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Abstract

Chronic HIV infection is characterized by increased immune activation and immunosenes-

cence. p16 INK4a (p16) is a member of the cyclin-dependent kinase antagonist family that

inhibits cellular proliferation, and its protein expression increases during normal chronologi-

cal aging. However, some infectious diseases can increase the expression of this anti-prolif-

erative protein, potentially accelerating immunological aging and dysfunction. In order to

investigate the immunological aging in HIV patients, p16 protein expression was evaluated

by flow cytometry, in T cell subsets in a cohort of chronically HIV-infected patients on and off

ART as well as age-matched healthy controls. Results showed that untreated HIV-infected

subjects exhibited increased per-cell p16 protein expression that was discordant with chro-

nological aging. ART restored p16 protein expression to levels comparable with HIV-nega-

tive subjects in the CD4 compartment, but not in CD8 T cells, which can be an indicative of

an irreversible activation/exhaustion status on these cells. Additionally, the frequency of

activated CD4+ and CD8+ T cells was positively correlated with p16 expression in CD4+

and CD8+ T cells in untreated subjects. In contrast to healthy controls, untreated HIV-

infected individuals had increased p16 levels within the effector memory (TEM) subset, indi-

cating a possible role for this marker in impaired clonal expansion during antiviral effector

function. Taken together, these data demonstrate that chronic HIV infection is associated

with elevated expression of the cellular aging marker p16 in T cells. ART restored normal

p16 levels in the CD4+ T cell compartment, indicating that use of therapy can be of funda-

mental importance to normal cell cycling and maintaining immune homeostasis.
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Introduction

Despite effective antiretroviral therapy (ART), individuals infected with HIV remain at higher

risk of mortality and morbidities commonly associated with aging than the general population

[1]. This is in part because of the persistent viral replication and repeated stimulation of HIV-

specific T cells that gradually drive these cells to senescence, characterized by exhaustion of

their replicative capacity and even resulting in the loss of certain anti-HIV T cell clones

(reviewed in [2]). Depending on the timing of ART initiation, some of these processes are not

prevented, and in spite of low viral loads and normal CD4+ T cell counts, young individuals

experience aging-related immune complications [3]. One study reported that HIV-infected

persons on ART with a median age of 56 years, robust immune reconstitution and viral sup-

pression had T cell characteristics similar to those of a group of HIV-uninfected subjects with

a median age of 88 years (reviewed in [4]). T cell senescence is typically characterized by the

accumulation of terminally differentiated T cells with shortened telomeres, loss of the costimu-

latory molecule CD28, and increased expression of CD57, a marker of poor proliferative

capacity [5].

p16INK4a protein (hereafter denoted as p16) is a mediator of cellular senescence and has

been suggested to be a biomarker of ‘molecular’ age in several tissues including T cells [6],

decreasing their replicative capacity [7]. Retinoblastoma protein (pRb) phosphorylation and

concomitant entry into the cell division cycle can be prevented by the presence of the p16 pro-

tein, a cyclin-dependent kinase (CDK) inhibitor belonging to the INK4 family. It has been

reported that p16 expression can be directly induced as a consequence of T cell activation [8].

Importantly, accumulation of p16 is responsible for the exit of a significant proportion of

CD8+ T cells from the proliferative population, thus limiting their numerical expansion in
vitro [9]. Results from disparate genetic systems suggest that expression of p16 contributes to

the manifestations of human aging, possibly through the promotion of senescence in vivo.

Ultimately, if validated and correlated with other markers of immune health and function, p16

levels could be used to identify HIV+ patients with premature immune aging, identify risk fac-

tors for premature loss of immune function, and to test therapeutic strategies to prevent or

reverse HIV-induced immunosenescence [10]. Given that chronic HIV infection induces sev-

eral features of immunosenescence [1] we investigated differences in p16 protein expression in

memory T cell subsets in a cohort of HIV-infected patients on and off ART, as well as age-

matched healthy controls. In summary, our data indicate that HIV accelerates immune aging

in infected subjects as measured by cellular p16 expression, and that ART is able to restore this

trend to normal levels in the CD4 compartment. The increased p16 expression in the TEM sub-

set observed in infected individuals may contribute to effector function impairment during

HIV infection and could be a potential target for therapeutic blockade.

Materials and Methods

Study Subjects

Samples of cryopreserved peripheral blood mononuclear cells (PBMCs) were selected from

participants in the San Francisco-based HIV-1-infected SCOPE cohort. Samples from HIV-

1-seronegative controls were obtained from 19 donors of the Stanford blood bank. The study

was approved by the local Institutional Review Board (University of California San Francisco

Committee on Human Research) and individuals gave written informed consent. PBMCs

were obtained from the following categories of HIV-1-infected individuals:

Untreated HIV subjects:

29 untreated virologic “Controllers” (C),
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28 untreated “virologic Non-Controllers” (NC)

29 untreated “Immunologic Progressors” (IP)

Treated HIV subjects

27 ART-suppressed patients (HS)

All groups presented CD4+ T cell counts >250 cells/mm3 (C, NC and HS), except the IP

group with CD4+ T cell counts <250 cells/mm3. All patients had been diagnosed with HIV-1

at least one year prior to inclusion in this study. See Table 1 for baseline subject characteristics.

Antibodies and flow cytometry

Cryopreserved PBMC were thawed in RPMI 1640/10% FBS and washed in FACS buffer.

Phenotypic staining was performed on a million cells by incubation with a viability marker

(live-dead kit-Invitrogen) and with antibodies conjugated to CD3, CD4, CD8, CD45RA,

CCR7, CD27, CD38 and CD95 (BD Biosciences, San Diego, CA) for 30 minutes on ice. Sub-

sequently, cells were washed, fixed with paraformaldehyde 4% in PBS, washed and then per-

meabilized/stained for intracellular p16 (BD Biosciences, San Diego, CA, p16INK4 mAb

(Mouse IgG1) PE-set, clone: G175-1239) with 0.2% saponine for 30 minutes at room tem-

perature. Cells were then washed, fixed and resuspended in 150uL Macs buffer for acquisi-

tion in LSR-II flow cytometer (Becton Dickinson). After acquisition the data was analysed

using the Flow Jo Software. The gate strategy was as followed: Live singlet CD4+ or CD8+ T

cells were selected. In the CD3+CD4+ or CD3+CD8+ populations the MFI of p16+ were eval-

uated. The p16 gating strategy was based on fluorescence minus one (FMO) staining and

the median intensity of fluorescence (MFI) was calculated in the p16+ gate. To discriminate

memory subsets, CD45RA, CCR7 and CD27 markers were utilized. Central memory (TCM)

was defined as CD45RA-CCR7+CD27+ and effector memory (TEM) as CD45RA-CCR7-

CD27-. CD95 was used to discriminate naive and stem cell memory (TSCM). Naive cells

were defined as CD45RA+CCR7+CD27+CD95- and TSCM as CD45RA+CCR7+CD27+

CD95+.

Statistical Analysis

Statistical analysis was performed using GraphPad Prism statistical software, version 6b

(GraphPad Software, San Diego, CA). Non-parametric Kruskal-Wallis and Mann-Whitney U

tests were used for group comparisons. Dunn’s post-hoc test (which incorporates the Bonfer-

roni adjustment to correct for multiple comparisons) was used for between-group analyses.

The Spearman rank test with linear regression was used for correlation analyses. P-values less

than 0.05 were considered significant.

Table 1. Clinical data.

CD4+ count (cells/mm3) Median (IQR) HIV-1 Viral load (copies/ml) Median (IQR) Age (years) Median (IQR)

HAART-suppressed (HS) 674 (534–981) 50 (0–75) 45 (38–54)

Controllers (C) 813 (585–1260) 96 (11–489) 47.5 (39–54)

Non-controllers (NC) 576 (446–730) 35,650 (24,586–52675) 43 (34–49)

Immunologic Progressors (IP) 228 (175–296) 71,585 (29,925–191,067) 41.5 (36–49)

Healthy Controls (HC) NA NA 49 (45–53)

IQR = interquartile range, NA = non-applicable

doi:10.1371/journal.pone.0166759.t001
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Results

Clinical characteristics of our cohort are detailed in Table 1. The enrolled subjects were divided

in the following groups: A) Untreated HIV-1 infected subjects (1) HIV controllers (C)

(n = 29), (2) early non-controllers (NC) (n = 28), (3) late non-controllers, called immunologi-

cal progressors (IP)(n = 29) and B) Treated HIV-1 infected subjects (4) ART-suppressed (HS)

(on treatment, n = 27). We also included a cohort of HIV-uninfected controls (HC) (n = 19).

All subjects were adults with an average age of 49 years. ART-suppressed and controller indi-

viduals have preserved CD4+ T cell counts and low viral loads while early non-controllers and

late non-controller groups have high viral loads, but are distinguished by their CD4+ T cell

counts (median 611 vs. 228 cells/mm3, respectively). To define the immune aging profile of

our cohort we analysed the per-cell level expression of p16 (median fluorescence intensity,

MFI). All HIV-infected subjects had higher levels of p16 than HC in the CD4+ and CD8+ T

cell compartments (CD4 subset—MFI: 280, 359, 712, 572 and 422 for HC, HS, C, NC and IP,

respectively, with p<0.001 and<0.05 for HC versus C and HC versus NC/IP, respectively;

CD8 subset–MFI: 88, 445, 387, 352 and 333 for HC, HS, C, NC and IP, respectively, with

p<0.001, <0.01 and <0.05 for HC versus HS, C and NC/IP, respectively; Fig 1A and 1B,

respectively). Nevertheless, CD4+ T cells from HS had the same p16 per-cell level as healthy

controls. However, ART did not affect the p16 levels in CD8 T cells in the HS group. The p16

levels (MFI) for the whole cohort in CD4+ and CD8+ T cells were strongly correlated as

shown in Fig 1C (r = 0.74, p< 0.0001).

Next, we evaluated p16 protein expression in CD4+ and CD8+ T cells in all groups and cor-

related it with chronological age. In the HC and HS groups age was positively correlated with

CD4+ and CD8+ p16 levels (MFI) (Fig 2A, 2B, 2F and 2G, respectively). However, this correla-

tion was absent in the untreated HIV-infected subjects (Fig 2C, 2D, 2E, 2H, 2I and 2J).

We next analyzed the relationship between p16 MFI and cellular activation as measured by

CD38 expression (MFI). We excluded the ART-suppressed group from these analyses to avoid

the confounding effect of treatment on cellular activation and p16 levels. We observed a posi-

tive correlation between p16 levels in CD4+ and CD8+ T cells and CD38 expression in both

subsets, indicating that immune aging is strongly correlated with immune activation (Fig 3A–

3D).

Finally, p16 per-cell expression in CD4+ and CD8+ memory T cell subsets was analyzed.

The Fig 4A showed that p16 levels in CD4+ naïve and TSCM were similar among all subjects

(except the naive compartment in which the C group had higher p16 levels than HC). CD4+

TCM from ART-suppressed subjects expressed lower levels of p16 than HC, C and IP subjects.

Within the TEM subset, p16 levels among HIV infected subjects were higher than the HC

group. P16 levels in CD8+ naïve and TSCM expressed similar p16 levels among all subjects (Fig

4B). In the TCM subset all HIV infected groups expressed higher p16 levels than HC subjects.

Similar trends were observed in the TEM compartment suggesting that HIV infection leads to

more senescent memory CD8+ T cells compared to uninfected subjects.

Discussion

Expression of the cyclin-dependent kinase inhibitor p16 increases with age, and high levels of

p16 result in cell cycle arrest [6]. In the present study we evaluated the levels of the p16 protein

in total and memory CD4+ and CD8+ T cell subsets of HIV-infected subjects on and off ART

as well as in age-matched healthy controls. Antiretroviral treated patients had p16 levels in

CD4+ T cells comparable to those of uninfected individuals, particularly in the TCM subset,

suggesting that perhaps ART can restore the proliferative capacity of these cells to normal lev-

els. Functional assays were not performed in this study due to limited cell numbers. Thus,
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questions remain regarding the threshold of p16 expression required to drive a cell into irre-

versible cell cycle arrest. The mechanism leading to disparate p16 expression among various T

cell subsets as well as the direct effect of the virus on cellular p16 also remain to be determined.

Although the level of p16 per cell that can lead to cell cycle arrest is not known, its higher

cellular expression in HIV-infected subjects is likely to impact the proliferative capacity of

effector cells as well as other T cell subsets, globally impairing the ability to respond to the

infection. Additionally, the non-effect of ART on restoring the p16 levels on CD8+ T cells

might be an indicative that these cells already reached an irreversible activation/exhaustion sta-

tus and the time-line to start ART might be important to restore the CD8+ T cells effector

function and impact HIV infection outcome.

RT-PCR measurements have shown that p16 expression in total CD3+ cells is positively cor-

related with chronological aging in healthy individuals. This correlation is lost in untreated

HIV-infected subjects but restored by ART, suggesting a role for viral replication in accelerat-

ing the aging process [6]. Our data corroborates this finding at the protein level, where p16

expression in both CD4+ and CD8+ T lymphocytes was positively correlated with age in

Fig 1. HIV drives higher per-cell p16 protein levels in CD4+ and CD8+ T lymphocytes among HIV-1-infected subjects. PBMC from

healthy controls (HC), HAART suppressed (HS), Controllers (C), Immunological progressors (IP) and Non-controllers (NC) were stained for

surface markers as well as the intracellular p16 marker. The median intensity of fluorescence (MFI) showing per-cell level expression of p16

in CD4+ and CD8 T+ cells is also shown (A and B, respectively). (C) Correlation between p16 MFI in CD4+ and CD8+ T cells in the whole

cohort (Spearman rho, r = 0.74/p < 0.0001). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

doi:10.1371/journal.pone.0166759.g001
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healthy controls and ART-suppressed subjects but not maintained in the untreated HIV-

infected group. Thus, ART can be effective in reestablishing the relationship between chrono-

logical and immunological aging in infected individuals.

We also found that the activation profile of total CD4+ and CD8+ T cells was positively cor-

related to p16 levels in CD4+ and CD8+ T lymphocytes, indicating that these parameters are

likely linked in a pathway of cell activation and senescence. Future investigations of provirus

load in p16-expressing cells could offer more direct insight into how viral infection can medi-

ate senescence/activation.

Migliaccio et al. [9], reported that long term mitogen in vitro stimulation drives early naïve

and TCM proliferation that becomes quiescent after some rounds of division as the levels of

p16 expression in these T cell compartments increase with time. The opposite dynamic was

observed in TEM cells. However, to our knowledge, the ex vivo p16 protein expression in mem-

ory T cell subsets has not been investigated previously. In the present work, ex vivo analysis of

p16 expression revealed that CD4+ TEM cells from healthy subjects have the lowest levels of

p16 likely reflecting the ability of these cells to rapidly proliferate upon antigen stimulation.

The highest amounts of p16 were found in CD4+ and CD8+ TSCM subset as well as CD4+ TCM

Fig 2. Chronological age and p16 expression in CD4+ and CD8+ T cells. Correlation between chronological age and per-cell level of p16 expression

in each subject group is shown. (A-E) Correlation between chronological age in HC, HS, C, IP, NC and MFI p16 CD4+, respectively; (F-J). Correlation

between chronological age in HC, HS, C, IP, NC and MFI p16 CD8+, respectively. HC: Healthy controls; HS: HAART suppressed; C: controllers; IP:

Immunological progressors; NC: non-controllers. p and Spearman rho (r) values are shown for each plot.

doi:10.1371/journal.pone.0166759.g002

Fig 3. p16 expression is positively correlated with T cell activation. (A-B) Correlation between CD4+ T cell activation and p16 levels on CD4+ and CD8+,

respectively; (C-D) Correlation between CD8+ T cell activation and p16 levels on CD4+ and CD8+, respectively. R and p values are shown for each plot.

doi:10.1371/journal.pone.0166759.g003
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cells, which are long-lived cells and provide lasting immunologic memory. Roederer et al., [11]

have shown that TSCM cells have the ability to proliferate after long term in vitro culture with

IL-2 and IL-15, giving rise to the other memory subsets. It is possible that the requirement for

a long-term stimulus to induce robust proliferation may be due to the high p16 expression in

this T cell subset. CD4+ TEM cells from all HIV-infected subjects had higher levels of p16

expression than healthy controls. However, subjects on ART had a trend towards lower levels

of p16 in the CD4+ TEM population and a significantly lower level in the TCM cells than

untreated individuals, indicating that virologic suppression with ART has an impact on p16

levels and also in the control of T cell cycling. As CD4+ T cells are critical in the orchestration

of the immune response to pathogens by providing help to CD8+ cytotoxic T cells as well as to

antibody secreting B cells, robust restoration of this population is fundamental and can have

an impact on the HIV-associated morbidity. This may be one mechanism by which early HIV

diagnosis and treatment can lead to more effective proliferating cells and immune restoration.

Furthermore, targeting the p16 pathway may represent a future opportunity for immunothera-

peutic intervention in chronic HIV infection.

Fig 4. p16 expression in memory T cell subsets. (A and B) p16 MFI in CD4+ and CD8+ memory subsets, respectively, for all groups tested. HC:

Healthy controls; HS: HAART suppressed; C: controllers; IP: Immunological progressors; NC: non-controllers. TCM: central memory T cells; TSCM:

stem cell memory T cells, TEM: effector memory T cells. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.

doi:10.1371/journal.pone.0166759.g004
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