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Abstract

The focus of this viewpoint is to identify, in the era of atomistic resolution cryo-electron 

microscopy data, the areas in which computational modelling and molecular simulations will 

bring valuable contributions to structural biologists and to give an overview of some of the existing 

efforts in this direction.

Over the last decade, cryo-electron microscopy (cryo-EM) has become an invaluable 

technique in structural biology. Thanks to the recent developments in instrumentation, 

sample preparation, and image-processing software, cryo-EM has now reached atomistic 

resolution (a resolution high enough to allow structural modelling of unique positions for 

most atoms in a protein). The progress has been rapid: of the 1818 single-particle EM 

maps with resolution better than 15 Å deposited during the course of 2019 in the EMDB 

database, 61% and 86% were resolved at resolution better than 4 Å and 6 Å, respectively. 

The resolution record is currently held by a 1.54 Å resolution structure of apoferritin 

(EMD-9865). As of today, 45% of all the single-particle EM maps deposited over the years 

reported a resolution better than 5 Å.1

As the number of atomistic cryo-EM datasets rapidly increases, one can wonder what 

computational modelling approaches will bring to the table. The focus of this viewpoint is to 

identify the areas in which these techniques can complement the vast amount of information 

provided by cryo-EM. Simulation approaches have traditionally been leveraged to derive 

single structures that are good fits to the density maps.2–4 Here, we highlight some of the 

new efforts to expand this direction, while acknowledging that more exhaustive overview of 

traditional modeling and validation methods have recently been published.5, 6
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Cryo-EM has uses beyond being a powerful technique for determining PDB structures. 

Due to the single molecule nature of the experiment, cryo-EM presents new opportunities 

to study the conformational landscape of dynamic macromolecular systems. Such 

characterizations can be directly obtained from the raw data, i.e. the set of single-particle, 

two-dimensional (2D) images of the system deposited on a thin layer of vitreous ice. While 

there have been initial attempts to define conformational landscapes7–9, currently the most 

common practice is to derive multiple three-dimensional (3D) density maps in distinct 

conformational states. Distinct atomistic models can then be built into these maps and some 

information about their relative populations can be obtained from the number of particles 

underlying their reconstruction.

Ensemble modeling10 may be able to bridge the current gap between the long term ideal 

of “conformational landscapes” and the current reality of “single structures”. Computational 

advances will play a key role in this new direction. While image classification techniques 

are often able to distinguish distinct conformational states at the level of 2D class averages, 

highly-dynamic parts of the system are sometimes difficult to identify even with focused 

classification approaches.11 Low resolution regions of a cryo-EM map might therefore hide 

multiple different, but modellable, conformations whose densities have been averaged out in 

the processing of the raw data.

Cases where these regions exhibit continuous dynamics are particularly challenging. Highly

flexible parts of otherwise well-ordered systems, such as short loops or other disordered 

regions, are hard to resolve by cryo-EM image-processing alone, yet they are often crucial 

for specific biological functions. In these cases, traditional modelling approaches that yield 

a single structure or multiple independently refined models12 into a density map may not be 

helpful, as they may not faithfully represent the underlying dynamics of the system.

Recently, several different computational approaches aimed at determining conformational 

ensembles consistent with ensemble-averaged experimental data have been developed.13 

These methods have traditionally been used in combination with solution experiments, such 

as Nuclear Magnetic Resonance (NMR) spectroscopy or small-angle X-ray scattering, either 

on-the-fly during a molecular dynamics (MD) simulation to improve the quality of the 

underlying force field or a posteriori to refine an ensemble previously generated using MD 

or other modelling techniques. These methods can now be extended to generate structural 

ensembles from cryo-EM density maps.

Metainference14 is a method for determining structural ensembles based on a Bayesian 

probabilistic framework to integrate noisy, ensemble-averaged experimental data into MD 

simulations. This is a powerful approach for characterizing the conformational heterogeneity 

in maps that resist further 3D classification, as recently illustrated by the studies of the 

dynamics of the gating region of the ClpP protease15 and the effect of acetylation on 

α-tubulin.16 Molecular mechanics force fields used in MD simulations are becoming more 

and more accurate in the description of different environments and their interaction with 

macromolecules. Therefore, there is an emerging opportunity for integrative methods that 

combine cryo-EM data with MD to provide a more accurate description of the interactions 

between macromolecules and other smaller components (lipids, ions, solvent, ligands, etc) 
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as they become visible in atomistic maps. Although these approaches usually come at a 

higher computational cost compared to standard real-space refinement techniques, they can 

provide crucial insights into the interaction of proteins with their environment.

As the resolution of cryo-EM maps increases, more components of the system are becoming 

more and more visible at an unprecedented level of detail, such as ordered water molecules, 

lipids, and ions. Software for single-structure refinement typically provide either none or 

simplified physico-chemical models of the environment surrounding biological systems. 

For example, soluble proteins are traditionally refined in 3D density maps using energy 

functions that describe only basic stereochemical properties and not the surrounding 

environment. Furthermore, even for the ensemble-modelling approaches that use more 

accurate molecular mechanics force fields, such as metainference, modelling of ordered 

water and lipid densities is still challenging and will require further methodological 

developments.

One of the major challenges for ensemble-modelling approaches is the ability to distinguish 

conformational heterogeneity from noise in the data. Both these causes can result in the 

presence of regions at lower resolution in atomistic maps. To overcome this challenge, 

a modelling approach that accounts for the simultaneous presence of both structural 

heterogeneity and noise is required along with i) structural priors that can (alone) describe 

the dynamics of a system sufficiently well and ii) accurate estimates of the experimental 

errors at play.

Rather than relying on 3D maps, new approaches are emerging that use the raw 2D 

particle stacks, which are sometimes available in the public EMPIAR database.17 Notable 

examples are manifold embedding7, BioEM18, and a variational autoencoder to connect 

unlabelled 2D cryo-EM images with continuous distributions over 3D densities.19 The major 

advantage of these approaches consists in using the raw data prior to any clustering or 

averaging procedure, therefore fully embodying the single-molecule nature of the cryo-EM 

experiment. Currently, methods development in this area is limited by the sporadic practice 

of depositing raw data in the EMPIAR database. These methods are mostly limited by the 

low signal-to-noise ratio of individual particles, which will be mitigated in time as detectors 

continue to develop.

Computational modelling can also provide information on several aspects of the cryo-EM 

experiment that are needed to relate the results to the solution, room temperature ensemble. 

For example, how particles interact with the air-water interface20, 21 could be studied by 

multiscale methods. Simulations could also be leveraged to determine the vitrification 

process on the effective “temperature” of the resulting ensemble of molecules. Prior to 

data collection, the sample is prepared in solution at room temperature and then rapidly 

cooled down to cryogenic temperatures. The timescale of freezing is not fully known, but 

may take from hundreds of microseconds to a few milliseconds. In this timescale, scarcely 

populated “excited” states might collapse in neighboring free-energy minima, while more 

populated, stable states should be less affected. On a more local scale, rotamers and loops 

are often highly mobile on the microsecond timescale, and thus they may have time to 

structurally reorganize during freezing. Therefore, the conformational landscape represented 
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by the cryo-EM single-particle images might differ in subtle, but potentially important ways 

from the room temperature, biologically relevant ensemble.

One potential approach to study these effects is non-equilibrium MD. By simulating 

the freezing process starting from a set of conformers extracted from a solution, room

temperature ensemble, which can be modelled using equilibrium MD at 300K, down to 

the cryogenics ensemble, such simulations can highlight the potential differences between 

cryo-EM and room temperature ensembles. Recent experiments have begun to address these 

questions experimentally by incubating the samples at different temperatures prior to the 

freezing and vitrification process22, 23, and will provide useful points of comparison for 

molecular simulations.

While the rate of deposition of atomistic cryo-EM maps in the EMDB database is rapidly 

increasing, a substantial part of the available data is still at medium-low resolution. 

Integrative modelling approaches aimed at combining different types of experiments provide 

an excellent way to complement the scarce information content of cryo-EM data in this 

resolution regime and thus to enable determining more accurate and precise single-structure 

models. A recent example of combination of cryo-EM with NMR data is the determination 

of the structure of the 468 kDa aminopeptidase TET2 to a precision below 1 Å starting 

from a 4.1 Å resolution map.24 At this resolution, it was difficult to trace the backbone 

and assign the sequence using the cryo-EM data alone, but by combining it with secondary 

structures modelled using NMR data it was possible to determine precise models using both 

the original data and data artificially truncated to 8 Å.

Rather intriguing is also the possibility of using integrative ensemble-modelling approaches 

to combine cryo-EM data with other experiments to obtain more accurate protein 

conformational ensembles. For example, one could envision incorporating NMR ensemble

averaged data to improve the characterization of highly-flexible parts of biological systems 

that are often averaged out in the cryo-EM classification and reconstruction processes.

The major challenge in single-structure and ensemble integrative approaches is how to 

balance the information provided by different types of experimental data. In these regards, 

Bayesian statistics25, 26 is an effective framework that can be used to combine all sources 

of information available on the system, being experimental data or physico-chemical 

knowledge, by weighting them based on accuracy and information content.

In conclusion, while we are in the middle of an explosion of the number of atomistic cryo

EM data available, computational modelling and molecular simulations can still play an 

important role in the future. These methods will certainly provide essential contributions in 

many areas of structural biology, from improving the description of protein conformational 

ensembles, to elucidating the effect of freezing on the behavior of biological systems, 

accurately characterizing complex physico-chemical environments, and integrating cryo-EM 

with other types of experimental data.
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