containing lentiviruses were produced by transfecting
HEK 293T cells (6.5 × 106 cells/100mmplate, 60–70% confluency) with
a mix of psPAX2 (Addgene, #12260), pMD2.G (Addgene, #12259),
sgRNA containing lentiguide-puro and PEI (PEI:DNA ratio 3:1). Cells
were transfected in warm OMEM medium without FCS or PS (Gibco).
Medium was supplemented with DMEM (10% FCS, 1% PS) 3 h post-
transfection and incubated overnight, after which medium was refre-
shed with DMEM (10% FCS, 1% PS). Two days post-transfection, the
virus-containingmediumwas harvested by filtering through a 0.45μm
filter and immediately used to infect 2.0 × 105 GFP-Cas9+ LNCaP cells/
six-well plate in RPMI (10% FCS, 1% PS) containing polybrene (10μg/
ml). After two days, cells were selected with puromycin
(2μg/mL). Afterward, the selection was maintained continuously at
1μg/ml puromycin during culture for 30–40 days until harvest. AR+

breast cancer cell line MDA-MB453 (ATCC HTB-131) was cultured in a
similar manner as LNCaP and infected with Cas9-eGFP lentivirus as
described above.

gDNA/RNA isolation, cDNA synthesis for qPCR and PCR ver-
ification of CRISPR-Cas9 deletion
GenomicDNA andRNAwere isolated fromcells washed in ice-cold PBS
and resuspended in 0.75ml TRIzol LS reagent per the manufacturer’s
instructions (Invitrogen, 15596026). gDNA was precipitated with 100%
ethanol, and washed twice with 0.1M sodium citrate in 10% ethanol,
after which gDNA solubilization was facilitated by DNA hydration
solution (Qiagen, 158445). RNA was precipitated with isopropanol and
the resultingRNApelletwaswashed in 75%ethanol and resuspended in
nuclease-free water for immediate use in cDNA synthesis or stored at
−80 °C for later use.

To generate first-strand cDNA, 2500ngRNAwasprimedwith 5μM
oligo(dT) and 10mM dNTP mix. cDNA was synthesized as per Super-
Script III first-strand synthesis per the manufacturer’s instructions
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(Invitrogen, 18080-051). cDNAwas diluted 1:10 (~20 ng/μl) and used as
input in SensiMix SYBR No-ROX kit for qPCR (GC Biotech QT650-20).
Primers spanning exon-exon junctions were designed for β-actin and
CITED2. The qPCR data were processed using package Rseb95. For
gDNA verification of successfully removed ARBS, primers were
designed to flank Cas9 genome editing sites and used to perform PCR
(Thermo-Fisher, F548S) on gDNA and subsequently analyzed by elec-
trophoresis on 1.6% agarose gel.

CRISPR interference of CITED2 in LNCaP:Suntag-KRAB
The existing Suntag-VP64 construct (pHRdSV40-scFv-GCN4-sfGFP-
VP64-GB1-NLS; Addgene, #60904)42 was adapted by swapping the
activating effector VP64 for the repressing KRAB effector usingGibson
Assembly and RsrII (Thermo Fisher). Briefly, KRAB was amplified from
pLX_311-KRAB-dCas9 (Addgene, #96918) using PCR primers with
homology arms that were specifically designed to keep the original
scFv-GCN4-sfGFP-effector-GB1-NLS linker architecture intact (Supple-
mentary Data 1). LNCaP cells were subsequently infected with lenti-
virus containing Suntag-10xGCN4 (pHRdSV40-dCas9-10xGCN4_v4-
P2A-BFP, Addgene# 60903). BFP-positive, Suntag-10x positive cells
were subsequently sorted in 96-well plates containing LNCaP condi-
tioned medium for monoclonal selection using flow cytometry. After
the outgrowth of clones, cells were infected oncemore with lentivirus
containing scFv-GCN4-sfGFP-KRAB and sorted in 96-well plates con-
taining LNCaP conditioned medium for monoclonal selection using
flow cytometry.

Resulting grown Suntag10x-KRAB clones were validated using NT
and EPCAM targeting pools of sgRNAs. Cells were infected with pools
of three sgRNAs, harvested and stained using APC-conjugated CD326
(EPCAM) Monoclonal Antibody (Invitrogen, MA5-38715, EPCAM-APC
Clone 323/A3), after which Suntag-KRAB repressing activity was
assessed using flow cytometry. Finally, active Suntag-KRAB LNCaP
monoclonal cells were infected with sgRNAs targeting CITED2
enhancers, NT targeting sgRNA pool, and CITED2 exon 2 targeting
sgRNAs as positive control and grown for 1 week. After harvest, RNA
was extracted, cDNA was synthesized and CITED2 qPCR was
performed.

AR enhancer CRISPRi proliferation measurements and HOXB13
ChIP-qPCR
LNCaP:Suntag-KRAB cells were infected with pools of two lentguide
puro sgRNAs targeting either the AR promoter (ARp) as a positive
control, enhancers AR23 or AR13 and non-targeting NT as negative
control and selected using 2μg/ml puromycin. Cells were grown and
variable proliferation speeds were noted between the cell-lines post-
infection. After having reached sufficient cell numbers, cells were split
and seeded at 2.0 × 103 cells per well in black 384-well plates as
quadruplicates (n = 4) in RPMI + 5% DCC+ P/S +0.5μg/ml puromycin.
Proliferation was subsequently monitored by Incucyte ZOOM (Essen
Bioscience), which captures microscopic pictures of each well every
4 h. sfGFP expressionof LNCaP:Suntag-KRABcells wasused toquantify
proliferation. Logistic growth fit was used to model cell line growth,
which can be described by the formula Y = YM*Y0/((YM−Y0)*e(−k*x) + Y0),
with Y0 as startingpopulation,YMaspopulationmaximumand k as rate
constant.

For HOXB13 binding characterization at the AR13 enhancer, NT
and AR13 LNCaP:Suntag-KRAB were grown in biological triplicates
(n = 3) in a normalmediumsupplementedwith0.5μg/ml puromycin to
maintain selective pressure until a 15 cm dish confluency of 90% was
reached. ChIP was performed8, but instead, 5μg HOXB13 antibody
(Santa Cruz Biotechnology; sc-66923 clone H-80) was used per con-
dition with 50μl Protein A Dynabeads (Invitrogen). After ChIP com-
pletion, qPCR was performed using aspecific and specific site primers
(S1 negative and AR13-q95, respectively) on 1:50 diluted solution from
50μl of dissolved DNA pellet.

State-specific sites in ranked ARBS and good/poor outcome
predictor
ARBS collections identified in earlier studies spanning PCa disease
state transitions4,5 and association with outcome8 were downloaded
and intersectedwith ranked ARBS using BEDtools. Primary PCa patient
ARBS peaklists were divided in groups of patients with (cases) or
without (controls) BCR development. For each group, patients were
divided in three groups based on the proportion of good to bad out-
come sites in which (1) >1.2 good, (2) 1.2 >mixed >0.8, (3) poor < 0.8
and used Fisher’s exact test for statistical analysis. TARBS and met-
ARBS in ranked ARBS were counted for each individual patient inside
the case and control groups and plotted in histograms detailing the
total ARBS for each group per ranked ARBS occurrence. Statistical
difference between histograms was calculated using two-sided
Kolmogorov–Smirnov test.

GO regulatory potential of Met-ARBS, Gene Set Enrichment
Analysis, Heatmap clustering
Regulatory Potential scores for geneswerecalculatedusing regionspeak
files formet-ARBS found in 8 or fewer primary patients that developed a
BCR recurrence versus those without as input for Cistrome-GO96 and
filtered for genes with RPscore >0.05. Genes were analyzed for ranked
pathway analysis using GSEA(v4.1.0)97 and MSigDB(v7.3, h.all.v7.0.sym-
bols.gmt Hallmarks)98. Met-ARBS genes in 8 or fewer patients were used
to filter publicly available and clinically annotated PCa expression data
from Taylor48 and Grasso cohorts49. Taylor count data was normalized
using DESeq299 and differentially expressed genes with FDR<0.01 were
used.Grassomean z-scores for differentially expressed geneswere used.
Heatmaps for gene expression were plotted using ComplexHeatmap100

withoptimal kclustermeansdetermined fromSilhouetteplots generated
byRpackage factoextra (v1.0.7, https://rpkgs.datanovia.com/factoextra/
index.html) using Euclidian distance metric.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data are available within the article, Supplementary information
and Source data file. Source data are provided with this paper. Public
datasets are available through GSE accession numbers as reported in
Supplementary Table 1 and additional STARR-seq data is deposited at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE217319 or
accessible through GSEA accession number GSE217319. Source data
are provided with this paper.

Code availability
Code is available through https://github.com/jknp/arbshet.
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