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Abstract

Geographic Question Answering with Spatially-Explicit Machine Learning Models

by

Gengchen Mai

As an important part of Artificial Intelligence (AI), Question Answering (QA) aims

at generating answers to questions in natural language. With the advancement of deep

learning technology, we have witnessed substantial progress in open-domain question

answering. However, QA systems are still struggling to answer questions that involve ge-

ographic entities or concepts and that require spatial operations. In order to tackle these

challenges, this dissertation specifically focuses on the problem of Geographic Question

Answering (GeoQA) and develops a series of spatially-explicit machine learning models

to handle different GeoQA tasks. First, in Chapter 1, we discuss the challenges of an-

swering geographic questions and the uniqueness of GeoQA. A classification of geographic

questions has been presented to facilitate the development of GeoQA. Next, in Chapter

2 a spatially-explicit query relaxation model is presented to demonstrate the usefulness

of geographic information and spatial thinking in the geographic question answering and

query relaxation process. To develop a more generalizable approach for GeoQA and other

geospatial tasks, in Chapter 3, we present a general-purpose multi-scale representation

learning model for geographic locations which can be utilized in multiple downstream

tasks. It has been later on utilized to build a location-aware knowledge graph embed-

ding model for a knowledge graph-based GeoQA model in Chapter 4. Only relying on

points as the spatial representations for geographic entities is not sufficient to answer

many geographic questions that involve spatial relations such as topological relations

and cardinal direction relations. So in Chapter 5, we present a polygon encoder that

xx



can be used to answer multiple types of spatial relation questions. In the end, we draw

a conclusion by listing several challenges of GeoQA which have not been solved in this

dissertation and point out some future research directions. We hope this dissertation

can reveal the importance of GeoQA and demonstrate the usefulness of spatially-explicit

machine learning models on geospatial problems. We also hope GeoQA will become a

unique research domain and serve as an important part of Geographic Artificial Intelligent

(GeoAI) research.
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Chapter 1

Geographic Question Answering:

Challenges, Uniqueness,

Classification, and Future Directions

As the general introduction to this dissertation, this chapter introduces the problem of

geographic question answering (GeoQA) and investigates it from a conceptual perspec-

tive. We motivate the necessity of GeoQA by showing several challenging yet commonly

asked geographic questions that are difficult to answer even for the current state-of-the-

art question answering (QA) systems such as Google’s QA system. Then we discuss the

challenges and uniqueness of GeoQA compared with the common (open-domain) question

answering problem including various spatial representation manipulation, spatial opera-

tor interpretation and selection, spatial language variability, geometric uncertainty, and

vagueness of geographic information. Next, we review the current landscape of GeoQA

research based on which we provide a generic classification framework for geographic

questions. Several research directions are identified some of which are the focus of this

dissertation. Last but not least, we discuss the three major research questions and the
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synopsis of this dissertation. These three questions will, later on, be answered by Chapter

2 (RQ1), Chapter 3 (RQ2), Chapter 4 (RQ2), and Chapter 5 (RQ3). This chapter is an

extended version of the published paper shown in Table 1 by adding Section 1.8 which

provides the structure of this dissertation.

Peer Reviewed Publication

Title
Geographic Question Answering: Challenges, Uniqueness,

Classification, and Future Directions

Authors
Gengchen Mai, Krzysztof Janowicz, Rui Zhu, Ling Cai,

Ni Lao

Venue AGILE 2021: Geospatial Technologies: On The Verge Of Change

Editors Panagiotis Partsinevelos, Phaedon Kyriakidis, Marinos Kavoyras

Publisher AGILE: GIScience Series of Copernicus Publishers

Submit Date March 12, 2021

Accepted Date April 9, 2021

Publication Date June 8, 2021

Copyright Reprinted with permission from AGILE 2021

DOI https://doi.org/10.5194/agile-giss-2-8-2021

Abstract: As an important part of Artificial Intelligence (AI), Question Answering (QA)

aims at generating answers to questions phrased in natural language. While there has

been substantial progress in open-domain question answering, QA systems are still strug-

gling to answer questions which involve geographic entities or concepts and that require

spatial operations. In this paper, we discuss the problem of geographic question answer-

ing (GeoQA). We first investigate the reasons why geographic questions are difficult to

answer by analyzing challenges of geographic questions. We discuss the uniqueness of

geographic questions compared to general QA. Then we review existing work on GeoQA
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and classify them by the types of questions they can address. Based on this survey, we

provide a generic classification framework for geographic questions. Finally, we conclude

our work by pointing out unique future research directions for GeoQA.

1.1 Introduction

“Another example of a good language problem is question answering, like ‘What’s

the second-biggest city in California that is not near a river?’ If I typed that sentence

into Google currently, I’m not likely to get a useful response.”1 – Dr. Michael Jordan,

UC Berkeley [1]

Question Answering (QA) lies at the intersection of natural language processing

(NLP), information retrieval (IR), knowledge representation, and computational linguis-

tics. It aims at generating or retrieving answers to questions asked in natural language [2].

Question answering is an important part of artificial intelligence (AI) research [3] and

has recently permeated to our daily lives. Many commercial language understanding

systems or voice control systems are widely adopted by the general public such as Apple

Siri, Amazon Alexa, Google’s assistant, Xiaomi Xiaoai, and so on.

Generally speaking, question answering systems can be classified into three categories

based on the types of data sources [2]: unstructured data-based QA [4, 5, 6, 7, 8], semi-

structured table-based QA [9], and structured data source-based QA (so-called semantic

parsing) [10, 11, 12, 13, 14, 15]. Thanks to the recent development of multiple open

domain QA datasets such as HotpotQA [16], SQuAD Open [7], and Natural Questions

Open [17], research on unstructured data-based QA has made substantial progress [18,

19, 20]. Recently, we have also seen remarkable advancements in hybrid QA models

1Interestingly, now Google can correctly answer this geographic question based on reading compre-
hension over an Wikipedia article. Nevertheless, using reading comprehension to answer this kind of
geographic questions is problematic and suffers from data sparsity issue (See Section 1.2).
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which rely on different data sources, such as hybrid QA models based on both knowledge

graphs and unstructured texts [21, 22].

Although the performance gap between human’s and deep neural network-based QA

models has been significantly reduced on reading comprehension style QA tasks [4], we

still get a fairly poor performance when applying these models in the wild. Even com-

mercial QA products such as Google question answering system are struggling to answer

many simple geographic questions. Figure 1.1 shows several challenging geographic ques-

tions which shows the limitation of Google QA system that is powering their search.

In this work, we define geographic questions as questions that involve geographic en-

tities (e.g., Los Angeles, Eastern Sierra), geographic concepts (e.g., feature types such

as Building, City, State), or spatial relations (e.g. near to, north of, between) as parts

of the natural language questions. Note that this definition is rather broad compared to

related notions such as geo-analytical questions [23] which require geo-analytical work-

flows (in GIS) to answer them. The corresponding QA systems and processes are named

geographic question answering (GeoQA). While some geographic questions are easy to

answer such as what is the population of London or where is Los Angeles as they only

require a simple property fact lookup in a knowledge base/graph, other geographic ques-

tions are more challenging to handle even for state-of-the-art (SOTA) question answering

systems.

Figure 1.1 shows three pairs of geographic questions which demonstrate the limitation

of Google QA. Question A1 & A2, B1 & B2, and C1 & C2 involve three different types

of spatial operations in order to answer geographic questions, namely spatial proximity,

cardinal direction, and projective ternary relation (e.g., betweenness) [24]. While Google

QA can provide meaningful answers to Question A2, B2, and C2 as shown in Figure

1.1b, 1.1d, and 1.1f, it can not handle simple variations of them (Question A1, B1, and

C1 as shown in Figure 1.1a, 1.1c, and 1.1e). A1, A2, B1, and B2 are simple questions or
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(a) Question A1: spatial proximity (b) Question A2: spatial proximity

(c) Question B1: cardinal direction (d) Question B2: cardinal direction

(e) Question C1: betweenness (f) Question C2: betweenness

Figure 1.1: Three pairs of geographic questions that show the limitation of Google’s
question answering system. Google’s question answering system fails to answer Ques-
tion A1, B1, C1 while being able to handle A2, B2, C2 even if these three pairs A1
- A2, B1 - B2, C1 - C2 are quite similar to each other. All screenshots obtained on
Feb. 17th, 2021.
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so-called single-relation factoid questions [25] which can be answered by using a single

triple in a Knowledge Graph (KG), if available. C1 and C2 are expected to be answered

based on two triples in a KG. These questions show interesting properties shared by

geographic questions and give us hints about why geographic questions are difficult to

handle.

In this paper, we aim at answering the following three research questions:

1. Why are geographic questions difficult to answer compared to generic questions?

2. How to classify geographic questions?

3. What unique contributions can GIScience make in GeoQA in addition to SOTA

approaches instead of reinventing the wheel?

In the following, we will go through those geographic questions in Figure 1.1 and

discuss the reason why current QA system fail. Next, we discuss the uniqueness of

geographic questions and GeoQA in Section 1.3 from a conceptual level. Then, in Section

1.4, we present existing work on GeoQA by classifying them into different groups based

on the types of questions they can handle and discuss pros and cons of them. Section

1.5 provides a detailed classification of geographic questions and discusses the possible

solutions and challenges of GeoQA for each question type. Last, we conclude this paper

by discussing possible future research directions in GeoQA.

1.2 Why Geographic Questions are Difficult to An-

swer?

In this section, we discuss the reasons why geographic questions are hard to answer

by using the three pairs of geographic questions presented in Figure 1.1.
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1. QA systems usually lack proper spatial representations (i.e., points, polylines, or

polygons) for geographic entities. Question A1 shown in Figure 1.1a is actually a

brain teaser question. The correct answer is 0 since China is adjacent to Russia [26].

Although Google QA successfully recognizes the geographic entities involved in the

question – China and Russia, it picks the wrong spatial representation (i.e., points)

for spatial proximity computation. In fact, it is common practice for many widely

used knowledge graphs such as Wikidata and DBpedia to represent all geographic

entities as points regardless of their scale. Consequently, many QA systems based

on these KBs would inherit this limitation.

2. Polygon-based spatial operations, such as the calculation of spatial proximity and

topological relations between geographic entities, are computationally expensive. Many

geographic entities are represented by polygons with thousands of vertices, and,

thus, spatial operations performed on them are difficult to carry out on demand.

For Question A1, although Google Maps has the polygon representations for China

and Russia, it seems to always pick point geometries for the sake of fast response

time.

3. The selection of spatial operator is subject to context - where a user asks a question,

when they ask it, which geographic entities they are comparing. Both Question A1

and A2 have exactly the same query template - how far it is from X to Y. The

reason why Google QA can successfully answer Question A2 but not A1 is because

the scales of the compared geographic entities are different. For A2, Paris and

Beijing are far enough and thus can be presented at a small map scale. Their fine-

grained geometries, i.e., polygons, can be “safely” ignored and we can use points to

represent their locations. However, as for Russia and China in A1, since they are

adjacent to each other, their polygon representations are too large to be ignored.
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How to pick the correct spatial representations and their corresponding spatial

operators is challenging and depends on the map scale tied to the question2.

4. Reading comprehension based QA cannot easily handle geographic questions. In-

stead of computing the answers based on the geometries of geographic entities,

many SOTA QA systems try to answer geographic questions by answering ques-

tions based on text corpus [19] which suffer from data sparsity. For example, Google

QA tries to answer cardinal direction questions such as Question B1, B2 in Figure

1.1c, 1.1d and projective ternary relation questions such as Question C1, C2 in Fig-

ure 1.1e, 1.1f by searching the answers from a text corpus (e.g., websites) instead

of computing answers based on geometries. Sometimes text-corpus-based QA can

work (Question B2, C2) if relevant information happens to exist in the corpus, but

many times it fails (Question B1, C1). As for those binary spatial relation-based

questions such as which city/county/state is in the north/south/east/west of X, one

cannot pre-compute all possible pairs of places for their cardinal direction relations

since this leads to a combinatorial explosion. The situation gets even worse when

we consider projective ternary spatial relations (e.g., betweenness) or n-ary spatial

relations (e.g., surrounded by).

5. It is difficult to identify the correct spatial relations given the large spatial language

variability. This can be clearly seen in Figure 1.1c in which “north of California”

is misinterpreted as “Northern California” which in turn causes the QA failure. In

fact, the difficulty of recognizing spatial relations from natural language sentences

has attracted a lot of attention from the NLP and machine learning community [27],

especially in the domain of visual question answering [28]. Many papers are focusing

2Note that we assume all geometries in the underlying geospatial knowledge base of a GeoQA system
share the same coordinate system such as WGS84. This is a common practice used by many geographic
knowledge graphs and geospatial ontologies such as GeoSPARQL. If two geographic entities have different
coordinate systems, we need to do coordinate system transformation before the QA process.
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on recognizing spatial relations which are viewpoint dependent [29] such as on the

left of this door, on the right of this building, behind this desk. As for topological and

cardinal direction relations, researchers still rely on rule-based methods [30, 31].

6. Many spatial relations are conceptually vague and therefore difficult to represent

computationally in structures like knowledge graphs and difficult to learn. A typical

example of vague spatial relations is near [32, 33]. The search radius for the nearby

geographic entities varies according to the map scale of the center entity. For

example, Question Find restaurants near Marriott hotel should use a smaller radius

than Question Find small towns near London. Another example of vaguely defined

spatial relations are cardinal directions (e.g., Question B1, B2) and ternary relations

(e.g., Question C1, C2) between/among polygonal geographic entities. Is Nevada

in the east or northeast of California? Moreover, the computation of cardinal

directions between polygons is complex. Regalia et al. [34] proposed a grid-point-

based method which has O(n2) complexity 3. As for Question B1 and B2 which

search for all states north of California, this computation becomes prohibitively

complex. Moreover, we cannot materialize all these cardinal direction relations in

a KG beforehand either since this leads to a combinatorial explosion as we discussed

above. Similarly, the betweenness relation among geographic entities is also vague

and has high computation complexity.

7. There is a spurious program issue mentioned by Liang et al. [12]. A spurious

program is a program produced by a semantic parser which accidentally produces

the correct answer but with the wrong QA logic, and thus does not generalize to

other questions. For example, when we ask for PlaceOfBirth of a person, a spurious

program may instead ask for PlaceOfDeath while these two places are the same for

3n is the number of grid points in each polygon
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this person. Although a correct QA logic is vital, this kind of QA logic errors is

hard to detect by the current standard QA evaluation protocol which is only based

on answer comparison. In a weak supervision setting as Liang et al. [12] did, it is

hard to distinguish spurious programs from the correct program since the only QA

annotations are the answers. Similarly, to improve the generalizability of a GeoQA

system, it requires not only the correct answer but also the correct computational

logic/spatial logic. For example, although Google QA correctly answers Question

C2 shown in Figure 1.1f, the answer “Germany” is extracted from a web page about

the political and social cooperation of France, Poland and Germany, not a web

page about the spatial configuration among these countries. Thus the logic used to

answer this question is wrong and slightly changing the question may break the QA

process. In other words, the generalizability of this QA model is low. The same

issue exists in Question B2 as shown in Figure 1.1d. Although the correct answer

“Oregon” is highlighted in the text snippet, several other incorrect answers are also

highlighted such as “Nevada” and “Arizona”, which also indicates an incorrect QA

logic. How to overcome the QA logic error and let the model really understand

questions are interesting research directions for GeoQA and QA in general.

1.2.1 Uncertainty and Vagueness of Geographic Information

One may further ask whether the problems shown in Figure 1.1 would be alleviated

if we had a GeoQA system which can successfully recognize the correct and efficient

spatial relation/operator as well as the correct geographic entities and use their polygon

geometries (if necessary) to compute the answer. The answer is still no because of the

uncertainty of geometries [35] and the vagueness of geographic concepts/entities [36]

which usually exists in real-world geographic datasets.
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Geometric Uncertainty

Geometric uncertainty refers to the fact that the precise geometry of one geographic

entity may vary according to the map scale, the data source, and map digitization process.

According to the famous coastline paradox 4, the coastline of a landmass does not have a

well-defined length. Uncertainty of geometries is in fact caused by the coastal paradox.

Because of the uncertainty, sometimes we cannot get the correct spatial relationships

between/among geographic entities based on their (polygon) geometries which might be

derived from one or several geographic datasets such as OpenStreetMap.

Figure 1.2 uses three examples from OpenStreetMap to show the problem of geometric

uncertainty. Each of these three examples consists of a pair of geographic entities who

are represented by a red polygon and a blue polygon. By using the Region Connection

Calculus 8 (RCC8) [37], the expected spatial relations between these three pairs are

equal (OE), tangential proper part (TPP), and externally connected (EC) respectively.

However, because of the geometric uncertainty, if we compute their spatial relations

based on their polygonal geometries, in all these three examples, their spatial relations

become partially overlapping (PO). As shown in those zoom-in windows in Figure 1.2b

and 1.2c, these unwanted small polygons which break the topological relations between

regions are also called “sliver polygon”5. For example, in Figure 1.2b, Powellton, West

Virginia (the red polygon) should be a subdivision of Fayette County, West Virginia

(the blue polygon). However, because of the small sliver polygon shown in the enlarged

window, their relations become partially overlapping (PO) if we strictly compute the

spatial relation based on their geometries and without pre-processing, e.g., by using

GeoSPARQL spatial relation functions [38].

Regalia et al. [39] also recognized the effect of geometry uncertainty on the spa-

4https://en.wikipedia.org/wiki/Coastline_paradox
5https://en.wikipedia.org/wiki/Sliver_polygon
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tial relationship computation. To overcome this problem, Regalia et al. [39] proposed

to precompute metrically-refined topological relations [40] between geographic entities

and materialize them as triples in a geographic knowledge graph. So a GeoQA system

only needs to do triple lookup for question answering instead of computing topological

relations on-the-fly. However, except for the problem of a substantial larger triple set,

how to decide thresholds for metrically-refined topological relation computation is still a

big question since these thresholds vary according to the geographic feature types under

consideration and the map scale of these geometries.

Vagueness of Geographic Concepts and Entities

However, even if we can fix the problem of geometric uncertainty, a GeoQA system

can still fail to answer many geographic questions because of the inherent vagueness of

many geographic concepts such as forest, lake, desert, swamp [36, 41], or even coastline.

For instance, aside from the geometric uncertainty when digitizing the coastline of Great

Britain, the concept “coastline” is conceptually vague. The exact coastline of Great

Britain varies according to the time of the day and the season when we measure it. The

spatial extent of Amazon forest really depends on the definition of “forest” and can be

potentially controversial. Bennett et al. [36] has listed 12 main aspects of vagueness

associated with the term “forest” such as How dense must the vegetation be and How

large an area must a forest occupy. Given the vagueness of geographic concepts, it is

particularly challenging to pick a correct spatial representation for a geographic entity

associated with these concepts. So answering geographic questions that involve these

concepts is prone to errors, such as How many lakes there are in Michigan, What is the

total area of Amazon forest, How far it is from Rocky Mountain to Denver, and so on.

Interestingly, the vagueness of a geographic entity can not only come from its vaguely

defined geographic feature types/concepts, but also come from its own definition such
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as vague cognitive regions [42]. Good examples are Downtown Santa Barbara [43] and

Northern California [42, 44]. It is hard to represent their spatial footprints as polygons

with crisp boundaries. Instead, they are usually represented by fuzzy boundaries or

membership scores. Answering geographic questions involving these kind of entities is

also challenging, i.e., Is San Luis Obispo part of Southern California?

.

1.3 Uniqueness of Geographic Questions and GeoQA

Based on the above discussions, the key challenges of GeoQA are summarized as

follows. Some general challenges are shared with other QA systems:

1. Linguistic variability: the same question can be expressed in different ways.

Paraphrase, hyponym, and synonymy cause a large linguistic variability of (geo-

graphic) questions [13].

2. Program variability: there are many possible programs6 [12] to answer a given

(geographic) questions and each of them are correct. This increases the search

space and makes a QA model difficult to train.

3. Question complexity: there are various types of geographic questions [31, 46].

Different question types require different data sources and QA techniques to repre-

sent the answer. In the first step, it is better to narrow down the scope of the QA

systems, i.e., the types of questions the QA system can handle.

4. Data source diversity: there are various data sources which can be used as

knowledge bases for QA such as knowledge graphs, semi-structured tables, text

6In semantic parsing and structured data source QA research [9, 12], programs indicate queries such as
SPARQL queries, SQL queries, and λ-calculus [45] which are translated from natural language questions
and can be executed on the underlining knowledge base to retrieve the answer.
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(a) Polygon Equivalent Error

(b) Polygon Containment Error (c) Polygon Touch Error

Figure 1.2: Three examples to show the geometry uncertainty problem in Open-
StreetMap: (a) Lynchburg, Tennessee (the red polygon) is a consolidated city-county
whose boundaries are identical to Moore County, Tennessee (the blue polygon). How-
ever, the answer to Question Is Lynchburg, Tennessee equivalent to Moore County,
Tennessee is No, if we compute the spatial relation between these two polygon ge-
ometries based on GeoSPARQL function geof:sfEquals. (b) Powellton, West Virginia
(the red polygon) is a census-designated place inside of Fayette County, West Vir-
ginia (the blue polygon). However, for Question is Powellton, West Virginia inside
of Fayette County, West Virginia, the answer is No if we use GeoSPARQL function
geof:sfWithin to compute the spatial relation between their polygon geometries. (c)
Avondale, Arizona (the blue polygon) is a nearby city of Goodyear, Arizona (the red
polygon). However, As for Question Does Avondale, Arizona touch Goodyear, Ari-
zona or Question Is Avondale, Arizona externally connected to Goodyear, Arizona, if
we compute the answer based on GeoSPARQL function geof:sfTouches, their answers
are both No because their OpenStreetMap polygons intersect with each other.
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corpus. Sometimes it is necessary to answer questions based on multiple data

sources. It becomes more demanding in the GeoQA context since most geographic

questions have to be answered based on a combination of multiple data sources

such as raster data, vector data, text corpus, geographic knowledge graphs, and so

on. Hence, developing QA systems based on multiple data sources is particularly

challenging.

There are unique challenges which are specific for geographic question answering.

Based on Section 1.2 and Mai et al. [47], these unique challenges can be summarized as

follows:

1. Answering geographic questions relies on appropriate spatial information such

as geometries (e.g., points, polylines, and polygons). Inappropriate selection of

spatial footprints will lead to wrong answers as shown in Figure 1.1a and 1.1b.

2. A GeoQA system should be robust in handling the vagueness and uncertainty

of geographic information. For example, a lake can have different definitions

and different polygonal representations at different map scales. These uncertainties

and vagueness might change the spatial relations between these polygon geometries

as shown in Figure 1.2 and discussed in Section 1.2.1. A GeoQA system should be

able to handle this.

3. Answers to many geographic questions are best derived from a sequence of spatial

operations such as proximity (Figure 1.1a, Figure 1.1b), topological and cardinal

direction (Figure 1.1c, Figure 1.1d), and routing computation rather than being di-

rectly extracted from a piece of unstructured text [18] or retrieved from Knowledge

Graphs (KG) [13], which are the normal procedures in current QA systems.
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4. Compared with the general QA, answering geographic questions requires a sub-

stantially larger set of programs/operators, especially a large set of spatial op-

erators. This increases the program search space exponentially. For example, Post-

GIS has 21 spatial relationship functions (e.g., ST Within), 27 measurement func-

tions (e.g., ST Azimuth), and 25 geometry processing functions (e.g., ST Buffer)

7. In contrast, in the general QA research, the current semantic parser [11, 12] or

reading comprehension QA [15] usually only utilize a small set of operators to make

the whole model trainable. For instance, Neural Symbolic Machine (NSM) [12], as

a neural sequence-to-sequence semantic parser, automatically translate a question

into a program that can be executed on the KG and retrieve answers with the sup-

port of a Lisp interpreter. This Lisp interpreter only supports 4 operators - Hop,

ArgMax, ArgMin, and Filter. Neural Symbolic Reader (NeRd) [15], as a scalable

reading comprehension QA, only supports 11 different operators. The total number

of possible programs that can be generated grows exponentially with respect to the

number of operators we consider. So the large number of spatial operators makes

this program generation task extremely complex.

5. Geographic question answering can be subjective and context dependent, i.e.,

depending on when and where this question is asked, who ask it, and what this

question is asked about. Some examples are Is California (the territory) part of

the United States (time-dependent), which country contains the largest proportion

of the Kashmir region (location-dependent and subject-dependent). The answer to

the first question can be USA or Mexico depending on the temporal scope of this

question. The answer to the second question can be India or Pakistan depending

on when, where, and who you ask this question [26].

7https://postgis.net/docs/reference.html
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6. Geographic questions can be vague in terms of the involved spatial relations

and geographic concepts. For instance, the answer to Question In what direction

is France located to Italy can be either east or southeast depending on the definition

of cardinal directions between polygons. Moreover, for Question What is the total

area of forest in Brazil, the answer depends on the definition of forest [41].

1.4 Existing Work on GeoQA

Although QA has been a long-standing research topic, geographic question answering

(GeoQA) remains less studied. In this section, we discuss some important existing work

on GeoQA. Based on the types of geographic questions they focus on, we classify existing

GeoQA research into four types: factoid, geo-analytical, scenario-based, and visual.

1.4.1 Factoid Geographic Question Answering

Factoid GeoQA focuses on answering questions based on geographic facts. To the

best of our knowledge, Zelle et al. [10] presented the first GeoQA system, which uses

CHILL parser to answer natural language geographic questions based on the Geoquery

query language. They defined 20 relations such as capital, area, next to, traverse, and

so on, which indicate different types of geographic questions that Geoquery supports.

Although some relations are spatial such as next to and traverse, all relations have been

materialized as 800 Prolog facts. Then the QA system only needs to perform a question-

query translation and an answer lookup. Namely, no on-the-fly spatial computation is

required. Although this work focused on answering geographic questions, a standard QA

pipeline was adopted and the uniqueness of geographic questions was not considered.

Chen et al. [48] proposed a geographic question answering framework to answer five

types of geographic questions based on the spatial operators supported by PostGIS. An
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input geographic question first goes through a linguistic analysis so as to be classified

into one of the predefined query templates. Then the spatial SQL query template is filled

by using the parsed data such as spatial operators (e.g., ST Within, ST Buffer), place

name, quantity constraints, and so on. Subsequently, the answer is retrieved by executing

this query on the underlining PostGIS database. This GeoQA framework can support

five simple geographic question types: 1) location questions, e.g., where is Columbus ;

2) direction & distance questions, e.g., where is Columbus perspective to Cleveland ; 3)

distance questions, how far is it from Columbus to Cleveland ; 4) nearest questions, e.g.,

which city is the nearest to Columbus ; 5) buffer questions, e.g., which cities are within

5 miles from Columbus. We can see that except for the first type of questions, the

rests require spatial operators. Compared with Zelle et al. [10] who materialized all

spatial relations as facts beforehand, this system is able to utilize spatial operators to

answer geographic questions on-the-fly. However, it simply utilizes points to represent

geographic entities and thus inherits the limitation we have discussed in Section 1.2. The

limited number of question types and the small size of the underlying database restrict

the number of geographic questions it can handle.

Punjani et al. [31] proposed a template-based GeoQA system as Chen et al. [48] did.

Instead of relying on a PostGIS database, this GeoQA system is based on a GeoSPARQL-

enabled geographic knowledge graph created from DBpedia, GADM database of global

administrative areas, and OpenStreetMap. This GeoQA system mainly focuses on seven

types of factoid geographic questions which can be answered based on several hand-

crafted GeoSPARQL query templates. These question types include various numbers of

geographic entities, concepts, or spatial relations. First, geographic entities, concepts,

and spatial relations are extracted from a natural language geographic question asked

by users. Then this question is mapped to one of the query templates. The generated

GeoSPARQL query is then executed on the underlining KG to obtain answers. This
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GeoQA system is able to handle different spatial relations such as topological relations

and cardinal direction relations by using the polygon geometries of each geographic en-

tity. However, the deterministic spatial operations supported by GeoSPARQL suffer from

uncertainty of the polygon geometries we have discussed in Section 1.2.1.

As a prerequisite of GeoQA, Hamzei et al. [46] carried out a data-driven place-based

question analysis using a large-scale QA dataset generated from Microsoft Bing - MS

MARCO V2.1. They used linguistic analysis to translate questions and answers into

their semantic encodings based on six primary elements: place names, place types, ac-

tivities (e.g., buy), situations (e.g., live), qualitative spatial relationships, and qualities.

Then they used a string similarity measure (Jaro similarity) as well as k-means to cluster

the encoded questions and answers into different clusters. Experimental results showed

that place-based questions can be clustered into three types: 1) non-spatial questions

- questions not aiming at localization of places (e.g., In which county is Grand Forks,

North Dakota located); 2) spatial questions - questions about locations of place (e.g.,

where is Barton County, Kansas); 3) non-geographical and ambiguous questions (e.g.,

where are ores located). The proposed semantic encoding approach benefits our un-

derstanding of the intent of geographic questions. However, this classification is rather

coarse. The non-spatial question type still contains various types of factoid geographic

question. Moreover, this classification is still based on the syntactic structures of ques-

tions rather than their semantic interpretations. The geographic question types discussed

in Hamzei et al. [46] are only factoid questions. In contrast, we provide a classification of

geographic questions in Section 1.5 based on their semantic interpretations which cover

a wider range of question types.

Based on the above discussion, we can see that although there is some research on

factoid GeoQA, most existing GeoQA models [10, 48, 30, 31] are template-based and can

only handle limited types of geographic questions. Commonly, they adopted a two-step
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strategy to answer geographic questions – a question classification step and an answering

step. A natural language question is first classified into one predefined query template,

which then is used in QA system to seek the answer. This indicates that, these models are

not directly trained on the labeled data, namely question-answer pairs. Instead, they are

usually trained on the intermediate question type labels which does not guarantee for a

correct final answer while this error cannot propagate back to the whole QA framework.

Therefore, existing GeoQA models can hardly be trained in an end-to-end manner as

many reading comprehension QA models do [12, 18] and cannot be easily generalized to

other datasets as well. In short, there is still a lack of efficient large-scale end-to-end

GeoQA systems which can handle various types of geographic questions.

1.4.2 Geo-analytical Question Answering

Compared with the above GeoQA work that mainly focus on answering factoid ge-

ographic questions, geo-analytical question answering proposed by Scheider et al. [23]

went beyond simple geographic facts but focuses more on questions with complex spatial

analytical intents [49]. A simple factoid geographic question such as Question A1 can be

answered by executing one or two spatial operations on the respective spatial footprints

of geographic entities. In contrast, geo-analytical questions usually require generating a

GIS analytic workflows. Example questions include how much green space will Tom see

while running through Amsterdam (Question M) Scheider et al. [23] and what is the best

site for a new landfill in the Netherlands (Question N) [49].

The aim of geo-analytical question answering also shifts from retrieving simple an-

swers to formulating the answer through analytical workflows which might be generated

on-the-fly or retrieved from a GIS workflow corpus shared by other GIS users [50].

Despite the interesting nature of geo-analytical QA, several challenges need to be
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solved in order to develop a full-functional geo-analytical QA system. Firstly, in contrast

to all current QA systems which are built on predefined knowledge bases (e.g., knowledge

graphs, text corpus, and semi-structured tables), geo-analytical question answering does

not have well-defined knowledge bases. Different geo-analytical questions might require

different kinds of knowledge bases. Scheider et al. [23] turned to treat a portal of different

GIS datasets as the knowledge base of geo-analytical QA. However, all current Geoportals

such as ArcGIS Online [51, 52] and NASA Physical Oceanography Distributed Active

Archive Center (PO.DAAC) [53] only support search functionality over different datasets

on the metadata level and cannot be directly used for geo-analytical QA which requires

a deep assessment of the analytic potential of a GIS dataset for a given question.

Secondly, geo-analytical questions are mostly vaguely defined and can be answered based

on different combinations of data sets and GIS tools (spatial operators). For example,

as shown in Scheider et al. [23], to answer Question M, one option is to use a vector

map of urban trees in Amsterdam overlaid on Tom’s running trajectory, based on which

the number of trees within the buffer of the trajectory can be computed to answer the

question. Another option is to use a raster map of green space in Amsterdam and

computing the answer based on kernel density estimation and map algebra. Different

data set options make it difficult to design a knowledge base for geo-analytical QA.

Different possible solutions lead to a growing solution space and therefore make it harder

to construct a fully automatic QA pipeline. It is these difficulties that make geo-analytical

QA challenging and worth investigating at the same time.

1.4.3 Scenario-based Geographic Question Answering

In scenario-based GeoQA (GeoSQA), a question is always associated with a scenario

described by a map or a paragraph. Huang et al. [54] presented a GeoSQA dataset which
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consists of 1,981 scenarios and 4,110 multiple choice questions in geography domain.

These scenarios and multiple choice questions are collected from Gaokao, China’s version

of SAT, and mock tests at high school level. So all scenario-based geographic questions

are textbook-like questions. An example scenario can be a map showing the urban

planning of a city as well as its textual description. The associated question asks for

the possible usage of a location presented on the map. Answering this kind of questions

requires some commonsense knowledge in geography as well as a deep understanding of

the scenario. Huang et al. [54] showed that the state-of-the-art reading comprehension

and textual entailment models perform no better than random guess on this task which

illustrates the challenges of this kind of GeoQA.

In contrast to the textbook-like scenario-based QA, Contractor et al. [55] presented

a tourism oriented scenario QA task and a GeoQA pipeline. The target QA dataset -

Tourism Questions [56] consists of over 47,000 real-world tourism questions that seek

for Points-of-Interest (POI) recommendations together with a universe of nearly 200,000

candidate POIs. These questions are long paragraphs which describe a tourism scenario

asking for POI recommendation. An example question is I am outside of Universal

Studio, Los Angels, please recommend good Chinese restaurants nearby8. The answer

to these questions are usually a ranked list of POIs. To tackle this task, Contractor et

al. [55] proposed a spatio-textual reasoning network which jointly considers the spatial

proximity between candidate POIs and the target POIs in the question as well as the

semantic similarity between questions and the reviews of candidate POIs. The distances

between candidate POIs and the target POIs mentioned in the question are explicitly

encoded by a geo-spatial reasoner module which produces the spatial relevant scores

between questions and candidate POIs. The semantic relevant scores are computed by

8Since the original question example is very long. We formulate a rather short and simple tourism
scenario question here.
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a textual reasoning sub-network. These two scores are then combined to produce the

final relevant scores between questions and each candidate POI. The approach indeed

shows a great potential of spatial reasoning in GeoQA. However, since distances need

to be computed for each pair of candidate POIs and target POIs in the questions, the

presented spatio-textual reasoning network is not suitable for open-domain QA where we

can have a richer pool of candidate POIs to search from.

1.4.4 Visual Geographic Question Answering

Visual question answering [28] is another rapidly developing QA research direction in

which each question is paired with an image as the context. An example question that

could be asked about an image showing a child is where is the child sitting. Lobry et

al. [57] adopted this idea and proposed the task of visual question answering for remote

sensing data (RSVQA) in which a remote sensing image is paired with a question asking

about the content of this image. Example questions include how many buildings are

there, and what is the area covered by small buildings. To answer this kind of questions,

Lobry et al. [57] utilized a Convolutional Neural Networks (CNN) as the image encoder

and a Recurrent Neural Network (RNN) as the question encoder. The encoder outputs

are concatenated and fed to a fully connected layer which is followed by an answer classi-

fication layer. Although this work mainly focuses on capturing computer vision features,

spatial knowledge is minimally utilized in the RSVQA model design. Consequently, the

presented RSVQA model shows little difference compared to normal VQA models. How

to incorporate spatial thinking into the RSVQA model design to develop spatially-explicit

[58] QA models is a promising future research direction.
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1.5 The Classification of Geographic Questions

Section 1.4 discussed key work on GeoQA which focus on certain types of geographic

questions. Some of them [48, 31, 46, 49] provided a classification of geographic questions

within the scope of question types they can handle. In this section, we provide a general

classification of geographic questions which attempts to cover all aspects of GeoQA. We

hope this classification can comprehensively reveal the landscape of GeoQA and serve as

a guideline for future GeoQA-related research.

In fact, Mishra et al. [2] provided a survey for question answering systems and

classified QA systems based on multiple criteria including application domains, question

types, types of analysis on questions, types of data sources, retrieval methods, and answer

types. According to Mishra et al. [2], questions can be classified as factoid type questions

[what, when, which, who, how], list type questions, hypothetical type questions, causal

questions [how and why], and confirmation questions. Although the classification covers

most of the questions asked in a normal QA system, it does not consider many important

types that we often see in geographic questions such as questions about spatial relations,

routing questions, prediction-based questions, and so on.

Following classification by Mishra et al. [2], we classify geographic questions into the

following categories:

1. Factoid geographic questions: geographic questions that can be answered based

on the factoid geographic knowledge, e.g., which state is Houston located in.

2. Prediction-based geographic questions: geographic questions should be an-

swered based on the prediction of facts, e.g., what will be the average temperature

in Las Vegas next Monday.

3. Opinion geographic questions: geographic questions which require subjective
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information or opinions about some geographic facts, e.g., what is the best trail in

the Grand Canyon National Park.

4. Hypothetical geographic questions: geographic questions that ask for infor-

mation related to any hypothetical events, e.g., what would California look like if

the United States had not acquired it in 1848.

5. Causal geographic questions: geographic questions which require explanations

about geographic facts, e.g., why and how did Los Angeles become famous for its

film industry.

6. Geo-analytical questions: geographic questions which require complicated geo-

processing workflows to answer, e.g., where is the best location for my new house in

San Diego with a quiet neighborhood, lower crime rate, good accessibility to grocery

stores and beach.

7. Scenario-based geographic questions: geographic questions that are associated

with a scenario described by textual description or a map. An example question

is we just arrived at London and currently stay at a hotel close to London King’s

Cross train station. Can you recommend a good Italian restaurant nearby which

serves vegan pizza?

8. Visual geographic questions: geographic questions paired with remote sensing

images or maps whose contents are the focus of these questions.

In the following, we will discuss each question type in detail.

1.5.1 Factoid Geographic Questions

In contrast to the factoid type questions defined by Mishra et al. [2] that require

answers in a single short phrase or sentence and whose expected answer types are named
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entities, we define factoid geographic questions in a broader sense in terms of the answer

types. Any questions that can be answered based on the real-world factoid geographic

knowledge can be treated as factoid geographic questions. The factoid type questions and

list type questions9 [2] are included in this question type if they are geographic questions.

Factoid geographic questions are the most typical question type that existing GeoQA

systems focus on. We further classify this type into the following sub-types:

1. Single geographic entity attribute questions: This type refers to questions

about attributes of one single geographic entity such as its geographic coordinates,

population, elevation, area, temperature, and so on. This question type does not

require any spatial operations and thus can be answered via a datatype property10

triple fetched from a GeoKG or extracted from a description of a place. Examples

include where is London, what is the total population of Phoenix, Arizona, and what

is the annual precipitation in Seattle, Washington.

2. Spatial relationship questions: These are questions that involve spatial rela-

tions such as spatial proximity, topological relations, cardinal directions, ternary

projective relation, and n-ary spatial relations between/among (two or more) ge-

ographic entities. Examples of this type include: how far is it from New York

to Washington D.C. (spatial proximity), how much does it cost to take a Uber

from Stanford University to Pier 33 (time dependent spatial proximity), does King

Canyon National Park touch Inyo County, California (topological relations), What

is the cardinal direction between Los Angles and San Diego (cardinal directions),

which country sits between China and Russian (ternary projective relation), and

which countries surround Switzerland (n-ary spatial relation).

9list type questions are questions whose answer are a list of entities. This question type is still based
on factoid knowledge.

10https://www.w3.org/TR/owl-ref/#DatatypeProperty-def
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3. Spatial/non-spatial qualifier questions: This refers to those questions that

are asked about one or a set of geographic entities which satisfy one or several

spatial (e.g., in City A) or non-spatial (e.g., highest elevation) qualifiers. Examples

include: What is the largest city in United States in terms of population? Which

province in China has the highest average elevation? Which coastal cities are within

20 miles from Seattle? Which churches are near a castle in Scotland, and Which

city in France has the largest COVID-19 case count.

4. Routing questions: This type of questions is frequently asked in navigation guid-

ance services and mainly asks about the routing between places. The answer is,

therefore, a route displayed on the map or a voice/text-based step-by-step instruc-

tion. One example is: how to get from Hollywood to LAX airport?

These sub-types comprehensively cover geographic question types that have been

discussed in Zelle et al. [10], Chen et al. [48], Chen et al. Chen et al. [30], Punjani et

al. [31], Hamzei et al. [46], and Xu et al. [49].

1.5.2 Prediction-based Geographic Questions

Factoid geographic questions ask about historical or present geographic knowledge,

while prediction-based geographic questions ask about the future. Hence answers should

be generated based on predictions of real-world geographic facts such as population,

temperature, future events, and so on.

In some cases, the predictions have been precomputed and stored in a knowledge base.

Then the QA process of prediction-based geographic questions can be done in exactly the

same way as that of factoid geographic questions. We classify prediction-based geographic

questions as follow:
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1. Single geographic entity attribute prediction question: Questions about

the prediction of attributes of one single geographic entity such as population, air

quality, temperature, and so on. e.g., what will be the air quality like in Los Angels

in the following two weeks, where this iceberg will be in two months after its recently

separation from the Antarctic glacier.

2. Spatial/non-spatial qualifier prediction questions: Questions asked about

one or a set of geographic entities which satisfy one or several spatial or non-spatial

qualifiers in the future.

(a) Prediction-based non-spatial qualifier questions: These questions have

non-spatial qualifiers which are based on the predictions of the attributes of

geographic entities. Examples are which country in the world will have the

largest population in 10 years, which state in the US will have the largest total

COVID-19 case count once this current pandemic ends, which university in

Australia will have the largest proportion of international students in 5 years.

(b) Prediction-based spatial qualifier questions: These prediction questions

have spatial qualifiers for geographic entities whose locations may or may not

change, e.g., which nearby house will have the largest increase in its price after

the construction of this subway station that will be finished in two years.

If the predictions are not available beforehand, the GeoQA system should be able to

understand the question intent and generate a program to compute the answer which

might involve some prediction functions. As far as we know, there are no QA systems

available to date that address this type of GeoQA.
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1.5.3 Opinion Geographic Questions

Opinion geographic questions involve personal opinions with subjective terms such

as the best hotels, the most beautiful city, the most atmospheric restaurant, and so on.

These subjective terms can be interpreted in different ways by different people which

complicates the question answering process. For example, as for Question what is the

largest city in Texas, “the largest city” can be interpreted as the city with the largest

population, or with the largest area. Some subjective terms can be approximated based

on existing quantitative measures. For example, as for Question what is the most popular

restaurant in San Jose, California, we can use the Yelp rating as a proxy to measure the

popularity of a restaurant. In this case, the QA can be done in the same way as that of

the factoid geographic questions. Nevertheless, opinion detection itself which classifies

text as subjective or objective is still a research problem [59].

1.5.4 Hypothetical Geographic Questions

Similar to the definition provided by Mishra et al. [2], hypothetical geographic ques-

tions ask for information related to any hypothetical event or condition. The question is

usually formulated as “what would happen if...”. Example questions are what would Cal-

ifornia look like if the United States had not acquired it in 1848, which nearby cities would

have been flooded if the dike at Huayuankou, Henan would have been breached again11.

At first glance, hypothetical geographic questions might look similar to prediction-

based geographic questions. However, they are different question types. The former asks

for a hypothetical situation and the answers are usually derived from an educated guess

based on commonsense. In contrast, the later asks for a scientific prediction based on

the observation data.

11https://en.wikipedia.org/wiki/Huayuankou,_Henan
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Since there are no 100% correct answer for these questions, the QA reliability is low

and the QA technique adopted by factoid question answering will not work. Some expert

knowledge and commonsense knowledge may need to be involved during the QA process.

This question type might be one of the most difficult one to handle and need to be

investigated further.

1.5.5 Causal Geographic Questions

Causal geographic questions ask for explanations about geographic facts. Example

questions are why are there a lot of places along the west coast of the Atlantic Ocean

named after Alexander von Humboldt and why are there a lot of places in South America

named San Jose.

The answer to a causal geographic question is usually a passage about the geographic

facts under discussion. So we can adopt some text-corpus-based extractive question an-

swering techniques [7, 19] to “approximately” answer this kind of questions. However,

almost all the current deep neural network based extractive QA models [7] 12 can only

do fact lookup from text corpus while causal geographic questions require a deep under-

standing of the causality relationship in the questions and reasoning on commonsense

knowledge. So simply applying extractive QA models on causal questions will lead to

much lower performance.

1.5.6 Geo-analytical Questions

Section 1.4 provides a detailed description of geo-analytical QA and discusses about

the challenges we might meet when developing a geo-analytical QA system - uncertain

choices of knowledge bases and exploded solution space.

12Given a question, an extractive QA model search for the possible paragraphs which might contain
the answer. And then it reads these paragraph sand extract text spans from them as the answers.
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The reasons why we separate geo-analytical questions from other types of questions

are two-fold: 1) unlike other types of questions that aim at generating compact answers,

geo-analytical question answering focuses more on generating or retrieving the geoprcess-

ing workflows [23] that can be used to obtain answers; 2) in contrast to other question

types that have relatively limited answer types, the answer types of geo-analytical ques-

tions are very diverse. Example answer types include raster maps, geometries, numerical

values, geographic entities, text, and so on.

Despite its difficulty, geo-analytical QA actually points out an exciting future di-

rection of GIS technology which can automate the spatial analysis process without any

human intervention. So we still advocate this idea and expect a major advancement

along this research direction in the early future.

1.5.7 Scenario-based Geographic Questions

As we discussed in Section 1.4.3, a scenario-based geographic question is usually as-

sociated with a scenario depicted by either a map or a textual description. Classical

scenarios used in GeoQA include the textbook-like scenario such as the GeoSQA dataset

[54] and the tourism scenario such as Tourism dataset [56, 55]. As for Tourism datasets

[56], only simple spatial reasoning, e.g., distance between candidate POIs and POIs

mentioned in the scenario, is required. However, as for the GeoSQA dataset [54], dif-

ferent textbook scenarios require different spatial reasoning such as cardinal directions,

proximity, and topological reasoning. Moreover, commonsense knowledge is required to

correctly answer this type of questions. Therefore, designing a spatial-aware QA model

for GeoSQA is challenging.

So for scenario-based geographic questions, the design of GeoQA model varies from

case to case and depends on the nature of the questions and what scenario the questions
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are based on.

1.5.8 Visual Geographic Questions

Visual geographic questions are different from other question types because each

question is paired with a remote sensing image [57] or a map. These images or maps can

be seen as the restricted knowledge base for corresponding questions. The map can be a

historic map or a narrative map. They can also be obtained from some fictions, such as

Marauder’s Map from Harry Potter, Atlas of the European novel, 1800-1900 [60], and A

Literary Atlas of Europe13. However, to the best of our knowledge, these narrative maps

have not been used for the GeoQA purpose and there is no visual GeoQA work focusing

on fictional maps.

Promising research questions for visual geographic questions answering include issues

such as what makes visual GeoQA different from normal visual QA? What are the benefits

to incorporate spatial knowledge into Visual GeoQA models? One possible direction lies

in the difference between the spatial relations used in general VQA and geographic VQA.

The spatial relations studied in the current VQA [29] are like on the left of, in front of,

and on top of which is very different from the spatial relations we would have among

geographic entities, e.g. cardinal direction, topological relations. Whether this difference

leads to some difference in the GeoQA model design needs to be investigate further.

1.5.9 Discussion about the Question Classification

The proposed question classification is an integration and extension of multiple ex-

isting question classification work [2, 31, 46]. In fact, these question types are classified

from different aspects: factoid vs. non-factoid questions, objective vs. subjective/opinion

13http://www.literaturatlas.eu/en/
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questions, geo-analytical vs. knowledge lookup questions, textual vs. visual questions,

and so on. More specifically, the first five question types are classified based on the

types of knowledge that a question focuses on - factoid knowledge, the knowledge about

future, the knowledge about people’s opinions, common sense knowledge about hypo-

thetical events, or knowledge about the explanations for geographic facts. Geo-analytical

questions are listed as one specific type because of its specific focus on GIS workflow syn-

thesis. The scenario-based and visual geographic question types emphasize the context

(e.g., text description, images) associated with the question. Basically, these question

types reflect different aspects and focuses of GeoQA.

These question types are not necessarily mutually exclusive from each other. For ex-

ample, as for Question What would be the best location if we want to build a new elemen-

tary school in Seattle, it is both a hypothetical geographic question and a geo-analytical

question because this question follows the ”what would happen if...” hypothetical ques-

tion pattern and answering it requires GIS workflow synthesis (e.g., site selection anal-

ysis). Question How many buildings are in the current remote sensing image is both a

factoid geographic question and a visual geographic question.

Moreover, this question classification only reflects our current understanding of GeoQA

research and is by no means a final and complete system for geographic question clas-

sification. With the advancement of the GeoQA research, we might see new types of

geographic questions which have not been covered by the presented classification system.

Nevertheless, we believe the presented geographic question classification is useful since

it can help a GeoQA researcher to narrow down the focus and find an appropriate GeoQA

dataset that fits into their research scope. It can also guide them in the process of GeoQA

benchmark dataset construction and analysis as Hamzei et al. [46] did. Last but not

least , a question classification system helps identify the challenges and future research
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directions for GeoQA.

1.6 Future Research Directions for GeoQA

In this section, we will discuss some interesting research directions for GeoQA. Most

importantly, we need to address the question of what unique contributions we can make

in GeoQA beyond work on more general AQ systems.

Question answering is one of the most important research topics in natural lan-

guage processing. Currently, there are around 30 different large-scale question answer-

ing data sets available14. Most of them are about reading comprehension and open-

domain question answering such as HotpotQA [16], SQuAD [7], Natural Questions [17],

CoQA [61] which mainly aim at unstructured-text based QA. There are also QA datasets

for structured-knowledge-based QA such as QALD-9 [62].

Compared with QA, GeoQA is a smaller research topic which starts attracting at-

tentions from QA researchers as well as GIScientists only recently. A recent review on

the usage of geospatial information in virtual assistants [63] also showed that the usage

of different types of geographic data and various spatial methods in virtual assistants is

quite limited. How we can show the unique contribution of GeoQA to the general QA

community is the golden question needed to be answered for GIScientists.

As far as we see, there are some interesting and unique research directions specifically

for GeoQA:

1. How to effectively utilize geographic coordinates in a GeoQA model? As

the basic element of geographic information, how to effectively utilize locations in

deep learning models for any geospatial task is a fundamental problem itself. [55]

presented an indirect way to encode distances among locations (e.g., POIs) for the

14http://nlpprogress.com/english/question_answering.html

34

http://nlpprogress.com/english/question_answering.html


Geographic Question Answering: Challenges, Uniqueness, Classification, and Future Directions
Chapter 1

GeoQA purpose. In contrast, Mac Aodha et al. [64], Mai et al. [65], and Mai et al.

[66] take a more explicit approach which directly encode coordinates into location

embeddings for multiple downstream tasks. Which one works better for a specific

GeoQA task needs to be investigated.

2. How to effectively utilize complex spatial footprints of geographic enti-

ties such as polygons, multipolygons, and polylines in a GeoQA model?

How to design efficient “fuzzy spatial operators” which are robust to the

geometry uncertainty problem? These complex spatial footprints are essential

for many geographic question types. However, as we discussed in Section 1.2.1,

directly utilizing deterministic spatial operators such as GeoSPARQL functions as

Punjani et al. [31] did will suffer from the known problems with using raw geome-

tries which will affect the performance of GeoQA. A more proper way is to design

an efficient neural-network-based “fuzzy spatial operator” which is robust to the

geometric uncertainty problem. This “fuzzy spatial operator” takes these complex

polygon geometries as input and outputs their spatial relations. At the training

phase, this operator automatically learns the concept of thresholds implicitly based

on the training labels and we do not need to specify thresholds explicitly as Regalia

et al. [39] did. This might be an interesting research direction.

3. How to define a compact but effective set of spatial operators for GeoQA?

Furthermore, how to define a program language similar to Lisp [12] and

Prolog [10] but for spatial computing which will make GeoQA easier? As

we discussed in Section 1.3, given the large number of spatial operators, we need to

derive a small subset which can be used to answer most of the geographic question

types. The core concepts of spatial information research [67] may be a great start-

ing point since it provides a list of core spatial operators/computations and defines
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a high-level language for spatial computing [68]. However, several issues need to be

investigated further - How good are these spatial operators? How easily can they

be applied to GeoQA? And how many question types can they support?

4. How to handle the vagueness of spatial relations as well as geographic

concepts in a GeoQA model? The selection of spatial operators should be aware

of the vagueness of geographic concepts and geographic entities during question

answering process. For example, Question Is San Luis Obispo part of Southern

California and Question Is San Luis Obispo part of California should be handled

differently. Unlike California, Southern California is a vague cognitive region which

does not have a crisp boundary. The ordinary topological relation operators cannot

deal with this. It might be complicated to design a GeoQA model to directly

interpret the vagueness of geographic concepts and entities. A simple yet effective

approach is to collect annotated data for QA pairs which contain these spatial

operators and concepts and develop an end-to-end model to learn from them.

In this paper, we attempt to provide a holistic view of the current landscape of

GeoQA research as well as its challenges and uniqueness. We hope the GeoQA problem

mentioned by Jordan can be solved and a real geospatial artificial intelligence agent can

be built in the coming years.

1.7 Software and Data Availability

The data utilized in this paper are downloaded from OpenStreetMap and visualized

using QGIS. All data and software used are open source.
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AI Technologies.

1.8 Research Questions and Dissertation Synopsis

1.8.1 Research Questions

Section 1.6 lists several interesting research directions based on the uniqueness of

GeoQA discussed in Section 1.3. Although each of them focuses on different aspects,

they jointly ask one question - how to design spatially-explicit machine learning models

[58, 69] for geographic question answering such that it is able to capture the spatial rep-

resentations of geographic entities (e.g., point coordinates, polylines, and polygons) and

the spatial relations among them. This question is the core question we will address in

this dissertation. Because of the complex nature of this question, we divide it into three

research questions that deep dive into the problem of GeoQA step by step.

• RQ1 - Geographic Question Relaxation: How to develop a spatially-explicit query

relaxation and rewriting model which utilizes spatial knowledge to handle those

unanswerable geographic questions - geographic questions that are unanswerable for

a normal question answering system?

Although Section 1.3 discusses the uniqueness of geographic questions, it is still un-

clear whether we can use spatial thinking and spatial knowledge to develop a spatially-

explicit QA model that can handle these uniquenesses. An initial and important step is

to develop a spatially-explicit query relaxation model that can handle those unanswer-

able geographic questions. RQ1 focuses on this question to test whether utilizing spatial

knowledge can help to answer more geographic questions correctly.

• RQ2 - Location Encoding: How to design a general-purpose location encoding model

which can encode a (geographic) location into the embedding space such that it can
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be utilized in multiple downstream geospatial tasks? How to integrate this location

encoding model into the neural network-based question answering model to make a

location-aware QA framework?

RQ2 is a further question asked based on RQ1. If we can prove that utilizing spatial

knowledge is useful for GeoQA, the next step is to find a fundamental way to incorporate

spatial information, especially geographic locations, into the current neural network-

based QA models.

There are multiple ways to incorporate spatial information or spatial knowledge into

deep learning models such as distance-based spatial context resampling [70, 69], distance-

based spatial context reordering [71], distance-based triple resampling [72, 73, 47], and

distance-based spatial reasoning [55]. Most of these approaches utilize pairwise distances

among geographic entities/places to design specialized spatially-explicit models for given

tasks.

Instead of following this research direction, we are interested in a more fundamental

approach that encodes geographic location directly into the embedding space and utilizes

it in multiple downstream tasks. This approach has two advantages: 1) given a dataset

with N geographic entities, by encoding geographic locations instead of their pairwise

distances, we effectively reduce the problem from O(N2) to O(N); 2) In contrast to a

specialized spatially-explicit model which is designed for a specific task, a general-purpose

location encoding model can be utilized in many geospatial tasks including GeoQA.

So RQ2 focuses on developing a general-purpose location encoding model and utilizing

it to develop a location-aware QA model.

• RQ3 - Polygon Encoding: How to design a general-purpose representation learning

model for polygonal geometries, i.e., polygon encoder, for polygon-based geospatial

tasks? How to utilize it in a GeoQA model to answer spatial relation questions
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which otherwise cannot be answered only based on point-based spatial footprints?

RQ2 focuses on representing geographic locations, i.e., points, into the embedding

space. However, many geographic questions (i.e., topological relation questions, distance

questions, cardinal relation questions) require more detailed spatial representations of

geographic entities such as polygons and multipolygons to answer these questions cor-

rectly. For example, Question A1 in Figure 1.1a needs polygon representations of China

and Russia. Question B1 and B2 in Figure 1.1c and 1.1d also require polygonal geome-

tries of states of the US. Otherwise, based on a point representation of California and

Nevada which might be sampled anywhere within their polygon representations, a de-

terministic cardinal direction operator will indicate Nevada is in the southeast (or even

south) of California. However, how to handle geometric uncertainty as well as vague-

ness of geographic concepts and entities (See Section 1.2.1) when we use the polygonal

representation of geographic entities also needs to be solved.

RQ3 focuses on this problem and calls for a general-purpose polygon encoder that

can encode polygonal geometries (e.g., simple polygons, polygons with holes, or multi-

polygons) into the embedding space. This polygon encoder can be utilized to answer

those geographic questions that require complex spatial footprints.

1.8.2 Dissertation Synopsis

This dissertation is organized based on an accumulation of five individual but related

publications which are included as individual chapters in this dissertation: Chapter 1,

Chapter 2, Chapter 3, Chapter 4, and Chapter 5.

As the introduction of the whole dissertation, the current chapter (Chapter 1) is

an extended version of Mai et al. [74] which describes the challenges, uniqueness of

GeoQA and provides a classification for geographic questions. We also list three research
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questions that will be answered in the following four chapters. Chapter 2 focuses on RQ1

- geographic question relaxation. Chapter 3 and Chapter 4 target RQ2 - the location

encoding problem while Chapter 5 answers RQ3 - the question of polygon encoding.

Chapter 2 presents a spatially-explicit knowledge graph embedding model which is

developed for geographic question relaxation. We show that by utilizing spatial knowl-

edge, more specifically the distance decay effect, we can allow the QA model to correctly

answer more geographic questions.

Chapter 3 targets the first part of RQ2 and presents a general-purpose location encod-

ing model called Space2Vec. The generalizability of Space2Vec is shown in two geospatial

tasks - POI type classification and geo-aware image classification.

Based on Chapter 3, Chapter 4 utilizes Space2Vec location encoder to design a

location-aware knowledge graph embedding model called SE-KGE. We further apply

it to two tasks - knowledge graph-based GeoQA and spatial semantic lifting. We show

that by directly encoding the point locations as well as the bounding boxes of geographic

entities into the knowledge graph embedding space, the resulting KG embedding model

is able to outperform multiple baselines on both tasks.

Based on the GeoQA result analysis in Chapter 4, we find out that only encoding point

locations and the bounding boxes of geographic entities is not sufficient to answer many

geographic questions such as topological relation questions, cardinal direction questions,

and so on. We need to encode precise geometry representations (e.g., polygons) into the

embedding space for the GeoQA task. Chapter 5 presents a polygon encoding model

which can encode polygonal geometries into the embedding space such that it can be

utilized in many downstream tasks including GeoQA. We show the effectiveness of this

model on the polygon-based spatial relation prediction task which is an important task

for GeoQA.

Finally, Chapter 6 concludes this dissertation by summarizing the previous chapters
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and listing the theoretical and practical research contributions of this dissertation. We

also discuss the limitations of this dissertation and point out several future research

directions.
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Chapter 2

Relaxing Unanswerable Geographic

Questions Using A Spatially Explicit

Knowledge Graph Embedding

Model

Many geographic questions become unanswerable when they are handled by a normal

question answering system. In order to take into account the uniqueness of geographic

questions, this chapter presents a spatially-explicit knowledge graph embedding model,

called TransGeo, for unanswerable geographic question relaxation. The distance decay

effect has been considered in the embedding model training stage through distance-aware

triple weight calculation and entity context sampling. The trained TransGeo model is

applied to relax and rewrite unanswerable geographic questions. To evaluate this model,

we construct a geographic knowledge graph - DB18 and an unanswerable geographic

query dataset - GeoUQ based on DBpedia Knowledge Graph. Evaluation results show

that our TransGeo model can outperform multiple existing knowledge graph embedding
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models on both the link prediction and geographic query relaxation task. Relaxing

and rewriting unanswerable geographic questions to allow the QA system to be able

to correctly answer more questions is the first step towards a fully functional GeoQA

system. In this chapter, we show the importance of spatial thinking in the GeoQA

system development process.
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Abstract: Recent years have witnessed a rapid increase in Question Answering (QA)

research and products in both academic and industry. However, geographic question

answering remained nearly untouched although geographic questions account for a sub-

stantial part of daily communication. Compared to general QA systems, geographic QA

has its own uniqueness, one of which can be seen during the process of handling unan-
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swerable questions. Since users typically focus on the geographic constraints when they

ask questions, if the question is unanswerable based on the knowledge base used by a QA

system, users should be provided with a relaxed query which takes distance decay into

account during the query relaxation and rewriting process. In this work, we present a

spatially explicit translational knowledge graph embedding model called TransGeo which

utilizes an edge-weighted PageRank and sampling strategy to encode the distance decay

into the embedding model training process. This embedding model is further applied

to relax and rewrite unanswerable geographic questions. We carry out two evaluation

tasks: link prediction as well as query relaxation/rewriting for an approximate answer

prediction task. A geographic knowledge graph training/testing dataset, DB18, as well

as an unanswerable geographic query dataset, GeoUQ, are constructed. Compared to

four other baseline models, our TransGeo model shows substantial advantages in both

tasks.

2.1 Introduction

In the field of natural language processing, Question Answering (QA) refers to the

methods, processes, and systems which allow users to ask questions in the form of natural

language sentences and receive one or more answers, often in the form of sentences [75].

In the past decades, researchers from both academia and industry have been competing

to provide better models for various subtasks of QA. Nowadays, many commercial QA

systems are widely used in our daily life such as Apple Siri and Amazon Alexa.

Although QA systems have been studied and developed for a long time, geographic

question answering remained nearly untouched. Although geographic questions account

for a large part of the query sets in several QA datasets and are frequently used as

illustrative examples [11, 12], they are treated equally to other questions even though
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geographic questions are fundamentally different in several ways. First, many geographic

questions are highly context-dependent and subjective. Although some geographic ques-

tions can be answered objectively and context independently such as what is the location

of the California Science Center, the answers to many geographic questions vary ac-

cording to when and where these questions are asked, and who asks them. Examples

include nightclubs near me that are 18+ (location-dependent), how expensive is a ride

from Stanford University to Googleplex (time-dependent), and how safe is Isla Vista

(subjective). Second, another characteristic of geographic questions is that the answers

are typically derived from a sequence of spatial operations rather than extracted from

a piece of unstructured text or retrieved from Knowledge Graphs (KG) which are the

normal procedures for current QA systems. For example, the answer to the question

what is the shortest route from California Science Center to LAX should be computed

by a shortest path algorithm on a route dataset rather than searching in a text corpus.

The third difference is that geographic questions are often affected by vagueness and un-

certainty at the conceptual level [76], thereby making questions such as how many lakes

are there in Michigan difficult to answer.1.

Due to the previously mentioned reasons, it is likely to receive no answer given a ge-

ographic question. In the field of general QA such cases are handled by so-called (query)

relaxation and rewriting techniques [77]. We believe that geographic questions will ben-

efit from spatially-explicit relaxation methods in which the spatial adjacency and time

continuity should be taken into account during relaxation and rewriting. Interestingly,

only a few researchers have been working on geographic question answering [48, 78, 79].

In this paper, we will mainly focus on how to include spatial adjacency (distance decay

effect) into the geographic query relaxation/rewriting framework.

The necessity of query relaxation/rewriting arises from the problem of unanswerable

1Where the answer can vary between 63,000 and 10 depending on the conceptualization of Lake.
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questions [80]. Almost all QA systems answer a given question based on their internal

knowledge bases (KB). According to the nature of such knowledge bases, current QA

research can be classified into three categories: unstructured data-based QA [4, 5, 6, 7,

8], semi-structure table-based QA [9], and structured-KB-based QA (so-called semantic

parsing) [11, 12, 13, 14, 11]. If the answer to a given question cannot be retrieved

from these sources, this question will be called an unanswerable question. There are

different reasons for unanswerable questions. The first reason is that the information this

question focuses on is missing from the current KB. For example, if the question is what

is the weather like in Creston, California (Question A) and if the weather information

of Creston is missing in the current KB, the QA system will fail to answer it. Another

reason may stem from logical inconsistencies of a given question. The question which city

spans Texas and Colorado (Question B) is unanswerable no matter which KBs is used

because these states are disjoint.

In order to handle these cases, the initial questions need to be relaxed or rewritten

to answerable questions and spatial adjacency need to be considered in this process. A

relaxed question to Question A can be what is the weather like in San Luis Obispo County

because Creston is part of San Luis Obispo County. Another option is to rewrite Question

A to a similar question: what is the weather like in San Luis Obispo (City) because San

Luis Obispo is near to Creston. Which option to consider depends on the nature of

the given geographic question. As for Question B, a relaxation solution would be to

delete one of the contradictory conditions. Sensible query relaxation/rewriting should be

based on both the similarity/relatedness among geographic entities (the distance decay

effect) and the nature of the question. However, current relaxation/rewriting techniques

[77, 81, 82] do not consider spatial adjacency when handling unanswerable questions,

and, thus, often return surprising and counter-intuitive results.

The research contributions of our work are as follows:
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1. We propose a spatially explicit knowledge graph embedding model, TransGeo,

which explicitly models the distance decay effect.

2. This spatially explicit embedding model is utilized to relax/rewrite unanswerable

geographic queries. To the best of our knowledge, we are the first to consider the

spatial adjacency between geographic entities in this process.

3. We present a benchmark dataset to evaluate the performance of the unanswerable

geographic question handling framework. The evaluation results show that our

spatially explicit embedding model outperforms non-spatial models.

The remainder of this work is structured as follows. In Section 2.2, several works

about unanswerable question handling are discussed. Next, we present our spatially

explicit KG embedding model, TransGeo, and show how to use this model to do unan-

swerable geographic question relaxation/rewriting in Section 2.3. Then, in Section 2.4

we empirically evaluate TransGeo against 4 other baseline models in two tasks: link

predication task, unanswerable geographic question relaxation/rewriting and approxi-

mate answer prediction task. Then we conclude our work in Section 2.5 and point out

the future research directions.

2.2 Related Work

The unanswerable question problem was recently prominently featured in the open

domain question answering research field by Rajpurkar et al. [80]. The authors con-

structs a benchmark dataset, SQuADRUn, by combining the existing Stanford Ques-

tion Answering Dataset (SQuAD) with over 50,000 unanswerable questions. These new

unanswerable questions are adversarially written by crowd-workers to look similar to

the original answerable questions. In their paper, the unanswerable questions are used
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as negative samples to train a better QA model to discriminate unanswerable questions

from answerable ones. In our work, we assume the question has already been parsed (e.g.

to a SPARQL query) by a semantic parser and resulted in an empty answer set. The task

is to relax or rewrite this question/SPARQL query and to generate a related query with

its corresponding answer. In the Semantic Web field, SPARQL query relaxation aims to

reformulate queries with too few or even no results such that the intention of the original

query is preserved while a sufficient number of potential answers are generated [77].

Query relaxation models can be classified into four categories: similarity-based, rule-

based, user-preference-based, and cooperative techniques-based models. Elbassuoni et

al. [77] proposed a similarity-based SPARQL query relaxation method by defining a

similarity metric on entities in a knowledge graph. The similarity metric are defined

based on a statistic language model over the context of entities. The relaxed queries are

then generated and ranked based on this metric. This query relaxation method is defined

purely based on the similarity between SPARQL queries. In contrast, our model jointly

considers the similarity between queries and the probability that a selected answer to

the relaxed query is, indeed, the answer to original query. This is possible due to the

so-called Open World Assumption (OWA) commonly used by Web-scale KG by which

statements/triples missing from the knowledge graph can still be true unless they are

explicitly declared to be false within the knowledge graph. Our model aims at relaxing

or rewriting a query such that the top ranked rewritten queries are more likely to generate

the correct answer to the original one if it would be known.

With the increasing popularity of machine learning models in question answering

and the Semantic Web, knowledge graph embedding models have been used to either

predict answers for failed SPARQL queries [83] or recommend similar queries [84, 82].

KG embedding models aim to learn distributional representations for components of a

knowledge graph. Entities are usually represented as continuous vectors while relations,
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i.e., object properties, are typically represented as vectors (such as in TransE [85], TransH

[86], and TransRW [87]), matrices (e.g. TransR [88]), or tensors. For a comprehensive

explanation of different KG embedding models, readers are referred to a recent survey

by Wang et al. [89].

Hamilton et al. [83] proposes a graph query embeddings model (GQEs) to predict

answers for conjunctive graph queries in incomplete knowledge graphs. GQEs first em-

beds graph nodes (entities) in a low-dimensional space and represents logical operators as

learned geometric operations (e.g., translation, rotation) in the embedding space. Based

on the learned node embeddings and geometric operations, each conjunctive graph query

can be converted into an embedding in a same embedding space. Then cosine similarity

is used to compare the query embeddings and node embeddings, and subsequently rank

the corresponding entities as potential answers to the current query. While GQEs have

been successfully applied to representing conjunctive graph queries and entities in the

same embedding space, they have some limitations. For instance, GQEs can only han-

dle conjunctive graph queries, a subset of SPARQL queries. Additionally, the predicted

answer to a conjunctive graph query is not associated with a relaxed/rewritten query as

an explanation for the answer.

[82] proposed an entity context preserving translational KG embedding model to

represent each entity as a low-dimensional embedding and each predicate as a translation

operation between entities. The authors show that compared with TransE [85], the most

popular and straightforward KG embedding model, their embedding model performs

better in terms of approximating answers to empty answer SPARQL queries. They also

present an algorithm to compute similar queries to the original SPARQL queries based

on the approximated answers. Our work is developed based on this work by overcoming

some limitations and including distance decay in the embedding model training process.
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2.3 Method

Before introducing our spatially explicit KG embedding model, we briefly outline

concepts relevant to our work.

Definition 1 Knowledge Graph: A knowledge graph (KG) is a data repository, which is

typically organized as a directed multi-relational graph. Let G = 〈E,R〉 be a knowledge

graph where E is a set of entities (nodes) and R is a set of relations (labeled edges). A

triple Ti = (hi, ri, ti) can be interpreted as an edge connecting the head entity hi (subject)

with the tail entity ti (object) by relation ri (predicate). 2

Definition 2 Entity Context: Given an entity e ∈ E in the knowledge graph G, the

context of e is defined as C(e) = {(rc, ec)|(e, rc, ec) ∈ G ∨ (ec, rc, e) ∈ G}.

Definition 3 Basic Graph Pattern (BGP): Let V be a set of query variables in a SPARQL

query (e.g., ?place). A basic graph pattern in a SPARQL query is a set of triple patterns

(si, pi, oi) where si, oi ∈ E ∪V and pi ∈ R. Put differently, we restrict triple patterns and

thus BGP to cases where the variables are in the subject or object position.

Definition 4 SPARQL select query: For the purpose of this work, a SPARQL select3

query Qj is defined as the form: Qj = SELECT Vj FROM KG WHERE GP where Vj ⊆ V

and KG is the studied knowledge graph and GP is a BGP.

The SPARQL query 2.1 shows an example which corresponds to the natural lan-

guage question: In which computer hardware company located in Cupertino is/was Steve

2Note that in many knowledge graphs, a triple can include a datatype property as the relation where
the tail is a literal. In our work, we do not consider these kind of triple as they are not used in any
major current KG embedding model. We will use head (h), relation (r), and tail(t) when discussing
embeddings and subject (s), predicate (p), object (o) when discussing Semantic Web knowledge graphs
to stay in line with the literature from both fields.

3We ignore ASK, CONSTRUCT, and DESCRIBE queries here as they are not typically used for question
answering, and, thus, also not considered in related work.
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Jobs a board member. The answer should be dbr:Apple_Inc. If the triple (dbr:Apple_

Inc,dbo:locationCity,dbr:Cupertino,_California), however, is missing from cur-

rent KG, this question would become an unanswerable geographic question. Compared

to the full SPARQL 1.1 language standard, two limitations of the given definition of a

SPARQL query should be clarified:

1. Predicates in a SPARQL 1.1 BGP can also be a variables. Hence, Definition 3

presents a subset of all triple patterns, which can appear in a standard SPARQL

query.

2. SPARQL 1.1 also contains other operations (UNION, OPTION, FILTER, LIMIT,

etc.) not considered here and in related state-of-the-art work [82, 83] .

SELECT ?v

WHERE {

?v dbo:locationCity dbr:Cupertino ,_California .

?v dbo:industry dbr:Computer_hardware .

dbr:Steve_Jobs dbo:board ?v .

}

Listing 2.1: An example SPARQL query generated by a semantic parser.

Given a SPARQL query Qj parsed from a natural language geographic question, if

executing Qj on the current KG yields an empty answer set, our goal is: 1) learn a

spatially explicit KG embedding model for the current KG which takes distance decay

into account; 2) use the embedding model to infer a ranked list of approximated answers

to this question; and 3) generate a relaxed/related SPARQL query for each approximate

answer as an explanation for the query relaxation/rewriting process.
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2.3.1 Modeling Geographic Entity Context in Knowledge Graphs

Based on the examples about relaxing or rewriting Question A and Question B in the

introduction, we observe that a suitable query relaxation/rewriting for an unanswerable

geographic question should consider both the similarity/relatedness among geographic

entities (e.g., the distance decay effect) as well as the nature of the question. In terms

of measuring semantic similarities among (geographic) entities in a knowledge graph, we

borrow the assumption of distributional semantics from computational linguistic that

you shall know a word by the company it keeps [90]. In analogy, the semantic similarity

among (geographic) entities can be measured based on their contexts [70].

With regards to measuring the similarity/relatedness between general entities in a

knowledge graph, both Elbassuoni et al. [77] and Wang et al. [82] consider the one

degree neighborhood of the current entity as its context, which is shown in Definition

2. However, this entity context modeling falls apart when geographic entities

are considered in two ways. First, this geographic entity context modeling does not

fully reflect Tobler’s first law of geography, which indicates that near things are more

related than distant things. Since Definition 2 only considers object property triples as

the entity context and disregard all datatype properties, all positional information, e.g.,

geographic coordinates, would not be considered in the context modeling. Although the

place hierarchy is encoded as object property triples in most KG, e.g., GeoNames, GNIS-

LD, and DBpedia, and these triples can also indirectly introduce distance decay effects

into the context modeling, such contextual information is far too coarse. For example,

Santa Barbara County, Los Angeles County, and Humboldt County are all subdivisions of

California. From a place hierarchy perspective, all three should have the same relatedness

to each other. But Santa Barbara County is more related to Los Angeles County rather

than Humboldt County.

The second reason is due to the way geographic knowledge is represented in Web-scale
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knowledge graphs. For any given populated place, the place hierarchy of administrative

units is modeled using the same canonical predicates. Put differently, even if no other

triples are known about a small settlement, the KG will still contain at least a triple about

a higher-order unit the place belongs to, e.g., a county. Consequently, all populated places

in, say, Coconino County, Arizona, will share a common predicate (e.g., dbo: isPartOf)

and object (e.g., dbr:Coconino County, Arizona) . For tiny deserted settlements such

as Two Guns, AZ this may also be the sole triple known about them. In contrast, major

cities in the same county or state, e.g., Flagstaff, will only have a small percentage of

their total object property triples be about geographic statements. This will result in

places about which not much is known to have an artificially increased similarity.

These aforementioned two reasons demonstrate the necessity to model geographic

entity context in a different way rather than Definition 2. In this work, we redefine

Definition 2 by combing an edge-weighted PageRank and a sampling procedure. The

underlying idea is to assign larger weights to geographic triples in an entity context

where the weights are modeled from a distance decay function.

To provide a final and illustrative example of the problems that arise form embedding

models that are not spatially explicit, consider the work by Wang et al. [82]. Their query

example is which actor is born in New York and starred in a United States drama film

directed by Time Burton. After passing the SPARQL version of this question to their

query relaxation/rewriting model, the model suggests to change the birthplace from New

York to Kentucky which is certainly a surprising relaxation from the original query.

Although Kentucky is also a place as New York, it is too far away from the brithplace,

New York, the QA system user is interested in. A more reasonable relaxed/rewritten

query should replace New York City with its nearby places, e.g. New Jersey.
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2.3.2 Spatially Explicit KG Embedding Model

Given a knowledge graph G = 〈E,R〉, a set of geographic entities P ⊆ E, and

a triple Ti = (hi, ri, ti) ∈ G, we treat G as an undirected, unlabeled, edge-weighted

multigraph MG, which means that we ignore the direction and label (predicate) for

each triple in G. The weight w(Ti) for triple Ti is defined in Equation 2.1, where D is

the longest (simplified) earth surface distance which is half of the length of the equator

measured in kilometer; dis(hi, ti) is the geodesic distance between geographic entity hi

and ti on the surface of an ellipsoidal model of the earth measured in kilometer. The ε is

a hyperparameter to handle the cases where hi and ti are collocated; and l is the lowest

edge weight we allow for each triple. If the head place and tail place of a geographic

triple are too far apart, we set its weight as the lower bound l, indicating that we do not

expect strong spatial interaction at this distance. 4

w(Ti) =


max(ln D

dis(hi,ti)+ε
, l) if hi ∈ P ∧ ti ∈ P

l otherwise

(2.1)

The location of hi and ti are represented as their geographic coordinates stored in

a knowledge graph, which are usually points. In this work, we use the geo:geometry

property to get the coordinates of all geographic entities in DBpedia.

After we compute weights for each triple in MG, an edge-weighted PageRank is

applied to this weighted multigraph, where edge weights are treated as the transition

probability of the random walker from one entity node to its neighboring entity node.

In order to prevent the random walker to get stuck at one sinking node, the PageRank

algorithm also defines a teleport probability, which allows the random walker to jump to

4We leave the fact that interaction depends on the travel mode and related issues for further work.
Similarity, due to the nature of existing knowledge graphs, we use point data to represent places despite
the problems this may introduce. Work on effectively integrating linestrings, polygons, and topology
into Web-scale knowledge graphs is ongoing [35].
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a random node in MG with a certain probability at each time step. Let PR(ei) be the

PageRank score for each entity ei in the knowledge graph, then PR(ei) ∈ (0, 1) represents

the probability of a random walker to arrive at entity ei after n time steps. If ei had

a lot of one degree triples (i.e., |C(ei)| is large), then ei would have a larger PR(ei).

Since
∑

i PR(ei) = 1 and |C(ei)| have a long tail distribution, PR(ei) will also have a

long tail distribution with few very large values but many small values. This skewed

distribution would affect the later sampling process. In order to normalize PR(ei), we

apply a damping function (Equation 2.2). In Equation 2.2, ln is the natural log function;

N is the number of entities in the knowledge graph G. This function has the nice property

that w(ei) increases monotonically w.r.t. PR(ei) and the distribution of w(ei) is more

normalized than w(ei). Therefore, w(ei) encodes the structural information of the original

knowledge graph and the distance decay effect on interaction (and similarity/relatedness

more broadly) among geographic entities. The more incoming and outgoing triples one

entity ei has, the larger its w(ei) will be. Also, the closer two geographic entities ei, ej ∈ P

are, the larger w(ei) and w(ej) would be.

w(ei) = N ·
1

− lnPR(ei)∑
i

1
− lnPR(ei)

(2.2)

Next, we introduce the knowledge graph embedding model, which utilizes w(ei) as

the distribution from which the entity context is sampled. Since w(ei) directly encodes

the distance decay information among geographic entities, we call our model spatially

explicit KG embedding model, denoted here as TransGeo.

Translation-based KG embedding models embed entities into low-dimensional vector

spaces while relations are treated as translation operations in either the original embed-

ding space (TransE) or relation-specific embedding space (TransH, TransR). This geo-

metric interpretation provides us with a useful way to understand the embedding-based
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Figure 2.1: An unanswerable geographic query example and its corresponding KG embedding

query relaxation/rewritten process.

Figure 2.1 shows the basic graph pattern of Query 2.1 and their vector represen-

tations in KG embedding space. If triple (dbr:Apple_Inc,dbo:locationCity,dbr:

Cupertino,_California) is missing from the current KG, this query becomes an unan-

swerable query. However, if we already obtained the learned embeddings for e1, e2, e3,

r1, r2, and r3, we could compute the embedding of the query variable ?v with each triple

pattern. Next, we can compute the weighted average of these embeddings to get the final

embedding of ?v, which is denoted as v. Next, the k-nearest neighbor entities of v can

be obtained based on the cosine similarity between their embeddings. These k-nearest

neighbor entities are treated as approximated answers to the original query 2.1. Based

on each of these candidate answers, we cycle through each triple pattern in the original

Query 2.1 to see whether they need to be relaxed or not, which is the major procedure

for embedding-based query relaxation/rewritten.

In order to make the embedding-based query relaxation/rewriting process work well,

the KG embedding model should be an entity context preserving model. However, one

problem for the original TransE model is that each triple is treated independently in
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the training process which does not guarantee its context preservation. Inspired by the

Continuous-Bag-of-word (CBOW) word embedding model [91], [82] proposed an entity

context preserved KG embedding model which predicts the center entity based on the

entity context (Definition 2). However, as we discussed in Section 2.3.1, the geographic

entity context can not be fully captured by using Definition 2 and we need another method

to capture the distance decay effect, where w(ei) plays a role. Another shortcoming of the

embedding model proposed in Wang et al. [82] is that the size of entity context |C(ei)|

varies among different entities which will make the number of triples trained in each

batch different. This will have a negative effect on the model optimization process. Some

entities may have thousands of incoming and outgoing triples, e.g., dbr:United_States

has 232,573 context triples. This will imply that the model parameters will only update

once all these triples are processed which is not a good optimization technique.

Based on this observation, we define a hyperparameter d as the context sampling size

for each entity. If |C(ei)| > d, then the context C(ei) of entity ei would not be fully

used in each KG embedding training step. Instead, the training context Csamp(ei) is

sampled from C(ei) (Csamp(ei) ⊆ C(ei)) while the sampling probability of each context

item (rci, eci) is calculated based on the damped PageRank value w(eci). If |C(ei)| > d,

the training context Csamp(ei) is sampled without replacement. If |C(ei)| < d, Csamp(ei)

is sampled with replacement. After a certain number of epochs tfreq, Csamp(ei) will be

resampled for each entity. Because of this sampling strategy, a context item (rci, eci) of

ei would have a higher chance to be sampled if ei ∈ P ∧ eci ∈ P , and ei is close enough

to eci in geographic space.

P (rci, eci) =
w(eci)∑

(rcj ,ecj)∈C(ei)
w(ecj)

, where (ei, rci, eci) ∈ G ∨ (eci, rci, ei) ∈ G (2.3)

Based on the definition of entity training context Csamp(ei), a compatibility score
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between Csamp(ei) and an arbitrary entity ek can be computed as Equation 2.4, in which

φ(ek, rcj, ecj) is the plausibility score function between (rcj, ecj) and ek. In Equation 2.5,

‖·‖ represents the L1-norm of the embedding vector; ek, ecj represent the KG embeddings

for the corresponding entity ek, ecj, and rcj is the relation embedding of rcj.

f(ek, Csamp(ei)) =
1

|Csamp(ei)|
·

∑
(rcj ,ecj)∈Csamp(ei)

φ(ek, rcj, ecj) (2.4)

φ(ek, rcj, ecj) =


‖ek + rcj − ecj‖ if (ei, rcj, ecj) ∈ G

‖ecj + rcj − ek‖ if (ecj, rcj, ei) ∈ G
(2.5)

The same assumption has been used here as TransE, which is that, in the perfect

situation, if (hi, ri, ti) ∈ G, ‖hi + ri− , ti‖ = 0. Based on Equation 2.4 and 2.5, if ek = ei,

each φ(ek, rcj, ecj) would be small and close to zero, thus f(ei, Csamp(ei)) would be also

small and close to zero. In contrast, if C(ek) ∩ C(ei) = �, each φ(ek, rcj, ecj) would be

very large and f(ei, Csamp(ei)) would also also large.

In order to set up the learning task, the pairwise ranking loss function has been used

as the objective function like most KG embedding models do. Specifically, for each entity

ei, we randomly sample K entities as the negative sampling set Neg(ei) for ei. Equation

4.12 shows the objective function of TransGeo, where γ is the margin and max() is the

maximum function.

L =
∑

ei∈G

∑
e
′
i∈Neg(ei)

max
(
γ + f(ei, Csamp(ei))− f(e

′

i, Csamp(ei)), 0
)

(2.6)
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2.3.3 KG Embedding Model Based Query Relaxation and Rewrit-

ing

After obtaining the learned TransGeomodel, we adopt the same procedure as [82] to

relax/rewrite the query. We briefly summarize the process below. We assume a SPARQL

query Q with two variables ?v1 and ?v2, which are targets to be relaxed/rewritten in order

to find approximated answers.

1. Given an empty answer SPARQL query Q, we partition the basic graph pattern into

several groups such that all triple patterns in one group only contain one variable.

Triples who have two variables ?v1 and ?v2 (connected triples) as its subject and

object respectively are treated differently;

2. For each triple pattern group which contains variable ?v, the embedding of ?v is

first computed by each triple pattern based on the translation operations from the

entity node to the variable node. Then the final embedding of ?v is computed as

the weighted average of previous computed variable embeddings. The weight is

calculated based on the number of matched triples of each triple patterns in the

KG;

3. If Q has any connection triples, the embeddings of variables computed from each

triple pattern group are refined based on the predicate of the connection edges.

Then these embeddings will be treated as the final embeddings for each variable;

4. The approximate answers to each variable are determined by using their computed

variable embeddings to search for the k-nearest embeddings of entities based on

their cosine similarity. Each variable will have a ranked list of entities, e.g. A(?v1),

A(?v2), as their approximated answers;
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5. If Q has any connection triples, e.g. (?v1, r, ?v2), we need to first use beam search

to get top-K answer tuples for ?v1 and ?v2. And then each answer tuple (e1i, e2j)

is checked for the condition (e1i, r, e2j) ∈ G. The answer tuples which satisfy this

condition will be returned as a ranking list Ans(Q) of approximated answers;

6. For each answer tuple (e1i, e2j) ∈ Ans(Q), we enumerate each triple pattern to check

the satisfaction. As for triple (?v1, r, e), if (e1i, r, e) ∈ G, we do not perform any

relaxation. If (e1i, r, e) /∈ G, then (?v1, r, e) will be relaxed based on Equation 4.3.

However, if e1i does not have any outgoing triples, this triple pattern could not be

relaxed and we would delete this triple pattern from the query relaxation/rewriting

result. But the similarity score of this relaxation result will be set to 0;

7. The ranked list of answer tuples as well as the relaxed queries associated with them

are returned to the users.

(e1i, rk, ek) = arg max
( r · rk
‖r‖ · ‖rk‖

+
e · ek

‖e‖ · ‖ek‖

)
(2.7)

2.4 Experiment

Since almost all the established knowledge graph training dataset for KG embedding

models, e.g., FB15K, WN18, do not contain enough geographic entities, we collect a new

KG embedding training dataset, DB18 5, which is a subgraph of DBpedia. The dataset

construction procedure is as follow: 1) We first selected all geographic entities which are

part of (dbo:isPartOf) dbr:California with type (rdf:type) dbo:City which yields

462 geographic entities; 2) We use these entities as seeds to get their 1-degree and 2-

degree object property triples and filter out triples with no dbo: properties; 3) we delete

5https://github.com/gengchenmai/TransGeo
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Table 2.1: Summary statistic for DB18

DB18 Total Training Testing

# of triples 139155 138155 1000

# of entities 22061 - -

# of relations 281 - -

# of geographic entities 1681 (7.62%) - -

the entities and their associated triples whose node degree is less than 10; 4) we split

the triple set into training and testing set and make sure that every entity and relation

in the testing dataset will appear in training dataset. The statistic of DB18 is listed in

Table 2.1. ‘Geographic entities’ here means entities with a geo:geometry property.

Following the method we describe in Section 2.3.2, we compute the edge weights

for each triple in DB18 and an edge-weighted PageRank algorithm is applied on this

undirected unlabeled multigraph. Here we set l to 1 and ε to 1. We select four models

as the baseline models to compare with TransGeo: 1) TransE ; 2) the context preserv-

ing translational KG embedding [82]; 3) a simplified version of TransGeo in which

the entity context items are randomly sampled from a uniform distribution, denoted as

TransGeounweighted; 4) another simplified version of our model in which the PageRank are

applied to unweighted multigraph, denoted as TransGeoregular. We implement TransE,

TransGeounweighted, TransGeoregular, and TransGeo, in Tensorflow. We use the original

Java implementation of Wang et al. [82]6. For all five models, we train them for 1000

epochs with the margin γ = 1.0 and learning rate α = 0.001. As for TransGeounweighted,

TransGeoregular, and TransGeo, we use 30 as the entity context sampling size d and

1000 as batch size. We resample the entity context every 100 epochs. As for the context

preserving translational KG embedding [82], we use 10 as the entity context size cut-off

6https://github.com/wangmengsd/re
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value. The embedding dimension of all these five embedding models is 50.

In order to demonstrate the effectiveness of our spatially explicit KG embedding

model, TransGeo, over the other four baseline models, we evaluate these five KG embed-

ding models in two task: the standard link predication task and an relaxation/rewriting

task to predict answers to the otherwise unanswerable geographic questions. The evalu-

ation results are listed in Table 2.2.

The common link prediction task is used to validate the translation preserving char-

acteristic of different models. The set up of the link prediction task follows the eval-

uation protocol of Bordes et al. [85]. Given a correct triple Tk = (hk, rk, tk) from the

testing dataset of DB18, we replace the head entity hk (or tail tk) with all other en-

tities from the dictionary of DB18. The plausibility scores for each of those n triples

are computed based on the plausibility score functions of TransE (‖ h + r − t ‖).

Then these triples are ranked in ascending order according to this score. The higher

the correct triple ranks in this list, the better this learned model. Note that some

of the corrupted triples may also appear in the KG. For example, as for triple (dbr:

Santa_Barbara,_California, dbo:isPartOf, dbr:California), if we replace the head

dbr:Santa_Barbara,_California with dbr:San_Francisco, the result corrupted triple

(dbr:San_Francisco, dbo:isPartOf, dbr:California) is still in the DBpedia KG.

These false negative samples need to be filtered out. Mean reciprocal rank (MRR) and

HIT@10 are used as evaluation matrics where Raw and Filter indicate the evaluation

results on the original ranking of triples or the filtered list which filters out the false

negative samples. According to Table 2.2, TransGeo performs the best in most of the

metrics and the only metric TransGeo cannot outperform is MRR in the raw setting.

This evaluation shows that our spatially explicit model does indeed hold the translation

preserving characteristic.

For the quality of the unanswerable geographic query relaxation/rewriting results,
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Table 2.2: Two evaluation tasks for different KG embedding models

Link Prediction SPARQL Relaxation

MRR HIT@10 MRR HIT@10

Raw Filter Raw Filter

TransE Model 0.122 0.149 30.00% 34.00% 0.008 5% (1 out of 20)

Wang et al. [82] 0.113 0.154 27.20% 30.50% 0.000 0% (0 out of 20)

TransGeoregular 0.094 0.129 28.50% 33.40% 0.098 25% (5 out of 20)

TransGeounweighted 0.108 0.152 30.80% 37.80% 0.043 15% (3 out of 20)

TransGeo 0.104 0.159 32.40% 42.10% 0.109 30% (6 out of 20)

we evaluate the results based on the ranking of the approximate answers [83]. Let’s

take Question 2.1 as an example. One reason which causes an empty answer is that

some triples were missing from the KG, e.g., (dbr:Apple_Inc,dbo:locationCity,dbr:

Cupertino,_California), and the current SPARQL query is overly restrictive. However,

based on the KG embedding model, we can approximate the embeddings of the variables

in the current query. This variable embeddings can be used to search for the most probable

answers/entities to each variable in the embedding space. These k-nearest entities are

assumed to be more probable to be the correct answer of the original question. The

correct answer (based on the Open World Assumption) to Question 2.1 is dbr:Apple_Inc.

If the KG embedding is good at preserving the context of entities, the embedding of

dbr:Apple_Inc will appear close to the computed variable embedding (See Figure 2.1).

So the performance of the query relaxation/rewriting algorithm can be evaluated by

checking the rank of the correct answer in the returned ranking list of the approximate

answers.

Based on the above discussion, we construct another evaluation dataset, GeoUQ,
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which is composed of 20 unanswerable geographic questions. Let Gtrain be a knowledge

graph which is composed of all the training triples of DB187 and Gall be a knowledge

graph containing all training and testing triples in DB188. Both Gtrain and Gall can be

accessed through the SPARQL endpoint. These queries satisfy 2 conditions: 1) each

query Q will yield empty answer set when executing Q on Gtrain; 2) Q will return only

one answer when executing Q on Gall. The reason for making Q a one-answer query in

Gall is that the user also expects one answer from the QA system to the question (s)he

poses. One-answer queries are also the common setup for many QA benchmark datasets,

e.g. WikiMovie [5], WebQuestionsSP [11]. MRR and HIT@10 are used as evaluation

metrics for this task.

All five KG embedding models are evaluated based on the same query relaxation/rewrit-

ing implementation. The evaluation results are shown in Table 2.2. From Table 2.2, we

can conclude that TransGeo outperform all the other baselines models both on MRR

and HIT@10.

Table 2.3 show the top 3 query relaxation/rewriting results of Question 2.1 from all

the 5 KG embedding models. For each query, the highlighted part in the BGP is the

part where the query is changed from the original Query 2.1. Note that some of the

relaxation/rewriting results have less triple patterns than the original Query 2.1. This is

because the current approximate answer/entity does not have any outgoing or incoming

triples to be set as the alternative to the original triple pattern. Hence, we delete this

triple pattern. This has been described in Step 6 in Section 2.3.3. From Table 2.3, we can

see that the correct answer dbr:Apple_Inc has been listed as the second approximate

answer for TransGeo. However, all the 4 baseline models fail to predict this correct

answer in their top 10 approximate answers list. Besides the perspective of predicting

7
http://stko-testing.geog.ucsb.edu:3080/dataset.html?tab=query&ds=/GeoQA-Train

8
http://stko-testing.geog.ucsb.edu:3080/dataset.html?tab=query&ds=/GeoQA-All
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the correct answers, we can also evaluate the models by inspecting the quality of the

relaxed/rewritten queries. For example, the top 1 relaxed query from TransGeo changes

dbr:Cupertino,_California to dbr:Redwood_City,_California which is a nearby

city of dbr:Cupertino,_California. Although the predicted answer is dbr:NeXT rather

than dbe:Apple_Inc, this query relaxation/rewriting makes sense and is meaningful for

the user. The 2nd relaxed result from TransGeo changes dbr:Cupertino,_California

to dbr:California which is a superdivision of dbr:Cupertino,_California. This is

indeed a real query relaxation which relaxes the geographic constraint to its superdivision.

In short, our spatially explicit KG embedding model, TransGeo, produces better result

than all baseline models.

2.5 Conclusion

In this work, we discussed why geographic question answering differs from general QA

in general, and what this implies for relaxation and rewriting of empty queries specifically.

We demonstrated why distance decay has to be included explicitly in the training of

knowledge graph embeddings and showed cases of neglecting to do so. As a result, we

propose a spatially explicit KG embedding models, TransGeo, which utilizes an edge-

weighted PageRank and sampling strategy to include the distance decay effect into the

KG embedding model training. We constructed a geographic knowledge graph training

dataset, DB18 and evaluated TransGeo as well as four baseline models. We also created

an unanswerable geographic question dataset (GeoUQ) for two evaluation tasks: link

prediction and answer prediction by relaxation/rewriting. Empirical experiments show

that our spatially explicit embedding model, TransGeo, can outperform all the other 4

baseline methods on both task. As for the link prediction task, in the filter setting, our

model outperforms the other baselines by at least 3.2% at MRR and 11.4% at HIT@10. In
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Table 2.3: Query relaxation/rewriting results of different KG embedding models for
Query 2.1
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terms of the unanswerable geographic question approximate answer prediction task, our

model outperform the other 4 baselines by at least 11.2% at MRR and 20% at HIT@10.

In terms of future work, firstly, the distance decay information is explicitly encoded

into our KG embedding model which gives up on flexibility, e. g., to model modes of

transportation. In the future, we want to explore ways to only consider distance decay

during query relaxation rather than the model training step. Secondly, as for the method

to compute the edge weights of the knowledge graph, we used point geometries which

may yield misleading results for larger geographic areas such as states. This limitation

is due to the availability of existing knowledge graphs. Work to support more complex

geometries and topology is under way.
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Chapter 3

Multi-Scale Representation Learning

for Spatial Feature Distributions

using Grid Cells

This chapter focuses on a more fundamental question that goes beyond the context of

geographic question answering - how to design a general-purpose representation learning

model for (geographic) locations such that it can be utilized to design spatially-explicit ma-

chine learning models for multiple downstream geospatial tasks. Inspired by the grid cell

research in Neuroscience, we propose a multi-scale representation learning model called

Space2V ec to encode point locations into the embedding space. We utilize Space2V ec

to do POI type prediction based on 1) POI locations (location modeling) and 2) nearby

POIs’ types and locations (spatial context modeling). We also use Space2V ec to do

geo-aware image classification. Experiment results show that Space2V ec can outperform

multiple well-established baselines such as RBF kernels, tile embeddings, and multi-layer

feed-forward networks on both tasks. Further performance analysis shows that the su-

periority of Space2V ec is attributed to Space2V ec’s ability to handle distributions at
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different scales. In contrast, other baselines can at most well handle distributions at one

scale but fail in other scales.
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Abstract: Unsupervised text encoding models have recently fueled substantial progress

in Natural Language Processing (NLP). The key idea is to use neural networks to convert

words in texts to vector space representations (embeddings) based on word positions in

a sentence and their contexts, which are suitable for end-to-end training of downstream

tasks. We see a strikingly similar situation in spatial analysis, which focuses on incorpo-

rating both absolute positions and spatial contexts of geographic objects such as Points of

Interest (POIs) into models. A general-purpose representation model for space is valuable

for a multitude of tasks. However, no such general model exists to date beyond simply

applying discretization or feed-forward nets to coordinates, and little effort has been put

into jointly modeling distributions with vastly different characteristics, which commonly
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emerges from GIS data. Meanwhile, Nobel Prize-winning Neuroscience research shows

that grid cells in mammals provide a multi-scale periodic representation that functions

as a metric for location encoding and is critical for recognizing places and for path-

integration. Therefore, we propose a representation learning model called Space2Vec to

encode the absolute positions and spatial relationships of places. We conduct experiments

on two real-world geographic data for two different tasks: 1) predicting types of POIs

given their positions and context, 2) image classification leveraging their geo-locations.

Results show that because of its multi-scale representations, Space2Vec outperforms well-

established ML approaches such as RBF kernels, multi-layer feed-forward nets, and tile

embedding approaches for location modeling and image classification tasks. Detailed

analysis shows that all baselines can at most well handle distribution at one scale but

show poor performances in other scales. In contrast, Space2Vec s multi-scale representa-

tion can handle distributions at different scales. 1

3.1 Introduction

Unsupervised text encoding models such as Word2Vec [91], Glove [92], ELMo [93], and

BERT [94] have been effectively utilized in many Natural Language Processing (NLP)

tasks. At their core they train models which encode words into vector space represen-

tations based on their positions in the text and their context. A similar situation can

be encountered in the field of Geographic Information Science (GIScience). For exam-

ple, spatial interpolation aims at predicting an attribute value, e.g., elevation, at an

unsampled location based on the known attribute values of nearby samples. Geographic

information has become an important component to many tasks such as fine-grained

image classification [64], point cloud classification and semantic segmentation [95], rea-

1Link to project repository: https://github.com/gengchenmai/space2vec
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soning about Point of Interest (POI) type similarity [70], land cover classification [96],

and geographic question answering [47]. Developing a general model for vector space

representation of any point in space would pave the way for many future applications.

(a) Women’s Cloth (b) Education (c) Ripley’s K (d) Renormalized Ripley’s K

Figure 3.1: The challenge of joint modeling distributions with very different charac-
teristics. (a)(b) The POI locations (red dots) in Las Vegas and Space2Vec predicted
conditional likelihood of Women’s Clothing (with a clustered distribution) and Edu-
cation (with an even distribution). The dark area in (b) indicates that the downtown
area has more POIs of other types than education. (c) Ripley’s K curves of POI
types for which Space2Vec has the largest and smallest improvement over wrap [64].
Each curve represents the number of POIs of a certain type inside certain radios cen-
tered at every POI of that type; (d) Ripley’s K curves renormalized by POI densities
and shown in log-scale. To efficiently achieve multi-scale representation Space2Vec
concatenates the grid cell encoding of 64 scales (with wave lengths ranging from 50
meters to 40k meters) as the first layer of a deep model, and trains with POI data in
an unsupervised fashion.

However, existing models often utilize specific methods to deal with geographic infor-

mation and often disregards geographic coordinates. For example, Place2Vec [70] con-

verts the coordinates of POIs into spatially collocated POI pairs within certain distance

bins, and does not preserve information about the (cardinal) direction between points.

Li et al. [97] propose DCRNN for traffic forecasting in which the traffic sensor network

is converted to a distance weighted graph which necessarily forfeits information about

the spatial layout of sensors. There is, however, no general representation model beyond

simply applying discretization [98, 99] or feed-forward nets [100, 64] to coordinates.

A key challenge in developing a general-purpose representation model for space is how
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to deal with mixtures of distributions with very different characteristics (see an example

in Figure 3.1), which often emerges in spatial datasets [101]. For example, there are POI

types with clustered distributions such as women’s clothing, while there are other POI

types with regular distributions such as education. These feature distributions co-exist

in the same space, and yet we want a single representation to accommodate all of them

in a task such as location-aware image classification [64]. Ripley’s K is a spatial analysis

method used to describe point patterns over a given area of interest. Figure 3.1c shows

the K plot of several POI types in Las Vegas. One can see that as the radius grows

the numbers of POIs increase at different rates for different POI types. In order to see

the relative change of density at different scales, we renormalize the curves by each POI

type’s density and show it in log scale in Figure 3.1d. One can see two distinct POI

type groups with different distribution patterns with clustered and even distributions.

If we want to model the distribution of these POIs by discretizing the study area into

tiles, we have to use small grid sizes for women’s clothing while using larger grid sizes

for educations because smaller grid sizes lead to over- parameterization of the model and

overfitting. In order to jointly describe these distributions and their patterns, we need

an encoding method which supports multi-scale representations.

Nobel Prize winning Neuroscience research [102] has demonstrated that grid cells in

mammals provide a multi-scale periodic representation that functions as a metric for

location encoding, which is critical for integrating self-motion. Moreover, Blair et al.

[103] show that the multi-scale periodic representation of grid cells can be simulated by

summing three cosine grating functions oriented 60◦ apart, which may be regarded as

a simple Fourier model of the hexagonal lattice. This research inspired us to encode

locations with multi-scale periodic representations. Our assumption is that decomposed

geographic coordinates helps machine learning models, such as deep neural nets, and

multi-scale representations deal with the inefficiency of intrinsically single-scale methods
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such as RFB kernels or discretization (tile embeddings). To validate this intuition, we

propose an encoder-decoder framework to encode the distribution of point-features2 in

space and train such a model in an unsupervised manner. This idea of using sinusoid

functions with different frequencies to encode positions is similar to the position encoding

proposed in the Transformer model [104]. However, the position encoding model of

Transformer deals with a discrete 1D space – the positions of words in a sentence – while

our model works on higher dimensional continuous spaces such as the surface of earth.

In summary, the contributions of our work are as follows:

1. We propose an encoder-decoder encoding framework called Space2Vec using sinu-

soid functions with different frequencies to model absolute positions and spatial

contexts. We also propose a multi-head attention mechanism based on context

points. To the best of our knowledge, this is the first attention model that explic-

itly considers the spatial relationships between the query point and context points.

2. We conduct experiments on two real world geographic data for two different tasks:

1) predicting types of POIs given their positions and context, 2) image classification

leveraging their geo-locations. Space2Vec outperforms well-established encoding

methods such as RBF kernels, multi-layer feed-forward nets, and tile embedding

approaches for location modeling and image classification.

3. To understand the advantages of Space2Vec we visualize the firing patterns (re-

sponse maps) of location models’ encoding layer neurons and show how they han-

dle spatial structures at different scales by integrating multi-scale representations.

Furthermore the firing patterns for the spatial context models neurons give insight

into how the grid-like cells capture the decreasing distance effect with multi-scale

2In GIS and spatial analysis, ‘features’ are representations of real-world entities. A tree can, for
instance, be modeled by a point-feature, while a street would be represented as a line string feature.
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representations.

3.2 Problem Formulation

Distributed representation of point-features in space can be formulated as follows.

Given a set of points P = {pi}, i.e., Points of Interests (POIs), in L-D space (L = 2, 3)

define a function fP,θ(x) : RL → Rd (L � d), which is parameterized by θ and maps

any coordinate x in space to a vector representation of d dimension. Each point (e.g.,

a restaurant) pi = (xi,vi) is associated with a location xi and attributes vi (i.e., POI

features such as type, name, capacity, etc.). The function fP,θ(x) encodes the probability

distribution of point features over space and can give a representation of any point in the

space. Attributes (e.g. place types such as Museum) and coordinate of point can be seen

as analogies to words and word positions in commonly used word embedding models.

3.3 Related Work

There has been theoretical research on neural network based path integration/spatial

localization models and their relationships with grid cells. Both Cueva et al. [105] and

Banino et al. [106] showed that grid-like spatial response patterns emerge in trained

networks for navigation tasks which demonstrate that grid cells are critical for vector-

based navigation. Moreover, Gao et al. [107] propose a representational model for grid

cells in navigation tasks which has good quality such as magnified local isometry. All

these research is focusing on understanding the relationship between the grid-like spatial

response patterns and navigation tasks from a theoretical perspective. In contrast, our

goal focuses on utilizing these theoretical results on real world data in geoinformatics.

Radial Basis Function (RBF) kernel is a well-established approach to generating learn-

ing friendly representation from points in space for machine learning algorithms such as
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SVM classification [108] and regression [109]. However, the representation is example

based – i.e., the resultant model uses the positions of training examples as the centers

of Gaussian kernel functions [110]. In comparison, the grid cell based location encoding

relies on sine and cosine functions, and the resultant model is inductive and does not

store training examples.

Recently the computer vision community shows increasing interests in incorporating

geographic information (e.g. coordinate encoding) into neural network architectures for

multiple tasks such as image classification [99] and fine grained recognition [98, 100, 64].

Both Berg et al. [98] and Tang et al. [99] proposed to discretize the study area into regu-

lar grids. To model the geographical prior distribution of the image categories, the grid id

is used for GPS encoding instead of the raw coordinates. However, choosing the correct

discretization is challenging [111, 112], and incorrect choices can significantly affect the

final performance [113, 114]. In addition, discretization does not scale well in terms of

memory use. To overcome these difficulties, both Chu et al. [100] and Mac Aodha et al.

[64] advocated the idea of inductive location encoders which directly encode coordinates

into a location embedding. However, both of them directly feed the coordinates into a

feed-forward neural network [100] or residual blocks [64] without any feature decompo-

sition strategy. Our experiments show that this direct encoding approach is insufficient

to capture the spatial feature distribution and Space2Vec significantly outperforms them

by integrating spatial representations of different scales.

3.4 Method

We solve distributed representation of point-features in space (defined in Section 3.2)

with an encoder-decoder architecture:

1. Given a point pi = (xi,vi) a point space encoder Enc(x)() encodes location xi
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into a location embedding e[xi] ∈ Rd(x) and a point feature encoder Enc(v)()

encodes its feature into a feature embedding e[vi] ∈ Rd(v) . e = [e[xi]; e[vi]] ∈ Rd is

the full representation of point pi ∈ P , where d = d(x) + d(v). [; ] represents vector

concatenation. In contrast, geographic entities not in P within the studied space

can be represented by their location embedding e[xj] since its vi is unknown.

2. We developed two types of decoders which can be used independently or jointly.

A location decoder Decs() reconstructs point feature embedding e[vi] given lo-

cation embedding e[xi], and a spatial context decoder Decc() reconstructs the

feature embedding e[vi] of point pi based on the space and feature embeddings

{ei1, ..., eij, ..., ein} of nearest neighboring points {pi1, ..., pij, ..., pin}, where n is a

hyper-parameter.

3.4.1 Encoder

Point Feature Encoder Each point pi = (xi,vi) in a point set P is often associ-

ated with features such as the air pollution station data associate with some air quality

measures, a set of POIs with POI types and names, a set of points from survey and map-

ping with elevation values, a set of points from geological survey with mineral content

measure, and so on. The point feature encoder Enc(v)() encodes such features vi into a

feature embedding e[vi] ∈ Rd(v) . The implementation of Enc(v)() depends on the nature

of these features. For example, if each point represents a POI with multiple POI types

(as in this study), the feature embedding e[vi] can simply be the mean of each POI types’

embeddings e[vi] =
1

H

∑H
h=1 t

(γ)
h , where t

(γ)
h indicates the hth POI type embedding of

a POI pi with H POI types. We apply L2 normalization to the POI type embedding

matrix.
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Point Space Encoder A part of the novelty of this paper is from the point space

encoder Enc(x)(). We first introduce Theorem 1 which provide an analytical solution φ(x)

as the base of encoding any location x ∈ R2 in 2D space to a distributed representation:

Theorem 1 Let Ψ(x) = (ei〈aj ,x〉, j = 1, 2, 3)T ∈ C3 where eiθ = cos θ + i sin θ is the

Euler notation of complex values; 〈aj,x〉 is the inner product of aj and x. a1, a2, a3 ∈

R2 are 2D vectors such that the angle between ak and al is 2π/3, ∀j, ‖aj‖ = 2
√
α.

Let C ∈ C3×3 be a random complex matrix such as C∗C = I. Then φ(x) = CΨ(x),

M(∆x) = Cdiag(Ψ(∆x))C∗ satisfies

φ(x + ∆x) = M(∆x)φ(x) (3.1)

and

〈φ(x + ∆x), φ(x)〉 = d(1− α‖∆x‖2) (3.2)

where d = 3 is the dimension of φ(x) and ∆x is a small displacement from x.

The proof of Theorem 1 can be seen in Gao et al. [107]. φ(x) = CΨ(x) ∈ C3 amounts to

a 6-dimension real value vector and each dimension shows a hexagon firing pattern which

models the grid cell behavior. Because of the periodicity of sin() and cos(), this single

scale representation φ(x) does not form a global codebook of 2D positions, i.e. there can

be x 6= y, but φ(x) = φ(y).

Inspired by Theorem 1 and the multi-scale periodic representation of grid cells in

mammals [102] we set up our point space encoder e[x] = Enc
(x)
theory(x) to use sine and

cosine functions of different frequencies to encode positions in space. Given any point x in

the studied 2D space, the space encoder Enc
(x)
theory(x) = NN(PE(t)(x)) where PE(t)(x) =

[PE
(t)
0 (x); ...;PE

(t)
s (x); ...;PE

(t)
S−1(x)] is a concatenation of multi-scale representations of

d(x) = 6S dimensions. Here S is the total number of grid scales and s = 0, 1, 2, ..., S − 1.

NN() represents fully connected ReLU layers. Let a1 = [1, 0]T , a2 = [−1/2,
√

3/2]T , a3 =
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[−1/2,−
√

3/2]T ∈ R2 be three unit vectors and the angle between any of them is 2π/3.

λmin, λmax are the minimum and maximum grid scale and g = λmax

λmin
. At each scale s,

PE
(t)
s (x) = [PE

(t)
s,1(x);PE

(t)
s,2(x);PE

(t)
s,3(x)] is a concatenation of three components, where

PE
(t)
s,j(x) = [cos(

〈x, aj〉
λmin · gs/(S−1)

); sin(
〈x, aj〉

λmin · gs/(S−1)
)]∀j = 1, 2, 3; (3.3)

NN() and PE(t)(x) are analogies of C and Ψ(x) in Theorem 1.

Similarly we can define another space encoder Enc
(x)
grid(x) = NN(PE(g)(x)) inspired

by the position encoding model of Transformer [104], where PE(g)(x) = [PE
(g)
0 (x); ...;

PE
(g)
s (x); ...;PE

(g)
S−1(x)] is still a concatenation of its multi-scale representations, while

PE
(g)
s (x) = [PE

(g)
s,1 (x);PE

(g)
s,2 (x)] handles each component l of x separately:

PE
(g)
s,l (x) = [cos(

x[l]

λmin · gs/(S−1)
); sin(

x[l]

λmin · gs/(S−1)
)]∀l = 1, 2 (3.4)

3.4.2 Decoder

Two types of decoders are designed for two major types of GIS problems: location

modeling and spatial context modeling (See Section 3.5.1).

Location Decoder Decs() directly reconstructs point feature embedding e[vi] given

its space embedding e[xi]. We use one layer feed-forward neural network NNdec()

e[vi]
′ = Decs(xi; θdecs) = NNdec(e[xi]) (3.5)

For training we use inner product to compare the reconstructed feature embedding e[vi]
′

against the real feature embeddings of e[vi] and other negative points (see training detail

in Section 3.4.3).

Spatial Context Decoder Decc() reconstructs the feature embedding e[vi] of the

center point pi based on the space and feature embeddings {ei1, ..., eij, ..., ein} of n nearby

points {pi1, ..., pij, ..., pin}. Note that the feed-in order of context points should not affect
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the prediction results, which can be achieved by permutation invariant neural network

architectures [115] like PointNet [95].

e[vi]
′ = Decc(xi, {ei1, ..., eij, ..., ein}; θdecc) = g(

1

K

K∑
k=1

n∑
j=1

αijke[vij]) (3.6)

Here g is an activation function such as sigmoid. αijk =
exp(σijk)∑n

o=1 exp(σiok)
is the attention of

pi with its jth neighbor through the kth attention head, and

σijk = LeakyReLU(aTk [e[vi]init; e[vij]; e[xi − xij]]) (3.7)

where ak ∈ R2d(v)+d(x) is the attention parameter in the kth attention head. The multi-

head attention mechanism is inspired by Graph Attention Network [116] and Mai et al.

[117].

To represent the spatial relationship (distance and direction) between each context

point pij = (xij,vij) and the center point pi = (xi,vi), we use the space encoder Enc(x)()

to encode the displacement between them ∆xij = xi − xij. Note that we are modeling

the spatial interactions between the center point and n context points simultaneously.

In Equation 3.7, e[vi]init indicates the initial guess of the feature embedding e[vi] of

point pi which is computed by using another multi-head attention layer as Equation 3.6

where the weight α′ijk =
exp(σ′ijk)∑n

o=1 exp(σ
′
iok)

. Here, σ′ijk is computed as Equation 3.8 where the

query embedding e[vi] is excluded.

σ′ijk = LeakyReLU(a′Tk [e[vij]; e[xi − xij]]) (3.8)

3.4.3 Unsupervised Training

The unsupervised learning task can simply be maximizing the log likelihood of ob-

serving the true point pi at position xi among all the points in P

LP(θ) = −
∑
pi∈P

logP (pi|pi1, ..., pij, ..., pin) = −
∑
pi∈P

log
exp(e[vi]

Te[vi]
′)∑

po∈P exp(e[vo]Te[vi]′)
(3.9)
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Here only the feature embedding of pi is used (without location embedding) to prevent

revealing the identities of the point candidates, and θ = [θenc; θdec]

Negative sampling by Mikolov et al. [91] can be used to improve the efficiency of

training

L′P(θ) = −
∑
pi∈P

(
log σ(e[vi]

Te[vi]
′) +

1

|Ni|
∑
po∈Ni

log σ(−e[vo]
Te[vi]

′)
)

(3.10)

Here Ni ⊆ P is a set of sampled negative points for pi (pi /∈ Ni) and σ(x) = 1/(1 + e−x).

3.5 Experiment

In this section we compare Space2Vec with commonly used position encoding meth-

ods, and analyze them both quantitatively and qualitatively.

Baselines Our baselines include 1) direct directly applying feed-forward nets [100];

2) tile discretization [98, 118, 99]; 3) wrap feed-forward nets with coordinate wrapping

[64]; and 4) rbf Radial Basis Function (RBF) kernels [108, 109]. See Appendix 3.7.1 for

details of the baselines.

3.5.1 POI Type Classification Tasks

Dataset and Tasks To test the proposed model, we conduct experiments on geo-

graphic datasets with POI position and type information. We utilize the open-source

dataset published by Yelp Data Challenge and select all POIs within the Las Vegas

downtown area3. There are 21,830 POIs with 1,191 different POI types in this dataset.

Note that each POI may be associated with one or more types, and we do not use any

other meta-data such as business names, reviews for this study. We project geographic

3The geographic range is (35.989438, 36.270897) for latitude and (-115.047977, -115.3290609) for
longitude.
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coordinates into projection coordinates using the NAD83/Conus Albers projection coor-

dinate system4. The POIs are split into training, validation, and test dataset with ratios

80%:10%:10%. We create two tasks setups which represent different types of modeling

need in Geographic Information Science:

• Location Modeling predicts the feature information associated with a POI based

on its location xi represented by the location decoder Decs(). This represents a large

number of location prediction problems such as image fine grained recognition with

geographic prior [100], and species potential distribution prediction [119].

• Spatial Context Modeling predicts the feature information associated with a

POI based on its context {ei1, ..., eij, ..., ein} represented by the spatial context de-

coder Decc(). This represents a collections of spatial context prediction problem

such as spatial context based facade image classification [71], and all spatial inter-

polation problems.

We use POI prediction metrics to evaluate these models. Given the real point feature

embedding e[vi] and N negative feature embeddings Ni = {e[vi]
−}, we compare the

predicted e[vi]
′ with them by cosine distance. The cosine scores are used to rank e[vi]

and N negative samples. The negative feature embeddings are the feature embeddings of

points pj randomly sampled from P and pi 6= pj. We evaluate each model using Negative

Log-Likelihood (NLL), Mean Reciprocal Rank (MRR) and HIT@5 (the chance of the

true POI being ranked to top 5. We train and test each model 10 times to estimate

standard deviations. See Appendix 3.7.2 for hyper-parameter selection details.
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(a) direct (b) tile (c) wrap (d) rbf (σ=1k) (e) λmin=1k (f) λmin=500 (g) λmin=50

Figure 3.2: Embedding clustering of (a) direct; (b) tile with the best cell size c = 500;
(c) wrap (h = 3, o = 512); (d) rbf with the best σ (1k) and 200 anchor points (red)
and (e)(f)(h) theory models with different λmin, but fixed λmax = 40k and S = 64.
All models use 1 hidden ReLU layers of 512 neurons except wrap.

Location Modeling Evaluation

We first study location modeling with the location decoder Decs() in Section 3.4.2.

We use a negative sample size of N = 100. Table 3.1 shows the average metrics of

different models with their best hyper-parameter setting on the validation set. We can

see that direct and theorydiag are less competitive, only beating the random selection

baseline. Other methods with single scale representations – including tile, wrap, and

rbf – perform better. The best results come from various version of the grid cell models,

which are capable of dealing with multi-scale representations.

In order to understand the reason for the superiority of grid cell models we provide

qualitative analysis of their representations. We apply hierarchical clustering to the

location embeddings produced by studied models using cosine distance as the distance

metric (See Figure 3.2). we can see that when restricted to large grid sizes (λmin =

1k), theory has similar representation (Figure 3.2d, 3.2e, and Figure 3.4d, 3.4e) and

performance compared to rbf (σ = 1k). However it is able to significantly outperform rbf

(σ = 1k) (and tile and wrap) when small grid sizes (λmin = 500, 50) are available. The

relative improvements over rbf (σ = 1k) are -0.2%, +0.6%, +2.1% MRR for λmin=1k,

500, 50 respectively.

4https://epsg.io/5070-1252
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Table 3.1: The evaluation results of different location models on the validation and
test dataset.

Train Validation Testing

NLL NLL MRR HIT@5 MRR HIT@5

random - 0.052 (0.002) 4.8 (0.5) 0.051 (0.002) 5.0 (0.5)

direct 1.285 1.332 0.089 (0.001) 10.6 (0.2) 0.090 (0.001) 11.3 (0.2)

tile (c=500) 1.118 1.261 0.123 (0.001) 16.8 (0.2) 0.120 (0.001) 17.1 (0.3)

wrap(h=3,o=512) 1.222 1.288 0.112 (0.001) 14.6 (0.1) 0.119 (0.001) 15.8 (0.2)

rbf (σ=1k) 1.209 1.279 0.115 (0.001) 15.2 (0.2) 0.123 (0.001) 16.8 (0.3)

grid (λmin=50) 1.156 1.258 0.128 (0.001) 18.1 (0.3) 0.139 (0.001) 20.0 (0.2)

hexa (λmin=50) 1.230 1.297 0.107 (0.001) 14.0 (0.2) 0.105 (0.001) 14.5 (0.2)

theorydiag (λmin=50) 1.277 1.324 0.094 (0.001) 12.3 (0.3) 0.094 (0.002) 11.2 (0.3)

theory (λmin=1k) 1.207 1.281 0.123 (0.002) 16.3 (0.5) 0.121 (0.001) 16.2 (0.1)

theory (λmin=500) 1.188 1.269 0.132 (0.001) 17.6 (0.3) 0.129 (0.001) 17.7 (0.2)

theory (λmin=50) 1.098 1.249 0.137 (0.002) 19.4 (0.1) 0.144 (0.001) 20.0 (0.2)

Multi-Scale Analysis of Location Modeling

In order to show how our multi-scale location representation model will affect the

prediction of POI types with different distribution patterns, we classify all 1,191 POI

types into three groups based on radius r, which is derived from each POI types’ renor-

malized Ripley’s K curve (See Figure 3.1d for examples). It indicates the x axis value of

the intersection between the curve and the line of y = 3.0. A lower r indicates a more

clustered distribution patterns. These three groups are listed below:

1. Clustered (r ≤ 100m): POI types with clustered distribution patterns;

2. Middle (100m < r < 200m): POI types with less extreme scales;

3. Even (r ≥ 200m): POI types with even distribution patterns.

Table 3.2 shows the performance (MRR) of direct, tile, wrap, rbf , and our theory
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model on the test dataset of the location modeling task with respect to these three dif-

ferent POI distribution groups. The numbers in () indicate the MRR difference betweeb

a baseline and theory. # POI refers to total number of POI belong to each group5. We

can see that 1) The two neural net approaches (direct and wrap) have no scale related

parameter and are not performing ideally across all scales, with direct performs worse

because of its simple single layer network. 2) The two approaches with built-in scale

parameter (tile and rbf) have to trade off the performance of different scales. Their best

parameter settings lead to close performances to that of Space2Vec at the middle scale,

while performing poorly in both clustered and regular groups. These observation clearly

shows that all baselines can at most well handle distribution at one scale but

show poor performances in other scales. In contrast, Space2Vecs multi-scale

representation can handle distributions at different scales.

Spatial Context Modeling Evaluation

Next, we evaluate the spatial context decoder Decc() in Section 3.4.2. We use the

same evaluation set up as location modeling. The context points are obtained by query-

ing the n-th nearest points using PostGIS (n = 10). As for validation and test datasets,

we make sure the center points are all unknown during the training phase. Table 3.3

shows the evaluation results of different models for spatial context modeling. The base-

line approaches (direct, tile, wrap, rbf) generally perform poorly in context modeling.

We designed specialized version of these approaches (polar, polar tile, scaled rbf) with

polar coordinates, which lead to significantly improvements. Note that these are models

proposed by us specialized for context modeling and therefore are less general than the

grid cell approaches. Nevertheless the grid cell approaches are able to perform better

5The reason why the sum of # POI of these three groups does not equal to the total number of POI
is because one POI can have multiple types and they may belonging to different groups.
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Table 3.2: Comparing performances in different POI groups. We classify all 1,191
POI types into three groups based on the radius r of their root types, where their
renormalized Ripley’s K curve (See Figure 3.1d) reach 3.0: 1) Clustered (r ≤ 100m):
POI types with clustered distribution patterns; 2) Middle (100m < r < 200m): POI
types with unclear distribution patterns; 3) Even (r ≥ 200m): POI types with even
distribution patterns. The MRR of wrap and theory on those three groups are shown.
The numbers in () indicate the difference between the MRR of a baseline model and
the MRR of theory with respect to a specific group. #POI refers to the total number
of POIs belonging to each group. Root Types indicates the root categories of those
POI types belong to each group.

POI Groups Clustered Middle Even

(r ≤ 100m) (100m < r < 200m) (r ≥ 200m)

direct 0.080 (-0.047) 0.108 (-0.030) 0.084 (-0.047)

wrap 0.106 (-0.021) 0.126 (-0.012) 0.122 (-0.009)

tile 0.108 (-0.019) 0.135 (-0.003) 0.111 (-0.020)

rbf 0.112 (-0.015) 0.136 (-0.002) 0.119 (-0.012)

theory 0.127 (-) 0.138 (-) 0.131 (-)

# POI 16,016 7,443 3,915

Root Types

Restaurants; Shopping;

Food; Nightlife;

Automotive; Active Life;

Arts & Entertainment;

Financial Services

Beauty & Spas; Health & Medical;

Local Services; Hotels & Travel;

Professional Services;

Public Services & Government

Home Services;

Event Planning

& Services;

Pets; Education

than the specialized approaches on the test dataset while have competitive performance

on validation dataset. See Figure 3.3 for the visualization of context models. Actually

the gains are small for all baseline approaches also. The reason is that we expect loca-

tion encoding to be less important when context information is accessible. Similarly as

discussed in [107], it is when there is a lack of visual clues that the grid cells of animals

are the most helpful for their navigation.

Figure 3.3 shows the location embedding clustering results in both Cartesian and polar

coordinate systems. We can see that direct (Figure 3.3a, 3.3g) only captures the distance
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information when the context POI is very close (log(‖ ∆xij ‖ +1) ≤ 5) while in the far-

ther spatial context it purely models the direction information. polar (Figure 3.3b, 3.3h)

has the similar behaviors but captures the distance information in a more fine-grained

manner. wrap (Figure 3.3c, 3.3i) mainly focuses on differentiating relative positions in

farther spatial context cont which might explain its lower performance6. polar tile (Fig-

ure 3.3d) mostly responds to distance information. Interestingly, scaled rbf and theory

have similar representations in the polar coordinate system (Figure 3.3k, 3.3l) and simi-

lar performance (Table 3.3). While scaled rbf captures the gradually decreased distance

6Note that wrap is original proposed by Mac Aodha et al. [64] for location modelling, not spatial
context modelling. This results indicates wrap is not good at this task.

Table 3.3: The evaluation results of different spatial context models on the validation
and test dataset. All encoders contains a 1 hidden layer FFN. All grid cell encoders
set λmin=10, λmax=10k.

Train Validation Testing

Space2V ec NLL NLL MRR HIT@5 MRR HIT@5

none 1.163 1.297 0.159 (0.002) 22.4 (0.5) 0.167 (0.006) 23.4 (0.7)

direct 1.151 1.282 0.170 (0.002) 24.6 (0.4) 0.175 (0.003) 24.7 (0.5)

polar 1.157 1.283 0.176 (0.004) 25.4 (0.4) 0.178 (0.006) 24.9 (0.1)

tile (c = 50) 1.163 1.298 0.173 (0.004) 24.0 (0.6) 0.173 (0.001) 23.4 (0.1)

polar tile(S = 64) 1.161 1.282 0.173 (0.003) 25.0 (0.1) 0.177 (0.001) 24.5 (0.3)

wrap (h=2,o=512) 1.167 1.291 0.159 (0.001) 23.0 (0.1) 0.170 (0.001) 23.9 (0.2)

rbf (σ = 50) 1.160 1.281 0.179 (0.002) 25.2 (0.6) 0.172 (0.001) 25.0 (0.1)

scaled rbf (σ=40,β=0.1) 1.150 1.272 0.177 (0.002) 25.7 (0.1) 0.181 (0.001) 25.3 (0.1)

grid(λmin=10) 1.172 1.285 0.178 (0.004) 24.9 (0.5) 0.181 (0.001) 25.1 (0.3)

hexa (λmin=10) 1.156 1.289 0.173 (0.002) 24.0 (0.2) 0.183 (0.002) 25.3 (0.2)

theorydiag (λmin = 10) 1.156 1.287 0.168 (0.001) 24.1 (0.4) 0.174 (0.005) 24.9 (0.1)

theory(λmin=200) 1.168 1.295 0.159 (0.001) 23.1 (0.2) 0.170 (0.001) 23.2 (0.2)

theory(λmin=50) 1.157 1.275 0.171 (0.001) 24.2 (0.3) 0.173 (0.001) 24.8 (0.4)

theory(λmin=10) 1.158 1.280 0.177 (0.003) 25.2 (0.3) 0.185 (0.002) 25.7 (0.3)
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(a) direct (b) polar (c) wrap (d) polar tile (e) scaled rbf (f) theory

(g) direct (h) polar (i) wrap (j) polar tile (k) scaled rbf (l) theory

Figure 3.3: Embedding clustering in the original space of (a) direct; (b) polar; (c)
wrap, h=2,o=512; (d) polar tile, S = 64, (e) scaled rbf , σ = 40, β=0.1; and (f)
theory, λmin = 10, λmax = 10k, S = 64. (g)(h)(i)(j)(k)(l) are the clustering results of
the same models in the polar-distance space using log(‖ ∆xij ‖ +1). All models use
1 hidden ReLU (except wrap) layers of 512 neurons. Most models except wrap can
capture a shift when distance is around e5 − 1 ≈ 150 meters.

effect with a scaled kernel size which becomes larger in farther distance, theory achieves

this by integrating representations of different scales.

3.5.2 Fine-Grained Image Classification Tasks

To demonstrate the generalizability of Space2Vec for space representation we utilized

the proposed point space encoder Enc(x)() model in a well-known computer vision task:

fine-grained image classification. As we discussed in Section 3.3, many studies [98, 100,

64] have shown that geographic prior information - where (and when) the image is taken

- is very important additional information for the fine-grained image classification task

and can substantially improve the model performance. For example, the appearance

information is usually not sufficient to differentiate two visually similar species. In this

case, the geographic prior becomes much more important because these two species may

have very different spatial prior distributions such as the example of European Toads

and Spiny Toads in Figure 1 of Mac Aodha et al. [64].
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We adopt the task setup of Mac Aodha et al. [64]. During training we have a set of

tuples D = {(Ii,xi, yi, pi) | i = 1, ..., N} where Ii indicates an image, yi ∈ {1, 2, ..., C}

is the corresponding class label (species category), xi = [longitudei, latitudei] is the

geographic coordinates where the image was taken, and pi is the id of the photographer

who took this image. At training time, a location encoder is trained to capture the

spatial prior information P (y | x). At inference time, pi information is not available and

the final image classification prediction is calculated based on the combination of two

models: 1) the trained location encoder which captures the spatial priors P (y | x) and

2) the pretrained image classification model, InceptionV3 network [120] which captures

P (y | I). Bayesian theory has been used to derive the joint distribution P (y | I,x).

See Mac Aodha et al. Mac Aodha et al. [64] for detail explanation as well as the loss

function. Note that while Space2Vec outperforms specialized density estimation methods

such as Adaptive Kernel [98], it would be interesting to explore early fusion Space2Vec

’s representations with the image module.

We use two versions of our point space encoder Enc(x)() model (grid, theory) as the

location encoder to capture the spatial prior information P (y | x). The evaluation results

of our models as well as multiple baselines are shown in Table 3.4. We can see that both

grid, theory outperform previous models as well as that of Mac Aodha et al.

[64] on two fine-grained image classification datasets with significant sizes:

BirdSnap†, NABirds†. theory shows superiority over grid on NABirds† while fail to

outperform grid on BirdSnap†. Note that we only pick baseline models which capture

spatial-only prior and drop models which additionally consider time information. Both

grid and theory use 1 hidden ReLU layers of 512 neurons for NN() and they have the

same hyperparameters: λmin=0.0001, λmax=360, S = 64. Like Mac Aodha et al. [64],

the location embedding size d(x) is 1024 and we train the location encoder for 30 epochs.
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Table 3.4: Fine-grained image classification results on two datasets: BirdSnap† and
NABirds†. The classification accuracy is calculated by combining image classification
predictions P (y | I) with different spatial priors P (y | x). The grid and theory model
use 1 hidden ReLU layers of 512 neurons. The evaluation results of the baseline models
are from Table 1 of Mac Aodha et al. [64].

BirdSnap† NABirds†

No Prior (i.e. uniform) 70.07 76.08

Nearest Neighbor (num) 77.76 79.99

Nearest Neighbor (spatial) 77.98 80.79

Adaptive Kernel [98] 78.65 81.11

tile [99] (location only) 77.19 79.58

wrap [64] (location only) 78.65 81.15

rbf (σ=1k) 78.56 81.13

grid (λmin=0.0001, λmax=360, S = 64) 79.44 81.28

theory (λmin=0.0001, λmax=360, S = 64) 79.35 81.59

Our implementation is based on the original code7 of Mac Aodha et al. [64] for both

model training and evaluation phase.

3.6 Conclusion

We introduced an encoder-decoder framework as a general-purpose representation

model for space inspired by biological grid cells’ multi-scale periodic representations. The

model is an inductive learning model and can be trained in an unsupervised manner. We

conduct two experiments on POI type prediction based on 1) POI locations and 2) nearby

POIs. The evaluation results demonstrate the effectiveness of our model. Our analysis

reveals that it is the ability to integrate representations of different scales that makes the

grid cell models outperform other baselines on these two tasks. In the future, we hope to

7https://github.com/macaodha/geo_prior/
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incorporate the presented framework to more complex GIS tasks such as social network

analysis, and sea surface temperature prediction.
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3.7 Appendix

3.7.1 Baselines

To help understand the mechanism of distributed space representation we compare

multiple ways of encoding spatial information. Different models use different point space

encoder Enc(x)() to encode either location xi (for location modeling loc) or the displace-

ment between the center point and one context point ∆xij = xi−xij (for spatial context

modeling cont)8.

• random shuffles the order of the correct POI and N negative samples randomly as

the predicted ranking. This shows the lower bound of each metrics.

• direct directly encode location xi (or ∆xij for cont) into a location embedding e[xi]

(or e[∆xij]) using a feed-forward neural networks (FFNs)9, denoted as Enc
(x)
direct(x)

without decomposing coordinates into a multi-scale periodic representation. This

is essentially the GPS encoding method used by Chu et al. [100]. Note that Chu et

al. [100] is not open sourced and we end up implementing the model architecture

ourselves.

• tile divides the study area Aloc (for loc) or the range of spatial context defined

by λmax, Acont, (for cont) into grids with equal grid sizes c. Each grid has an

embedding to be used as the encoding for every location xi or displacement ∆xij

fall into this grid. This is a common practice by many previous work when dealing

with coordinate data [98, 118, 99].

• wrap is a location encoder model recently introduced by Mac Aodha et al. [64].

It first normalizes x (or ∆x) into the range [−1, 1] and uses a coordinate wrap

8We will use meter as the unit of λmin, λmax, σ, c.
9we first normalizes x (or ∆x) into the range [−1, 1]
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mechanism [sin(πx[l]); cos(πx[l])] to convert each dimension of x into 2 numbers.

This is then passed through an initial fully connected layer, followed by a series of

h residual blocks, each consisting of two fully connected layers (o hidden neurons)

with a dropout layer in between. We adopt the official code of Mac Aodha et al.

[64]10 for this implementation.

• rbf randomly samples M points from the training dataset as RBF anchor points

{xanchorm ,m = 1...M} (or samples M ∆xanchorm from Acont for cont) 11, and use gaus-

sian kernels exp
(
− ‖ xi − xanchorm ‖2

2σ2

)
(or exp

(
− ‖ ∆xij −∆xanchorm ‖2

2σ2

)
for cont)

on each anchor points, where σ is the kernel size. Each point pi has a M -dimension

RBF feature vector which is fed into a FNN to obtain the spatial embedding. This

is a strong baseline for representing floating number features in machine learning

models.

• grid as described in Section 3.4.1 inspired by the position encoding in Transformer

[104].

• hexa Same as grid but use sin(θ), sin(θ + 2π/3), and sin(θ + 4π/3) in PE
(g)
s,l (x).

• theory as described in Section 3.4.1, uses the theoretical models [107] as the first

layer of Enc
(x)
theory(x) or Enc

(x)
theory(∆xij).

• theorydiag further constrains NN() as a block diagonal matrix, with each scale as

a block.

We also have the following baselines which are specific to the spatial context modeling

task.

10http://www.vision.caltech.edu/~macaodha/projects/geopriors/
11these anchor points are fixed in both loc and cont.
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• none the decoder Decc() does not consider the spatial relationship between the

center point and context points but only the co-locate patterns such as Place2Vec

[70]. That means we drop the e[∆xij] from the attention mechanism in Equation

3.7 and 3.8.

• polar first converts the displacement ∆xij into polar coordinates (r, θ) centered at

the center point where r = log(‖ ∆xij ‖ +1). Then it uses [r, θ] as the input for a

FFN to obtain the spatial relationship embedding in Equation 3.7. We find out that

it has a significant performance improvement over the variation with r =‖ ∆xij ‖.

• polar tile is a modified version of tile but the grids are extracted from polar co-

ordinates (r, θ) centered at the center point where r = log(‖ ∆xij ‖ +1). Instead

of using grid size c, we use the number of grids along θ (or r) axis, F , as the

only hyperparameter. Similarly, We find that r = log(‖ ∆xij ‖ +1) outperform

r =‖ ∆xij ‖ significantly.

• scaled rbf is a modified version of rbf for cont whose kernel size is proportional to

the distance between the current anchor point and the origin, ‖ ∆xanchorm ‖. That

is exp
(
− ‖ ∆xij −∆xanchorm ‖2

2σ2
scaled

)
. Here σscaled = σ + β ‖ ∆xanchorm ‖ where σ is

the basic kernel size and β is kernel rescale factor, a constant. We developed this

mechanism to help RFB to deal with relations at different scale, and we observe

that it produces significantly better result than vanilla RBFs.

3.7.2 Hyper-Parameter Selection

We perform grid search for all methods based on their performance on the validation

sets.
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Location Modeling The hyper-parameters of theory models are based on grid search

with d(v) = (32, 64, 128, 256), d(x) = (32, 64, 128, 256), S = (4, 8, 16, 32, 64, 128), and

λmin = (1, 5, 10, 50, 100, 200, 500, 1k) while λmax = 40k is decided based on the total

size of the study area. We find out the best performances of different grid cell based

models are obtained when d(v) = 64, d(x) = 64, S = 64, and λmin = 50. In terms

of tile, the hyper-parameters are selected from c = (10, 50, 100, 200, 500, 1000) while

c = 500 gives us the best performance.As for rbf , we do grid search on the hyper-

parameters: M = (10, 50, 100, 200, 400, 800) and σ = (102, 103, 104, 105, 106, 107). The

best performance of rbf is obtain when M = 200 and σ = 103. As for wrap, grid search

is performed on: h = (1, 2, 3, 4) and o = (64, 128, 256, 512) while h = 3 and o = 512 gives

us the best result. All models use FFNs in their Enc(x)() except wrap. The number

of layers f and the number of hidden state neurons u of the FFN are selected from

f = (1, 2, 3) and u = (128, 256, 512). We find out f = 1 and u = 512 give the best

performance for direct, tile, rbf , and theory. So we use them for every model for a fair

comparison.

Spatial Context Modeling Grid search is used for hyperparameter tuning and the

best performance of different grid cell models is obtain when d(v) = 64, d(x) = 64,

S = 64, and λmin = 10. We set λmax = 10k based on the maximum displacement

between context points and center points to make the location encoding unique. As for

multiple baseline models, grid search is used again to obtain the best model. The best

model hyperparameters are shown in () besides the model names in Table 3.3. Note that

both rbf and scaled rbf achieve the best performance with M = 100.

3.7.3 Firing Pattern for the Neurons
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(a) direct (b) tile (c=500)

(c) wrap (h=3,o=512) (d) rbf (σ=1k)

(e) theory (λmin=1k) (f) theory (λmin=50)

Figure 3.4: The firing pattern for the first 8 neurons (out of 64) given different encoders
in location modeling.

3.7.4 Embedding clustering of RBF and theory models

(a) λmin=200 (b) λmin=100 (c) λmin=50 (d) λmin=10

(e) λmin=200 (f) λmin=100 (g) λmin=50 (h) λmin=10

Figure 3.5: Embedding clustering in the original space of (a)(b)(c)(d) theory with
different λmin, but the same λmax = 10k and S = 64. (e)(f)(g)(h) are the embedding
clustering results of the same models in the polar-distance space. All models use 1
hidden ReLU layers of 512 neurons.
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(a) β=0.0 (b) β=0.1 (c) β=0.2 (d) β=0.3

(e) β=0.0 (f) β=0.1 (g) β=0.2 (h) β=0.3

Figure 3.6: Embedding clustering of RBF models with different kernel rescalar factor
β (a)(b)(c)(d) in the original space; (e)(f)(g)(h) in the polar-distance space. Here
β=0.0 indicates the original RBF model. All models use σ=10m as the basic kernel
size and 1 hidden ReLU layers of 512 neurons.
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Chapter 4

SE-KGE: A location-aware

Knowledge Graph Embedding

Model for Geographic Question

Answering and Spatial Semantic

Lifting

This chapter focuses on utilizing the location encoder - Space2Vec - proposed in Chap-

ter 3 to develop a knowledge graph-based geographic query/question answering system.

The core idea is to integrate this location encoder into a knowledge graph embedding

(KGE) based logic query answering framework such that the whole GeoQA model is

location-aware. There is no existing knowledge graph embedding model that can encode

geographic information into the embedding space. This work fills this gap by developing

a location-aware KGE model - SE-KGE - which directly encodes point coordinates of

small-scale geographic entities (or bounding boxes of large-scale geographic entities) into
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the KG embedding space. The effectiveness of SE-KGE has been demonstrated through

two KG-based geospatial tasks - geographic logic query answering and spatial seman-

tic lifting. Evaluation results on our newly constructed geographic knowledge graph

and GeoQA dataset DBGeo show that our SE-KGE can outperform multiple baseline

models on both tasks.
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distance. These models suffer from higher computational complexity during training
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while still losing information beyond the relative distance between entities. In this work,

we propose a location-aware KG embedding model called SE-KGE. It directly encodes

spatial information such as point coordinates or bounding boxes of geographic entities

into the KG embedding space. The resulting model is capable of handling different

types of spatial reasoning. We also construct a geographic knowledge graph as well as

a set of geographic query-answer pairs called DBGeo to evaluate the performance of

SE-KGE in comparison to multiple baselines. Evaluation results show that SE-KGE

outperforms these baselines on the DBGeo dataset for geographic logic query answering

task. This demonstrates the effectiveness of our spatially-explicit model and the impor-

tance of considering the scale of different geographic entities. Finally, we introduce a

novel downstream task called spatial semantic lifting which links an arbitrary location

in the study area to entities in the KG via some relations. Evaluation on DBGeo shows

that our model outperforms the baseline by a substantial margin.

4.1 Introduction and Motivation

The term Knowledge Graph typically refers to a labeled and directed multi-graph of

statements (called triples) about the world. These triples often originate from heteroge-

neous sources across domains. According to Nickel et al. [121], most of the widely used

knowledge graphs are constructed in a curated (e.g., WordNet), collaborative (e.g., Wiki-

data, Freebase), or auto semi-structured (e.g., YAGO [122], DBpedia, Freebase) fashion

rather than an automated unstructured approach (e.g., Knowledge Vault [123]). Despite

containing billions of statements, these knowledge graphs suffer from incompleteness and

sparsity [124, 123, 117]. To address these problems, many relational machine learn-

ing models [121] have been developed for knowledge graph completion tasks including

several embedding-based techniques such as RESCAL [125], TransE [85], TransH [86],
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HOLE [126], R-GCN [127], and TransGCN [128]. The key idea of the embedding-based

technique [85, 86, 126, 128, 89] is to project entities and relations in a knowledge graph

onto a continuous vector space such that entities and relations can be quantitatively

represented as vectors/embeddings. In such a way, we can evaluate the plausibility of a

statement/triple in a KG.

The aforementioned incompleteness and sparsity problems also affect the performance

of downstream tasks such as question answering [82] since missing triples or links result

in certain questions becoming unanswerable [80]. Consequently, researchers have recently

focused on relaxing these unanswerable queries or predicting the most probable answers

based on knowledge graph embedding models [82, 83, 47].

Most research on knowledge graph embeddings has neglected spatial aspects such as

the location of geographic entities despite the important role such entities play within

knowledge graphs [129]. In fact, most of the current knowledge graph embedding mod-

els (e.g. TransE, TransH, TransGCN, R-GCN, and HOLE) ignore triples that contain

datatype properties, and, hence, literals for dates, texts, numbers, geometries, and so

forth. Put differently, properties such as dbo:elevation, dbo:populationTotal, and

dbo:areaWater to name but a few are not considered during the training phase. Instead,

these models strictly focus on triples with object type properties, leading to substantial in-

formation loss in practice. A few models do consider a limited set of datatypes. LiteralE

[130] is one example, which encodes numeric and date information into its embedding

space, while MKBE [131] encodes images and unstructured texts. Therefore, in this

work, we propose a novel technique which directly encodes spatial footprints, namely

point coordinates and bounding boxes, thereby making them available while learning

knowledge graph embeddings.

Geographic information forms the basis for many KG downstream tasks such as ge-

ographic knowledge graph completion [73], geographic ontology alignment [132], geo-
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graphic entity alignment [133], geographic question answering [47], and geographic knowl-

edge graph summarization [69]. In the following, we will focus on geographic logic query

answering as an example and more concretely on conjunctive graph queries (CGQ) or

logic queries [83]. Due to the sparsity of information in knowledge graphs, many (geo-

graphic) queries are unanswerable without spatial or non-spatial reasoning. Knowledge

graph embedding techniques have, therefore, been developed to handle unanswerable

questions [83, 82, 47, 117] by inferring new triples in the KG embedding space based on

existing ones. However, since most KG embedding models cannot handle datatype prop-

erties thus cannot encode geographic information into the KG embedding space, they

perform spatial reasoning tasks poorly in the KG embedding space, which in turn leads

to a poor performance of handling unanswerable geographic questions.

SELECT ?State WHERE {

?RiverMouth dbo:state ?State. (a)

?River dbo:mouthPosition ?RiverMouth. (b)

?River dbp:etymology dbr:Alexander_von_Humboldt. (c)

}

Listing 4.1: Query qA: An unanswerable SPARQL query over DBpedia which includes
a partonomy relation

One example of unanswerable geographic questions that can be represented as a logic

query is which states contain the mouth of a river which is named after Alexander

von Humboldt? (Query qA). The corresponding SPARQL query is shown in List-

ing 4.1. Running this query against the DBpedia SPARQL endpoint yields no re-

sults. In fact, two rivers are named after von Humboldt - dbr:Humboldt River and

dbr:North Fork Humboldt River - and both have mouth positions as entities in DB-

pedia (dbr:Humboldt River mouthPosition 1 and dbr:North Fork Humboldt River
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sourcePosition 1). However, the dbo:state (or dbo:isPartOf) relation between

these river mouths and other geographic features such as states is missing. This makes

Query qA unanswerable (graph query pattern (a) in Listing 4.1). If we use the locations

of the river mouths to perform a simple point-in-polygon test against the borders of all

states in the US, we can deduce that dbr:Nevada contains both river mouths.

SELECT ?place WHERE {

dbr:Yosemite_National_Park dbo:nearestCity ?place.

}

Listing 4.2: Query qB: A SPARQL query over DBpedia which indicates a simple
point-wise distance relation

Another example is the query in Listing 4.2, which asks for the nearest city to Yosemite

National Park (Query qB). If the triple dbr:Yosemite National Park dbo:nearestCity

dbo:Mariposa, California is missing from the current knowledge graph, Query qB be-

comes unanswerable while it could simply be inferred by a distance-based query com-

monly used in GIS. Similar cases can include cardinal directions such as dbp:north. All

these observations lead to the following research question: how could we enable spatial

reasoning via partonomic relations, point-wise metric relations, and directional relations

in the KG embedding-based systems?

One may argue that classical spatial reasoning can be used instead of direct location

encoding to obtain answers to aforementioned questions. This is partially true for data

and query endpoints that support GeoSPARQL and for datasets that are clean and

complete. However, in some cases even GeoSPARQL-enabled query endpoints cannot

accommodate spatial reasoning due to inherent challenges of representing spatial data in

knowledge graphs. These challenges stem from principles of conceptual vagueness and

uncertainty [39], and are further complicated by technical limitations. In this study we
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aim at enabling the model to perform implicit spatial reasoning in the hidden embedding

space, which means instead of doing classical spatial reasoning by explicitly performing

spatial operations during query time, the spatial information (points or bounding boxes)

of geographic entities (e.g., Indianapolis) are directly encoded into the entity embeddings

which are jointly optimized with relation embeddings (e.g, isPartOf). The trained

embeddings of geographic entities encode their spatial information and the embeddings

of spatial relations capture the logic of spatial reasoning. At query time, a normal link

prediction process can be used to answer geographic questions and no explicit spatial

reasoning is needed. Find more detail of this example in Section 4.7.

Existing approaches are only able to incorporate spatial information into the KG

embedding space in a very limited fashion, e.g., through their training procedures. Fur-

thermore, they estimate entity similarities based on some form of distance measures

among entities, and ignore their absolute positions or relative directions. For example,

Trisedya et al. [133] treated geographic coordinates as strings (a sequence of characters)

and used a compositional function to encode these coordinate strings for geographic en-

tities alignment. In order to incorporate distance relations between geographic entities,

both Mai et al. [47] and Qiu et al. [73] borrowed the translation assumption from TransE

[85]. For each geographic triple s = (h, r, t) in the KG, where h and t are geographic

entities, the geospatial distance between h and t determines the frequency of resampling

this triple such that triples containing two closer geographic entities are sampled more

frequently, and thus these two geographic entities are closer in the embedding space.

Similarly, Yan et al. [69] used distance information to construct virtual spatial relations

between geographic entities during the knowledge graph summarization process. This

data conversion process (coordinates to pairwise distances) is unnecessarily expensive

and causes information loss, e.g., absolute positions and relative directional information.

In this work, we explore to directly encode entity locations into a high dimensional vector
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space, which preserves richer spatial information than distance measures. These location

embeddings can be trained jointly with knowledge graph embedding.

Location encoders [64, 100, 65] refer to the neural network models which encode a

pair of coordinates into a high dimensional embedding which can be used in downstream

tasks such as geo-aware fine-grained image classification [64, 100, 65] and Point of In-

terest (POI) type classification [65]. Mai et al. [65] showed that multi-scale grid cell

representation outperforms commonly used kernel based methods (e.g., RBF) as well as

the single scale location encoding approaches. Given the success of location encoding in

other machine learning tasks, the question is whether we can incorporate the location en-

coder architecture into a knowledge graph embedding model to make it spatially explicit

[47]. One initial idea is directly using a location encoder as the entity encoder which

encodes the spatial footprint (e.g., coordinates) of a geographic entity into a high dimen-

sional vector. Such entity embeddings can be used in different decoder architectures for

different tasks. However, several challenges remain to be solved for this initial approach.

First, point location encoding can handle point-wise metric relations such as distance

(e.g., dbo:nearestCity) as well as directional relations (e.g., dbp:north, dbp:south) in

knowledge graphs, but it is not easy to encode regions which are critical for relations

such as containment (e.g., dbo:isPartOf, dbo:location, dbo:city, dbo:state, and

dbo:country). For example, in Query qA, the location encoder can encode dbr:Yosemite

National Park and dbo:Mariposa, California as two high dimensional embeddings

based on which distance relations can be computed since the location embeddings pre-

serve the relative distance information between locations [65]. However, point locations

and location embeddings are insufficient to capture more complex relations between ge-

ographic entities such as containment as these require more complex spatial footprints

(e.g., polygons). This indicates that we need to find a way to represent geographic entities

as regions instead of points in the embedding space based on location encoders, espe-
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cially for large scale geographic entities such as dbr:California, which is represented as

a single pair of coordinates (a point) in many widely used KGs. We call this scale effect

to emphasize the necessity of encoding the spatial extents of geographic entities instead

of points, especially for large scale geographic entities.

The second challenge is how to seamlessly handle geographic and non-geographic

entities together in the same entity encoder framework. Since location encoder is an

essential component of the entity encoder, how should we deal with non-geographic en-

tities that do not have spatial footprints? This is a non-trivial problem. For example,

in order to weight triples using distance during KG embedding training, Qiu et al. [73]

constructed a geographic knowledge graph which only contains geographic entities. Mai

et al. [47] partially solved the problem by using a lower bound l as the lowest triple

weight to handle non-geographic triples. However, this mechanism cannot distinguish

triples involving both geographic and non-geographic entities from triples that only con-

tain non-geographic entities.

The third challenge is how to capture the spatial and other semantic aspects at the

same time when designing spatially explicit KG embedding model based on location

encoders. The embedding of a geographic entity is expected to capture both its spatial

(e.g., spatial extent) and other semantic information (e.g., type information) since both

of them are necessary to answer geographic questions. Take Query qA in Listing 4.1 as an

example. We need both spatial and type information encoded in the entity embeddings

to answer this question. The spatial information is necessary to perform partonomical

reasoning in the embedding space to select geographic entities which contain a given

river mouth, while type information is required to filter the answers and get entities with

type state. The traditional KG embedding models fail to capture the spatial information

which leads to a lower performance in geographic question answering.

Finally, thanks to the inductive learning nature of the location encoder, another in-
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teresting question is how to design a spatially-explicit KG embedding model so that it

can be used to infer new relations between entities in a KG and any arbitrary location

in the study area. We call this task spatial semantic lifting as an analogy to tradi-

tional semantic lifting which refers to the process of associating unstructured content to

semantic knowledge resources [134]. For example, given any location ~xi, we may want to

ask which radio station broadcasts at ~xi i.e., to infer dbo:broadcastArea. None of the

existing KG embedding models can solve this task.

In this work, we develop a spatially-explicit knowledge graph embedding model, SE-

KGE, which directly solves those challenges. The contributions of our work are as

follow:

1. We develop a spatially-explicit knowledge graph embedding model (SE-KGE),

which applies a location encoder to incorporate spatial information (coordinates

and spatial extents) of geographic entities. To the best of our knowledge, this is

the first KG embedding model that can incorporate spatial information, especially

spatial extents, of geographic entities into the model architecture.

2. SE-KGE is extended to an end-to-end geographic logic query answering model

which predicts the most probable answers to unanswerable geographic logic queries

over KG.

3. We apply SE-KGE on a novel task called spatially semantic lifting. Evaluations

show that our model can substantially outperform the baseline by 9.86% on AUC

and 9.59% on APR for the DBGeo dataset. Furthermore, our analysis shows that

this model can achieve implicit spatial reasoning for different types of spatial rela-

tions.

The rest of this paper is structured as follow. We briefly summarize related work in

Section 4.2. Then basic concepts are discussed in Section 4.3. In Section 4.4, we formalize
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the query answering and spatial semantic lifting task. Then, in Section 4.5, we give an

overview of the logic query answering task before introducing our method. Section 4.6

describes the SE-KGE architecture. Experiments and evaluations are summarized in

Section 4.7. Finally, we conclude our work in Section 4.8.

4.2 Related Work

In this section, we briefly review related work on knowledge graph embeddings, query

answering, and location encoding.

4.2.1 Knowledge Graph Embedding

Learning knowledge graph embeddings (KGE) is an emerging topic in both the Se-

mantic Web and machine learning fields. The idea is to represent entities and relations

as vectors or matrices within an embedding spaces such that these distributed repre-

sentations can be easily used in downstream tasks such as KG completion and question

answering. Many KG embedding models have been proposed such as RESCAL [125],

TransE [85], and TransH [86]. Most of these approaches cannot handle triples with data

type properties nor triples involving spatial footprints.

The only KG embedding methods considering distance decay between geographic

entities are Qiu et al. [73] and Mai et al. [47]. Mai et al. [47] computed the weight of

each geographic triple s = (h, r, t) as max(ln D
dis(h,t)+ε

, l) where h and t are geographic

entities, and D is the longest (simplified) earth surface distance. ε is a hyperparameter

to avoid zero denominator and l is the lowest edge weight we allow for each triple. As

for non-geographic triples, l is used as the triple weight. Then this knowledge graph

is treated as an undirected, unlabeled, edge-weighted multigraph. An edge-weighted

PageRank is applied on this multigraph. The PageRank score for each node/entity
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captures the the structure information of the original KG as well as the distance decay

effect among geographic entities. These scores are used in turn as weights to sample the

entity context from the 1-degree neighborhood of each entity which is used in the KG

embedding training process. As for Qiu et al. [73], the distance decay effect was deployed

in a triple negative sampling process. Given a triple s = (h, r, t) in the KG, each negative

triple s′ = (h′, r, t′) of it was assigned a weight based on wgeo =
1

1 +
∣∣∣log10 dis(h, t) + θ

dis(h′, t′) + θ

∣∣∣
where θ is a hyperparameter to avoid a zero denominator. wgeo is used in the max-margin

loss function for the embedding model training. Note that non-geographic triples are not

considered in Qiu et al. [73]. We can see that, instead of directly encoding an entity’s

location, they rely on some form of distance measures as weights for triple resampling.

This process is computationally expensive and does not preserve other spatial properties

such as direction. In contrast, our work introduces a direct encoding approach to handle

spatial information.

4.2.2 Query Answering

Compared to link prediction [85], query answering [82, 83, 117] focuses on a more

complex problem since answering a query requires a system to consider multiple triple

patterns together. Wang et al. [82] designed an algorithm to answer a subset of SPARQL

queries based on a pretrained KG embedding model. However, this is not an end-to-end

model since the KG embedding training and query answering process are separated.

Hamilton et al. [83] proposed an end-to-end logic query answering model, GQE, which

can answer conjunctive graph queries. CGA [117] further improved GQE by using a

self-attention based intersection operator. In our work, we will utilize GQE and CGA

[117] as the underlying logic query answering baseline. We provide an overview about

logic query answering in Section 4.5.
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4.2.3 Location Encoding

Generating representations of points/locations that can benefit representation learn-

ing is a longstanding problem in machine learning. There are many well-established

methods such as the Kernel trick [135] widely used in SVM classification and regression.

However, these location representation methods use the positions of training examples

as the centers of Gaussian kernels and thus need to memorize the training examples.

Kejriwal et al. [72] proposed a graph embedding approach to representing GeoNames

locations as high dimensional embeddings. They converted the locations in GeoNames

into a weighted graph where locations are nodes and the weight of each edge is computed

based on the distance between two locations. Then a Glove [92] word embedding model

is applied on this generated graph to obtain the embedding for each location. Despite its

novelty, this model is a transductive learning based model which means if new locations

are added, the weighted graph has to be regenerated and the whole model needs to be

retrained. In other words, this embedding approach can not be easily generalized to

unseen locations. This calls for inductive learning [136] based models.

Recently, location encoding technique [64, 100, 65] has been proposed to directly

encode a location (a pair of coordinates) ~x as a high-dimension vector which can be

incorporated into multiple downstream tasks. As shown by Mai et al. [65], the advantages

of location encoding is that 1) it can preserve absolute position information as well as

relative distance and direction information between locations; 2) it does not need to

memorize the positions of training examples as all kernel based methods do [137]; 3) In

contrast to many transductive learning models, it is an inductive learning model [138]

which can encode any location/point no matter it appears in the training dataset or not.

In theory, we can adopt any location encoder [100, 64, 65] to capture the spatial

information of each geographic entity ei in a knowledge graph G. In this work, we
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utilize the Space2V ec [65] location encoder, which is inspired by Nobel Prize-winning

neuroscience research about grid cells [102] as well as the position encoding module of the

Transformer model [104]. Space2V ec first encodes a location ~x as a multi-scale periodic

representation PE(~x) by using sinusoidal functions with different frequencies and then

feeds the resulting embedding into a N layer feed forward neural network NN().

LocEnc(x)(~x) = NN(PE(~x)) (4.1)

The advantages of such location encoder compared to previous work [100, 64] are that

1) it can be shown that location embeddings from Space2V ec are able to preserve global

position information as well as relative distance and direction, and that 2) multi-scale rep-

resentation learning approach outperforms traditional kernel-based methods (e.g., RBF)

as well as single-scale location encoding approaches [100, 64] for several machine learning

tasks. In the following, we will use LocEnc(x)() to denote the Space2V ec model.

4.3 Basic Concepts

Definition 5 (Geographic Knowledge Graph) A geographic knowledge graph G =

(V , E) is a directed edge and node labeled multigraph where V is a set of entities/nodes

and E is the set of directed edges. Any directed and labeled edge will be called a triple

s = (h, r, t) where the nodes become heads h ∈ V and tails t ∈ V, and the role label r ∈ R

will be called the relationship between them. The set of triples/statements contained by

G is denoted as T and R denotes as the set of relations (predicates, edge labels) in G.

Each triple can also be represented as r(h, t), or r−1(t, h) where r−1 indicates the inverse

relation of r. Domain(r) and Range(r) indicate the domain and range of relation r.

Γ() : V → C is a function which maps an entity e ∈ V to a unique type c ∈ C, where

C is the set of all entity types in G.1

1 Note that, in many knowledge graphs (e.g., DBpedia, Wikidata), an entity can belong to multiple
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The geographic entity set Vpt is a subset of V (Vpt ⊆ V). PT (·) is a mapping function

that maps any geographic entity e ∈ Vpt to its geographic location (coordinates) PT (e) = ~x

where ~x ∈ A ⊆ R2. Here A denotes the bounding box containing all geographic entities

in the studied knowledge graph G. We call it study area.

Vpn is a subset of Vpt (Vpn ⊆ Vpt) which represents the set of large-scale geographic

entities whose spatial extent cannot be ignored. In this work, we use a bounding box to

represent a geographic entity’s spatial footprint. PN (·) is a mapping function defined

on Vpn that maps a geographic entity e ∈ Vpn to its spatial extent PN (e) and PN (e) =

[~xmin; ~xmax] ∈ R4. In the vector concatenation above, ~xmin, ~xmax ∈ A ⊆ R2 indicate the

southwest and northeast point of the entity’s bounding box.

Note that in many existing knowledge graphs, a triple can include a datatype property

(e.g., dbo:abstract) implying that the tail is a literal. In line with related work [85,

126, 121, 89], we do not consider this kind of triples here in general. However, we do

consider datatype properties about the spatial footprints of geographic entities implicitly

by using PT (·) or PN (·).2 While we do not model them directly as triples, we use the

spatial footprints of geographic entities as input features for the entity encoder.

Definition 6 (Conjunctive Graph Query (CGQ)) A query q ∈ Q(G) that can be

written as follows:

q = V?.∃V1, V2, .., Vm : b1 ∧ b2 ∧ ... ∧ bn

where bi = ri(ek, Vl), Vl ∈ {V?, V1, V2, .., Vm}, ek ∈ V , r ∈ R

or bi = ri(Vk, Vl), Vk, Vl ∈ {V?, V1, V2, .., Vm}, k 6= l, r ∈ R
types. We use this definition to be in line with many existing work [83, 117] so that we can compare our
results. It is easy to relax this requirement which we will discuss in Section 4.6.1.

2It is worth mentioning that most KG to date merely store point geometries even for features such
as the United States.
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Conjunctive graph queries are also called logic queries. Here Q(G) is a set of all

conjunctive graph queries that can be asked over G. V? denotes the target variable of

query q (target node) which will be replaced with the answer entity a, while V1, V2, .., Vm

are existentially quantified bound variables (bound nodes). {ek|ek in q} is a set of anchor

nodes and bi is a basic graph pattern in this CGQ. We define the dependency graph of

q as the graph with basic graph pattern {b1, ..., bn} formed between the anchor nodes

{ek|ek in q} and the variable nodes V?, V1, V2, .., Vm (Figure 4.1). Each conjunctive graph

query can be written as a SPARQL query.3

Note that the dependency graph of q represents computations on the KG and is

commonly assumed to be a directed acyclic graph (DAG) [83] where the entities (anchor

nodes) ek in q are the source nodes and the target variable V? is the unique sink node.

This restriction makes the logic query answering task in line with the usual question

answering set up (e.g., semantic parsing [13, 12]).

Definition 7 (Geographic Conjunctive Graph Query (GCGQ)) A conjunctive

graph query q ∈ Q(G) is said to be a geographic conjunctive graph query if the answer

entity a corresponding to the target variable V? is a geographic entity, i.e., a = ϕ(G, q) ∧

a ∈ Vpt where ϕ(G, q) indicates the answer when executing query q on G. We denote all

possible geographic CGQ on G as Qgeo(G) ⊆ Q(G).

An example geographic conjunctive query qC is shown in Figure 4.1 whose corre-

sponding SPARQL query is shown in Listing 4.3. The corresponding natural language

question is [which city in Alameda County, California is the assembly place of Chevrolet

Eagle and the nearest city to San Francisco Bay]. This query is especially interest-

ing since it includes a non-spatial relation (dbo:assembly), a point-wise metric spa-

tial relation (dbo:nearestCity) and a partonomy relation (dbo:isPartOf). Note that

3For the detail comparison between CQG and SPARQL 1.1 query, please refer to Section 2.1 of Mai
et al. [117].
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executing each basic graph pattern in Query qC over DBpedia will yield multiple an-

swers. For example, b1 will return all subdivisions of Alameda County, California. b2

matches multiple assembly places of Chevrolet Eagle such as dbr:Oakland, California,

dbr:Oakland Assembly, and dbr:Flint, Michigan. Interestingly, dbr:Oakland Asse

mbly should be located in dbr:Oakland, California while there are no relationship

between them in DBpedia except for their spatial footprints which can be inferred

that they are closed to each other. b3 will return three entities4 - dbr:San Francisco,

dbr:San Jose, California and dbr:Oakland, California. Combining these three ba-

sic graph patterns will yield one answer dbr:Oakland, California. In our knowledge

graph, both triple s1 (See Figure 4.1) and triple s2 are missing which makes Query qC

an unanswerable geographic query.

4dbo:nearestCity triples in DBpedia are triplified from the “Nearest major city” row of the info box
in each entity’s corresponding Wikipedia page which may contain several cities. See http://dbpedia.

org/resource/San_Francisco_Bay.
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?Place : IsPartOf−1(Alameda County, ?Place)∧
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Figure 4.1: Query qC : Top box: Conjunctive Graph Query and Directed Acyclic
Graph of the query structure corresponding to the SPARQL query in Listing 4.3. b1,
b2, and b3 indicates three basic graph patterns in query qC . ?Place is the target
variable indicated as the red node while three green nodes are anchor nodes. There
is no bound variable in this query. Below: The matched underlining KG patterns
represented by solid arrows. s1, s2, and s3 indicates the matched triples for b1, b2,
and b3 respectively for query qC .
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SELECT ?place WHERE{

?place dbo:isPartOf dbr:Alameda_County ,_California. (1)

dbr:Chevrolet_Eagle dbo:assembly ?place. (2)

dbr:San_Francisco_Bay dbo:nearestCity ?place. (3)

}

Listing 4.3: Query qC : A geographic conjunctive query which is rewritten as a
SPARQL query over DBpedia including both non-spatial relations and different types
of spatial relation.

4.4 Problem Statement

In this work, we focus on two geospatial tasks - geographic logic query answering and

spatial semantic lifting.

Task 1 (Logic Query Answering) Given a geographic knowledge graph G and an unan-

swerable conjunctive graph query q ∈ Q(G) (i.e., ϕ(G, q) = ∅), a query embedding function

ΦG,θ(q) : Q(G) → Rd, which is parameterized by θ, is defined to map q to a vector rep-

resentation of d dimension. The most probable answer a′ to q is the entity nearest to

q = ΦG,θ(q) in the embedding space:

a′ = arg max
ei∈V

Ω(ΦG,θ(q), Enc(ei)) = arg max
ei∈V

Ω(q, ei) (4.2)

Here ei = Enc(ei) ∈ Rd is the entity embedding of ei produced by an embedding

encoder Enc(). Ω(·) denotes the cosine similarity function:

Ω(q, ei) =
q · ei

‖ q ‖‖ ei ‖
(4.3)

Note that q can be a geographic query or non-geographic query, i.e., q ∈ (Q(G) \

Qgeo(G)) ∨Qgeo(G). Geographic logic query answering indicates a logic query answering
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process over Qgeo(G). The query embedding function ΦG,θ(q) is constructed based on all

three components of SE-KGE without any extra parameters: Enc(), P(), and I(), i.e.,

θ = {θEnc, θP , θI}.

Task 2 (Spatial Semantic Lifting) Given a geographic knowledge graph G and an ar-

bitrary location ~x ∈ A ⊆ R2 from the current study area A, and a relation r ∈ R such that

Domain(r) ⊆ Vpt, we define a spatial semantic lifting function ΨG,θssl(~x, r) : A×R → Rd,

which is parameterized by θssl, to map ~x and r to a vector representation of d dimension,

i.e., s = ΨG,θssl(~x, r) ∈ Rd. A nearest neighbor search is utilized to search for the most

probable entity e′ ∈ Vpt so that a virtual triple can be constructed between location ~x and

e′, i.e., r(~x, e′), where

e′ = arg max
ei∈V

Ω(ΨG,θssl(~x, r), Enc(ei)) = arg max
ei∈V

Ω(s, ei) (4.4)

The spatial semantic lifting function ΨG,θssl(~x, r) consists of two components of SE-

KGE without any extra parameter: Enc() and P(), i.e., θssl = {θEnc, θP}. This spatial

semantic lifting task is related to the link prediction task [124] which is commonly used

in the knowledge graph embedding literature [85, 126, 128]. The main difference is that

instead of predicting links between entities in the original knowledge graph G as link

prediction does, spatial semantic lifting links an arbitrary location ~x to G. Since none of

the existing KG embedding models can directly encode locations, they cannot be used for

spatial semantic lifting .

4.5 Logic Query Answering Backgrounds

Before introducing our SE-KGE model, we will first give an overview of how previous

work [83, 117] tackled the logic query answering task with KG embedding models. Gen-
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erally speaking, a logic query answering model is composed of three major components:

entity encoder Enc(), projection operator P(), and intersection operator I().

1. Entity encoder Enc(): represents each entity as a high dimension vector (em-

bedding);

2. Projection operator P(): given a basic graph pattern b = r(ei, Vj) (or b =

r(Vi, Vj)) in a CGQ q while the subject embedding ei (or vi) of entity ei (or Variable

Vi) is known beforehand, P() projects the subject embedding through a relation

specific matrix to predict the embedding of Vj.

3. Intersection operator I(): integrates different predicted embeddings of the same

Variable (e.g., Vj) from different basic graph patterns into one single embedding to

represent this variable.

Given these three neural network modules, any CGQ q can be encoded according by

following their DAG query structures such that the embedding of the unique target

variable V? for each query can be obtained - v?. We call it query embedding q = ΦG,θ(q) =

v? for CGQ q. Then the most probable answer is obtained by a nearest neighbor search

for q in the entity embedding space (See Equation 4.2). Our work will follow the same

model component setup and query embedding computing process. However, neither

Hamilton et al. [83] nor Mai et al. [117] has considered encoding spatial information

of geographic entities into the entity embedding space which is the core contribution of

our work. Moreover, we extend the current model architecture such that it can also be

applied to the spatial semantic lifting task, a new task we proposed which is impossible

for previous works [83, 117]. In the following, we will use ·(GQE) and ·(CQA) to indicate

that these are model components used by Hamilton et al. [83] nor Mai et al. [117]:
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4.5.1 Entity Encoder

In general, an entity encoder aims at representing any entity in a KG as a high

dimension embedding so that it can be fed into following neural network modules. The

normal practice shared by most KG embedding models [85, 126, 86, 127, 87, 47, 128, 73]

is to initialize an embedding matrix randomly where each column indicates an embedding

for a specific entity. The entity encoding becomes an embedding lookup process and these

embeddings will be updated during the neural network backpropagation in the training

time.

Previous works have demonstrated that most of the information captured by entity

embeddings is type information [139, 83]. So Hamilton et al. [83] and Mai et al. [117]

took a step further and use a type-specific embedding lookup approach. We call the

resulting module entity feature encoder Enc(c)().

Definition 8 (Entity Feature Encoder: Enc(c)()) Given any entity ei ∈ V with type

ci = Γ(ei) ∈ C from G, entity feature encoder Enc(c)() computes the feature embedding

e
(c)
i ∈ Rd(c) which captures the type information of entity ei by using an embedding lookup

approach:

e
(c)
i = Enc(c)(ei) =

Zcih
(c)
i

‖ Zcih
(c)
i ‖L2

(4.5)

Here Zci ∈ Rd(c)×|C| is the type-specific embedding matrix for all entities with type ci =

Γ(ei) ∈ C. h
(c)
i is a one-hot vector such that Zcih

(c)
i will perform an embedding lookup

operation which selects an entity feature embedding from the corresponding column.

‖ · ‖L2 indicates the L2-norm.

Both Hamilton et al. [83] and Mai et al. [117] use Enc(c)() as their entity encoder (See

Equation 4.6). Figure 4.2 is an illustration of their approach. Note that this encoder does

not consider the spatial information (e.g., coordinates and spatial extents) of geographic

entities which causes a lower performance for answering geographic logic queries. As for
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our SE-KGE model, we add an additional entity space encoder Enc(x)() to handle this

(See Definition 11 ).

Enc(GQE)(ei) = Enc(CGA)(ei) = Enc(c)(ei) (4.6)

Entity ei
Feature Embedding Lookup

Type-specific Feature
Embedding Matrix Zci

...

Feature 
Embedding

ei(c)

Entity Feature Encoder Enc(c)()

ei

Entity 
Embedding=

Figure 4.2: The entity encoder used by Hamilton et al. [83] and Mai et al. [117].

4.5.2 Projection Operator

The projection operator is utilized to do link prediction: given a basic graph pattern

b = r(hi, Vj) in a conjunctive graph query q with relation r in which hi is either an entity

ei (an anchor node in q) or an existentially quantified bound variable Vi, the projection

operator P() predicts the embedding e′i ∈ Rd(c) for Variable Vj. Here, the embedding

of hi can be either the entity embedding ei = Enc(c)(ei) or the computed embedding vi

for Vi which is known beforehand. Both Hamilton et al. [83] and Mai et al. [117] share

the same projection operator P(GQE) = P(CGA) (See Equation 4.7) by using a bilinear

matrix Rr ∈ Rd(c)×d(c) . Rr can also be a bilinear diagonal matrix as DisMult [140] whose

corresponding projection operator is indicated as P(GQEdiag).
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e′i =


P(GQE)(ei, r) = P(CGA)(ei, r) = RrEnc

(c)(ei) = Rrei if input = (ei, r)

P(GQE)(Vi, r) = P(CGA)(Vi, r) = Rrvi if input = (Vi, r)

(4.7)

In SE-KGE, we extend projection operator P() so that it can be used in the spatial

semantic lifting task (See Definition 12).

Figure 4.3 uses the basic graph pattern b2 = Assembly(Chevrolet Eagle, ?Place) in

Figure 4.1 as an example to demonstrate how to do link prediction with P(GQE)() =

P(CGA)(). The result embedding e?2 can be treated as the prediction of the embedding

of Variable ?Place. By following the same process, we can predict the embedding of the

variable ?Place from the other two basic graph patterns b1 and b3 - e?1 and e?3.

ei 

?PlaceChevrolet Eagle
assembly

b2

Rr

Rr ei'  

Figure 4.3: An illustration of projection operator P(GQE)() = P(CGA)() used by Hamil-
ton et al. [83] and Mai et al. [117].
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4.5.3 Intersection Operator

The intersection operator I() is used to integrate multiple embeddings e1?, e2?, ...,

ei?,..., en? which represent the same (bound or target) variable V? in a CGQ q to produce

one single embedding e? to represent this variable. Figure 4.4 illustrates this idea by

using CGQ qC in Figure 4.1 as an example where e?1, e?2 and e?3 indicates the predicted

embedding of ?Place from three different basic graph pattern b1, b2, and b3. The inter-

section operator integrates them into one single embedding e? to represent ?Place. Since

?Place is the target variable of q, e? is the final query embedding we use to do nearest

neighbor search to obtain the most probable answer (See Task 1). More formally,

Definition 9 (Intersection Operator I()) Given a set of n different input embed-

dings e1?, e2?, ..., ej?,..., en? , intersection operator I() produces one single embedding

e?:

e? = I({e1?, e2?, ..., ej?, ..., en?}) (4.8)

Intersection operator I() represents the logical conjunction in the embedding space.

Any permutation invariant function can be used here as a conjunction such as element-

wise mean, maximum, and minimum. We can also use any permutation invariant neural

network architecture [115] such as Deep Sets [115]. GQE [83] used an elementwise min-

imum plus a feed forward network as the intersection operator which we indicate as

I(GQE)(). Mai et al. [117] showed that their CGA model with a self-attention based

intersection operator I(CGA)() can outperform GQE. So in this work, we use I(CGA)() as

the intersection operator I(). Readers that are interested in this technique are suggested

to check Mai et al. [117] for more details.
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e1?:	IsPartOf-1	(Alameda	County,	?Place)

e2?:	Assembly	(Chevrolet Eagle,	?Place)

e?:?Place

Intersection
Operator

?

e3?:	NearestCity	(San Francisco Bay,	?Place)

Alameda County,
California

?Place

San Francisco Bay

isPartOf -1

near
estC

ity

Chevrolet Eagle
assembly

b1

b2

b3

Figure 4.4: An illustration of intersection operator I().

4.5.4 Query Embedding Computing

Hamilton et al. [83] proposed a way to compute the query embedding of a CGQ

q based on these three components. Given a CGQ q, we can encode all its anchor

nodes (entities) into entity embedding space using Enc(). Then we recursively apply the

projection operator P() and intersection operator I() by following the DAG of q until we

get an embedding for the target node (variable V?), i.e., q = ΦG,θ(q) = v?. Then we use

the nearest neighbor search in the entity embedding space to find the closest embedding,

whose corresponding entity will be the predicted answer to Query q. For details of the
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query embedding algorithm, please refer to Hamilton et al. [83].

Figure 4.5 gives an illustration of the query embedding computation process in the

embedding space by using Query qC as an example. We first use Enc() to get the

embeddings of three anchor nodes (see the dash green box in Figure 4.5.). Then P()

(three green arrows) is applied to each basic graph pattern to get three embeddings e1?,

e2?, and e3?. I() (red arrows) is used later on to integrate them into one single embedding

e? or q for the target variable ?Place.

e2

e3

e2?

e3?

e''

P2

P3

I

I

q

Input	Entity	Embedding Output	Query	Embedding

Nearest

Neighbor

Search

e1 e1?P1

I

Figure 4.5: An illustration of (geographic) logic query answering in the embedding space

In this work, we follow the same query embedding computation process. Furthermore,

we extent the current model architecture to do spatial semantic lifting.
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4.6 SE-KGE Model

Since many geographic questions highly rely on spatial information (e.g., coordinates)

and spatial reasoning, a spatially-explicit model is desired for the geographic logic query

answering task. Moreover, the spatial semantic lifting task, Task 2, is only possible if we

have an entity encoder which can encode the spatial information of geographic entities

as well as a specially designed projection operator. To solve these problem, we propose a

new entity encoder Enc() (See Section 4.6.1) and a new projection operator (See Section

4.6.2) for our SE-KGE model. Next, Task 1 and 2 require different training processes

which will be discussed in Section 4.6.3 and 4.6.4. SE-KGE extends the general logic

query answering framework of GQE [83] and CGA [117] with explicit spatial embedding

representations.

4.6.1 Entity Encoder

Definition 10 (Entity Encoder: Enc()) Given a geographic knowledge graph G, en-

tity encoder Enc() : V → Rd is defined as a function parameterized by θEnc, which maps

any entity ei ∈ V to a vector representation of d dimension, so called entity embedding

ei ∈ Rd. Enc() consists of two parts – the entity feature encoder Enc(c)() : V → Rd(c)

and the entity space encoder Enc(x)() : V → Rd(x). These two encoders map any entity

ei ∈ V to a feature embedding e
(c)
i ∈ Rd(c) and space embedding e

(x)
i ∈ Rd(x), respectively.

The final entity embedding ei is the concatenation of e
(c)
i and e

(x)
i , i.e., :

ei = Enc(ei) = [Enc(c)(ei);Enc
(x)(ei)] = [e

(c)
i ; e

(x)
i ] (4.9)

Here [; ] denotes vector concatenation of two column vectors and d = d(c) + d(x).

Enc(c)() has been defined in Definition 8.
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Entity Space Encoder

In our work, and instead of calling them location encoder and location embedding [64],

we use the term space encoder to refer to the neural network model that encodes the

spatial information of an entity and call the encoding results space embeddings. While

location encoder focus on encoding one single point location, our space encoder Enc(x)()

aims at handling spatial information of geographic entities at different scales:

1. For a small geographic entity ei ∈ Vpt \ Vpn such as radio stations or restaurants,

we use its location ~xi = PT (ei) as the input to Enc(x)().

2. For an geographic entity with a large extent ei ∈ Vpn such as countries and states,

at each encoding time, we randomly generate a point ~x
(t)
i as the input for Enc(x)()

based on the 2D uniform distribution defined on its spatial extent (bounding box)

PN (ei) = [~xmini ; ~xmaxi ], i.e., ~x
(t)
i ∼ U(~xmini , ~xmaxi ). Since during training Enc(x)()

will be called multiple times, it will at the end learn a uniform distribution over

ei’s bounding box. In practice, one can sample using any process, such as stratified

random sampling, or vary the sampling density by expected variation.

3. For non-geographic entity ei ∈ V \Vpt, we randomly initialize its space embedding.

One benefit of this approach is that during the KG embedding training process,

these embeddings will be updated based on back propagation in neural networks

so that the spatial information of its connected entities in G will propagate to this

embedding as its pseudo space footprint. For example, a person’s spatial embedding

will be close to the embedding of his/her birthplace or hometown.

The entity space encoder Enc(x)() is formally defined as follow:

Definition 11 (Entity Space Encoder: Enc(x)()) Given any entity ei ∈ V from G,
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Enc(x)() computes the space embedding e
(x)
i = Enc(x)(ei) ∈ Rd(x) by

e
(x)
i =



LocEnc(x)(~xi) , where ~xi = PT (ei) , if ei ∈ Vpt \ Vpn

LocEnc(x)(~x
(t)
i ) , where ~x

(t)
i ∼ U(~xmini , ~xmaxi ) , PN (ei) = [~xmini ; ~xmaxi ] , if ei ∈ Vpn

Zxh
(x)
i

‖ Zxh(x)
i ‖L2

, if ei ∈ V \ Vpt

(4.10)

Here Zx and h
(x)
i are the embedding matrix and one-hot vector for non-geographic en-

tities in entity space encoder Enc(x)() similar to Equation 4.5. LocEnc(x)() denotes a

location encoder module (See Equation 4.1). Figure 4.6 illustrates the architecture of

entity encoder Enc(). Compared with GQE’s entity encoder Enc(GQE)() shown in Fig-

ure 4.2, the proposed entity encoder of SE-KGE adds the entity space encoder Enc(x)()

which leverages a multi-scale grid cell representation to capture the spatial information

of geographic entities.

As far as using a bounding box as approximation is concerned, one reason to use

bounding boxes instead of the real geometries is that doing point-in-polygon operation

in real time during ML model training is very expensive and not efficient. Many spatial

databases use bounding boxes as approximations of the real geometries to avoid intensive

computation. We adopt the same strategy here. Moreover, the detailed spatial footprint

of ei is expected to be captured through the training process of the entity embedding.

For example, even if the model is only aware of the bounding box of California, by using

the dbo:isPartOf relations between California and its subdivisions, the model will be

informed of all the spatial extents of its subdivisions.

4.6.2 Projection Operator

Definition 12 (Projection Operator P()) Given a geographic knowledge graph G, a

projection operator P() : V ∪ A × R → Rd maps a pair of (ei, r), (Vi, r), or (~xi, r), to
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Location
Encoder LocEnc(x)()

...

ei(x)

Randomly select Point xi(t) from Entity ei's
bounding box PN(ei), i.e.,
xi(t) = U(ximin, ximax)

where PN(ei) = [ximin, ximax]

PN(ei) 

X = xi(t)
Location

xi(t)

Entity ei Entity Space Encoder Enc(x)()

Feature Embedding Lookup

Type-specific Feature
Embedding Matrix Zci

...

Space 
Embedding

Feature 
Embedding

ei(c)

Entity Feature Encoder Enc(c)()

...

ei
Entity 

Embedding

Em
bedding C

oncatenation

Figure 4.6: The entity encoder Enc() of SE-KGE. Compared with previous work
(Figure 4.2) an entity space encoder component Enc(x)() is added to capture the
spatial information of geographic entities.

an embedding e′i. According to the input, P() can be treated as: (1) link prediction

P(e)(ei, r): given a triple’s head entity ei and relation r, predicting the tail; (2) link

prediction P(e)(Vi, r): given a basic graph pattern b = r(Vi, Vj) and vi which is the

computed embedding for the existentially quantified bound variable Vi, predicting the em-

bedding for Variable Vj; (2) spatial semantic lifting P(x)(~xi, r): given an arbitrary

location ~xi and relation r, predicting the most probable linked entity. Formally, P() is
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defined as:

e′i =


P(e)(ei, r) = diag(R

(c)
r ,R

(x)
r )Enc(ei) = diag(R

(c)
r ,R

(x)
r )ei if input = (ei, r)

P(e)(Vi, r) = diag(R
(c)
r ,R

(x)
r )vi if input = (Vi, r)

P(x)(~xi, r) = diag(R
(xc)
r ,R

(x)
r )[LocEnc(x)(~xi);LocEnc

(x)(~xi)] if input = (~xi, r)

(4.11)

where R
(c)
r ∈ Rd(c)×d(c), R

(x)
r ∈ Rd(x)×d(x), and R

(xc)
r ∈ Rd(c)×d(x) are three trainable

and relation-specific matrices. R
(c)
r and R

(x)
r focus on the feature embedding and space

embedding. R
(xc)
r transforms the space embedding e

(x)
i to its correspondence in feature

embedding space. diag(R
(c)
r ,R

(x)
r ) ∈ Rd×d and diag(R

(xc)
r ,R

(x)
r ) ∈ Rd×2d(x) indicate two

block diagonal matrices based on R
(c)
r , R

(x)
r , and R

(xc)
r . [LocEnc(x)(~xi);LocEnc

(x)(~xi)]

indicates the concatenation of two identical space embedding LocEnc(x)(~xi). Here, we

use the same P(e)() for the first two cases to indicate they share the same neural network

architecture. This is because both of them are link prediction tasks with different inputs.

Link Prediction: Figure 4.7 illustrates the idea of projection operator P(e)() by us-

ing the basic graph pattern b2 in qC (See Figure 4.1) as an example (the first case). Given

the embedding of dbr:Chevrolet Eagle and the relation-specific matrix diag(R
(c)
r ,R

(x)
r )

for relation dbo:assembly, we can predict the embedding of the variable ?Place - e?2.

Spatial Semantic Lifting: Figure 4.8 shows how to use P(x)() in the semantic

lifting task. See Section 4.6.4 for detail description. Note that “×” in Figure 4.7 and 4.8

indicates diag(R
(c)
r ,R

(x)
r )ei and diag(R

(xc)
r ,R

(x)
r )[LocEnc(x)(~xi);LocEnc

(x)(~xi)].
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ei = [ei(c) ; ei(x)] 

0 0
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0 0 0

0 0 0
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0 0 0

Rr(c)

Rr(x)

blockdiag(Rr(c), Rr(x))
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0

0

ei' = [ei(c)' ; ei(x)'] 

Figure 4.7: An illustration of projection operator P(e)() of SE-KGE with the input (ei, r).
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Figure 4.8: Spatial semantic lifting in the embedding space by using Enc() and P(x)()

4.6.3 Geographic Logic Query Answering ΦG,θ(q) Model Train-

ing

We train the SE-KGE on both the original knowledge graph structure with an unsu-

pervised objective LKG and the query-answer pairs with a supervised objective LQA (See
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Equation 4.12):

L(QA) = LKG + LQA (4.12)

Unsupervised KG Training Phase In this phase, we train SE-KGE components

based on the local KG structure. In G = (V , E), for every entity ei ∈ V , we first obtain

its 1-degree neighborhood N(ei) = {(rui, eui)|rui(eui, ei) ∈ G}∪{(r−1oi , eoi)|roi(ei, eoi) ∈ G}.

We sample n tuples from N(ei) to form a sampled neighborhood Nn(ei) ⊆ N(ei) and

|Nn(ei)| = n. We treat this subgraph as a conjunctive graph query with n basic graph

patterns, in which entity ei holds the target variable position. The model predicts the

embedding of ei such that the correct embedding ei is the closest one to the predicted

embedding e′′i against all embeddings e−i in negative sample set Neg(ei):

LKG =
∑
ei∈V

∑
e−i ∈Neg(ei)

max(0,∆−Ω(HKG(ei), ei) + Ω(HKG(ei), e
−
i )) (4.13)

where

e′′i = HKG(ei) = I({P(e)(eci, rci)|(rci, eci) ∈ Nn(ei)}) (4.14)

Here LKG is a max-margin loss and ∆ is the margin.

Figure 4.9: The DAG structures of the conjunctive graph queries we sampled from G.
Nodes indicates entities or variables and edges indicate basic graph patterns. The red
node is the target variable of the corresponding query. the DAG structures surrounded
by red boxes indicate queries sampled with hard negative sampling method.
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Supervised Query-Answer Pair Training Phase We train SE-KGE by using con-

junctive query-answer pairs. We first sample X different conjunctive graph query (logical

query)-answer pairs S = {(qi, ai)} from G. We treat each entity as the target variable of

a CQG and sample K queries for each DAG structure. All DAG structures we considered

in this work are shown in Figure 4.9. The way to do query sampling is to sort the nodes

in a DAG in a topological order and sample one basic graph pattern at one time by

following this order and navigating on the G [83]. In order to generate geographic

conjunctive graph query, we have the restriction ei ∈ Vpt.

The training objective is to make the correct answer entity embedding ai be the

closest one to the predicted query embedding qi = ΦG,θ(qi) against all the negative

answers’ embeddings a−i in negative answer set Neg(qi, ai). We also use a max-margin

loss:

LQA =
∑

(qi,ai)∈S

∑
a−i ∈Neg(qi,ai)

max(0,∆−Ω(qi, ai) + Ω(qi, a
−
i )) (4.15)

For Neg(qi, ai) we compared two negative sampling strategies : 1) negative sampling :

Neg(qi, ai) ⊆ V is a fixed-size set of entities such that ∀e−i ∈ Neg(qi, ai), Γ(e−i ) =

Γ(ei) and e
−
i 6= ei; 2) hard negative sampling : Neg(qi, ai) is a fixed-size set of entities

which satisfy some of the basic graph patterns bij (See Definition 6) in qi but not all of

them.

4.6.4 Spatial Semantic Lifting ΨG,θssl(~x, r) Model Training

We randomly select a point ~xi ∈ A ⊆ R2 from the study area, and use location

encoder LocEnc(x) to encode its location embedding e
(x)
i ∈ Rd(x) . Since we do not have

the feature embedding for this location, to make the whole model as an inductive learning

one, we use P(x)() to predict the tail embedding e′ = ΨG,θssl(~xi, r) of this virtual triple

r(~xi, e
′). This is equivalent to ask a query r(~xi, ?e) to G. A nearest neighbor search in
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the entity embedding space will produce the predicted entity who can link to location ~xi

with relation r. Since given any location ~xi from the study area, ΨG,θssl(~xi, r) can predict

the entity embedding that ~xi can link to given relation r, this is a fully inductive learning

based model. This model does not require location ~xi to be selected from a predefined

set of locations which is a requirement for transductive learning based models such as

Kejriwal et al. [72]. Figure 4.8 shows the idea of spatial semantic lifting.

We train the spatial semantic lifting model SE-KGEssl with Enc(), P(e)(), and P(x)()

by using two objectives: link prediction objective LLP and spatial semantic lifting objec-

tive LSSL.

L(SSL) = LLP + LSSL (4.16)

Link Prediction Training Phase The link prediction training phase aims at training

the feature embeddings of each entity. For each triple si = (hi, ri, ti) ∈ T , we can use

Enc() and P(e)() to predict the tail entity embedding given the head and relation -

P(e)(hi, ri) - or predict the head entity embedding given the tail and relation - P(e)(ti, r
−1
i ).

Note that we have two separate P(e)() for ri and r−1i . Equation 4.17 shows the loss

function where Negt(ei) is the set of negative entities who share the same type with

entity ei.

LLP =
∑

si=(hi,ri,ti)∈T

∑
t−i ∈Negt(ti)

max(0,∆−Ω(P(e)(hi, ri), ti) + Ω(P(e)(hi, ri), t
−
i ))

+
∑

si=(hi,ri,ti)∈T

∑
h−i ∈Negt(hi)

max(0,∆−Ω(P(e)(ti, r
−1
i ),hi) + Ω(P(e)(ti, r

−1
i ),h−i )) (4.17)

Spatial Semantic Lifting Training Phase We also directly optimize our model on

the spatial semantic lifting objective. We denote Ts and To as sets of triples whose head
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(or tail) entities are geographic entities, i.e., Ts = {si|si = (hi, ri, ti) ∈ T ∧ hi ∈ Vpt} and

To = {si|si = (hi, ri, ti) ∈ T ∧ ti ∈ Vpt}. The training objective is to make the tail entity

embedding ti to be the closest one to the predicted embedding P(x)(X (hi), ri) against all

negative entity embeddings t−i . We do the same for the inverse triple (ti, r
−1
i , hi). The

loss function is shown in Equation 4.18.

LSSL =
∑

si=(hi,ri,ti)∈Ts

∑
t−i ∈Negt(ti)

max(0,∆−Ω(P(x)(X (hi), ri), ti) + Ω(P(x)(X (hi), ri), t
−
i ))

+
∑

si=(hi,ri,ti)∈To

∑
h−i ∈Negt(hi)

max(0,∆−Ω(P(x)(X (ti), r
−1
i ),hi) + Ω(P(x)(X (ti), r

−1
i ),h−i ))

(4.18)

where

X (ei) =


~xi = PT (ei) , if ei ∈ Vpt \ Vpn

~x
(t)
i ∼ U(~xmini , ~xmaxi ) , PN (ei) = [~xmini ; ~xmaxi ] , if ei ∈ Vpn

(4.19)

4.7 Experiment

To demonstrate how SE-KGE incorporates spatial information of geographic enti-

ties such as locations and spatial extents we experimented with two tasks – geographic

logic query answering and spatial semantic lifting. To demonstrates the effectiveness of

spatially explicit models and the importance to considering the scale effect in location

encoding we select multiple baselines on the geographic logic query answering task. To

show that SE-KGE is able to link a randomly selected location to entities in the existing

KG with some relation, which none of the existing KG embedding models can solve, we

proposed a new task - spatial semantic lifting.
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4.7.1 DBGeo Dataset Generation

In order to evaluate our proposed location-aware knowledge graph embedding model

SE-KGE, we first build a geographic knowledge graph which is a subgraph of DBpedia

by following the common practice in KG embedding research [85, 86, 47]. We select

the mainland of United States as the study area A since previous research [141] has

shown that DBpedia has relatively richer geographic coverage in United States. The KG

construction process is as follows:

1. We collect all the geographic entities within the mainland of United States as the

seed entity set Vseed which accounts for 18,780 geographic entities5; We then collect

their 1- and 2-degree object property triples with dbo: prefix predicates/relations6;

2. We compute the degree of each entity in the collected KG and delete any entity,

together with its corresponding triples, if its node degree is less than a threshold

η. We use η = 10 for non-geographic entities and η = 5 for geographic entities,

because many geographic entities, such as radio stations, have fewer object type

property triples and a smaller threshold ensures that a relative large number of

geographic entities can be extracted from the KG;

3. We further filter out those geographic entities that are newly added from Step 2

and are outside of the mainland of United States. The resulting triples form our

KG, and we denote the geographic entity set as Vpt.

4. We split G into training, validation, and testing triples with a radio of 90:1:9 so

that every entity and relation appear in the training set. We denote the knowledge

graph formed by the training triples as Gtrain while denoting the whole KG as G.

5We treat an entity as a geographic entity if its has a geo:geometry triple in DBpedia
6http://dbpedia.org/sparql?help=nsdecl
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5. We generate K conjunctive graph query-answer pairs from G for each DAG struc-

ture shown in Figure 4.9 based on the query-answer generation process we described

in Section 4.6.3. Q(G) and Q(G)geo indicate the resulting QA set while Qgeo(G) in-

dicates the geographic QA set. For each query qi in training QA set, we make

sure that each query is answerable based on Gtrain, i.e., ϕ(Gtrain, qi) 6= ∅. As for

query qi in validation and testing QA set, we make sure each query qi satisfies

ϕ(Gtrain, qi) = ∅ and ϕ(G, qi) 6= ∅.

6. For each geographic entity e ∈ Vpt, we obtain its location/coordinates by extracting

its geo:geometry triple from DBpedia. We project the locations of geographic en-

tities into US National Atlas Equal Area projection coordinate system (epsg:2163)

XY . PT (e) = ~x indicates the location of e in the projection coordinate system

XY .

7. For each geographic entity e ∈ Vpt, we get its spatial extent (bounding box) PN (e)

in XY by using ArcGIS Geocoding API7 and OpenStreetMap API. 80.6% of geo-

graphic entities are obtained. We denote them as Vpn.

8. For each entity ei ∈ V , we obtain its types by using rdf:type triples. Note that

there are entities having multiple types. We look up the DBpedia Ontology (class

hierachy) to get their level-1 superclass. We find out that every entity in G has

only one level-1 superclass type. Table 4.2 shows statistics of entities in different

types.

9. To build the training/validation/testing datasets for spatial semantic lifting, we

obtain Ts, To ⊆ T (See Section 4.6.4), each triple of which is composed of geographic

entities as its head or tail. We denote Rssl = {ri|si = (hi, ri, ti) ∈ Ts ∩ To}
7https://geocode.arcgis.com/arcgis/rest/services/World/GeocodeServer/find
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Table 4.1: Statistics for our dataset in DBGeo (Section 4.7.1). “XXXX/QT” indicates
the number of QA pairs per query type.

DBGeo

Training Validation Testing

Knowledge Graph

|T | 214,064 2,378 21,406

|R| 318 - -

|V| 25,980 - -

|Vpt| 18,323 - -

|Vpn| 14,769 - -

Geographic Question Answering

|Q(2)(G)| 1,000,000 - -

|Q(3)(G)| 1,000,000 - -

|Q(2)
geo(G)| 1,000,000 1000/QT 10000/QT

|Q(3)
geo(G)| 1,000,000 1000/QT 10000/QT

Spatial Semantic Lifting
|Ts ∩ To| 138,193 1,884 17,152

|Rssl| 227 71 135

We denote Q(2)(G), Q(3)(G) as the general QA sets which contain 2 and 3 basic

graph patterns, and similarly for Q
(2)
geo(G), Q

(3)
geo(G). Table 4.1 shows the statistics of the

constructed G, the generated QA sets, and the spatial semantic lifting dataset in DBGeo.

Figure 4.10 shows the spatial distribution of all geographic entities Vpt in G.

4.7.2 Evaluation on the Geographic Logic Query Answering

Task

Baselines

In order to quantitatively evaluate SE-KGE on geographic QA task, we train SE-KGEfull

and multiple baselines on G in DBGeo. Compared to previous work [83, 117], the most
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Table 4.2: Number of entities for each entity type in DBGeo

Entity Type Number of Entities

dbo:Place 16,527

dbo:Agent 8,371

dbo:Work 594

dbo:Thing 179

dbo:TopicalConcept 134

dbo:MeanOfTransportation 104

dbo:Event 71

Figure 4.10: Spatial distribution of all geographic entities in G
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important contribution of this work is the entity space encoder Enc(x)() which makes our

model spatially explicit. So we carefully select four baselines to test the contribution of

Enc(x)() on the geographic logic QA task. We have selected four baselines:

1. GQEdiag and GQE: two versions of the logic query answering model proposed

by Hamilton et al. [83] which have been discussed in detail in Section 4.5. The

main different between GQEdiag and GQE is the projection operator they use:

P(GQEdiag) and P(GQE) accordingly. Compared with SE-KGEfull, both GQEdiag and

GQE only use entity feature encoder Enc(c)() as the entity encoder and I(GQE) as

the intersection operator. Both methods only use LQA in Equation 4.12 as the

training objective. There two baselines are implemented based on the original code

repository8 of Hamilton et al. [83].

2. CGA: a logic query answering model proposed by Mai et al. [117] (See Section

4.5). Compared with SE-KGEfull, CGA uses different entity encoder (Enc(CGA))

and projection operator (P(CGA)) such that the spatial information of each geo-

graphic entity is not considered. This baseline is used to test whether designing

spatially explicit logic query answering model can outperform general models on

the geographic query answering task.

3. SE-KGEdirect: a simpler version of SE-KGEfull which uses a single scale location

encoder in the entity encoder instead of the multi-scale periodic location encoder

as shown in Equation 4.1 in Section 4.2.3. Instead of first decomposing input ~x into

a multi-scale periodic representation by using sinusoidal functions with different

frequencies [65], the location encoder of SE-KGEdirect directly inputs ~x into a feed

forward network. This single-scale location encoder is proposed in Mai et al. [65] as

one baseline model - direct. Moreover, its entity space encoder does not consider

8https://github.com/williamleif/graphqembed
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the spatial extent of each geographic entity either and just uses its coordinates

to do location encoding. This baseline is used to test the effectiveness of using

multi-scale periodical representation learning in our SE-KGE framework.

4. SE-KGEpt: a simpler version of SE-KGEfull whose entity space encoder does not

consider the spatial extents of geographic entities. The only different between

SE-KGEpt and SE-KGEdirect is that SE-KGEpt uses Space2V ec [65] as the location

encoder while SE-KGEdirect utilizes the single scale direct model as the location

encoder. This baseline is used to test the necessity to consider the spatial extent

of geographic entities in our SE-KGE framework. In other words, it uses Equation

4.20 for its space encoder:

e
(x)
i =


LocEnc(x)(~xi) , where ~xi = PT (ei) , if ei ∈ Vpt

Zxh
(x)
i

‖ Zxh
(x)
i ‖L2

, if ei ∈ V \ Vpt
(4.20)

5. SE-KGEspace: a simpler version of SE-KGEfull whose entity encoder does not have

the feature encoder component. This baseline is used to understand how the space

encoder Enc(x)() captures the connectivity information of G.

Training Details

We train our model SE-KGEfull and six baselines on DBGeo dataset. GQEdiag and

GQE are trained on the general QA pairs and geographic QA pairs as Hamilton et al. [83]

did. The other models are additionally trained on the original KG structure. Gird search

is used for hyperparameter tuning: d = [32, 64, 128], d(c) = [16, 32, 64], d(x) = [16, 32, 64],

S = [8, 16, 32, 64], λmin = [10, 50, 200, 1000]. The best performance is obtained when d =

128, d(c) = 64, d(x) = 64, S = 16, λmin = 50. λmax = 5400000 is determined by the study

area A. We also try different activation functions (i.e., Sigmoid, ReLU, LeakyReLU)
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for the full connected layers NN() of location encoder LocEnc(x)(). We find out that

SE-KGEspace achieves the best performance with LeakyReLU as the activation function

together with L2 normalization on the location embedding. SE-KGEdirect, SE-KGEpt,

and SE-KGEfull obtain the best performance with Sigmoid activation function without

L2 normalization on the location embedding. We implement all models in PyTorch and

train/evaluate each model on a Ubuntu machine with 2 GeForce GTX Nvidia GPU

cores, each of which has 10GB memory. The DBGeo dataset and related codes will be

opensourced.

Evaluation Results

We evaluate SE-KGEfull and six baselines on the validation and testing QA datasets

of DBGeo. Each model produces a cosine similarity score between the predicted query

embedding q and the correct answer embedding a (as well as the embedding of negative

answers). The objective is to rank the correct answer top 1 among itself and all negative

answers given their cosine similarity to q. Two evaluation metrics are computed: Area

Under ROC curve (AUC) and Average Percentile Rank (APR). AUC compares the cor-

rect answer with one random sampled negative answer for each query. An ROC curve

is computed based on model performance on all queries and the area under this curve

is obtained. As for APR, the percentile rank of the correct answer among all negative

answers is obtained for each query based on the prediction of a QA model. Then APR

is computed as the average of the percentile ranks of all queries. Since AUC only uses

one negative sample per query while APR uses all negative samples for each query. We

consider APR as a more robust evaluation metric.

Table 4.7.2 shows the evaluation results of SE-KGEfull as well as six baselines on

the validation and testing QA dataset of DBGeo. We split each dataset into different

categories based on their DAG structures (See Figure 4.9). Note that logic query an-
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swering is a very challenging task. As for the two works which share a similar set up as

ours, Hamilton et al. [83] show that their GQE model outperforms TransE baseline by

1.6% of APR on Bio dataset. Similarly, Mai et al. [117] demonstrate that their CGA

model outperfroms GQE model by 1.39% and 1.65% of APR on DB18 and WikiGeo19

dataset. In this work, we show that our SE-KGEfull outperforms the current state-of-

the-art CGA model by 2.17% and 1.31% in terms of APR on the validation and testing

dataset of DBGeo respectively. We regard it as a sufficient signal to show the effective

of SE-KGEfull on the geographic QA task. Some interesting conclusions can be drawn

from Table 4.7.2:

1. CGA has a significant performance improvement overGQEdiag andGQE on DBGeo.

This result is consistent with that of Mai et al. [117] which demonstrates the ad-

vantage of the self-attention mechanism in I(CGA).

2. The performance of SE-KGEdirect and CGA are similar, which shows that a simple

single-scale location encoder (SE-KGEdirect) is not sufficient to capture the spatial

information of geographic entities.

3. SE-KGEfull performs better than SE-KGEpt which only considers the location in-

formation of geographic entities. This illustrates that scale effect is beneficial for

the geographic logic QA task.

4. The performance of SE-KGEspace is the worst among all models. This indicates

that it is not enough to only consider spatial information as the input features

for entity encoder Enc(). This makes sense because each entity in G has a lot of

semantic information other than their spatial information, and only using spatial

information for entity embedding learning is insufficient. However, SE-KGEspace is

a fully inductive learning model which enables us to do spatial semantic lifting.

141



SE-KGE: A location-aware Knowledge Graph Embedding Model for Geographic Question
Answering and Spatial Semantic Lifting Chapter 4

5. Compared SE-KGEfull with CGA, we can see that SE-KGEfull outperforms CGA

for almost all DAG structures on testing dataset except “Hard-3-chain inter” (-

0.58%) while top 2 DAG structures with the largest margin are “3-inter chain”

(2.15%) and “3-chain inter” (2.08%). On the validation dataset, SE-KGEfull gets

higher ∆APR compared to CGA on “Hard-3-inter chain” (7.42%) and “3-inter chain”

(6.08%). GQEdiag shows the best performance on “Hard-3-chain inter” query struc-

ture.

In order to demonstrate how the intersection operator I() helps to improve the

model performance on the geographic QA task, we show SE-KGEfull’s predicted rank-

ing list of entities on Query qC as well as its three basic graph patterns in Table 4.7.2.

These 12 entities in this table represent the hard negative sampling set of Query qC .

dbr:Oakland, California is the correct answer for Query qC . We can see that the top

ranked four entities of b1: IsPartOf
−1(Alameda County, ?Place) are all subdivisions of

Alameda County. The top ranked 5 entities of b2: Assembly(Chevrolet Eagle, ?Place)

are all assembly places of Chevrolet Eagle. Similarly, the top ranked entities of b3:

NearestCity(San Francisco Bay, ?Place) are close to San Francisco Bay. The full

query qC yield the best rank of the correct answer. This indicates that each basic graph

pattern contributes to the query embedding prediction of SE-KGEfull. Moreover, to com-

pare performances of different models on Query qC , the percentile rank given by CGA,

SE-KGEpt, and SE-KGEfull are 53.9%, 61.5%, and 77.0%, respectively.

We also test how well the location encoder LocEnc(x)() in SE-KGE can capture

the global position information and how LocEnc(x)() interacts with other components

of SE-KGE. We use SE-KGEspace as an example. Since LocEnc(x)() is an inductive

learning model, we divide the study area A into 20km×20km grids and take the location

of each grid center as the input of LocEnc(x)(). Each grid will get a d(x) dimension
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Table 4.3: The evaluation of geographic logic query answering on DBGeo (using AUC
(%) and APR (%) as evaluation metric)
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Table 4.4: The rank of entities in the hard negative sample set of
Query qC based on SE-KGEfull’s prediction for different queries: 1) b1:
IsPartOf−1(Alameda County, ?Place); 2) b2: Assembly(Chevrolet Eagle, ?Place);
3) b3: NearestCity(San Francisco Bay, ?Place); 4) The Full Query qC . The correct
answer is highlighted as bold.
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location embedding after location encoding. We apply hierarchical clustering on these

embeddings. Figure 4.11a shows the clustering result. We compare it with the widely

used USA Census Bureau-designated regions9 (See Figure 4.11b). We can see that Figure

4.11a and 4.11b look very similar to each other. We use two clustering evaluation metrics

- Normalized Mutual Information (NMI) and Rand Index - to measure the degree of

similarity which yield 0.62 on NMI and 0.63 on Rand Index. To take a closer look at

Figure 4.11a, we can also see that the clusters are divided on the state borders. We

hypothesize that this is because LocEnc(x)() is informed of the connectivity of different

geographic entities in G during model training, resulting in that locations which are

connected in original G are also clustered after training.

To validate this hypothesis, we apply Louvain community detection algorithm with a

shuffled node sequence10 on the original G by treating G as an undirected and unlabeled

graph. Figure 4.11c shows the community structure with the best modularity which

contains 32 communities. Some interesting observations can be made by comparing

these three figures:

1. Most communities in Figure 4.11c are separated at state borders, which is an evi-

dence of our hypothesis;

2. Some communities contain locations at different states, which are far away from

each other. For example, the red community which contains locations from Utah,

Colorado, and Alabama. This indicates that some locations are very similar purely

based on the graph structure of G . As LocEnc(x)() imposes spatial constraints on

entities, spatially coherent clusters in Figure 4.11a are presented.

One hypothesis why Figure 4.11a and 4.11b look similar is that in the KG, the number

of connections between entities within one Bureau-designated region is more than the

9https://en.wikipedia.org/wiki/List_of_regions_of_the_United_States
10https://github.com/tsakim/Shuffled_Louvain
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number of connections among entities in different regions. This may be due to the fact

that DBpedia uses census data as one of the data sources while census data is organized

in a way which reflects Bureau-designated regions of the US. More research is needed to

validate this hypothesis in the future.

(a) (b)

(c)

Figure 4.11: (a) Clustering result of location embeddings produced by the location
encoder LocEnc(x)() in SE-KGEspace. It illustrates spatial coherence and semantics
(b) Census Bureau-designated regions of United States, and (c) the community de-
tection (Shuffled Louvain) results of knowledge graph G by treating G as a undirected
unlabeled multigraph. It lacks spatial coherence.
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4.7.3 Evaluation on Spatial Semantic Lifting Task

Baselines

The spatial semantic lifting model is composed of Enc(), P(e)(), and P(x)() which is

indicated as SE-KGEssl. In order to study the contribution of feature encoder and location

encoder, we create a baseline SE-KGE′space whose entity encoder does not have the feature

encoder component, similar to SE-KGEspace. The difference is that they are trained on

different objectives. These are the only two models that can do spatial semantic lifting

task, since they are fully inductive learning models directly using locations as the only

input features.

Training Detail

We train SE-KGEssl and SE-KGE′space based on L(SSL). To quantitatively evaluate

them on spatial semantic lifting task, we use Ts∩To in the validation and testing dataset

with different relations (See Table 4.1). For each triple si = (hi, ri, ti) ∈ Ts, given the

head entity’s location and ri, we use P(x)(X (hi), ri) (See Equation 4.19) to predict the

tail entity embedding. Similar process can be done for sj = (hj, rj, tj) ∈ To but from the

reverse direction. We also use AUC and APR as the evaluation metrics. Note that since

X (hi) = ~x
(t)
i ∼ U(~xmini , ~xmaxi ) , PN (hi) = [~xmini ; ~xmaxi ] if hi ∈ Vpn, the location of head

entity is randomly generated, which can be treated as unseen in the training process. We

use the same hyperparameter configuration as SE-KGEfull.

Evaluation Results

Table 4.5 shows the overall evaluation results. We can see that SE-KGEssl outperforms

SE-KGE′space with a significant margin (∆AUC = 9.86% and ∆APR = 9.59% on the

testing dataset) which clearly shows the strength of considering both feature embedding
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Table 4.5: The evaluation of spatial semantic lifting on DBGeo over all validation/test-
ing triples

SE-KGEspace SE-KGEssl SE-KGEssl - SE-KGEspace

AUC APR AUC APR ∆AUC ∆APR

Valid 72.85 75.49 82.74 85.51 9.89 10.02

Test 73.41 75.77 83.27 85.36 9.86 9.59

and space embedding in spatial semantic lifting task.

Next, among all validation and testing triples with different relations, we select a

few relations and report APR of two models on these triples with specific relations. The

results are shown in Table 4.6. These relations are selected since they are interesting from

spatial reasoning perspective. We can see that SE-KGEssl outperforms SE-KGE′space on

all these triple sets with different relations.

In order to know how well SE-KGEssl understands the semantics of different types

of (spatial) relations, we visualize the spatial semantic lifting results in Figure 4.12

for four spatial relations: dbo:state, dbo:nearestCity, , dbo:broadcastArea−1, and

dbo:isPartOf. dbo:state, dbo:isPartOf, and dbo:broadcastArea−1 are about parton-

omy relations while dbo:nearestCity represents an example of point-wise metric spatial

relations. Some interesting observations can be made:

1. SE-KGEssl is capable of capturing the spatial proximity such that the top 1 geo-

graphic entity (yellow point) in each case is the closest to location ~x (red triangle).

We also treat this as an indicator for the capability of SE-KGEssl to handle parton-

omy relations and point-wise metric spatial relations.

2. SE-KGEssl can capture the semantics of relations, e.g., the domain and range of

each relation/predicate. All top ranked entities are within the range of the cor-
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Table 4.6: The evaluation of SE-KGEssl and SE-KGE′space on DBGeo for a few selected
relation r (using APR (%) as evaluation metric).

Query Type SE-KGE′space SE-KGEssl ∆APR

Valid

state(~x, ?e) 92.00 99.94 7.94

nearestCity(~x, ?e) 84.00 94.00 10.00

broadcastArea−1(~x, ?e) 91.60 95.60 4.00

isPartOf(~x, ?e) 88.56 98.88 10.32

locationCity(~x, ?e) 83.50 99.00 15.50

residence−1(~x, ?e) 90.50 93.50 3.00

hometown−1(~x, ?e) 61.14 74.86 13.71

Test

state(~x, ?e) 89.06 99.97 10.91

nearestCity(~x, ?e) 87.60 99.80 12.20

broadcastArea−1(~x, ?e) 90.81 96.63 5.82

isPartOf(~x, ?e) 87.66 98.87 11.21

locationCity(~x, ?e) 84.80 99.10 14.30

residence−1(~x, ?e) 61.21 77.68 16.47

hometown−1(~x, ?e) 61.44 76.83 15.39

responding relation. For example, in Figure 4.12a with query state(~x, ?e), the

top 3 entities are all states spatially closed to ~x. In Figure 4.12c with query

broadcastArea−1(~x, ?e), all top 3 entities are nearby radio stations. In Figure

4.12d with query isPartOf(~x, ?e), all top 3 entities are states (dbo:Indiana) and

counties.

3. We notice that the result of query nearestCity(~x, ?e) in Figure 4.12b is not good

enough since the second result - dbo:Cheboygan, Michigan - is outside of Wis-

consin. After investigating the triples with dbo:nearestCity as the relation, we
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(a) state(~x, ?e) (b) nearestCity(~x, ?e) (c) broadcastArea−1(~x, ?e)

(d) isPartOf(~x, ?e)

Figure 4.12: The visualization of spatial semantic lifting of SE-KGEssl. Figure (a),
(b), (c), and (d) shows the top 3 geographic entities which can answer query r(~x, ?e)
where r is the relation we pick. Red triangle: the select location ~x. Circles: top 3
geographic entities ranked by our model, and their colors indicates cosine similarity
between the geographic entities and the predicted query embedding.

find out dbo:nearestCity usually links a natural resource entity (e.g., lakes, na-

tional parks) to a city. These natural resource entities usually cover large area and

complex geometries. So dbo:nearestCity is not a purely point-wise distance base

relation but a complex distance base relation based on their real geometries. Since

our model only takes the bounding box of each entity and there are usually no
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subdivions of these nature resource entities, it is hard for our model to learn the

semantics of dbo:nearestCity.

Based on the evaluation results and model analysis, we can see that given a relation

r, SE-KGEssl is able to link a location ~x to an entity e in G by considering the semantics

of r and spatial proximity.

4.8 Conclusion

In this work, we propose a location-aware knowledge graph embedding model called

SE-KGE which enables spatial reasoning in the embedding space for its three major

components - entity embedding encoder Enc(), projection operator P(), and intersec-

tion operator I(). We demonstrate how to incorporate spatial information of geographic

entities such as locations and spatial extents into Enc() such that SE-KGE can handle dif-

ferent types of spatial relations such as point-wise metric spatial relations and partonomy

relations. To the best of our knowledge, this is the first KG embedding model which in-

corporates location encoding into the model architecture instead of relying on some form

of distance measure among entities while capturing the scale effect of different geographic

entities. Two tasks have been used to evaluate the performance of SE-KGE - geographic

logic query answering and spatial semantic lifting. Results show that SE-KGEfull can

outperform multiple baselines on the geographic logic query answering task which indi-

cates the effectiveness of spatially explicit models. It also demonstrates the importance

to considering the scale effect in location encoding. Also we proposed a new task - spa-

tial semantic lifting, aiming at linking a randomly selected location to entities in the

existing KG with some relation. None of the existing KG embedding models can solve

this task except our model. We have shown that SE-KGEssl can significantly outperform

the baseline SE-KGE′space (∆AUC = 9.86% and ∆APR = 9.59% on the testing dataset).
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Visualizations show that SE-KGEssl can successfully capture the spatial proximity infor-

mation as well as the semantics of relations. In the future, we hope to explore a more

concise way to encode the spatial footprints of geographic entities in a KG. Moreover, we

want to explore more varieties of the spatial semantic lifting task.
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Chapter 5

Representation Learning for

Complex Polygonal Geometries in

the Spectral Domain based on

Non-Uniform Fourier

Transformation

Many geographic questions such as topological relation questions, cardinal direction re-

lation questions, cannot be correctly answered if a GeoQA model is only aware of the

point coordinates and the bounding boxes of geographic entities. So representing polyg-

onal geometries such as simple polygons, polygons with holes, and multipolygons into

the embedding space is also critical for a GeoQA system. In fact, polygon encoding

is a general problem required by many polygon-based geospatial tasks (e.g., building

pattern classification, cartographic building generalization) that goes beyond the con-

text of GeoQA. However, encoding complex polygonal geometries into the embedding
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space is a non-trivial problem since there are four properties we expect for a polygon

encoder: loop invariance, trivial vertex invariance, part permutation invariance, and

topology awareness. This chapter mainly focuses on the polygon encoding problem and

proposes a Non-Uniform Fourier Transformation-based polygon encoder that satisfies all

these properties. In addition, we also propose a 1D ResNet-based polygon encoder to

handle simple polygons which can achieve loop invariance. Experiment results on two

real-world datasets show that our polygon encoder can outperform multiple baselines

on the polygon-based spatial relation prediction task which is an important but missing

component of our current GeoQA toolset.
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structures is difficult, but rewarding because these data are heavily used in many sci-

entific disciplines. In this work, we focus on the problem of representation learning on

(complex) polygonal geometries given their wide applications in different domains such

as spatial relation prediction, geographic question answering, building pattern classifica-

tion, building shape coding, cartographic building generalization, and so on. We aim to

design a polygon encoder satisfying four nice properties: loop invariance, trivial vertex

invariance, part permutation invariance, and topology awareness. We develop a polygon

encoder called NUFTspec based on the spectral features of a polygonal geometry after

a Non-Uniform Fourier Transformation (NUFT). NUFTspec learns the polygon embed-

ding in the spectral domain and naturally satisfies all four properties. We also propose

a 1D CNN-based polygon encoder, ResNet1D, which encodes a simple polygon directly

from the spatial domain and can achieve loop invariance, but only on handling simple

polygons. To show the effectiveness of NUFTspec and ResNet1D, we construct two

datasets for the polygon-based spatial relation prediction task - DBSpaRel46K and DB-

SpaRelComplex46K - based on OpenStreetMap and DBpedia. Evaluation results show

that NUFTspec and ResNet1D outperform multiple existing baselines with a significant

margin when encoding simple polygons. Moreover, NUFTspec outperforms the previous

DDSL model on DBSpaRelComplex46K and is more robust with respect to the number

of sampled frequencies in the spectral domain.

5.1 Introduction

Deep neural networks have shown great success for numerous tasks from computer

vision, natural language processing, to audio analysis whose underlining data is usually in

regular structure such as grid-like (e.g., images) or sequence-like (e.g., sentences, audios)

[142]. These successes can be largely attributed to the fact that the regularity of these
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structures are built into the neural networks [142] which make it hard to apply similar

models on data with irregular structures. Recent years have witnessed growing interests

in geometric deep learning [142, 143] which focuses on developing deep models for non-

Euclidean geometric data such as graphs [144, 145, 136, 127, 128, 66], points [95, 146,

64, 65], and manifolds [147, 143] which have rather irregular structure. In fact, deep

learning models on irregularly structured data or non-Euclidean geometric data have

various applications in different domains such as computational social science (e.g., social

network [148, 149]), chemistry (e.g., organic molecules [150]), bioinformatics (e.g., gene

regulatory network [151]), and geoscience (e.g., traffic network [152, 153], air quality

sensor network [154], weather sensor networks [155], and species occurrences [64, 65]).

Compared with other non-Euclidean geometric data, few efforts have been taken to

develop deep models on polygons despite the fact that polygon data are widely utilized

in multiple applications, especially geospatial applications such as geographic question

answering (GeoQA) [10, 31, 47, 66], building pattern classification (BPC) [156], building

shape coding [157], cartographic building generalization [158], and so on. Figure 5.1

shows the usefulness of polygon data for two geospatial tasks - GeoQA and BPC. Without

proper polygon representations of Canada and the US (Figure 5.1a), Question ‘How far

it is from Canada to US ’ cannot be answered correctly1 even with the state-of-the-art

QA system. As for the BPC task (Figure 5.1b), the shape and arrangement of building

polygons in a neighborhood are indicative for its function/land use.

Most existing deep models on polygons focus on constructing a simple polygon2 from

an image as the object mask for the object instance segmentation task [159, 160, 161].

In contrast, in this work, we focus on a general-purpose polygon encoding model

1The answer to this brain teaser question should be 0 because Canada and the US are adjacent to
each other. However, since Google utilizes geometric central points as the spatial representations for
geographic entities, Google QA returns 2260 km as the answer as the distance between them.

2A simple polygon is a polygon that does not intersect itself and has no holes.
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(a) Geographic Question Answering (b) Building Pattern Classification

Figure 5.1: Two geospatial tasks which shows the usability of polygon data: (a)
GeoQA: many geographic questions can only be answered correctly based on polygon
representations of geographic entities. Otherwise, it will yield an incorrect answer
(2260 km) such as ‘How far it is from Canada to US ’. (b) BPC: the shape, scale,
and arrangement of building footprints in a neighborhood are very indicative for the
function/affordance/land use of this neighborhood. The blue neighborhood (Disney-
land Park in Los Angles) indicates a recreation area while the red neighborhood are
a residential area given its more regularly arranged buildings.

which aims at representing a polygonal geometry (with or without holes, sin-

gle or multipolygons) into the embedding space. The resulting polygon embedding

can be subsequently utilized in multiple downstream tasks such as spatial relation predic-

tion between geographic entities [39], GeoQA [31], shape classification [162, 163, 164, 157],

and so on. Given the unique structure of polygons, some important properties are desir-

able for the polygon encoder: loop invariance, trivial vertex invariance, part permutation

invariance, and topology awareness. These four properties are illustrated in Figure 5.3

and will be discussed in detail in Section 5.3. We propose a polygon encoding model,

NUFTspec, which first transforms the polygonal geometry into the spectral domain by the

Non-Uniform Fourier Transformation (NUFT) and then directly learns polygon embed-

dings from these spectral features. Because of the nature of NUFT, NUFTspec directly

satisfies these four polygon encoding properties. In addition, in order to explore the
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potential of encoding polygons directly from the spatial domain, we also propose a 1D

CNN based polygon encoder - ResNet1D which can encode simple polygons and achieve

loop invariance.

To show the effectiveness of our polygon encoders, we compare our models with

various deterministic or deep learning baselines on the polygon-based spatial relation

prediction task which is an important component for GeoQA. Two real-world dataset

DBSpaRel46K and DBSpaRelComplex46K are constructed for evaluation based on DB-

pedia and OpenStreetMap. We are able to show that ResNet1D can outperform other

polygon encoders except NUFTspec on DBSpaRel46K because of its specially designed

KDelta neighborhood point encoder and zero padding structure. Our NUFTspec model

is able to outperform multiple baselines on both datasets because it can effectively learns

robust polygon embeddings from the spectral domain derived from NUFT. Moreover, un-

like most polygon encoders including ResNet1D which can only handle simple polygons,

NUFTspec can deal with complex polygonal geometries.

This paper is organized as follow: We discuss the necessity of polygon encoding

in Section 5.2. Then, in Section 5.3, we define the problem of representation learning

on polygons and discuss four expected polygon encoding properties. Related work are

discussed in Section 5.4. We present ResNet1D and NUFTspec polygon encoders in

Section 5.5 and compare model properties in Section 5.5.4. Datasets and experiment

results are discussed in Section 5.6 and we conclude this work in Section 5.7.

5.2 The Necessity of Polygon Encoding

We would like to first discuss the necessity of polygon encoding specifically for geospa-

tial tasks such as spatial relation prediction. For example, a GIScience expert may ask

why we need to represent polygons into the embedding space to do spatial relation pre-
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diction given the fact that we have a set of well-defined deterministic spatial operators

for spatial relation computation based on region connection calculus (RCC8) [165] such

as those implemented by PostGIS or GeoSPARQL [166]. A computer vision researcher

might also question this idea by suggesting an alternative approach that first rasterizes

two polygons under consideration into two images that share the same bounding box so

that a convolutional neural network (CNN) model can be applied on them for relation

prediction.

(a) Sliver Polygon Problem (b) Scale Problem (c) Vagueness of Spatial Relation

Figure 5.2: Three real-world examples as illustrations for there different problems
when we predict spatial relations between two polygons: (a) Sliver Polygon Prob-
lem: dbr:Seal Beach, California (the red polygon) should be tangential proper part
(TPP) of dbr:Orange County, California (the blue polygon).However, because of those
sliver polygons shown in these zoom-in windows, a deterministic spatial reasoner such
as GeoSPARQL will return partially overlapping as the result. (b) Scale Problem:
dbr:Seal Beach, California (the red polygon) has a extremely smaller map scale com-
pared with dbr:California (the blue polygon). On one hand, a deterministic rea-
soner will pay too much attention to the geometry detail and predict wrong relations
because of the sliver polygons as Fig (a). On the other hand, if we convert these
polygons into two images (e.g., two 128× 128 images), the red polygon becomes too
small and cannot cover even one pixel which will also affect the result. (c) Vague-
ness of spatial relation: dbr:Berkeley, California (the blue polygon) sits in the north
of dbr:Piedmont, California (the red polygon) according to DBpedia and Wikipedia.
However, only based on their polygon representation, their cardinal direction is vague
and subjective which can be “north” or “northwest”.

There are three different problems related to the spatial relation prediction task -

sliver polygon problem, scale problem, and vagueness of spatial relation - which show the

limitation of the above mentioned alternative approaches. Figure 5.2 illustrates these
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problems by using three real-world examples from OpenStreetMap. First, as shown

in those zoom-in windows of Figure 5.2a, those three tiny polygons yielded from the

geometry difference between the red and blue polygon are called sliver polygons3. Here,

dbr:Seal Beach, California (the red polygon) should be tangential proper part (TPP) of

dbr:Orange County, California (the blue polygon). However, because of map digitization

error, the boundary of the red polygon is crunching out the boundary of the blue polygon.

A deterministic spatial operator will return “intersect” instead of “part of” as their

relation. Sliver polygons are very common in map data, hard to prevent, and require a

lot of efforts to correct, while deterministic spatial operators are very sensitive to them.

As shown in Table 5.2, as for those 27,364 polygon pairs annotated with dbo:isPartOf

relation by DBpedia, there are 6,309 pairs (23%+) intersecting with each other when

computing their relations deterministically.

Second, two polygons might be at very different map scale (Figure 5.2b). dbr:Seal Bea

ch, California (the red polygon) has a extremely smaller map scale compared with

dbr:California (the blue polygon). When using deterministic spatial operators, sliver

polygons will lead to wrong answers while as for the rasterization method, the red poly-

gon become too small to occupy even one pixel of the image.

Last but not least, some spatial relations such as cardinal direction relations are

conceptually vague. While this vagueness can be well handled by neural networks through

learning from the golden labels, it is hard to design a deterministic method to predict

them. As shown in Figure 5.2c, dbr:Berkeley, California (the blue polygon) sits in the

north of dbr:Piedmont, California instead of northeast according to DBpedia. However,

based on their polygon representations, both “north” and “northeast” seems to be true.

In other words, their cardinal direction is vague and subjective.

3In GIScience, sliver polygon is a technical term referring to the small unwanted polygons resulting
from polygon intersection or difference.
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Because of those three problems, we believe designing a general-purpose neural network-

based polygon encoder is necessary and can benefit multiple downstream applications.

5.3 Problem Statement

Based on the Open Geospatial Consortium (OGC) standard, we first give the defini-

tion of polygons and multipolygons. Let G = {gi} be a set of polygonal geometries in a

2D Euclidean space R2 where G is a union of a polygon set P = {pi} and a multipolygon

set Q = {qi}, a.k.a G = P ∪ Q and P ∩ Q = ∅. We have gi ∈ P ∨ gi ∈ Q. Each

polygon pi can be represented as a tuple (Bi, hi = {Hij}) where Bi ∈ RNbi
×2 indicates

a point coordinate matrix for the exterior of pi defined in a counterclockwise direction.

hi = {Hij} is a set of holes for pi where each hole Hij ∈ RNhij
×2 is a point coordinate

matrix for one interior linear ring of pi defined in a clockwise direction. Nbi indicates the

number of unique points in pi’s exterior. The first and last point of Bi are not the same

and Bi does not intersect with itself. Similar logic applies to each hole Hij and Nhij is the

number of unique points in the jth hole of pi. It is common that one geographic entity

(e.g., Japan) cannot be represented as one single polygon but a multipolygon. Here, a

multipolygon qk ∈ Q is a set of polygons qk = {pki} which represents one entity. If a

polygonal geometry gi is a single polygon without any holes, i.e., gi = (Bi, hi = ∅), we

call it a simple polygon. Otherwise, we call it a complex polygonal geometry which might

be a multipolygon or a polygon with holes.

Distributed representation of polygonal geometries in the 2D Euclidean space R2 can

be defined as a function EncG,θ(gi) : G∗ → Rd which is parameterized by θ and maps any

polygonal geometry gi ∈ G∗ in R2 to a vector representation of d dimension4. Here G∗

indicates the set of all possible polygonal geometries in R2 and G ⊆ G∗.
4We use Enc(gi) to represent EncG,θ(gi) in the following
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Figure 5.3a illustrates a multipolygon q = {p0, p1} where p0 = (B0, h0 = {H00}) has

one hole and p1 = (B1, h1 = ∅) has no hole. An ideal polygon encoder Enc(gi) should

satisfy four properties:

1. Loop invariance (Loop): The encoding result of a polygon pi should be invari-

ant when starting with different vertices to loop around its exterior/interior. Let

consider p′′0 = (B0, ∅) as a simple polygon made up from the exterior of p0. B0 can

be written as B0 = [xTA; xTB; xTC ; xTD; xTE; xTF ] ∈ R6×2. Let B
(s)
0 = LsB0 as another

representation of p′′0’s exterior where Ls ∈ R6×6 is a loop matrix which shifts the

order of B0 by s. For example, B
(3)
0 = L3B0 = [xTD; xTE; xTF ; xTA; xTB; xTC ]. Concep-

tually, we have p′′0 = (B0, ∅) = p
(s)
0 = (LsB0, ∅) ∀s ∈ {1, 2, ..., 6}. Loop invariance

expects Enc(p′′0) = Enc(p
(s)
0 ).

2. Trivial vertex invariance (TriV): The encoding result of a polygon (or multi-

polygon) should be invariant when we add/delete trivial vertices to/from its exterior

or interiors. Trivial vertices are unimportant vertices such that adding or deleting

them from polygons’ exteriors or interiors does not change their overall shape and

topology. For example, 6 red vertices - A′, B′, C ′, D′, E ′, F ′ - (Figure 5.3b) are triv-

ial vertices of Polygon p′0 since deleting them yield Polygon p0 which has the same

shape as p′0. We expect Enc(p′0) = Enc(p0).

3. Part permutation invariance (ParP): The encoding result of a multipolygon

qi should be invariant when permuting the feed-in order of its parts. For instance,

the encoding result of Enc(q) (Figure 5.3a) should not change when changing the

feed-in order of p0, p1.

4. Topology awareness (Topo): The polygon encoder Enc(gi) should be aware

of the topology of the polygonal geometry gi. Enc(gi) should not only encode
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the boundary information of gi but also be aware of the exterior and interior

relationship. For example, as shown in Figure 5.3a and 5.3c, q = {p0, p1} and

q′′ = {p′′0, p1, p2} are two multipolygons and p2 is inside of p′′0. Although q and

q′′ have the same boundary information, the encoding results of them should be

different given their different topological information.

We call the above properties as four polygon encoding properties. As can be seen,

these properties are unique requirements for encoding polygonal geometries. In certain

scenarios, translation invariance, scale invariance, and rotation invariance, which

require the encoding results of a polygon encoder unchanged when polygons are gone

through translation/scale/rotation translations, are also expected in many shape related

tasks such as shape classification, shape matching, shape retrieval [167]. However, in

other tasks such as spatial relation prediction (including topological relations and cardinal

direction relations) and GeoQA, translation/scale/rotation invariance are unwanted. For

example, after a translation transformation on p0 (Figure 5.3a), the cardinal direction

between p0 and p1 changes. So in this work, we primarily focus on the first four properties.

5.4 Related Work

2D Shape Classification Shape classification aims at classifying the silhouette of an

object (e.g., animal, leaf) which is usually a polygon/multipolygon into their correspond-

ing class. Multiple shape classification datasets have been constructed for this purpose

such as MPEG-7 [168], Animal [162], and Swedish leaf dataset [169]. Wang et al. [163]

propose a Bag of Contour Fragment (BCF) method by decomposing one shape polygon

into contour fragments each of which is described by a shape descriptor. Then a compact

shape representation is max-pooled from them based on a spatial pyramid method. Hofer

et al. [170] convert 2D object shapes (images) into topological signatures and input them
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(d) 2-simplex mash S(j)

Figure 5.3: An illustration of the structure of multipolygons for explanation of four
polygon encoding properties and the illustration of the auxiliary node method. (a)
An illustration of a multipolygon q = {p0, p1} with two parts. p0 = (B0, h0 = {H00})
has one hole and p1 = (B1, h1 = ∅) has no hole. (b) An illustration of a multipolygon
q′ = {p′0, p1} where p′0 has the same shape as p0 but adding additional 6 trivial vertices
(red dots) - A′, B′, C ′, D′, E′, F ′ - to its exterior. (c) An illustration of a multipolygon
q′′ = {p′′0, p1, p2} with three parts where p′′0 = (B0, ∅) is a simple polygon made up from
the exterior of p0. p2 is a simple polygon made up from the boundary of p0’s interior
H00. (d) An illustration of the auxiliary node method which converts multipolygon q
into a 2-simplex mesh S(j) by adding the origin point xO as another vertex.
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into a CNN-based model. Most of these shape classification datasets are rather small

scale and challenging for deep learning model. For example, according to Kurnianggoro

et al. [171], BCF [163], a feature engineering model is still the state-of-the-art model on

MPEG-7 and outperforms all deep learning models.

Polygon Encoding Recently, there are a few research focusing on the problem of

encoding polygonal geometries directly instead of first rasterizing them into images. Most

of them only consider encoding simple polygons. For example, Veer et al. [164] propose

a 1D CNN model with zero padding and an RNN model to directly encode the exterior

of a simple polygon into the embedding space. None of these two models satisfies four

polygon encoding properties. Yan et al. [157] propose a graph convolutional autoencoder

model (GCAE) to learn an embedding for each building footprint (a simple polygon) in

an unsupervised learning manner. Because a polygon exterior is represented as a graph,

not a 1D sequence as Veer et al. [164] did, GCAE is loop invariant, but it cannot satisfy

other properties. Instead of directly encoding polygons in the spatial domain, Jiang et

al. [172] propose to use a Non-Uniform Fourier Transformation (NUFT) followed by a

inverse Fourier transformation (IFT) to transform a polygon, either a simple polygon

or a complex polygonal geometry, into a 2D image so that many CNN models can be

applied on it for different shape-based tasks. DDSL [167] further extends this NUFT-IFT

operation into a differentiable rasterization layer. However, this NUFT-IFT rasterization

layer sacrifices a huge information loss as shown in Figure 5.2b. Inspired from DDSL, our

NUFTspec model adopt the NUFT idea. Instead of doing a IFT, we directly consume

the polygon features in the spectral domain. So NUFTspec has a lower information

loss while still satisfies all four polygon encoding properties. We will discuss the NUFT

method in detail in Section 5.5. For more detailed related work, please see Appendix

5.8.1.
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5.5 Method

In this section, we present two polygon encoders: NUFTspec and ResNet1D. NUFT-

spec first applies NUFT to transform a polygonal geometry into the spectral domain

and learn the polygon embedding from that. In contrast, ResNet1D utilize a 1D CNN

to encode the exterior of a simple polygon into the embedding space. Basically, they

learns polygon representations in different domains. We wills compare them with other

baselines and discuss their properties in Section 5.5.4.

5.5.1 NUFTspec Model

NUFTspec first applies Non-Uniform Fourier Transforms (NUFT) to convert a polyg-

onal geometry g into the spectral domain. Then it directly feeds these spectral features

into a multi-layer perceptron to obtain the polygon embedding p of g. g can be either a

polygon with/without holes, or a multipolygon.

Auxiliary Node Following DDSL, we first convert a given watertight polygonal ge-

ometry g into a j-simplex mesh S(j) = {S(j)
n }Np

n=1 = (V,E,D) (here j = 2) by adding

one auxiliary node (the origin point xO). (V,E,D) denote three matrices, known as the

vertex matrix, edge matrix, and density matrix. As shown in Figure 5.3d, for the nth

boundary segment of each sub-polygon’s exterior and interiors of g, we connect its two

vertices to the origin xO = [0, 0] to construct a 2-simplex (triangle) S
(j)
n . For instance,

for Edge εAB, we construction a Triangle S
(j)
ABO = 4ABO. For a polygonal geometry g

with in total Np vertices (including vertices of each sub-polygon’s exterior and interior),

we can get Np 2-simplexes which form a 2-simplex mesh S(j) = {S(j)
n }Np

n=1 = (V,E,D).

See Appendix 5.8.2 for the explanation of V,E,D.

NUFT Next, we perform NUFT on this j-simplex mesh S(j) = {S(j)
n }Np

n=1 (here j = 2).

Compared with the conventional Discrete Fourier transform (DFT) whose input signal

166



Representation Learning for Complex Polygonal Geometries in the Spectral Domain based on
Non-Uniform Fourier Transformation Chapter 5

is sampled at equally spaced points or frequencies (or both), NUFT can deal with input

signal sampled at non-equally spaced points or transform the input into non-equally

spaced frequencies. This makes NUFT very suitable for irregular structured data such as

point cloud, line meshes, polygonal geometries, and so on [172, 167]. In contrast, DFT

is more suitable for regular structured data such as images, videos [173].

J-simplex function For the nth j-simplex S
(j)
n in a j-simplex mesh S(j) = {S(j)

n }Np

n=1 =

(V,E,D), we define a density function

f (j)
n (x) =


ρn, x ∈ S

(j)
n

0, x /∈ S
(j)
n

, f
(j)
S (x) =

Np∑
n=1

f (j)
n (x) (5.1)

in which ρn is the signal density defined on S
(j)
n . The Piecewise-Constant Function (PCF)

over simplex mesh S(j) is the superposition of f
(j)
n (x) for each simplex S

(j)
n :

NUFT of PCF f
(j)
S (x) The NUFT of PCF f

(j)
S (x) over a j-simplex mesh S(j) =

{S(j)
n }Np

n=1 = (V,E,D) on a set of Nw Fourier base frequencies {wk}Nw
k=1 is a sequence of

Nw complex numbers:

F
(j)
S (x) = [F

(j)
S,1(x), F

(j)
S,2(x), ..., F

(j)
S,k(x), ..., F

(j)
S,Nw

(x)] (5.2)

where the NUFT of f
(j)
S (x) on each base frequency wk ∈ R2 can be written as the

weighted sum of the Fourier transform on each j-simplex S
(j)
n :

F
(j)
S,k(x) =

∫
· · ·
∫ ∞
−∞

f
(j)
S (x)e−i〈wk,x〉dx =

Np∑
n=1

ρn

∫
· · ·
∫
S
(j)
n

e−i〈wk,x〉dx =

Np∑
n=1

ρnF
(j)
n,k(x)

(5.3)

F
(j)
n,k(x) is the NUFT on the nth simplex S

(j)
n with base frequency wk. See Ap-

pendix 5.8.3 for its computation. Finally, we can define the NUFTspec polygon encoder

EncNUFTspec(g) as:
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EncNUFTspec(g) = MLPF (Ψ
(
F

(j)
S (x)

)
) (5.4)

Here, MLPF (·) is a KF layer multi-layer perceptron in which each layer is a linear layer

followed by a nonlinearity (e.g., ReLU), a skip connection, and a layer normalization

layer [174]. Ψ(·) first extract 2Nw dimension real value vector from F
(j)
S (x) and then

do a normalization on this spectral representation such as L2 normalization, or batch

normalization.

5.5.2 ResNet1D Model

Except for NUFTspec, we also propose anther 1D ResNet [175] based polygon encoder

called ResNet1D. Unlike NUFTspec, ResNet1D cannot deal with polygons with holes

or multipolygons but only focuses on simple polygons.

Given a simple polygon g = (B, ∅) where B = [xT0 ; xT1 ; ...; xTm; ...; xTNp−1] ∈ RNp×2,

ResNet1D treats the exterior B of g as a 1D coordinate sequence. Before feeding B into

the 1D ResNet layer, we first compute a point embedding lm ∈ R4t+2 for the mth point

xm by concatenating xm with its spatial affinity with its neighboring 2t points:

lm = [xm; xm−t − xm; ...; xm−1 − xm; xm+1 − xm; ...; xm+t − xm] (5.5)

We call Equation 5.5 KDelta point encoder, which adds neighborhood structure

information into each point embedding and helps to reduce the need to train very

deep encoders. Here, if m − t < 0 or m + t ≥ Np , we get its coordinates by circu-

lar padding given the fact that B represents a circle. The resulting embedding matrix

L = [lT0 ; lT1 ; ...; lTm; ...; lTNp−1] ∈ RNp×(4t+2) is the input of a modified 1D ResNet model

which uses circular padding instead of zero padding in 1D CNN and max pooling lay-

ers to ensure loop invariance. Please refer to Appendix 5.8.4 for the architecture of

ResNet1D.
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5.5.3 Spatial Relation Prediction Model

Given a polygon pair (gsub, gobj), the spatial relation prediction task aims at predicting

a spatial relation between them such as topological relations, cardinal direction relations,

and so on. In this work, we adopt a multi-layer perceptron (MLP) based spatial relation

prediction model. In Equation 5.6, [Enc(gsub);Enc(gobj)] ∈ R2d indicates the concate-

nation of the polygon embeddings of gsub and gobj. MLPrel(·) takes this as input and

outputs raw logits over all Nr possible spatial relations. softmax(·) normalizes it into a

probability distribution log(r|gsub, gobj) over Nr relations.

log(r|gsub, gobj) = softmax(MLPrel([Enc(gsub);Enc(gobj)])) (5.6)

5.5.4 Model Comparison

Theorem 2 Polygon Encoder NUFTspec is (1) loop invariant, (2) trivial vertex invari-

ant, (3) part permutation invariant, and (4) topology aware.

Theorem 3 Polygon Encoder ResNet1D is loop invariant.

Now we compare different polygon encoding models we discussed in Section 5.3 as

well as our models - ResNet1D and NUFTspec based on their encoding capabilities

such as whether or not it can handle holes and multipolygons as well as four polygon

encoding properties (See Section 5.3). In terms of NUFTspec and ResNet1D, we declare

Theorem 2 and 3 whose proofs can be seen in Appendix 5.8.5 and 5.8.6. Table 5.1 shows

the full comparison result. Only DDSL+LeNet5 [172, 167] and our NUFTspec can

handle polygons with holes and multipolygons. They also satisfy all four properties.

This is because the beauty of NUFT. VeerCNN [164] does not satisfies any of these

properties while GCAE [157] and ResNet1D can only satisfy the loop invariance property.

GCAE achieves this by converting the exterior of a simple polygon into a graph which
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is order invariant. ResNet1D achieves this by using circular padding in each 1D CNN

and max pooling layer.

Table 5.1: The comparison among different polygon encoders by properties such as
whether it can handle polygon with holes and multipolygons as well as the four polygon
encoding properties we discuss in Section 5.3.

Property Holes Multipolygons Loop TriV ParP Topo

Deterministic - - - - - -

VeerCNN [164] No No No No No No

GCAE [157] No No Yes No No No

DDSL+LeNet5 [172, 167] Yes Yes Yes Yes Yes Yes

ResNet1D No No Yes No No No

NUFTspec Yes Yes Yes Yes Yes Yes

5.6 Experiment

5.6.1 Dataset Construction and Deterministic Baselines

To demonstrate the effectiveness of the proposed NUFTspec and ResNet1D poly-

gon encoder compared with multiple baselines, we conduct a spatial relation prediction

task. Since there is not existing benchmark dataset available for this task, we con-

struct two real-world dataset - DBSpaRel46K and DBSpaRelComplex46K- based on

DBpedia Knowledge Graph as well as OpenStreetMap. DBSpaRel46K and DBSpaR-

elComplex46K use the same entity set E and triple set T and the only different is

DBSpaRel46K uses simple polygons as entities’ spatial footprints while DBSpaRelCom-

plex46K allows complex polygonal geometries (See Appendix 5.8.7 for details).

To investigate the difficulty of polygon-based spatial relation prediction task, we

compute the topological relations between the subject and object entity of each triple in
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DBSpaRel46K based on a deterministic RCC8-based spatial operator5. The statistics is

shown in Table 5.2. We can see almost all triples with cardinal direction relations (the

last 8 relations) have subject and object entities that intersect or disjoint with each other.

Interestingly, for dbo:isPartOf relation, only in 76.5% of the 27,364 triples the subject

polygons are inside the corresponding object polygons. Based on manual inspection of

these error cases, most of those ‘intersects’ cases are caused by the sliver polygon problem

shown in Figure 5.2a. This clearly indicates the necessity of polygon encoding models.

Table 5.2: The deterministic topological relation computation result of DBS-
paRel46K dataset.

Relation Contains Intersects Touches Disjoint

dbo:isPartOf 20923 6309 0 132

dbp:north 4 2451 0 352

dbp:east 2 2447 0 348

dbp:south 5 2405 0 360

dbp:west 3 2408 0 348

dbp:northwest 4 1644 0 415

dbp:southeast 2 1618 0 404

dbp:southwest 4 1622 0 374

dbp:northeast 3 1634 0 357

5.6.2 Spatial Relation Prediction

To show the effectiveness of the proposed ResNet1D and NUFTspec model, we

evaluate them on DBSpaRel46K and DBSpaRelComplex46K dataset and compare them

with three baselines - Deterministic , VeerCNN [164], and DDSL+LeNet5 [167]. Please

refer to Appendix 5.8.9 for the implementation detail of each baselines.

5https://shapely.readthedocs.io/en/stable/manual.html#binary-predicates
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Table 5.3 shows the overall performance of different models on the training, validation,

and test dataset of DBSpaRel46K as well as DBSpaRelComplex46K dataset. Note that,

since only DDSL+LeNet5 and NUFTspec can handle polygons with holes and multi-

polygons, they are the only two models can be used for DBSpaRelComplex46K dataset.

From Table 5.3, we can see that NUFTspec can outperform all the other baselines as

well as ResNet1D on the training, testing, and validation dataset of DBSpaRel46K. This

is because NUFTspec can efficiently utilize the spectral features obtained by NUFT and

transform them into a meaningful polygon embedding. Despite the fact that ResNet1D is

similar to VeerCNNin the sense that both of them use 1D CNN layers to model simple

polygons’ exterior coordinate sequence, ResNet1D shows the second best result on DB-

SpaRel46K dataset. To understand the reason why ResNet1D shows promising results,

we do an ablation study and the results are shown in Table 5.4. It shows that when

we replace the circular padding with zero padding - ResNet1D(zero padding), the per-

formance of ResNet1D drop a lot. A similar situation happens when we delete the

KDelta point encoder component and direct feed the raw point coordinate to ResNet

layers - ResNet1D(raw pt). This demonstrates that KDelta uses the spatial affinity fea-

tures (Equation 5.5) to enrich the point embedding with its neighborhood information

which is very helpful for polygon encoding and spatial relation prediction. The circular

padding is also critical since it preserve the loop invariance property.

Table 5.3 also shows that NUFTspec can outperform DDSL+LeNet5 on DBSpaR-

elComplex46Kdataset. We also test the robustness of DDSL+LeNet5 and NUFTspecon

DBSpaRelComplex46K when we vary the number of frequencies we use in NUFT. In

Equation 5.2, the set of Nw Fourier base frequencies {wk}Nw
k=1 is sampled along the X

and Y direction. We denote Nwx and Nwy as the number of frequencies sampled along

the X and Y direction, where usually we have Nwx = Nwy. Figure 5.4 compares the

model performance of them with different Nwx in the training/validation/testing dataset
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Table 5.3: Overall evaluation result of different polygon encoding models

DBSpaRel46K DBSpaRelComplex46K

Train Valid Test Train Valid Test

Deterministic 75.42 75.18 73.80 75.17 75.30 73.90

VeerCNN [164] 92.10 77.90 77.59 - - -

DDSL+LeNet5 [172, 167] 89.85 74.56 74.00 88.94 72.74 72.98

ResNet1D 91.98 78.13 77.79 - - -

NUFTspec 92.81 79.57 78.48 93.77 79.33 79.12

Table 5.4: Ablation study of ResNet1D on DBSpaRel46K dataset.

dbtopo

Train Valid Test

ResNet1D 0.920 0.781 0.778

ResNet1D(zero padding) 0.907 0.745 0.731

ResNet1D(raw pt) 0.913 0.759 0.753

of DBSpaRelComplex46K. We can see that compared with DDSL+LeNet5, our NUFT-

spec is much more robust when we vary Nwx. Especially when we have lower Nwx (e.g.,

Nwx = 16), the performance of DDSL+LeNet5 drops very fast while NUFTspec only

shows a slightly drop.

5.7 Conclusion

In this work, we formally discuss the problem of polygon encoding. We show that be-

cause of sliver polygon problem, scale problem as well as the vagueness of spatial relation,

the determinstic spatial operator is not suitable for spatial relation relation prediction

task, and more broadly geographic question answering task. And we are in despairing
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Figure 5.4: A performance comparison between DDSL+LeNet5 and NUFTspec on
the training/validation/testing datset of DBSpaRelComplex46K with different num-
bers of frequencies used in X - Nwx (or Y - Nwy) in NUFT.

need for a good polygon encoder which can satisfy four properties - loop invariance, triv-

ial vertex invariance, part permutation invariance, and topology awareness. We propose

two polygon encoders - ResNet1D and NUFTspec. While ResNet1D utilizes circular

padding to achieve loop invariance on simple polygons, NUFTspec utilizes Non-uniform

Fourier transformation (NUFT) which is capable of handling polygons with holes and

multipolygons and it also satisfies all four polygon encoding properties. We system-

atically compare multiple existing polygon encoders on two real-world spatial relation

prediction datasets - DBSpaRel46K and DBSpaRelComplex46K which are constructed

based on DBpedia and OpenStreetMap. Evaluation results show that NUFTspec can

outperform all baselines on both datasets and is very robust when we vary the number

of sampled frequencies in NUFT. In contrast, the performance of DDSL+LeNet5 drops

a lot with lower frequency number and thus is less robust. This shows the advantage

of directly using spectral features to do polygon encoding instead of transforming them

back to the spatial domain.

Despite these successful stories, several issues still remain to be solved. First, the

training dataset of DBSpaRel46K and DBSpaRelComplex46K is very unbalance and

there are much more dbo:isPartOf triples than those with other relations and this imbal-
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ance cannot be avoid. This imbalance nature causes an overfitting issue for all current

models. How to design spatial relation prediction model which is more robust for dataset

imbalance is a very interesting research direction. Second, how to effectively utilize fea-

tures in the spectral domain is also an interesting future research direction.

5.8 Appendix

5.8.1 Additional Related Work

Object Instance Segmentation and Polygon Decoding Most existing machine

learning/deep learning research about polygons mainly focus on object instance segmen-

tation and object localization task. They aim at constructing a simple polygon based on

an image as the object mask to be localized. For example, in Zhang at el. [176] and Sun

et al. [159], the authors first detect the boundary fragments of polygons from images and

then they extract the polygon by finding the optimal circle linking these fragments into

the object contours. As for more recent deep learning approaches, Polygon-RNN [160]

first encodes a given image with a VGG-like CNN structure and then decodes the polygon

mask of an object with a two-layer convolutional LSTM with skip connections. The RNN

polygon decoder decodes one polygon vertex at one time step until decoding the end-of-

sequence token which indicates the polygon is closing. The first vertex is predicted with

another CNN using a multi-task loss. Polygon-RNN++ [161] improves Polygon-RNN by

adding a Gated Graph Neural Network (GGNN) [177] after the RNN polygon decoder to

significantly increase the spatial resolution of the output polygon. Since the cross-entropy

loss used by Polygon-RNN over-penalizes the model and is different from the evaluation

metric, Polygon-RNN++ changes the learning algorithm to reinforcement learning to

directly optimize on the evaluation metric. Compared with our polygon encoding model,
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these polygon decoding work have different focus.

Polygon Encoding Veer et al. [164] propose a CNN model and an RNN model to di-

rectly encode a simple polygon into an embedding space for several polygon-shape-based

tasks such as neighbourhood population prediction, building footprint classification, and

archaeological ground feature classification. They only consider simple polygons and

treat each polygon as a sequence of point coordinates in their exterior. As for the RNN

model, they directly feed the polygon exterior coordinate sequence into a bi-directional

LSTM and take the last state as the polygon embedding. For the CNN model, they

feed the polygon exterior sequence into a series of 1D convolutional layers (zero padding)

followed by a global average pooling: Conv1D - MaxPooling1D - Conv1D - GlobalAver-

agePooling1D. Experiments on three tasks show that the CNN model is better than the

RNN model on all three tasks. Since these two models can not handle complex polygonal

geometries, they can not satisfy the part permutation invariance and topology awareness.

Moreover, since the feed-in order and the length of the polygon exterior sequence will

affect the results of both models, they are not loop invariant nor trivial vertex invariant.

In this work, we denote the CNN model as VeerCNN and use it as one of our baselines.

Yan et al. [157] propose a graph convolutional autoencoder model (GCAE) to learn

a shape coding for each building footprint which can be represented as a simple poly-

gon in an unsupervised learning manner. The exterior of each building (simple polygon)

can be represented as an undirected graph in which boundary vertices/points are nodes

that are connected by boundary segments (edges). Each edge is weighted by its length

and the description local and regional features for each vertex are extracted based on

its neighborhood structure which serve as its initial input features. The GCAE follows

a U-Net [178] like architecture which uses graph convolution layers and graph pooling

[144] in the graph encoder and upscaling layers in the decoder. The intermediate repre-
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sentation of a building graph is utilized as its shape coding. The effectiveness of GCAE

is demonstrated qualitatively and quantitatively on shape similarity and shape retrieval

task. Since the “building graph” does not need to represent as a 1D sequence, GCAE is

loop invariant. However, GCAE is sensitive to trivial vertices and cannot handle complex

polygonal geometries. So GCAE does not satisfy the last three properties. Moreover,

Yan et al. [157] also show that GCAE is sensitive to rotation operation.

Instead of encoding polygonal geometries (more generally, 2-/3-simplex meshes) and

3D shapes directly in the spatial domain, Jiang et al. [172] propose to first do Non-

Uniform Fourier Transforms (NUFT) to transform them into the spectral domain and

then do a inverse Fourier transformation (IFT) to convert them into 2D images or 3D

voxels. The result is an image of the polygonal geometry (or a 3D voxel for a 3D shape)

which can be easily consumed by different CNN models such as LeNet5 [179], ResNet

[175], and Deep Layer Aggregation (DLA) [180]. DDSL [167] further extends this NUFT-

IFT operation into a differentiable layer which is more flexible for back propagation. The

effectiveness of DDSL has been shown in shape classification task (MNIST), 3D shape re-

trival task, and 3D surface reconstruction task. Given the NUFT nature, DDSL naturally

satisfies all those four polygon encoding properties and can handle complex polygonal

geometries. However, the NUFT-IFT operation is essentially a polygon rasterization

approach and sacrifice a huge information loss as shown in Figure 5.2b.

5.8.2 An illustration of Auxiliary Node Method

A 2-simplex mesh S(j) = {S(j)
n }Np

n=1 = (V,E,D) is represented as three matrices -

float matrix V ∈ R(Np+1)×2 for polygon/simplex vertex coordinates, non negative integer

matrix E ∈ NNp×3
0 for 2-simplex connectivity, and float matrix D ∈ RNp×dd for per-

simplex density. V contains the coordinates of vertices of each sub-polygon’s exterior
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and interiors of g as well as the origin xO = [0, 0] (the last row). The nth row of E

corresponds to the nth simplex S
(j)
n in S(j) whose values indicate the indices of vertices

of S
(j)
n in V. dd is the dimension of per-simplex density features which is the number

of features associated with each boundary segment/simplex (e.g., S
(j)
n ). Here, we can

assume that g has a constant density of 1, i.e., D = 1 where 1 is a Np × 1 constant

one matrix. Note that we should make sure the boundary of g is oriented correctly -

the exteriors of all sub-polygons should be oriented in a counter-clockwise fashion while

all interiors should be oriented in a clockwise fashion as we defined in Section 5.3. This

makes sure that we can use the right-hand rule6 to infer the correct orientation of each

boundary segment and we can compute the signed content (area) of each simplex S
(j)
n so

that the topology of g is preserved - topology awareness.

To concretely show how to convert a polygonal geometry g into a 2-simple mesh

S = (V,E,D), we use the example of Multipolygon g shown in Figure 5.3d. It can be con-

verted into Simplex S = (V,E,D) where V = [xTA; xTB; xTC ; xTD; xTE; xTF ; xTG; xTH ; xTI ; xTJ ; xTK ;

xTL; xTO] ∈ R13×2, E = [[0, 1, 12], [1, 2, 12], [2, 3, 12], [3, 4, 12], [4, 5, 12], [5, 0, 12], [6, 7, 12],

[7, 8, 12], [8, 6, 12], [9, 10, 12], [10, 11, 12], [11, 9, 12]] ∈ N12×3
0 , and D is a 12 × 1 constant

one matrix.

5.8.3 Compute F
(j)
n,k

In Equation 5.3, we can define the NUFT on the nth simplex S
(j)
n as

F
(j)
n,k(x) = ijµ(S(j)

n )γ(j)n

j+1∑
t=1

e−i〈wk,xt〉∏j+1
l=1 (e−i〈wk,xt〉 − e−i〈wk,xl〉)

(5.7)

µ(·) : S(j) → {−1, 1} is a sign function which determines the sign of the content (area)

of S
(j)
n . γ

(j)
n is the content distortion factor, which is the ratio of the unsigned content of

6https://mapster.me/right-hand-rule-geojson-fixer/

178

https://mapster.me/right-hand-rule-geojson-fixer/


Representation Learning for Complex Polygonal Geometries in the Spectral Domain based on
Non-Uniform Fourier Transformation Chapter 5

S
(j)
n - C

(j)
n - and the content of the unit orthogonal j-simplex - C

(j)
I = 1/j!. µ(S

(j)
n )γ

(j)
n

is the signed content distortion factor of S
(j)
n and the signed content7 µ(S

(j)
n )C

(j)
n can

be computed based on the determinant of the Jacobian matrix Jn of simplex S
(j)
n . Let

xn,1,xn,2,xO are the three vertices of S
(j)
n , we have:

µ(S(j)
n )γ(j)n =

µ(S
(j)
n )C

(j)
n

C
(j)
I

=
1/j! det(Jn)

1/j!
= det([xn,1 − xO,xn,2 − xO]) = det([xn,1,xn,2])

(5.8)

The proof of Equation 5.3, 5.7, and 5.8 can be found in [172].

5.8.4 ResNet1D Model Architecture

Given the resulting embedding matrix L = [lT0 ; lT1 ; ...; lT1 ; ...; lTNp−1] ∈ RNp×(4t+2) from

the KDelta point encoder (See Equation 5.5) as the input, the whole ResNet1D archi-

tecture is illustrated as Equation 5.9.

[
L→ CNN1Dd,1,1

3×3 → BN1D→ ReLU→ MP1D2,0
2×2 →

(
ResN1D

)U
u=1
→ GMP1D→ DP→ p

]
(5.9)

CNN1Dd,1,1
3×3 indicates a 1D CNN layer with 1 stride, 1 padding (circular padding) and

d 3 × 3 kernel. BN1D and ReLU indicate 1D batch normalization layer and a ReLU

activation layer. MP1D2,0
2×2 indicates a 1D Max Pooling layer with 2 stride, 0 padding,

and kernel size 2×2.
(
ResN1D

)U
u=1

indicates U standard 1D ResNet layers. GMP1D and

DP are a global max pooling layer and dropout layer. The final output EncResNet1D(g) =

p ∈ Rd is the polygon encoding of the simple polygon g.
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Figure 5.5: A illustration to facilitate the proof of Theorem 2 . (a) Poly-
gon p2 is a simple polygon from Figure 5.3c. We convert it to a 2-simplex mesh

S(j)2 = {S(j)
GIO,S

(j)
IHO,S

(j)
HGO}. (b) Polygon p′2 is also a simple polygon which has the

same shape as p2 but add an additional trivial vertex H ′. We convert it to a 2-simplex

mesh S(j)2′ = {S(j)
GIO,S

(j)
IH′O,S

(j)
H′HO,S

(j)
HGO}.

5.8.5 Proofs of Theorem 2

Proof of Theorem 2 (1). Given a simple polygon p = (B, ∅), we convert it to a 2-

simplex mesh S(j) = {S(j)
n }Np

n=1 similar to what is shown in Figure 5.5a. Since {S(j)
n }Np

n=1

is an unordered set of 2-simplexes, for any loop matrix Ls, Polygon p(s) = (LsB, ∅) will

have exactly the same 2-simplex mesh as p - S(j). 2-simplex mesh S(j) is the input of our

NUFTspec. So the output polygon embedding EncNUFTspec(p) is invariant to any loop

transformation Ls on Polygon p’s exterior B.

Proof of Theorem 2 (2). We use Polygon p2 and p′2 shown in Figure 5.5a and 5.5b

as an example to show the proof. The only difference between them is that p′2 has an

additional trivial vertex H ′ while p2 and p′2 have the same shape. They have different

7https://en.m.wikipedia.org/wiki/Simplex#Volume
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2-simplex meshes: S(j)
2 = {S(j)

GIO,S
(j)
IHO,S

(j)
HGO} and S(j)

2′ = {S(j)
GIO,S

(j)
IH′O,S

(j)
H′HO,S

(j)
HGO}.

The Piecewise-Constant Function (PCF) f
(j)
S (x) =

∑Np

n=1 f
(j)
n (x) defined on the simplex

mesh S(j)
2 is essentially a summation over the individual density function f

(j)
n (x) defined

on each simplex of S(j)
2 . It is the same for S(j)

2′ . Since p2 and p′2 have the same shape, the

PCF defined on them should be exactly the same. Since NUFTspec polygon embedding

is derived from the NUFT of the PCF over a 2-simple mesh. So we can conclude that

the NUFTspec polygon embeddings of p2 and p′2 should be the same. In other words,

NUFTspec is trivial vertex invariant.

Proof of Theorem 2 (3). Given a multipolygon q = {pi}, its 2-simplex mesh S(j) =

{S(j)
n }Np

n=1 (similar to Figure 5.3d) is an unordered set of signed 2-simplexes/triangles.

Changing the feed-in order of polygon set {pi} will not affect the resulting 2-simplex

mesh. So NUFTspec is part permutation invariant.

Proof of Theorem 2 (4). Given a polygon p = (B, h = {Hj}) with holes, its 2-simplex

mesh S(j) = {S(j)
n }Np

n=1 is consist of oriented 2-simplexes. Since we require each polygonal

geometry is oriented correctly, the right-hand rule can be used to compute the signed

content of each 2-simplex. So the topology of polygon p = (B, h = {Hj}) is preserved

during the polygon-simple mesh conversion. Thus, NUFTspec is aware of the topology

of the input polygon geometry.

5.8.6 Proofs of Theorem 3

In ResNet1D , circular padding is used in convolution layer with stride 1. Given a

polygon p = (B, h = ∅), circular padding wraps the vector B on one end around to

the other end to provide the missing values in the convolution computations near the

boundary. Thus, CNN1Dd,1,1
3×3 (LsB) = LsCNN1Dd,1,1

3×3 (B) for any input B. Max pooling

layer with stride 1 and circular padding has the similar property. MP1D1,1
2×2(LsB) =
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Ls(MP1D1,1
2×2B). Trivially, BN1D(LsB) = LsBN1D(B) and ReLU(LsB) = LsReLU(B).

In the end, there is a global maxpooling GMP1D(LsB) = GMP1D(B). With these layers

as components, ResNet1D would keep the loop invariance.

5.8.7 Dataset Construction

We construct a real-world dataset - DBSpaRel46K- based on DBpedia Knowledge

Graph as well as OpenStreetMap with the following steps.

1. We first select a meaningful set of properties R = {ri}Nr
i=1 from DBpedia which

represents different spatial relations.

2. Then we collect all triples {(esub, ri, eobj)} from DBpedia whose relation ri ∈ R and

esub, eobj are geographic entities.

3. Next, we filter out triples whose subject esub or object eobj is located outside the

mainland of United States. The resulting triple set T = {(esub, ri, eobj)} forms a

sub-graph of DBpedia with the entity set E .

4. For each entity e ∈ E , we obtain their corresponding Wikidata ID by using owl:sameas

links.

5. With each entity e’s Wikidata ID, we can obtain their polygonal geometries from

OpenStreetMap by using Overpass API8.

6. The raw polygonal geometries from OpenStreetMap are very detail and complex.

For example, Keweenaw County, Michigan is represented as a multipolygon that

is consist of 462 sub-polygons. Lake Superior has in total 3130 holes and 206661

vertices in its polygon representation. United States has 128873 vertices. Figure

8https://wiki.openstreetmap.org/wiki/Overpass_API
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5.7a-5.7c in Appendix 5.8.8 shows some statistic about the complexity of these

raw geometries. Although DDSL [167] and NUFTspec can handle multipolygons

and polygon with holes. ResNet1D and VeerCNN (also GCAE [157]) can only

deal with simple polygons. In order to make a fair comparison, we simplify those

polygonal geometries collected from OpenStreetmap and make two datasets: DB-

SpaRel46K and DBSpaRelComplex46K.

7. As for DBSpaRel46K , we delete all holes and only keep one single simple polygon

with the largest area as the geometry for each geographic entity. So each geographic

entity is associated with one simple polygon. We also simplify the exterior of each

simple polygon such that they all have 300 unique vertices. For those polygons who

has less than 300 vertices, we do a equal distance interpolation on the exteriors to

upsample the vertices to 300. The reason to do so is that same number of vertices

make it easier for mini-batch training.

8. As for DBSpaRelComplex46K , we also simplify the polygonal geometries but we

still keep holes and multipolygons if necessary. We delete holes if their area are

less than 2.5% of the total area of their corresponding polygonal geometries. Fig-

ure 5.7d-5.7f show the statistics (number of holes, multipolygons, vertices) of the

simplified geometries. Note that in order to do mini-batch training, we simplify the

polygon exteriors and interiors to make sure its total number of vertices Np is 300.

DBSpaRel46K and DBSpaRelComplex46K use the same entity set E and triple

set T and the only different between them is the polygonal geometry of each entity.

9. Figure 5.6 shows the polygon geometries of the total 23264 unique geographic en-

tities used in DBSpaRel46K and DBSpaRelComplex46K. Table 5.5 shows the

number of entities with different place types.
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10. We split T into training/validation/test dataset by roughly 80:5:15. By following

the traditional transductive knowledge graph embedding literature [85, 66], we

make sure all entities appear in the training dataset. We also make sure we have

a balance dataset for each spatial relation in the validation and testing dataset.

Table 5.6 shows the statistic of the dataset split. Note that the balance of triples

with different spatial relations can not be achieved at the same time with the need

to include all entities in the graph. So we can see that in training dataset we have

far more dbo:isPartOf triples than other spatial relations. It depends on the nature

of DBpedia and we need to keep this imbalance.

Figure 5.6: A map of geographic entities in DBSpaRel46K dataset.
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Table 5.5: The place type statistic of geographic entities in DBSpaRel46K and DB-
SpaRelComplex46K dataset.

Place Type Count

City 7887

Town 6668

Settlement 3688

Village 2502

AdministrativeRegion 1420

CityDistrict 980

Unknown 57

ProtectedArea 20

BodyOfWater 12

ManMadeFeatures 12

Park 9

HistoricPlace 3

Island 2

Location 2

MountainPass 1

Mountain 1

Total 23264
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Table 5.6: The train/valid/test dataset split of DBSpaRel46K and DBSpaRelCom-
plex46K dataset.

Relation All Train Valid Test

dbo:isPartOf 27364 26164 300 900

dbp:north 2807 1607 300 900

dbp:east 2797 1597 300 900

dbp:south 2770 1570 300 900

dbp:west 2759 1559 300 900

dbp:northwest 2063 863 300 900

dbp:southeast 2024 824 300 900

dbp:southwest 2000 904 274 822

dbp:northeast 1994 1175 205 614

All 46578 36263 2579 7736

ratio 100% 77.85% 5.54% 16.61%
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5.8.8 The Complexity of Polygonal Geometries in DBSpaRel-

Complex46K
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Figure 5.7: A statistic of the complexity of the raw polygonal geometries as well
as the simplfied geometries in DBSpaRelComplex46K from OpenStreetMap. (a)-(c)
indicate the statistics on the raw polygonal geometries retrieved from OpenStreetMap
while (d)-(f) are the same statistics on DBSpaRelComplex46K. (a) & (d) A histogram
of the number of sub-polygons per geographic entities. (b) & (e) A histogram of the
total number of holes per geographic entities. (c) & (f) A histogram of the total
number of unique vertices on each polygonal geometry’s exterior and interiors per
geographic entities.

5.8.9 Baselines

We use three baselines for the spatial relation prediction tasks:

1. Deterministic: We implement a deterministic baseline based on deterministic topo-

logical and cardinal direction spatial relation operations. First, given a triple
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(esub, ri, eobj), if the geometry of esub is inside of the geometry of eobj, Determinis-

tic gives dbo : isPartOf as the prediction. Otherwise, Deterministic will compute

the geometric center of the subject and object geometry and compute their cardinal

direction. This is the exact way how the current SQL or GeoSPARQL-based geo-

graphic question answering models [30, 31] do to answer spatial relation questions.

2. VeerCNN: We strictly follow the TensorFlow implementation9 of Veer et al. [164]

and re-implement their model in PyTorch so that it can share the same spatial

relation prediction model shown in Equation 5.6 with the other models.

3. DDSL+LeNet5: We directly utilize the original DDSL implementation for the

MNIST dataset10 and modify it for mini-batch training. Since the output of NUFT

and inverse Fourier transform of a polygonal geometry is an image, we concatenate

the output images of the subject and object geometry on the channel dimension

and feed it into the LeNet5 for spatial relation prediction as DDSL does.

The whole model architecture of ResNet1D and NUFTspec is implemented in Py-

Torch.

9https://github.com/SPINlab/geometry-learning
10https://github.com/maxjiang93/DDSL
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Chapter 6

Conclusion and Future Work

This dissertation mainly discusses the problem of geographic question answering and pro-

poses a series of spatially-explicit machine learning models to account for the uniqueness

of geographic questions. This chapter concludes this dissertation by summarizing its the-

oretical contributions and practical implications. In the end, we list several limitations

and point out the future research directions of GeoQA.
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6.1 Summary and Discussions

As one of the fundamental tasks in natural language processing (NLP) and artificial

intelligence (AI), question answering (QA) aims at generating answers to natural lan-

guage questions automatically. An ideal QA system is expected to pass the Turing Test

[3] and make itself become indistinguishable from a real human respondent based on their

answers. With the development of deep learning technologies, we see substantial progress

in the QA research, especially in open domain question answering. In the meantime, re-

cent years have witnessed increasing interests in GeoAI research within and outside of the

GIScience domain [181, 182, 58, 183]. There is more and more research studying ques-

tion answering in a geospatial context [10, 48, 30, 31, 54, 46, 57, 23, 49, 8, 47, 66, 55].

However, in order to establish geographic question answering (GeoQA) as another im-

portant research field in GIScience like others such as geographic information retrieval,

geo-ontology engineering, and so on, several conceptual and practical questions need to

be answered first:

1. What are geographic questions? What is geographic question answering?

2. Why geographic questions are difficult to answer compared to other questions?

What is the uniqueness of geographic questions?

3. What type of questions can geographic questions be divided into?

4. What/How can GIScientists contribute to the QA research from the geographic

aspect?

This dissertation systematically discusses the problem of geographic question answer-

ing with respect to these four questions. Chapter 1 answers the first three conceptual
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questions by discussing the definition, challenges, uniqueness, as well as the classifica-

tion of GeoQA. As for the last practical question, Chapter 2, 3, 4, 5 provide a series of

spatially-explicit machine learning models as solutions for GeoQA.

Chapter 2 presents a spatially-explicit knowledge graph embedding model called

TransGeo for geographic question/query relaxation by doing distance decay-based triple

resampling. TransGeo allows a QA system to relax or rewrite a geographic query when

it is unanswerable based on the existing QA system. This shows the usability of spatial

thinking and spatial knowledge in GeoQA.

After showing the power of spatially-explicit models in GeoQA, we step outside of the

GeoQA research and think about a more fundamental way to encode spatial information,

especially geographic locations, into machine learning models. By following this thought,

Chapter 3 proposes a general-purpose location encoder called Space2Vec which can rep-

resent geographic locations in the embedding space. Its effectiveness is demonstrated in

the POI type classification task and geo-aware image classification task.

Next, Chapter 4 proposes a location-aware knowledge graph embedding model called

SE-KGE based on Space2Vec. We show that by encoding the point coordinates as well as

the bounding boxes of geographic entities into the knowledge graph embedding space and

training them jointly with the knowledge graph structure information, SE-KGE captures

both the spatial information as well as other semantic information among geographic and

non-geographic entities. Experiment results show that SE-KGE can outperform multiple

baselines on both the geographic query answering task and spatial semantic lifting task.

However, encoding points and bounding boxes of geographic entities is not sufficient

for a GeoQA system to answer many geographic questions, especially those that involve

topological relations, cardinal direction relations, and so on. So Chapter 5 proposes

a general-purpose polygon encoding model which can represent polygonal geometries

(either simple polygons, polygons with holes, or multipolygons) into the embedding space.
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We show the superiority of this polygon encoder in the polygon-based spatial relation

prediction task which is an important but missing component in our current GeoQA

solution set.

In summary, this dissertation focuses on using spatial thinking and spatial principles

to develop spatially-explicit machine learning models for geographic question answering.

Since there are many well-established QA models and GeoQA is a sub-problem of QA,

we do not aim at establishing a GeoQA system from scratch. Instead, we focus on the

uniqueness of geographic questions and provide a set of spatially-explicit solutions which

can be easily integrated into the existing QA models. Interestingly, we also go beyond

the problem of GeoQA and provide general-purpose location encoders (Chapter 3) and

polygon encoders (Chapter 5) which can be potentially utilized in multiple geospatial

tasks in different domains such as Ecology, Earth Science, Environment Science, Urban

Data Science, and Human Mobility. We believe these models will have a large impact on

the whole geoscience community.

6.2 Research Contribution

The main contribution of this dissertation can be divided into theoretical contribu-

tions and practical implications.

6.2.1 Theoretical Contributions

The Uniqueness of Geographic Question Answering. One important theoretical

contribution of this dissertation is the deep investigation of the uniqueness of geographic

questions and GeoQA. This is the fundamental reason why we want to develop a spe-

cialized QA system for geographic questions in the first place. The uniqueness, later on,

becomes the guideline of this dissertation.
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Spatially-Explicit Machine Learning. The idea of spatially explicit models is first

proposed by Dr. Micheal Goodchild [184], ‘A model is said to be spatially explicit when

it differentiates behaviors and predictions according to spatial location.’ Four tests have

been proposed to investigate whether a model is spatially explicit: invariance test, rep-

resentation test, formulation test, and outcome test. In the context of machine learning

and deep learning, we propose the idea of spatially-explicit machine learning models [58]

which aim at improving the performance of current state-of-the-art machine learning

models by using spatial thinking and spatial inductive bias such as spatial heterogeneity

[100, 64, 65], distance decay effect [70, 71, 69, 47, 185, 73, 186], and map projection

[187, 188, 189, 190, 191]. This dissertation develops a series of spatially-explicit machine

learning models for different sub-problem of GeoQA including geographic query relax-

ation (Chapter 2), location representation learning (Chapter 3), geographic logic query

answering (Chapter 4), polygon representation learning (Chapter 5), and spatial relation

prediction (Chapter 5). Our contributions are not only these models themselves, but

also the thought process which guides the model development. We hope our proposed

models can highlight the importance of spatial thinking and the importance of method

development in GIScience research.

Geometric Deep Learning. Compared with many traditional deep models such as

convolutional neural networks (CNN) and recurrent neural network (RNN) which are

usually deployed on regularly structured data such as grid-like (e.g., images, videos) and

sequence-like (e.g., sentences, time series) data, geometric deep learning [142, 192] focuses

on developing deep models for non-Euclidean geometric data such as graphs, points, and

manifolds. Our location encoders (Chapter 3) and polygon encoders (Chapter 5) follow

this idea by focusing on learning representations for two types of irregularly structured

data - points and polygonal geometries, which are two fundamental spatial data types.
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In fact, most spatial data, especially vector data, are organized in a rather irregular way.

We believe geometric deep learning should be a very important research direction for

GIScience in the future and this dissertation can be treated as an example to show how

spatial thinking can help to develop deep models for non-Euclidean geometric data.

6.2.2 Practical Implications

These spatially-explicit machine learning models proposed in this dissertation also

have various potential practical application areas. I list several important applications

below.

Spatial Context Modeling. The space-aware graph attention neural network pro-

posed in Section 3.4.2 of Chapter 3 provides a general approach to model the spatial

relations between a center point and its spatial neighbors. In real-world applications,

many tasks require to do this kind of spatial context modeling. For example, Yan et al.

[70] and Yan et al. [71] proposed to use the types of nearby POIs to predict the center

POI’s type. Sheehan et al. [193] utilized the spatially nearby geolocated Wikipedia arti-

cles to predict the wealth index at a specific location. Li et al. [154] used the air pollution

measures from nearby air monitoring stations to predict the air pollution measure at the

central station. Unlike our model, most previous works did not fully consider the spatial

relations between the center and neighboring locations such as directions which might

not be optimal for modeling anisotropic processes [194, 195]. For example, as for air

pollution forecasting, it is critical to know the wind directios since it will highly affect

the air pollution diffusion process. Thus, we believe our space-aware graph attention

neural network can benefit a lot of geospatial applications.
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Applications of Location Encoding in Different Geoscience Domains. The

Space2Vec location encoder proposed in Chapter 3 is general-purpose which means it

can be utilized in multiple geospatial applications. In this dissertation, we have already

shown the usability of Space2Vec in geospatial tasks from different domains - POI type

classification (urban data science), geo-aware image classification (computer vision), ge-

ographic question answering (natural language processing), and spatial semantic lifting

(knowledge graph). In fact, since geographic locations are the fundamental way how

geospatial data is organized, we can use location encoders to handle different types of

spatial data such as species occurrences (point patterns), trajectories (polylines), and

precipitation map (rasters). So the proposed location encoder can potentially be utilized

in multiple domains such as Ecology (e.g., species distribution modeling [119, 196]), hu-

man mobility (e.g., traffic forecasting [152, 153], trajectory prediction [197], trajectory

synthesis[198]), Meteorology (e.g., precipitation prediction [199]), Oceanography (e.g.,

sea surface temperature prediction [200]), Geospatial Semantics (e.g., place name disam-

biguation [201]), Economy (e.g., wealth index prediction [193]), and so on.

Applications of Polygon Encoding in Different Geoscience Domains. Simi-

larly, aside from the spatial relation prediction task discussed in Chapter 5, the proposed

general-purpose polygon encoder can also be applied in many polygon-based tasks in dif-

ferent domains such as Urban Planning (e.g., building pattern classification [156], build-

ing shape coding [157]), Cartography (e.g., cartographic building generalization [158]),

Computer Vision (e.g., shape retrieval [167, 157], shape classification [171]), and so on.
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6.3 Limitations and Future Work

Despite the theoretical contributions and practical implications, this dissertation also

has several limitations which need to be enhanced in the future. Moreover, there are

several exciting future directions we would like to point out.

The Necessity of Spatially-Explicit Machine Learning Models - Tradeoff be-

tween Model Performance and Model Complexity & Generalizability. Janow-

icz et al. [58] challenged the necessity of spatially explicit models by asking, ‘what is the

tradeoff between designing a machine learning architecture that explicitly accounts for

space versus a more general setup that would have to learn to value space implicitly? ’ In

this dissertation, we have shown a series of spatially-explicit machine learning models

which excel at the GeoQA task as well as several other related tasks. However, the price

we have to pay is that a spatially-explicit machine learning model is usually more complex

and has less generalizability than its counterpart with a more general setup such as the

comparison between geographically weighted regression and the normal linear regression.

This additional complexity comes from the need to model the spatial aspects such as dis-

tance decay, map projection, and so on. The question is whether this complexity is worth

paying given the additional benefits brought by spatially-explicit machine learning mod-

els. This question has not been answered by this dissertation. And one interesting future

research direction is to design a measure of the worthiness of developing spatially-explicit

machine learning models for a given problem.

Geographic Bias and Social Justice. Data bias such as sampling bias and label

imbalance will largely affect the model performance since the bias of training data will

cause the representational bias of the resulting machine learning models. Sometimes,

this bias becomes not only a technical issue but a social issue as well. For example,
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Bolukbasi et al. [202] showed that a widely used word embedding model trained on

Google News articles, g2vNEWS, exhibits an extreme gender bias and suggests home-

maker as a career choice for females but captain for males. Similarly, racial bias is also

a concern when we see Google Photos classifies images of black people as gorillas 1, and

the search engine auto-suggests to kill all Jews in the typeahead search [203]. Similarly,

geographic bias also becomes a concern for GeoAI models. For instance, Bright et al.

[204] have reconfirmed that geographic areas with higher levels of wealth and education

typically exhibit higher levels of completeness in OpenStreetMap. Janowicz et al. [141]

also showed that DBpedia, one of the world’s largest knowledge graphs, has much better

geographic coverage in North America and Europe but poor coverage on South America

and Russia. This geographic bias will largely affect the machine learning models trained

on these open-source datasets. In fact, in our geo-aware image classification experiment

discussed in Chapter 3, we also see the negative effects of geographic bias on the perfor-

mance of location encoders. Our model and all baseline models turn to perform poorly

in regions with sparse training data (i.e., species occurrences) while excelling in regions

with massive training data. Geographic bias is not a sporadic case but a common issue

shared by almost all geospatial datasets. Mitigating geographic bias should not only be

a technical requirement but also a way to achieve social justice.

Geographic Artificial Intelligence and Spatial Turing Test. Although using ar-

tificial intelligence in geography research has been proposed decades ago by multiple

GIScience pioneers such as Smith et al. [205], Couclelis et al. [206], and Openshaw et

al. [207], geographic artificial intelligence (GeoAI) has just caught researchers’ attention

recently because of several major advancements in deep learning research [58]. With

the recent development of GeoAI, it seems to be natural for a GIScientist to start to

1https://www.bbc.com/news/technology-33347866
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investigate QA systems, as one important component of AI, in a geographic context. In

fact, this is one of the motivations of this dissertation. However, with the development of

GeoQA technology, people will not satisfy only asking simple geographic questions such

as how to go to LAX from UCLA. They expect to ask geographic questions which require

more context information and more intelligent computations such as Find a quiet hotel

near Santa Barbara harbor with a great view and a reasonable price. In fact, a moonshot

for GeoQA is to develop an artificial GIS analyst which can answer complex geographic

questions automatically and pass a specially-designed spatial Turing Test [58].
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