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EEG Microstates in Neurofeedback Attention Training 

Benjamin Sipes 

Abstract 

Attention has come under acute focus within the neuropsychological world in past 

decades, and the rise of brain-computer interfaces (BCI) during EEG offers a means to 

personalize attention training therapies. Semi-stable EEG topographies, called “microstates,” 

have been found to be functionally relevant to attention-oriented tasks and shown to influence 

awareness in the time period directly before a stimulus. In a BCI designed to train attention, we 

may expect to see a group difference in microstates. Specifically, it could be that microstate D—

functionally relevant to attention and task-switching—increases while microstate C—

functionally relevant to task-negative and saliency networks—decreases within the group that 

successfully learns via neurofeedback. The reversed pattern may be true in groups that either 

fails to learn through neurofeedback or received sham neurofeedback. We may also expect 

microstates D and C to relate to a behavioral outcome measure that indexes training 

performance. Accordingly, we used EEGLAB to process BCI attention-training data, derive 

microstate topographies for individual participants, cluster grand mean topographies for the 

entire study group, and extract temporal statistics to measure microstate temporal presence 

during pre-stimulus training. Overall, microstate D had greater temporal presence in those who 

successfully self-regulated neural cognition during the BCI task compared to those who could 

not achieve this; microstate C had greater temporal presence in those who could not self-regulate 

neural cognition during the BCI task compared to those who did so successfully. This analysis 

highlights differences in BCI performance, but failed to find meaningful changes over training. 
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1. Introduction 

 Attention has come under acute focus within the neuropsychological world in past 

decades. With the so-called Attention-deficit/hyperactivity disorder (ADHD) “epidemic,” much 

research is invested to better understand the executive systems in the brain that modulate 

attention and influence its deficits. Likewise, stakeholders heavily invest in ways to improve 

attention. Drugs such as Adderall and Ritalin are marketed as panaceas to this epidemic, yet their 

value, efficacy, and ethics within their target population—young adults with ADHD—are 

actively debated. However, pharmacological substances are not the only means we may deploy 

to influence neurobiology. Games and training programs also show efficacy as therapeutic 

treatments for cognitive deficits (Anguera et al., 2013). Furthermore, the rise of BCI during EEG 

offers a means to personalize training paradigms such that they give real-time neurofeedback, 

thus enhancing the learning experience (Curran & Stokes, 2003). Many BCIs deploy source 

localization algorithms to index their feedback. However, this strategy may be a limitation. Many 

brain regions participate simultaneously in complex cognitive tasks, and source localizing is 

challenging due to EEG’s ill-posed inverse problem. There may be other EEG derived signatures 

that better index complex cognitive performance. 

 EEG microstates are semi-stable patterns of electric-field surface potential topographies. 

They form characteristic and reproducible polarity maps that can be extracted from a full EEG 

timeseries and utilized to query functional neurobiological systems (Wakermann et al., 1992; 

Khanna, Pascual-Leone, & Farzan, 2014). Microstate analyses capture inherent features of 

cortical connectivity patterns that are representative of well-defined networks identified through 

other imaging modalities—namely fMRI—and thought to be subdivisions of the characteristic 

default mode network (DMN) (Bréchet et al., 2019; Britz, Van De Ville, & Michel, 2010; 
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Pascual-Marqui et al., 2014; Seitzman et al., 2017). Unlike fMRI, they exploit EEG’s excellent 

temporal resolution such that they observe connectivity moments at the sub-second scale with 

each microstate lasting between 50-120 milliseconds. Microstates are best measured through 

their temporal dynamics (Van De Ville, Britz, & Michel, 2010): microstate duration (average 

time active) and occurrence (times active per second). Their overall temporal presence as 

measured by dwell time, the product of duration and occurrence, offers an index for meaningful 

cognition. Microstate functional significance is under active investigation, but patterns are 

beginning to emerge regarding the significance of two commonly derived microstates classified 

in the literature as “C” and “D” (Michel & Koenig, 2018). 

Among the first works attempting to derive functional significance in microstates, Britz 

and colleagues (2010) found that microstate C overlapped with cortical regions involved in the 

saliency network, and they speculated it to be involved in task-negative or task-ready mentation. 

In the same work microstate D overlapped with cortical regions involved in the ventral fronto-

parietal areas related to attention networks. Milz and colleagues (2016) expanded on this work, 

finding that microstate D was especially focused in the posterior and anterior cingulate, positing 

that it had a role in attention-oriented activity and focus-switching. Seitzman and colleagues 

(2017) found microstate D temporal dynamics increased specifically during serial sevens 

subtraction while microstate C temporal dynamics decreased in this task, suggesting their task-

positive/task-negative relationship. While these studies were contextualized in math and 

visualization tasks, Morris and colleagues (2018) additionally found that microstate D was active 

during audio-based attention also, suggesting more universality with its role in attention-oriented 

mentation. Most recently, Bréchet and colleagues (2019) found microstate C most active within a 

memory-retrieval task and activated areas overlapping with parietal networks also involved in 
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memory-retrieval. In the same work, they identified microstate D as most active during their 

math condition, overlapping with fronto-parietal control networks. Taken together, we may infer 

that microstate C generally relates to saliency networks, though its role as explicitly “task-

negative” is debated. We may also infer that microstate D is involved in attention, though its 

exact role is still under investigation. 

Furthermore, there is evidence to support microstates within a BCI context. Hernandez 

and colleagues (2016) found that microstate D was capable of modulation through 

neurofeedback and may be applicable to training in clinical populations. Additionally, Brtiz and 

colleagues (2014) found microstates to significantly modulate awareness when measured 

immediately pre-stimulus. Although the present study does not index neurofeedback through 

microstates, it may be helpful to analyze them in this attention BCI context. 

 In a BCI training attention, we may expect to see a group difference in microstates. 

Specifically, it could be that microstate D increases and microstate C decreases within the group 

that receives genuine neurofeedback, and the reversed pattern in a group that receives sham 

neurofeedback. We may also expect microstates D and C to relate to a behavioral outcome 

measure that indexes training performance. To test these hypotheses, we used EEG data 

collected from an attention training BCI paradigm. The experiment was structured such that there 

were two main healthy adult groups: one that received genuine neurofeedback training and 

another that received training with sham neurofeedback from an age and gender matched 

participant. Accordingly, we used MATLAB and the toolbox EEGLAB to conduct a microstate 

analysis (The MathWorks, Inc., Natick, Massachusetts, United States; Delorme & Makeig, 

2004). Ultimately, we sought to determine if there were group differences in microstate temporal 

presence over the training period. 
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2. Methods 

Participants 

 The cognitive Brain-Computer Interface (cBCI) project recruited 48 healthy adult 

participants (mean age 26 years, STD 2.4 years; 34 females). Recruitment sought to establish a 

2:1 ratio between the experimental group and the control (sham) group. All participants were 

screened for non-ADHD status on the Adult ADHD Self-report Scale (ARSR-v1.1). Participants 

provided written informed consent for the study, and received payment in compensation for their 

participation. 

Data Acquisition 

Training data was acquired between October 2015 and October 2017. Each learning 

session lasted 40 minutes, during which 64-channel EEG was recorded and a closed loop 

neurofeedback provided performance information on a personalized scale. The scale was 

determined by the mean and variance of participants performance during an initial diagnostic 

assessment. The task adaptively modified challenge to match performance ability within each 

learning session. All learning sessions occurred over a mean of 31.8 days (SD = 19.7 days). 

 Learning consisted of a pattern/shape recognition and sustained attention task. There 

were ten experimental runs with 75 trials in each. At the beginning of every experimental run, 

participants were shown a target shape (either square, circle, diamond, pentagon, or hexagon—

all equal areas) inside which had a grating at either 45 or 135 degrees. Within the task, 

participants received an audiovisual cue followed by a one-second delay, after which a visual 

target/non-target appeared. Target to non-target ratio was approximately 1:2. Participants had a 

brief and adaptive time to respond based on prior trials, and they responded using bumpers on a 
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platform controller. Response threshold equalized during the diagnostic assessment once 

participants reached 80% accuracy. Participants did not receive neurofeedback during the initial 

diagnostic session; however, they did receive neurofeedback during ten following training 

sessions on a 0-100-point scale—0 and 100 represent ±2.5 STD neural performance based on 

frontal-visual alpha coherence. This coherence is a measure of neural synchrony between left 

prefrontal and left extrastriate visual cortex where high coherence indicates mind-wandering and 

low coherence indicates attention. Coherence measures were acquired during the 500ms prior to 

target/non-target stimulus presentation. Challenge between trials was adaptive, with greater 

success rendering increased challenge where non-target stimuli are more visually alike to the 

target. Each training day’s initial adaptive parameters are adjusted based on past training days. 

Participants receiving sham feedback were not given personalized neural metrics. Instead, their 

feedback mimicked those of age- and gender-matched experimental participants. 

 A behavioral outcome measure, efficiency, was determined for each session. As the task 

was adaptive, accuracy alone is not enough to index performance. Ideal performance in the task 

involves both speed and accuracy. Reaction time for each trial was recorded, and efficiency for 

each trial was defined as accuracy divided by reaction time. Efficiency measures over the entire 

training session were averaged into a mean efficiency for that session. This mean efficiency 

became the behavioral outcome measure to assess performance and compare neural data. 
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 Training data included in the analysis came from either sessions 1 or 2—constituting the 

early training period—sessions 5 or 6—constituting the middle training period—and sessions 9 

or 10—constituting the latest training period (Figure 2.1). These sessions were selected to 

observe outcome measures over the course of the 10-session training schedule. All six data time 

points for all participants entered preprocessing. 

Preprocessing 

We converted the raw files before preprocessing. The raw files were acquired using LSL 

in XDF format designed for BCIs. We used MATLAB 2016b and BCILAB functions to extract 

the raw files and save them as an EEGLAB EEG struct with channel locations rewritten to the 

10-20 scheme used in the experiment. We ran preprocessing using a MATLAB plugin 

Automagic (Pedroni, Bahreini, & Langer, 2018). Automagic is an EEG preprocessing software 

that combines many of the leading processing algorithms to establish a comparable 

preprocessing standard. 

 Through Automagic, we used the PREP pipeline, which removes line noise and 

iteratively detects and interpolates bad channels (Bigdely-Shamlo, 2015). We also used the 

Multiple Artifact Rejection Algorithm (MARA), which performs independent component 

analysis across all channels to automatically detect and remove characteristic EEG artifacts 

(Winkler, Haufe, & Tangermann, 2011). The data was high-pass filtered at 1 Hz and low-pass 

filtered at 30 Hz. 

Figure 2.1: Diagram of the training schedule for all participants and the time-points drawn from it. 
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 Automagic provided a quality assessment that graded the data quality according to 

multiple measures. Automagic computed the ratio of bad channels (RBC) and the ratio of 

channels of high variance (CHV) per data session with default thresholds defining cutoffs for 

data quality assignment. These thresholds were as follows: Good < 0.15 < Ok < 0.3 < Bad. 

Automagic quality assessment also reports metrics for overall high amplitude (OHA) and time 

points of high variance (THV). These also had default thresholds as follows: Good < 0.1 < Ok < 

0.2 < Bad. The final rating is a combination of all quality assessment ratings. (Figure 2.2)  

 

Quality rating for all data was made based on these default thresholds. Participants with 

“Bad” data from both sessions within the same time period (early, middle or late) were excluded 

from further analysis. A total of 11 participants were excluded in this manner (7 from the 

experimental group, and 4 from the sham group).  

Figure 2.2: Automagic quality rating thresholds and data-quality visualization. 
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The remaining 37 participants had all their data proceed to the microstate analysis. 

Microstate Analysis 

 EEGLAB processed the data and prepared it for microstate analysis. First, the data was 

down sampled to 256 Hz. Using the event information within the EEG struct, data were bounded 

to include 500 milliseconds at the end of the audiovisual cue—immediately prior to the 

target/non-target stimulus for each trial. This window was selected because it is the same 

window used within the training to measure the coherence provided in the neurofeedback. 

 The Microstate Analysis plugin for EEGLAB extracted microstates and calculated their 

temporal dynamics (Poulsen et al., 2018). Modified k-means clustering clusters EEG topographic 

information at global field power peaks in the EEG timeseries while ignoring polarity. K-means 

clustered  EEG data for each participant and session individually. K-mean’s convergence metric 

was cross-validation, and it chose the best solution over 10 initializations. The algorithm derived 

4, 5, and 6 microstate clusters, and it was subsequently determined that 5 states offered the 

optimal cross validation metric and highest quality states. Two participants (both in the 

experimental group) had microstates across multiple time points that presented eyeblink artifacts, 

and were subsequently removed from further analysis. 

 Before group-level analysis, one session from each time point (early, middle, and late) 

was selected such that each participant had only a single training session’s data per time point. 

This selection was determined by a random number generator and was subsequently checked for 

nonsignificant group differences between session-selection, gender, and age. (Table 2.1) 
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All individual microstate topographic maps entered second-level group analysis. All 

maps were clustered again using k-means clustering algorithm with a correlation-based distance 

measure. There were 6 classes assigned in this second-level analysis. 6 classes were chosen to 

enhance comparability to a recently published work investigating microstate classes during a task 

(Bréchet et al., 2019). The algorithm provided a class assignment to each individual topographic 

map, and a grand mean template of each class assignment was generated. As no individual 

session could have two of the same microstates, ties in the second-level k-means clustering were 

broken as determined by a parametric correlation with the grand mean topographies. The 

Demographics/ Learners (L) Non-Learners (NL) Sham Statistics  

Gender F = 8 

M = 5 

F = 8 

M = 3 

F = 9 

M = 3 

P = 0.82 

Age Mean = 26.15 yrs. 

STD = 2.04 yrs. 

Mean = 26.18 yrs. 

STD = 2.79 yrs. 

Mean = 25.0 

yrs. 

STD = 3.41 yrs. 

P = 0.39 

Time Point Used T1 = 7 

T2 = 6 

T5 = 5 

T6 = 8 

T9 = 5 

T10 = 7  

T1 = 4 

T2 = 5 

T5 = 5 

T6 = 3 

T9 = 4 

T10 = 3  

T1 = 6 

T2 = 6 

T5 = 6 

T6 = 6 

T9 = 7 

T10 = 5  

L vs NL  

P = 0.79 

L vs Sham 

P = 0.52 

NL vs Sham 

P = 0.40 

Table 2.1: Demographic information for all participants used in the final analysis. Experimental group 

divided into “Learners” and “Non-Learners.” Statistics for Age and Gender are from an ANOVA 

analyzing the effect of group on Age and Gender. The final row compares the time points randomly 

selected per group. Statistics for Time Point Used uses t-tests to determine significance between 

groups.  
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topographic map with the highest correlation with the grand mean class ‘won’ that class 

assignment. If there was another class correlation (rho > 0.8) in the ‘losing’ topography that was 

not yet an assigned microstate class expressed in that session, that became the new class 

assignment. Otherwise, the topography was excluded from the analysis—37 out of 510 (7.3%) of 

topographic map assignments became a null-assignment state and were subsequently excluded. 

 Following the microstate class assignment, the states were back-fit to the EEG data and 

smoothed the microstate labels by rejecting small segments. All microstates lasting for less than 

30ms were temporally smoothed into microstate labels on either side of the small segment. As 

modified k-means clustering does not account for polarity, neither did the back-fitting algorithm. 

After the microstates were back-fit to the data, microstate statistics were calculated automatically 

by the toolbox and saved. These statistics included occurrence and duration for each microstate.  

Statistical Analysis 

 From the microstate statistics output, the dwell time measure was derived by multiplying 

each session’s respective duration and occurrence. Dwell time was used as a measure of 

temporal presence to compare microstates to each other. In the following analysis, we evaluate 

statistics for microstate C and microstate D due to their relevance to attention-oriented tasks.  

Post-hoc analysis additionally revealed that a subset of the experimental group could not 

effectively self-regulate their neural coherence. Some experimental participants observed a 

negative coherence slope with sequentially successful trials (i.e. successful self-regulation), 

while other experimental participants observed a positive coherence slope with sequentially 

successful trials (i.e. unsuccessful self-regulation) (Figure 2.3). This difference in slope 

constituted the rational and definition to subdivide the experimental group into those participants 
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that could effectively self-regulate their coherence (Learners) and those participants that could 

not effectively self-regulate their coherence (Non-Learners). The 22 experimental participants 

whose data made it to the final analysis thus divided into 13 Learners and 9 Non-Learners.  

 ANOVA was evaluated to establish interactions in dwell time between group assignment, 

time-point, efficiency measure, and microstate. Following significant interactions, we performed 

two-sample t-tests to evaluate hypotheses. Non-parametric correlations additionally assessed 

interactions between the continuous measure, efficiency, and microstate dwell time. Lastly, we 

sought to examine the ratio of microstate C to microstate D to observe group effects of relative 

temporal presence when comparing the two microstates.

Figure 2.3: This is a graph of coherence measures over the course of training. S11 signifies having 

answered a trail correctly, and successive labels (S21, S31,…) signify multiple correct trials in a row. 

The opposite is true for F11 which signifies a single incorrect trial and subsequent incorrect trials in a 

row. The top-most line-plot depicts coherence in the group constituting the “Non-Learners,” defined 

by their overall positive slope in coherence. The lower-most line-plot depicts coherence in the group 

constituting the “Learners,” defined by their overall negative slope in coherence with increasing 

correct trials. 
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3. Results 

Microstates Found 

 Five microstates were 

extracted for each participant 

and session individually. The 

five microstates per session on 

average had a total global 

explained variance of 70.4% 

(STD = 3.9%). Six microstates 

were clustered at the group level 

(Figure 3.1). This number does 

not optimize a specific criterion, 

but instead replicates the number and form of states derived from Bréchet and colleagues (2019) 

as they analyze states during a memory/math task. The following statistic measures focused on 

only two of the six derived states (C and D). 

ANOVA 

 Overall, the ANOVA revealed significant interactions with microstate C and D dwell 

times. Specifically, there was a significant microstate by group interaction, both when including 

the Sham group (p = 0.0002), and when excluding the Sham group (p < 0.0001). There was a 

trending microstate by efficiency interaction only when excluding the Sham group (p = 0.051). 

The ANOVA did not reveal significant changes over time based on group identity, both 

including the Sham group (p = 0.84) and excluding the Sham group (p = 0.68). Accordingly, the 

Figure 3.1: This is an image of the six grand mean topographies 

clustered at the group-level analysis. The statistics extracted for 

further analysis come from class C (upper right) and class D 

(lower left).   
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following results collapse across all time points—they display the differences at a group level 

instead of change over the training period. 

Dwell Time: Group vs Microstate 

 The literature relates microstate C with task-negative mentation. Microstate C dwell time 

in the Non-Learners group (mean = 258.72ms; STD = 21.89ms) was greater than the Learners 

(mean = 233.77ms; STD = 28.57ms) and that difference was significant (p = 0.0011). Non-

Learners also had higher dwell time compared to and the Sham group (mean = 243.18ms; STD = 

22.42ms) and that difference was significant (p = 0.015). The Learners compared to the Sham 

group showed no significant difference in microstate C dwell time between them (p = 0.14). 

Thus, during training, Non-Learners appear to have a significantly greater temporal presence of 

microstate C compared to both other groups. (Figure 3.2a)  
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The literature relates microstate D with attention-oriented mentation. Microstate D dwell 

time in the Learners group (mean = 

228.64ms; STD = 29.6ms) was 

greater than the Non-Learners 

group (mean = 205.45ms; STD = 

32.67ms) and that difference was 

significant (p = 0.0075). Learners 

also were greater than the Sham 

group (mean = 213.66ms; STD = 

37.04ms), however this difference 

did not meet the threshold for 

significance (p = 0.069).  

Additionally, the Sham group was 

not significantly different 

compared to the Non-Learners in 

this microstate (p = 0.40). Thus, 

during training, Learners appear to 

have a significantly greater 

temporal presence of microstate D 

compared to both other groups. 

(Figure 3.2b) 
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Dwell Time: Group vs Efficiency 

Microstate C dwell time was 

also compared to the continuous 

behavioral measure efficiency through 

a non-parametric Spearman’s 

correlation. Learners had a significant 

positive relationship between 

microstate C and efficiency (rho = 

0.35; p = 0.036). The Non-Learners 

group had no significant relationship 

with efficiency (rho = -0.09; p = 0.68). 

The Sham group had no significant 

relationship with efficiency (rho = 

0.0023; p = 0.99). Thus, during 

training, microstate C dwell time has a 

group-based positive relationship with 

efficiency in Learners. (Figure 3.3) 

 Microstate D dwell time was also 

compared to the continuous behavioral 

measure efficiency through a non-

parametric Spearman’s correlation. Learners had a trending negative relationship between microstate 

D and efficiency (rho = -0.32; p = 0.059). The Non-Learners group had no significant relationship 

with efficiency (rho = -0.005; p = 0.98). The Sham group also had no significant relationship with 
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efficiency (rho =  -0.11; p = 0.55). Thus, during training, microstate D dwell time may have a group-

based negative relationship with efficiency in Learners. (Figure 3.4) 

Ratio of Microstate C to Microstate D 

To investigate the balance in the temporal dependencies for microstates C and D, we divided 

same-session dwell times for microstate C by microstate D such that a value above 1 indicates higher 

temporal presence of microstate C, and a value below one indicates a higher temporal presence of 

microstate D. Learners were significantly more balanced in microstate C and D temporal presence 

(mean = 1.05; STD = 0.24) compared to Non-Learners (mean = 1.31; STD = 0.30), and this 

difference was significant (p = 0.0017). Sham participants displayed a ratio intermediate to the other 

groups (mean = 1.15; STD = 0.22), and was only significantly different from the Non-Learners (p = 

0.041) with no significant difference compared to Learners (p = 0.11). (Figure 3.5)  
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4. Discussion 

 Within an attention training closed-loop brain-computer interface, we observe a 

differential group effect of neurofeedback on EEG microstates. Specifically, microstate C had 

increased temporal presence in Non-Learners—those who were unsuccessful in self-regulating 

neural performance. Additionally, microstate D had increased temporal presence in Learners—

those who were successful in self-regulating neural performance. Notably, however, this 

difference is apparent only over the entire training period and does not have a significant effect 

with training time. Thus, this provides evidence for the hypothesis that there are group 

differences in microstates within attention training, yet rejects the hypothesis that this difference 

is modulated by time. 

 We also find that microstate C, while significantly less present in Learners, also displays 

a positive relationship with efficiency specific to this group—that is, with greater microstate C 

presence in Learners, the better their efficiency. Furthermore, a similar but opposite trending 

relationship is observed in microstate D: while Learners overall display greater temporal 

presence of microstate D, that presence has a negative relationship with efficiency specific to 

that group. 

 On its face, these results appear self-contradictory, but this may instead indicate a 

complex interdependence between microstates. Here we observe temporal presence in only two 

microstates isolated from all other states, yet six microstates were derived, and they all have their 

own temporal characteristics. These states are inherently interdependent because time is 

inherently limited—for some microstates to have greater temporal presence, others must 

experience paucity. 
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 Therefore, this constraint makes it relevant to investigate the relative proportion of 

microstate C to microstate D. In this analysis, Learners and Non-Learners again had marked 

differences in microstate proportionality. Namely, the Learners had a much more balanced 

temporal presence between the two microstates in comparison to Non-Learners, where their 

microstate C was more temporally dominant. Sham participants appeared to be a sort of middle 

ground between the Learners and Non-Learners, although they were only significantly different 

from the Non-Learners in this regard. It may be this balance that facilitates learning in this group 

rather than simply the amount of one state between groups. This analysis emphasizes the 

importance of analyzing microstates in context of other microstates, and that it is likely the 

microstate’s complex interdependencies that emerge into meaningful changes in cognition. 

In past microstate investigations, this interdependency has been accounted for using a 

metric known as transition probability. Transition probability attempts to quantify the probability 

that any state will transition into any other state under the assumption that all states follow a 

Markov process and that a high transition probability between two states is indicative of a high 

interdependent state association. However, recent literature has found that microstates unreliably 

follow such a Markov process (von Wegner, Tagliazucchi, & Laufs, 2017), thus throwing doubt 

upon Markov-chain modeled transition probability as an effective measure for microstate 

interdependence. Thus, here we use a proportionality instead. 

It is also noteworthy to address that the neural feedback measured in this BCI task was an 

unrelated measure—frontal-visual alpha coherence—and not the focus of this analysis—

microstates. Furthermore, microstate statistics were measured as an average over the entire 

session, and not recorded trial-by-trial as was coherence. Past investigations have found 
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microstates to be plastic in a BCI paradigm (Hernandez et al., 2016), yet this experiment was not 

designed for their specific observation, and thus is limited in describing the effect of training. 

The overall data quality in these groups was also a limitation. Many participant’s data 

had to be excluded from the analysis due to noisy data. Combined with the post-hoc regrouping, 

this may have negatively impacted the potential power of our results. The gender divide was also 

heavily sided toward women, adding another factor that may make these results less 

generalizable to a larger population. We believe that these factors were not substantial enough to 

significantly influence the findings, but they are considerations all the same.  

Therefore, these results may instead be descriptive of a characterization between the 

different BCI groups—those who can self-regulate, those who can’t self-regulate, and those 

given sham feedback. It appears that receiving feedback while effectively self-regulating 

attention indeed demands activation in attention-oriented brain connectivity as measured through 

microstate D. Similarly, it appears that inability to self-regulate despite genuine feedback 

involves a higher activation in brain connectivity associated with microstate C. It may also be 

telling that the Learners are the only group whose microstate dwell time relates significantly to 

performance. Future investigations should consider investigating the nuances in the underlying 

connectivity differences in BCI Learners vs Non-Learners. 

Much of the microstate literature offers commentary on microstates as if their functional 

significance is uniform across people. The present investigation offers evidence to the contrary: 

suggesting functional significance underlying a microstate may have inherent variance in the 

population. Future research should also focus on unpacking this variability to contextualize the 

literature on microstate functional significance. 
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5. Conclusion 

This analysis successfully highlights group differences in BCI performance. Namely, that 

Learners have higher temporal presence in microstate D compared to Non-Learners, and that 

Non-Learners have higher temporal presence in microstate C compared to Learners and Sham 

controls. It was notably not true that Learners had overall more microstate D than microstate C—

in fact, they were the group where the two microstates were most temporally balanced. This 

balance between temporal measures in microstates may indicate a key difference between 

Learners and Non-Learners and warrants further research. This analysis failed to find meaningful 

changes over the training course, so future work should also consider more investigations into 

microstate plasticity with training, especially using training that specifically uses microstates as 

its index for successful self-regulation. 
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