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ABSTRACT OF THE THESIS

A Life Event Detection System Using Real-Time Heterogeneous Context Monitoring and
Formal Concept Analysis

By
Hyungik Oh
Master of Science in Computer Science
University of California, Irvine, 2015

Professor Ramesh Jain, Chair

The real-time detection of personal life events has great potential to provide human-
friendly services. Using detected life events in the fields of health care, smart homes, elderly
surveillance, and smart car, etc. will provide more relational information and/or services to
a user. However, automatically detecting a life event from human behaviors and their
surrounding contexts is a challenging problem. I believe that the combination of Formal
Concept Analysis (FCA) and a context-aware mobile computing system can help a path
toward automated life event detection. The advancement of the smartphone and its
embedded sensors will enable this scenario. I propose a generic context-aware system
based on Formal Concept Analysis, which covers both front-end and back-end processing,
to detect human life events. The main contributions of this system are: 1) it provides a
framework for real-time personal monitoring; 2) it integrates, processes and stores
personalized latent features; and 3) it combines heterogeneous data streams into one life
event. The experimental validation, which [ implemented on an Android platform and

server, demonstrates that a general life event model can be applied to each individual and



that concept data analysis can be substituted for statistical data analyses in life event
detection. I believe that my findings can lead to new event detection approach, which is not
just confined to specific environments, such as Social Life Networking, video streams, or
artificially organized sentient locations, but can be opened for all environments in the real

world by using sensors and context factors.
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CHAPTER 1. INTRODUCTION

Chronological analyses of personal life events can provide fundamental information
about human beings. Understanding human life has always been the objective of various
studies. For example, clinicians measured activities of daily living (ADL), which are the
basic tasks for everyday life (i.e. eating, bathing or dressing), to consider the capability of
performing basic daily activities [15,16]. S. Sandberg et al. have revealed that negative life
events can severely affect the exacerbation of a new asthma attack [17]. McVeigh-Schultz et
al. have studied context-specific interactions between drivers and their cars [18, 19], and
Mennicken et al.s smart home research insisted that understanding the life courses of
users may support the iterative, incremental process of smart home technology adoption
[20]. Thus, comprehending the relationships between humans and their surrounding
conditions is a significant research area in the fields of health care, smart homes, elderly
surveillance, and car-human-relationships, etc. with the aim of providing more user-
friendly services. I contend that life events and event analysis can become a standard
variable for understanding the present situations of people. Finally, the chronological

analysis of life events will facilitate planning the future as well.

Technological advancement can now enable researches to automatically detect the
events of daily life. With the emergence of the smart phone and its embedded sensors, such
as accelerometers and GPS, it is possible to continuously track the physical activities and
current positions of users. For example, the analysis of the values of an accelerometer

sensor can correctly predict some basic physical activities, such as standing still, walking,



running, bicycling and sitting in a vehicle, and the tracking of GPS points in a map
application can show the places visited and how long people stayed there. One user
tracking mobile application, called MOVES, organizes this information in chronological
sequence and displays a daily tracking summary in the timeline. With smartphone’s
sensory data, now it is possible to automatically detect a life event, if additional meaningful
information (i.e. venue, calendar events, photos, media or application usage etc.), which are
extractable from a smartphone, are properly synthesized. I believe that this new method
can be substituted for common event detection, which depends on cameras, audio, SNS or
modulated sentient places. In order to achieve automated event detection, a prediction
technique is necessary to organize the disordered raw data. Given the limitations of an
environment with variable numbers of subjects, privacy issues, and the challenges of
personal data, however, the difficulty lies in training a generalized statistical model and
predicting the outcomes with machine learning techniques. Therefore, Formal Concept
Analysis can be an alternative means of making a general model and identifying specific

situations from the logs.

Formal Concept Analysis (FCA) provides a way to find information in data with
concept-based data analysis [21]. Given the limitations of collecting life logs for a
personalized statistical model, as noted above, the properties of FCA, such as not using
mathematical operations, but emphasis on recognizing and structural similarities, can
completely satisfy the conditions of life event detection. FCA defines a relationship which is
a triplet T = (0, A, R), where O is a set of objects, A4 is a set of attributes, and a relation or

incidence Ris R € 0 X A, and requires concept pairs (X,Y), where X € 0,Y < A. These



concept pairs are organized as a conceptual representation, called a ‘concept lattice,” which
consists of partially ordered sets, which then helps to extract information using the
relationships between objects and attributes [21]. To apply FCA for life event detection,
FCA will use concept pairs (Life event, Life logs), which are extractable from knowledge-
based definitions of these relationships. A mobile cooperative system will enable the
automatic construction of the concept pairs, navigate a concept lattice, and finally detect a

life event in real-time.

The main goals of the proposed life event detection system are:
1) To provide a framework for real-time personal monitoring.
2) To integrate, process and store personalized latent features.

3) To combine heterogeneous data streams into one life event.

The constructed system will determine whether Formal Concept Analysis is applicable in
detecting life events. The evaluation will demonstrate whether a general life event model
can be applied to each individual in a sample and whether concept data analysis can be
substituted for statistical data analyses in life event detection. This research line is
meaningful because understanding human life events in real-time will help to provide more
user-friendly services in the fields of health care, smart homes, elderly surveillance, car-
human-relationships, or any user-related recommender systems. I believe that the
combination of context-aware mobile computing and Formal Concept Analysis will lead to

a powerful real-time event detection engine.



CHAPTER 2. RELATED RESEARCH AND SYSTEMS

Research into event detection, or into situation recognition that tracks an object and
extracts some meaningful semantics from this tracking has become popular. However, to
the best of my knowledge, there is no smartphone-specialized system to detect labeled life
events by tracking a human, collecting life-logs, and analyzing the logs in real-time through
a total directional approach, which spans from chronological observation and analysis of
user contexts to a prediction model [4]. One study, which uses sensory data and concept
analysis, tries to recognize situations in their modulated environments. This study’s
hypothetical example of an elderly person living alone in a sentient house illustrates the
usefulness of a versatile lattice-based model [8]. They re-demonstrated the model using
real-time human activity recognition in an indoor home environment by ambient sensors
[7]. Chien Chin Chen et al. have presented a generic framework LIPED and tried to model
the activeness trends of events using HMM-based life profiles. To model event activeness,
they aggregated a set of chronologically ordered document streams from different kinds of
information sources [22]. Jianshu Weng et al. demonstrated their life events detection
strategy by analyzing text stream in Twitter. They tried to filter a huge amount of
meaningless “babbles” in the text streams, and then analyzed frequency-based raw signals
of the words [23]. Changsheng Xu et al. analyzed broadcast sports video streams through
the web casting, and tried to detect personalized sports video events [24]. Yan Ke et al.
suggested a framework that contains a real-time event detector, which learns a cascade of
filters based on volumetric features. The event detector scans video sequences in space and

time, and tries to catch actions on real-world video sequences [25]. In contrast to the



approaches above, I focus more on a smartphone-centric, sensor-based system with that
uses practical, real-time and automated processes, which do not require any user
intervention. Given the limitations of collecting a sufficient quantity of life logs for a
personalized statistical model, I apply concept data analysis rather than using statistical

data analysis for an event prediction model.



CHAPTER 3. CONTEXT AND LIFE EVENTS

Since Schilit and Theimer [1] defined context, many researchers have tried
developing their own meanings for this term and have built context-aware applications
according to their definitions. Context in the work of Schilit et al. [1] is the location and the
identities of people within the surrounding environment. Similarly, Ryan et al. [2] refer to
context as location, environment, identity and time. The definition of context by A.K Dey et
al. [3] is information that characterizes the situation of an entity. Some other researchers
quote a lexical semantic definition of context such as “the circumstances that shape an
event.” [5] Therefore, to construct a context-aware mobile computing system, the distinct

meaning of my context needs to be first defined.

3.1 Definition of Context
Context is any components of the surrounding conditions of an entity or information
that describes the entity itself. Contexts represent relationships between an entity and the

circumstances that shape an event, as well as the status of the entity itself.

[ define context based on A.K Dey et al. [3] and Gerald et al. [5], and confine entity to
be persons. Particularly, the context in the life event detection signifies one piece of
multiple life-log streams. For example, life-log streams of “sleeping at home” will include
spatial data, temporal data, sensory data, and entertainment data, and contexts can be
latitude, longitude, venue, time window, time band, Unix long time, physical activity,

activity level, application and media usage etc. Therefore, the data that describes the



Algorithm 1 Context Change Detection Algorithm
Input: 7, =(F,F,.F,....F,)

// 1=i<288, n = the number of context factors
Output: TRUE, FALSE

1: if C-C-D is tracking context change
2: Calculate distance between 7, and 7;;

// T, = Target time-window,

// T. = Incoming time-window
3: if distance > threshold
4. return TRUE;

// Detect context change, and stop tracking

5: else if maximum tracking time up
6: return TRUE;
// Stop tracking
7: else i++;
8: return FALSE;
// Wait next time-window, keep tracking
9: endif

10: else if 7, == tracking event factor
11:  Set 7, to target time-window 7, , start tracking;

12: i++;
13: return FALSE;
14: endif

surrounding conditions of a person’s life is called context, and the contexts finally organizes

a given life event.

3.1.1 Beyond Context

Given the definition of context above, estimating a method for how to detect a life
event from multiple data streams is possible. A fundamental assumption of the life event
detection is that a day is composed of different life events, and the life events are
characterized by different sorts of contexts. Hence, analyzing a day with transitions
between sets of contexts can give a fresh insight into an approach for events detection.

Algorithm 1 suggests one way to understand the transitions between contexts.



Table 3.1 Examples of Incoming timewindow

Time Activity Step . . App Time
Window Level Count Media | Setting Count Band Week
20141004_173 0 0.049893 0 0 0.007912 2 1
20141004_174 0 0.049893 0 0 0.049299 2 1
20141004_175 1.375 0.423665 0 0 0.000693 2 1
20141004_176 | 1.307692289 | 0.049893 0 0 0.049299 2 1
20141004_177 | 1.333333373 | 0.049893 0 0 0.000693 2 1
Table 3.2 Example of Target timewindow
Time Activity Step : . App Time
Window Level Count Media | Setting Count Band Week
201410041 0 0.049893 0 0 0.000693 0 1

Tables 3.1 and 3.2 are some life-log samples. To detect context changes, I suggested
one method in smartNoti research [4] that calculating a L2-norm Euclidean distance

between two timewindows and then checking whether this was over a dynamic threshold

of V2. The distance V2 means that at least two discrete factors or combination of discrete

and continuous factors had changed (i.e. /(1 — 0)2 + (1 — 0)2). Specifically, V2 can signify
a variation from standing still to walking, standing still to 145 steps, or combination of
media usage and sound setting change etc. The distance V2, however, does not mean an
absolute standard, but It is first assumed as an initiation value and then dynamically

changed according to user’s situations.

To gain insights about how to detect a human life event, | randomly chose one day
from all my experiment [4] and tried to express the context transitions by drawing
distances. Figures 3.1, 3.2, 3.3 and 3.4 show the result of comparing the context distance to

a datum point (timewindow) at 12:00 am. Each point in the x-coordinate indicates the



frequency of collecting a life log matrix, a period of fives minutes, and the y-coordinate

shows the distance from the datum point.

4.5 T - - - 5
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Time Window Time Window

Figure 3.1 Context Transitions of Subject1 Figure 3.2 Context Transitions of Subject2
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Figure 3.3 Context Transitions of Subject3 Figure 3.4 Context Transitions of Subject4

The fluctuations in each plot indicate that life events occurred (i.e. studying, going to class,
having lunch, walking, sleeping etc.), maintained and then changed. Though it is difficult to
come up with specific names of the life events, | surmise from these figures that the same y-
values from the target timewindow indicate the same life event, and different y-values
signify the different kinds of events. Therefore, the five minutes-based context analysis will

give the solution for extracting one life event from multiple data streams.



3.2 Definition of Life Event

Life events are made up of a collection of low-level heterogeneous data streams called
contexts. Combining low-level contexts from multiple sensors and smart phones makes it
possible to extract life events occurring over certain period of time ranging from several

minutes to hours.

To the best of my knowledge, there has been no general definition of life events in
the field of multimedia computing. Therefore, the research [6] in which I was involved
made an attempt to define a general meaning of life events. Compare to previous work [6],
this research is focused on combining a larger number of heterogeneous data streams of
short-term accumulated contexts, such as spatial data, temporal data, sensory data, and
entertainment data than those of [6]. Such life events could include “sleeping at home”,

“staying at home”, “playing with a phone”, “web surfing”, “watching a movie”, “going to

class”, “dining”, and “having lunch” etc.

Given the experiment in Chapter 3.1.1, detecting an event can be achieved by an
accumulated contexts matrix of five minutes. Each context X;, X,, ..., X;5 in Figure 3.5
indicates the surrounding conditions within the minutes, and combines these accumulated

contexts to describe the high-level event, named “study”. [ apply Formal Concept Analysis

Education

IEEE LAB,
WIONE 060011:59 ek : Java Clry L
DATLAB Education

D Time band Week/end Activity Step Venue List Venue Venue App Media Taking Light Phone Y
Level Count Category Name Usage Picture Sensor Setting

Figure 3.5 Life Event of a timewindow
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in detecting processes and try to define relationships between life events and attributes

Xl’ Xz, ey X13.
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CHAPTER 4. CONTEXT-AWARE MOBILE COMPUTING

AK Dey et al. [3] defines a context-aware computing system as one that “uses
context to provide relevant information and/or services to the user, where relevancy
depends on the user’s task.” This definition is most applicable to mobile systems. I suggest
that context-aware mobile computing is more reactive to a user’s contexts and provides
more relational information and/or services to a user on their mobile device. To satisfy
these requirements, life events detection in context-aware mobile computing must seek to
automate understanding of the semantics of human behaviors and contexts with real-time
based processing and minimization of user interventions. In this chapter, the major

challenges in automated comprehension of human events are discussed. The challenges are:

1) What kinds of contexts have a decisive influence on events.
2) How we can obtain data on these contexts.
3) How we can process it into manageable data.

4) How we can extract a specific situation from the data.

4.1 Influential Life Logs

To identify what kinds of contexts have a decisive influence on events, collectable
data on mobile devices must be first identified. These data can be called a life log. Smart
phones can provide a low-level life log, or they can raise the low-level format to a high-level
life log by processing it with APIs (i.e. google-play-service, foursquare) and then providing

these data. For example, smartphones makes it possible to collect low-level data such as

12



x,y,z values of an accelerometer sensor, the brightness values of a light sensor, latitude and
longitude values, temporal values, and some setting options (i.e. wireless connections,
network providers, sound setting). These low-level data provide a chance to obtain high-
level values such as physical activities (i.e. still, tilting, walking, running, bicycling, in

vehicle), activity levels [4], or venue data.

4.1.1 Life Logs Selection

Formal Concept Analysis is an instance-independent algorithm that predicts events
without model training [7]. It requires the pre-defined binary relationships between
concepts and attributes from a mobile device to build and navigate a concept lattice.
Therefore, ambiguous definitions of relationships can give rise to uncertain life events

detections.

Due to the limitations of collectable data in smart phones, all features that can be

gathered from the device must be first considered for the concept lattice. In order to obtain

=
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Figure 4.1 Activity Transitions of subject1 Figure 4.2 App Transitions of subjectl
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more accurate results, however, processes that evaluate the validity of features and then
exclude inappropriate features are required. An experimental validation and heuristic
knowledge are together able to help finalize these features. While the experiment of
Figures 3.1, 3.2, 3.3, and 3.4 used all collectable features from a smart phone, the results in
Figures 4.1 and 4.2 were also gained by only using activity and application usage based on
Algorithm 1. The results signify that activity, application usage, and temporal contexts are
substantially influential features for the life events of users. From a heuristic perspective,
location related features are very significant as well. As demonstrated in the work of Mittal
et al. [8] and Seth [9], location features play a key role in deciding events. Hence, to the
exclusion of some well-used location categories, I additionally consider the “home”
category as a location feature in this work by automatically catching a user’s home location
and trying to detect home-related life events. Like the home category, light sensor values,
media usage, the number of pictures taken, and the sound setting from the smart phone
will have an impact on our understanding of a user’s real-time situation. However, data
from calendar applications are excluded here. The work in [9] substantially depended on
the calendar data to detect life events such as “meeting”, or “attending class/seminar”. I
have strong doubts about the credibility of the calendar data due to people’s different use

habits of the calendar. Table 4.1 shows life logs that are used to detect life events in this

paper.

4.2 Life Log Collection
Automated data collection without user intervention is required for life events

detection using real-time based, context-aware mobile computing. Extending the smartNoti

14



framework of the previous work [4] will enable this automated data collection. The logging
layer of smartNoti is separated from the architecture of the notification system [4] entirely,
and smartNoti is now specialized to collect the context factors listed in Table 4.1. Venue list,
venue category, venue name, brightness, and number of photos taken are added to the new

version of the data collector.

Table 4.1 Selected Life Logs

Sensor Device Attribute Description
Standing still, tilting,
Physical Activity walking, running, bicycling,
Accelerometer Mobile Phone n vehicle
Activity Level | Theaverage score of
physical activities
Step Count The number of steps
Latitude e.g. 33.64364
Longitude e.g.-117.841286
GPS Mobile Phone Venue List Java City Kiosk
Venue Category Food
Venue Name Café
Light Mobile Phone Brightness 0-1000
Time Band Dawn, morning, afternoon,
evening
Week/end Week or weekend
Mobile Data Mobile Phone Applica.tion Usage Application usage list
Media Usage True or false
Taken Photos The number of taken photos
Sound Setting Silence, vibration, bell
Unix Long Time 1421275220009

This newly developed data collector is continuously run in the background of an
android platform, collects life logs, processes the low level data, and sends them to a back-
end server every 5 minutes frequency. For data regarding the battery consumption of a
smart phone and the lack of high-level information in the collected data, the data collector

provides an environment to join different types of APIs (i.e. google-play-service,

15



foursquare), which are optimized for these issues, control the battery usage, and create

high-level features.

4.2.1 Automatic Home Detection

As one feature of the location category, “home” plays an important role in detecting
life events such as “sleeping at home” or “staying at home”. To pursue an automated
awareness system, the data collector does not request a user’s manual intervention for
home detection, but it does utilize at least five days’ worth of user logs. Algorithm 2
suggests one way to detect a user’s home location. It does not counteract all variables that
influence the user’s home location such as traveling and working at night, but rather
focuses on general cases and then tries to identify whether the system can automatically

detect the user’s home.

Algorithm 2 Home Detection Algorithm
Input: x;, y;
// x; is latitude; and y; is longitude;
// 1=i<5x288,5 days data
Output: x,y //home GPS
1: if the number of GPS data > 5 X 288 // 5 days data
2: Load 5 days’ GPS data;
3: Extract data between 13 <i < 84;
// Data between 1:00 am and 7:00 am
4 Cluster data at most 5 groups;
5: Vote the largest cluster;
6: Randomly pick one set of (x, y);
7.
8
9

: return (x, y);
: else
: return null;
10: endif

16



5 x 288 of Algorithm 2 represents that we collected five days worth of data and that
data on events are collected in five minutes intervals. I heuristically choose a five day
period and the time range 1:00 am to 7:00 am. The system selects, at most, five different
places between these times and chooses the largest cluster among them, which identifies
the most frequently visited places. The method used to cluster five different groups is
similar to the hierarchical clustering algorithm (i.e. Agglomerative). First, the distances
between all GPS points are calculated. Given that the hand-held GPS device is accurate, I set
the clustering point 50 meters apart from each cluster. The distance is calculated based on
a basic formula in [10], which uses the haversine formula to calculate the grate-circle
distance between two points, where R is earth’s radius, ¢ is latitude, xis longitude, and a is

the haversine formula.

R = 6371000, ¢, = latitude; ¢, = latitude, (D

A ¢ = latitude, — latitude,, AN = longitude,; — longitude, (2)
a = sin?(a ¢ +2) + cosgpyX cosP,X sin?(Ax+ 2) (3)

¢ = 2 xarctan(vavl —a),d = RxC (4)
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Figure 4.5 Clustered GPS of Subject 1 at Figure 4.6 Clustered GPS of Subject 2 at
between 1:00 am and 7:00 am between 1:00 am and 7:00 am

Figures 4.3 and 4.4 show the distribution of GPS points between 1:00 am and 7:00
am over five days. | assume that one group of points in each figure might be a users’ home
GPS. Though the above figures show widely spread GPS points, these points might actually
be included into the same cluster. Therefore, given variation in GPS accuracy or user’s life

patterns, Algorithm 2 can help to detect one specific home GPS.

Figures 4.5 and 4.6 are the clustering results for Algorithm 2. Each color in Figures
4.5 and 4.6 indicates the groups. While subject2 shows only one cluster of GPS points,
subject1 shows five GPS point clusters. The former result is because of the variation in GPS
accuracy and the latter result is from the user’s life patterns at these times. However, with
voting being largest cluster, the system can get one correct home GPS from Figure 4.5. In

the case of Figure 4.6, the system randomly selects any one of them.

In this paper, the purpose of home detection is to get one important feature of

location categories and then to check how well the system can detect home-related life
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events. Therefore, considering other variables that help identify the user’s home location

are excluded, but will be handled in future work.

4.3 Context Matrix, “timewindow”

The processing of collected life logs into a manageable data format can aid in life
events detection. The context matrix, called “timewindow”, enables unstructured heterog-
eneous data to have a structured format and then enables of them to be analyzed in a
chronological way. This is possible by segmenting each collected data streams into five
minutes intervals and then building timewindow. Figure 3.5 shows one labeled timewindow
that is arranged by chronological order. Each piece of the datastreams are made up of one
timewindow per five minutes interval, and these context matrices facilitate the handling,
comparing, and analyzing of user’s situations with each other. In general, timewindow is a 1
X N matrix, which divides a day into 288 windows. Processed context data assembles as

one matrix every five minutes and then it is analyzed (i.e. labeling).

4.4 Methods for context awareness

Given the limitations of an environment with variable numbers of subjects, privacy
issues and the challenges of personal data, the difficulty lies in training a generalized
statistical model and predicting outcomes with machine learning techniques. Therefore,
Formal Concept Analysis can be an alternative means of making a general model and

identifying specific situations from life logs.
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4.4.1 Formal concept analysis

Formal Concept Analysis was introduced by Wille et al. [11] in 1982. They insisted
that FCA organizes structural similarities from relationships between an object and its
attributes as partially ordered sets, and builds a graphical representation of knowledge,
called a Concept Lattice, to visualize the structure and then navigates it to retrieve a result.
Therefore, FCA does not need to use any statistical calculations, but rather uses the
structural similarities to produce results, even in uncertainty. Given the limitations of
collecting life logs for a personalized statistical model, as noted above, it is still possible to
efficiently predict some life events. In this chapter, the basic definitions of Formal Concept

Analysis and its application to life events detection are discussed.

A context is represented by a triplet T = (0, 4, R), where O is a set of objects, 4 is a
set of attributes, and a relation or incidence R is R € O X A. Each node in the Concept
Lattice is a pair (X,Y), where X <€ O is called extension and Y < A is called intension. Each
pair satisfies a relation. i.e. :

X={x€eO0|Vye€eY,yRx} (5)

Y={yeA|vx€X,yRx} (6)
A set of these pairs is called the concept. Between concepts, partial order is defined as in
(7). The Concept Lattice is now drawn as a Hasse Diagram, which has an order-relation as
in (7).

X, Y1) <X, 1) if X1 €X, © Y, 2V, (7)
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Table 4.2 Sample Cross Table of Life Events and Attributes

Location Physical Activity Time
Attributes _ % oo | oo | o0 Slw3| 3| &
) 3 v o . = k= E | g9 | EAQ| XL <
= S = s | = | 2 £ | T |BQEF I ETIHY
1) = T o] A =~ = S =R I w A [ o - P
T | S|~ | 7 g S| 2 |R2E2E2F2
Life Events & | e S|~ 3|<d| 2%
Sleeping X X X X
Staying at home X X X X
Studying X X X X X
Exercising X X X X X X X X
Dining X X X

To apply Formal Concept Analysis to life events detection, binary relationships

between objects and attributes must be first identified. Specifically, I set objects and

attributes to life events and life-logs, respectively, in the FCA. For example, Table 4.2

describes the simplified relationships of life events and their attributes. An empty cell

shows that the corresponding life event does not have that attribute and a cross indicates

that the life event has the attribute.

| Morning Hém Still|

Figure 4.7 Concept Lattice Obtained for Table 4.2
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With these relationships and the partial order relation (7), the Concept Lattice can
be constructed as in Figure 4.7. The Concept Explorer software [12], which is a tool for data
analysis based on Formal Concept Analysis, provides a function to draw this Concept
Lattice. This figure shows not only the partially ordered concept pairs, but also the generic
and specific concept relations in the lattice as well. According to the relation (7), a concept
closer to the top indicates that it is more specialized, (i.e. closer to a specific object), and the
opposite direction shows that it is more generalized (i.e. has more attributes in a concept
pair (X,Y)). From these relations in the lattice, a method for detecting a life event can be

inferred.

Algorithm 3 Algorithm to navigate a Concept Lattice

Input: incoming attributes Y, Concept Lattice CL
// n is the number of attributes from a smart phone
Output: Possible Life Events or Unknown Event
1: Count = all possible concepts of CL;
2: detectedEvent = null;
3: for each concept pairs (X,Y) < Count
4: ify cy,
5: detectedEvent = X;
6: return detectedEvent;
7: endif
8: endfor
9:if detectedEvent == null
10: return “Unknown Event”;
11: endif

An algorithm in [7], which is used to navigate the lattice for activity query, can help
to detect a life event in the Concept Lattice. I applied the algorithm to my data to navigate
events and life log pairs. With the constructed Concept Lattice and incoming attributes

from a smart phone, the system navigates across all nodes and starts searching for a life
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event. The backtracked depth first search is used to traverse the lattice. Figure 4.8 shows
the root in detecting “Sleeping” when attributes “Home”, “Still” and “Dawn” are given.
Algorithm 3, however, only can find a completely matched life event. Therefore, it does not
infer any events when certain attributes, such as “Home”, “Still”, and “Afternoon” are given.
In this case, the algorithm would returns “Unknown Event”. For improving the detection
accuracy and diversifying the life events detection of Formal Concept Analysis, more
concrete attributes must be defined and a more detailed discretization of these attributes is

necessary.

Sllill
>
[Vor

~

Sleeping

=}

Figure 4.8 Lattice Navigation for Life Event Detection

4.4.2 Discretization

As discussed in Chapter 4.4.1, Formal Concept Analysis explicitly assumes that
relationships between objects and attributes are binary, whereas some attributes among
collected life logs, such as activity level, brightness, application usage, and taken photos are

continuous values. Therefore, I use a symbolic representation of time series, SAX, which
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allows for distance measures to be defined by a symbolic approach that lowers the bound
of the corresponding distance measures defined in the original series [13] and tries to

convert these continuous values to discrete values.

Once continuous data are transformed to Piecewise Aggregate Approximation
(PAA), SAX can produce more discrete presentations. The first condition for easily
achieving the discretization technique, PAA, assumes that normalized continuous values

will have a Gaussian distribution [14].
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Figures 4.9, 4.10, 4.11 and 4.12 show the normal probability plots of the cumulative
distribution of each value. The highly linear nature of the plot indicates that the data
follows a Gaussian distribution. Though the figures above do not exactly show their
linearity due to their small amount of data, one month worth of data, [ assume that these
continuous features will finally follow a Gaussian distribution [26]. Lin et al. [13] define a
“breakpoint as a sorted list of numbers B = p; f,_; such that the area under a N(0,1)
Gaussian curve from S; to ;41 = 1/a where a is equal sized areas under Gaussian curve,
and f, and 3, are defined as —oo and «.” Table 4.3 is a lookup table that showing the
division a Gaussian distribution by breakpoints. It gives breakpoints that can divide a

Gaussian distribution for values of a between 3 to 10 [13].

5 “ 3 4 5 6 7 8 9 10
By 043 | -067 | -084 | -097 | -1.07 | -115 | -1.22 | -1.28
B, 0.43 0 025 | -043 | -057 | -067 | -076 | -0.84
Bs 0.67 0.25 0 018 | -032 | -043 | -0.52
By 0.84 0.43 0.18 0 014 | -0.25
Bs 0.97 0.57 0.32 0.14 0
B 1.07 0.67 0.43 0.25
B, 1.15 076 | 052
Bs 1.22 0.84
Bs 1.28

Table 4.3 A Lookup Table that Contains the Breakpoints to Divide a Gaussian Distribution
for Value of a from 3 to 10
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level = the normalized result of a continuous value (8)

mean = average of a continuous value (9
std = standard deviation of a continuous value (10)
PAA = (level-mean) (11)

std

Once the breakpoints are obtained as in Table 4.3, the PAA of each continuous value can be
calculated by (11). These PAAs match up with the range of Table 4.3. For example,

assuming that the chosen number of discretized ranges is three, a PAA coefficient will find

where it can be included between PAA < —0.43,—0.43 < PAA < 0.43, and 0.43 < PAA.

Activity Level Application Count Brightness Taken Photo
a=5 a=4 a=3 a=4
Motionless No Use Low No Use
Low Low Medium Low
Medium Medium High Medium
High High High
Very High

Table 4.4 Discretized Ranges of Continuous Values
Considering the influence of activity level and the types of physical activity, such as
standing still, walking, running, bicycling, or a vehicle, in context transitions, I give a weight
more on activity level by subdividing it into five parts. In the case of brightness, the range
“No Use” is excluded as the light sensor is continually turning on. To give less weight than
the activity level, I divided application count and taken photo into four parts. Based on the
breakpoints in Table 4.3 and the discretized ranges in Table 4.4, Figures 4.13, 4.14, 4.15
and 4.16 show the results of first the five samples of continuous values by the SAX

discretization.
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CHAPTER 5. LIFE EVENT DETECTION

In this chapter, I introduce a systematic approach to detect life events. For real-time
based processing and minimization of user interventions, this system covers both front-
end and back-end of the life event detection, and interacts with each in real time. Therefore,
the system can be more closely reactive to a user’s contexts and identifies more relational
information to detect life events on their mobile device. To follow the requirements of
context-aware mobile computing, discussed in chapter 4, selected life logs are collected,
and the “home” category of location features are automatically detected and then added to
them. The system generates a timewindow every five minutes based on collected life logs,
and identifies a life event in the timewindow, by applying SAX discretization and Formal

Concept Analysis.

Life events can generally be divided into two types; past independent events and
past dependent events. Past independent events can be directly detected by using only one
timewindow, but past dependent events must consider past life logs and find some links

between the past and present. Table 5.1 shows some example events.

Past independent events Past dependent events
Standing Still Walking Watching a Movie Exercising
Running Bicycling Lunch Dining
In vehicle Studying Shopping Toileting
Playing with a Phone | Sleeping Traveling
Staying at home Web Surfing
Chatting Meeting

Table 5.1 Past Independent Events and Past Dependent Events
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1 | afternoon | week | 0.0 | still 0 education | 0 | false | 32.71| 0 | silence
2 night week | 0.8 | still | 78 | building | 1 | false | 239 0 bell
3 | afternoon | week | 0.0 | still 0 education | 0 | false | 4.221 | 0 | silence
4 night week | 1.66 | run | 532 | building | 1 | true | 6.03 | 0 bell

Table 5.2 Life Log Samples

The first row in Table 5.2 shows that a user is staying at school without movement
and not using a smart phone at that moment. This may signify that the user is now studying
or doing something study related. However, the second row data do not intuitively indicate
a life event. Though it shows some step counts, activity type is standing still, which means
the user had worked within the last five minutes but their current status is standing still. It
also shows that now the user is in a building and the mobile phone’s sound setting is bell.
Therefore, the user might be in the toilet because of the activity patterns, but it is also
possible that the user is in an elevator or has just arrived at an office. While the second
sample needs some past data to find certain clues for a current life event, the first sample
can predict that the user is doing some study related works. In this thesis, I try to focus on
detecting past independent life events, such as the first row in Table 5.2, and to identify
whether a general life events model can apply to each individual. To help this process, a

rule based filtering mechanism is also necessary.

Standing Still Walking

Running Bicycling

In vehicle Studying

Playing with a Phone Web Surfing

Sleeping at Home Sleeping at Other Place
Staying at Home

Table 5.3 Candidates of Detectable Life Events
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Playing with Phone | X | X | X | X [ X | X | X | X X|x|x XXX |Ix|x|x|x|x|x|x|x|x|[x|x|x X IXx|x|Ix|x|x|x|x|x
Sleeping at Home | x X[ x]|x X X X|Xx X X X XX
Sleeping at Others | X X x]|x X XIx|x|x|x|x|x|x|x X x|x X X X X|x
Staying at Home XIx|xIx|x|x|x X x|x X X x|x|Ix)x|x X X|x

Table 5.4 Cross Table of Detectable Life Events and Attributes

5.1 General Life Event Model

Table 5.3 shows the candidates for detectable life events in this system. I assume
that a general life events model can be used to detect each individual’s life events as in
Table 5.3. Therefore, a cross table, that defines relationships between objects and

attributes, Table 5.4, is first defined as the general model. This table was built by three

subjects’ two months worth of data.

ECE fv=——

/|

|App No Use|

Weekend |

4 ArtsEnt

Media Use

Ap App Low

Stud] Staying at Home [it| Sleeping at Others j at Home

N\

Figure 5.1 Concept Lattice Obtained for Table 5.4
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Finally, a concept lattice can be constructed by the cross table as in Figure 5.1. This lattice
contributes detecting the five kinds of past independent life events, such as “studying”,
“playing with a phone”, “sleeping at home”, “sleeping at other place”, and “staying at home”.
Once the concept lattice is constructed as the general model in the back-end server, the

system starts navigating the lattice with incoming attributes and returns the result to the

front-end smart phone.

5.2 Rule-based filtering

Rule-based filtering is a method that can help to filter life events based on pre-
defined rules. Specifically, it is useful in detecting straightforward events and hierarchical
events before or after navigating a concept lattice. Straightforward events are signified by
“standing still”, “walking”, “running”, “bicycling”, and “in vehicle” in Table 5.3. Because life
event detection identifies one event for every five minutes, these events are hard to detect
if the system only uses a concept lattice for the detection process. For example, if a user
walked, ran, and rode a bicycle within that time, the concept lattice cannot identify what
event is the major one. “Web surfing” is an example of a hierarchical event. To detect this
sort of a specific event, the cross table must have not only the application usage count, but
also the application categories. However, it is difficult to categorize used applications into
specific named groups because of the lack of descriptive information in the android
applications. If such information were available, it would be possible to distinguish
between simultaneous hierarchical events, such as between “playing with a phone” and

“surfing the web”. Rule base filtering can help to distinguish between these events and to

avoid unnecessarily time-consuming lattice navigation.
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Algorithm 4 Algorithm for Rule-based Filtering

Input: incoming attributes Y,
// n is the number of attributes from a smart phone
Output: Possible Life Events or Unknown Event
1: Array = getActivityType(Yy,);
2: Array = desc order by activity level;
3:if Array[0] == still or tilting or unknown // rule 1.

4: // navigate a concept lattice
5: detectedEvent = Algorithm 3;
6: if detected Event == “playing with a phone” // rule 2.
7: Check the package name of foreground applications;
8: if package name == internet related applications
9: return “web surfing”;

10: else

11: return “playing with a phone”;

12: endif

13: else detectedEvent ;

14: endif

15: else // rule 3.
16: return Array|0];
17: endif

Algorithm 4 shows the rule-based filtering of life events detection. The navigation
algorithm of a concept lattice is also contained in this mechanism. The system first
retrieves incoming attributes, sorts activity types out, and then orders these types by their
activity level. Then, the system checks the first rule “navigate a given concept lattice when
the major activity type is “standing still”, “tilting”, or “unknown””. After that, the system
checks the second rule “identify whether the foreground application is an Internet related
one (i.e. google, browser, safari, chorm, firefox) when the detected event is “playing with a

nn

phone””. If the second rule does not satisfy the conditions, the system immediately returns

»n o«

a first ordered activity, such as “walking”, “running”, “bicycling”, or “in vehicle” according to

the third rule.
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Figure 5.2 System Architecture; upper architecture is front-end, bottom architecture is
back-end system
5.3 Architecture

Figure 5.2 shows the architecture of the life event detection system. The front-end
architecture is entirely separated from the architecture of smartNoti [4] and manages the
data collection, interaction with back-end, and event display. The system back-end
processes the collected data, performs the event detection process, and returns a final
result to the front. These two parts communicate with each other every five minutes.

Figure 5.3 shows the entire system flow.
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Figure 5.3 System Flow
5.3.1 Front-end System
The front-end contributes to two main tasks: data logging and event display. The
logging part integrates six different categories: 1) activity (physical activity and number of
steps), 2) location (latitude, longitude, venue list, venue category and venue name), 3) time
(week, weekend, or dawn, morning, afternoon, evening), 4) logical (calendar), 5)
entertainment (audio, video, application, photo), and 6) system (silence, vibration, bell).

Each attribute has own receivers and these receivers run in the background in real-time.

To obtain more high-level data in the front-end, physical activity, GPS, and time
receivers go through one more step. The physical activity receiver connects the
ActivityRecognition API of the google-play-service whenever accelerometer sensor values
indicate different patterns of x,y,z, sends the accelerometer data, and then receives the
physical activity types from the API. These received activity types are converted to numeric
values according to their intensity, and then calculated as an average of the accumulated
physical activities of all five minutes range in the activity level generator. The GPS receiver
connects the foursquare API with current latitudinal and longitudinal data every five

minutes. It then immediately receives venue list, venue category, and venue name from the
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API. The time receiver generates time-related features, such as week/weekend, time band,

and unix long time with the time features generator.

The collected data for each receiver are transmitted to the data ingestion layer of
the back-end side through the data sender. The data sender sends the data as a formulaic
type, timewindow, from the timewindow generator. The timewindow generator reorganizes
the collected data every five minutes and makes the data easy to process in the back-end.
The data receiver receives a detected life event from the data export layer of the server,

and then this event is displayed on its user’s smartphone.

5.3.2 Back-end System

The data ingestion layer receives a timewindow every five minutes from the front-
end. Because I designed the timewindow as a form of the JSON object, which is used on the
web, I set up the data repository by using an open-source document database MongoDB.
This database is at the web-scale and is not a fixed-scale schema, and is therefore suitable
for reusing the JSON. As a result, the data ingestion layer can wholly insert a timewindow
into the repository without decomposing the timewindow. Figure 5.4 shows a database

sample.

The data processing layer tries to detect a life event in a timewinow. First, it checks

whether the database has the home GPS. After checking the home data, it now checks the

pre-defined rules. According to these rules, as in chapter 5.2, the layer can immediately
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timewindow: {
personicle_id: “MAC ADDRESS”,
timewindow _id: “20150429 201",
time_band: 3,
long_time: 1429314020,
week: 0,
type: “unknown”,
activity_level: 0.0,
activity_type: "{standing still=6}",
step_count: 0,
latitude: 33.6436417,
longitude: -117.8413306,
venue_list: “[UCI IEEE Lab, DAT Lab, Java City Kiosk]”,
venue_category: “[education, education, food]”,
venue_name: “[Lab, Lab, Café]”,
app_count: “[com.android.launcher]”,
app_duration: “[8]”,
media: 0,
light: 142.92592592592592,
photo: 0,
setting: 0,

}

}

Figure 5.4 Database Sample; time_band (0: dawn, 1: morning, 2: afternoon, 3: evening), week
(0: week, 1: weekend), media (0: false, 1: true), setting (0: bell, 1: silence, 2: vibration)

catch the physical activity events in the timewindow or continue the process of the formal

concept analysis. The data export layer helps to send these results.
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CHAPTER 6. EXPERIMENTAL VALIDATION

To demonstrate that Formal Concept Analysis is useful for automatically detecting
past independent life events and to show whether a general life events model can apply to
each individual in a sample, | implemented the system suggested in chapter 5 on both an
Android smartphone and a server. As in longitudinal study, I carried out user tests for

about two months with three people who installed the application.

6.1 Implementation

The life event detection system is optimized for Android 4.4. The Android prototype
has been tested on a Samsung Galaxy S4, Motorola Moto x (Gen 1), and LG G proZ2. This
front-end system runs in the background in real-time, collects life-logs, interacts with the
back-end server, and shows the timeline of detected life events. Due to the API’s connection
for high-level data, test users must always be connected to the network (i.e. 4G, LTE,
wireless) and must have the “location” turned on in the phone’s setting. The back-end
server has been constructed on Ubuntu 12.04.3 and reacts to front-end requests in real-

time.

All detection processes start running automatically with the installation of the
android application. Detected events are shown in the form of a timeline in listview within
an Android application. Figure 6.1 shows the implementation of the life event detections in
an android smartphone. If the cross table does not contain a relationship between

incoming attributes and pre-defined events at all, the system returns an empty event, “[]”,
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and if the structural patterns of incoming attributes are similar to the pre-defined
relationships, but the concept lattice still cannot find one converged event, the system

displays “unknown”.

@ m QOF “ @1 @M QO “ @1 @M
@ Life Logging @ Life Logging @ Life Logging

2015.03.19 2015.03.19 2015.03.19

unknown unknown I
unknown unknown [Staying Home]
in vehicle 0 1}
in vehicle 0 [Staying Home]
unknown I unknown
in vehicle [Staying Home] unknown
in vehicle [Staying Home] walking
unknown [Staying Home] walking
walking [Staying Home] walking
walking [Staying Home] [Studying]

— — = — [ = A () !

Figure 6.1 Examples of the Life Event Detection in the Android Application

For future works, [ added a self-reporting function that can be used to provide a corrected
life event if the event is wrong. An analyst can click each row of the listview and select a
correct event as shown in Figure 6.2, and then the Android application sends the result to
the server, and finally the server adds the result to the database. This information will be

used to analyze past-dependent events, such as “shopping”, “Dining”, “Watching a movie”

etc.
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Figure 6.2 Self-correction of the Wrong Detected Life Event

6.2 Evaluation method and experimental results

To demonstrate the performance of the automated life events detection system, I
first evaluate the applicability of FCA in terms of the accuracy of life event prediction. Also,
I evaluate a generalized life events model of FCA with one-week worth of randomly
selected data, and then I determined whether the model could be applied to each
individual. I exclude the straightforward events and hierarchical events detection in these
experiments, since the prediction algorithms do not affect them. The straightforward
events can only be retrieved by google-play-service (ActivityRecognition) and the

hierarchical events need preceded detection process, such as “playing with a phone.”
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Total Prediction Accuracy
Playing with a 1030 1030 1
Phone
Sleeping at Home 1453 1453 1
FCA Sleeping at Other 277 277 1
Places
Staying at Home 2579 2579 1
Studying 3631 3631 1
Playing with a 1030 700 0.6796
Phone
. Sleeping at Home 1453 1453 1
Linear Sleeping at Other
Classifier ping 277 193 0.6968
Places
Staying at Home 2579 2579 1
Studying 3631 2967 0.8171
Playing with a 1030 804 0.7806
Phone
Sleeping at Home 1453 1447 0.9959
KNN Sleeping at Other
Classifier ping 277 275 0.9928
Places
Staying at Home 2579 2568 0.9957
Studying 3631 3595 0.9901
Playing with a 1030 1030 1
Phone
.. Sleeping at Home 1453 1453 1
Decision Sleeping at Other
Tree ping 277 277 1
Places
Staying at Home 2579 2579 1
Studying 3631 3631 1
Playing with a 1030 1030 1
Phone
Random g}eepmg a: g:}:ne 1453 1453 1
Forest eeping at Uher 277 277 1
Places
Staying at Home 2579 2579 1
Studying 3631 3631 1

Table 6.1 Prediction Accuracy of Each Life Event by FCA, Linear Classifier, K-Nearest-
Neighbor Classifier (K=1), Decision Tree, and Random Forest (Bags = 50)

Accuracy test. For showing that Formal Concept Analysis can substitute machine learning
techniques in detecting life events, I compare FCA to other benchmark supervised learning

algorithms, such as linear classification, knn classification (k=1), decision tree and bagged
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decision tree (bags = 50). The main purpose of this experiment is to show that FCA is
applicable for life event detection. Therefore, the optimizations of machine learning
algorithms are not an issue here. Using two months worth of data from three people, I first
filter only obvious samples of each life event through knowledge-based scanning.
Ambiguous samples are completely excluded from this experiment. Then, all the data is
shuffled and divided into training and test sets by a ratio of seventy percent to thirty
percent. [ extract general relationships between attributes and detectable life events from
the training data, make a general cross table for FCA as in Table 5.4, and also train the other
four machine learning models with the training data. Finally, trained models and FCA with
a cross table are tested by the test data. Table 6.1 shows results of the prediction accuracy
of each life event by FCA, linear classifier, k-nearest-neighbor classifier (k=1), decision tree,

and random forest (bags = 50).

Accuracy Precision Recall F-Measure
Person 1 0.7234 0.9614 0.7371 0.8344
Person 2 0.9569 0.9921 0.9482 0.9697
Person 3 0.9251 0.9976 0.9267 0.9608

Table 6.2 Performance of All Three People on Using a Generalized Life Event Model and the
Rule-based Filtering

Total Prediction Accuracy
Playing with a 224 209 0.9330
Phone
Sleeping at Home 416 230 0.5529
Person 1 Sleeping at Other 0 0 1
Places
Staying at Home 211 197 0.9336
Studying 332 245 0.7379
Unknown 83 47 0.5662
Playing with a 41 41 1
Phone
Person 2 | Sleeping at Home 335 334 0.9970
Sleeping at Other 0 0 1
Places
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Staying at Home 631 601 0.9526
Studying 192 175 0.9115
Unknown 103 95 0.9223
Playing with a 30 30 1
Phone
Sleeping at Home 436 346 0.7936
Person 3 Sleeping at Other 0 0 1
Places
Staying at Home 810 810 1
Studying 75 66 0.88
Unknown 11 8 0.7272

Table 6.3 Accuracy of Detected Life Events of Each Person

Applicability test. After the proof of availability of FCA in life event detection, now, I

perform an applicability test with one-week worth of randomly selected data and identify

whether the generalized model can actually be applied to each individual. This test also

shows how the model can correctly detect daily life events. In the case of undetectable life

events, which are not defined in the FCA cross table, I classify them as “unknown” events

and then check how many “unknown” events are detected. Table 6.2 shows the results of

the personal applicability test. Table 6.3 will help to understand why some results in Table

6.2 are relatively low. Precision, recall, F-measure, and accuracy are calculated by

following:

Positive (Predicted)

Negative (Predicted)

Positive (Actual)

True Positive (TP)

False Negative (FN)

Negative (Actual)

False Positive (FP)

True Negative (TN)

Table 6.4 Confusion Matrix

F —

Precision = ——. 1
recision = Zo——0 €Y
R ll = e 2
CC = TP X FN (2)
2XPrecisionXRecall
Measure = 3)

Precision + Recall
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P ~ TP + TN
CCUracy = rp Y FP+ FN + TN

(4)

6.3 Evaluation and discussion

As shown in accuracy test, Table 6.1, Formal Concept Analysis demonstrates that it
can substitute machine learning algorithms. The lattice-based model was built by manually
scanning the training data set, and the relationships between collected attributes and
detectable events were extracted based on knowledge about the events. No mathematical
calculations were used to predict the events, but only a knowledge-based relationship table
and concept lattice based on this were used. As a result, FCA, in common with the results of
decision tree and random forest in Table 6.1, shows 100% accuracy under a given
condition. It even has higher accuracy than linear classification and knn classification.
These results demonstrate that FCA can correctly detect life events once it has detailed

definitions of the relationships between events and their attributes.

Due to the proof of availability of FCA in Table 6.1, the applicability test with one-
week worth of randomly selected data was now performed based on Formal Concept
Analysis. To identify whether the generalized model can be applied to each individual, the
performance obtained from the one-week worth of data of all three people is shown in
Table 6.2. The extremely high performance, especially person 2 and 3 in Table 6.2,
represents that either the system has good performance for all people or the daily data of
them mainly has simple life patterns and most of their life events are one of the detectable
events. For analysis of the real performance, I calculated the accuracy of each detected life

events in Table 6.3. With regard to unknown event in this table, because the cross table
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»” o« »” «

only has “playing with a phone”, “sleeping at home”, “sleeping at other places

»” «

, "staying at
home” and “studying”, and the rule-based filtering additionally detects “standing still”,

»n” o« »” «

“walking”, “running”, “bicycling”, “in vehicle” and “surfing the web”, other latent detectable
events, such as “watching a movie”, “shopping” etc., which are not defined in the system,
are regarded as “unknown” event. Table 6.3 shows that five detectable events occupy
almost all the daily life events of the three people. Since FCA can detect life events pretty
well if a structural similarity between defined events and incoming events is similar, these
events can be detected with the highest prediction accuracy. Accuracy about “sleeping at
home” and “studying” of person 1 and 3, however, show relatively low prediction accuracy,
even if these are detectable events. These exceptional cases would happen due to some
irregular life patterns. For example, if people fall asleep in daytime, wake up late, study at
midnight, or study on weekend, FCA cannot detect these cases, which are beyond the cross
table relationships and the person 1 and 3 often show these irregular life patterns.
Therefore, except some irregular life patters, the generalized model can be applied to each

individual and the model can correctly detect daily life events. Especially, this model shows

the highest performance when the life patterns of people are simple and regular.

To deal with irregular cases and to avoid unexpected results, more detailed
discretized ranges need to be set up. Current four kinds of time-band, which are dawn,
morning, afternoon, and evening, show a limitation to detect “sleeping at home” when a
person wakes up late. It needs to be more subdivided, such as two hours or one hour
interval and check the life patterns more detail. The reverse geocoding information also

needs to be supplemented. Sometimes the closest venue does not match to current location
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if a person is looking around a shopping mall or a great mass of buildings is nearby him.
The location category also needs to be diversified for understanding more various life
events, and more concrete attributes, which can be extracted from smartphone, need to be
studied as well. Furthermore, a method how to harmonize Formal Concept Analysis with
other possible algorithms to diversify life events detection and increase the detection

accuracy will be discussed in future works.
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CHAPTER 7. CONCLUSION AND FUTURE WORKS

Automatically understanding a situation between human activities and their
surrounding contexts is a challenging problem. To extract a personalized life event in real-
time from the uncertain semantics of heterogeneous raw data, a system must use an
appropriate actuator, automatically collect influential life-logs, suitably process the logs,
and combine the processed data into one targeted event. Therefore, to be a generic life
event detection system, the system needs not only to cover all the conditions above, but
also to be opened for all environments in the real world. However, most research on event
detection has been confined a specific environment, such as Social Life Networking, video
streams, or artificially organized sentient locations. To overcome the limitation, I have
proposed a generic smartphone-specialized system, which can embrace all necessary
features (i.e. ubiquity, open environment, practicality, real-time, and automated processes).
Given the limitations of collecting life logs for a personalized statistical model, I applied
concept-based data analysis to life event detection. As a means of evaluating whether a
general life event model can be applied to each individual, and whether concept data
analysis can be substituted for statistical data analyses in life event detection, I
implemented the proposed system and tested it on three subjects over two months. The
results revealed that using FCA, in conjunction with other tested machine learning
algorithms, can be very effective, once cross table has detailed definitions of the
relationships between life events and their attributes. Furthermore, the experiment
showed that general life events can be applicable to all people if they have simple life

patterns. However, the results also indicated that detection performance is dramatically

46



reduced (i.e. has 20% lower accuracy) when life patterns are irregular cases with complex
patterns. To handle the unexpected cases, 1) more subdivided discretization must be
performed; 2) the accuracy of reverse geocoding needs to be increased; 3) finding more
concrete attributes, which might diversify the number of detectable events, is necessary;
and 4) combining other prediction algorithms, suitable devices (i.e. wearable sensors) and

useful APIs (i.e. photo tagging) must be considered.
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