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In Vivo Hyperpolarized Carbon-13 Diffusion Weighted MRI Measures Lactate

Metabolism and Transport in Prostate Cancer

by

Hecong Qin

Abstract: Prostate cancer is a heterogeneous group of tumors ranging from clinically

insignificant to lethally malignant. The clinical management of prostate cancer is challenging

due to the lack of accurate assessment of cancer aggressiveness. Hyperpolarized magnetic

resonance imaging (MRI) has enabled real-time measurement of metabolism, and has shown

great promise for cancer diagnosis, staging and assessing therapeutic response in both pre-

clinical and clinical studies. Aggressive prostate cancer overproduces lactate and overexpresses

MCT4, the transporter primarily responsible for lactate efflux, resulting in acidification of

the extracellular space and conferring a poor prognosis. In this pilot study, hyperpolarized

diffusion weighted MRI was used to elucidate the intra and extracellular distribution of

metabolites, which can infer lactate efflux, and tumor microstructural environment. Transgenic

adenocarcinoma mouse prostate (TRAMP) models of different stages were injected with

hyperpolarized pyruvate; then pyruvate and lactate were excited with a single-band spectral-

spatial RF pulse, followed by a single-shot, double spin-echo flyback echo planar imaging

(EPI) readout. Four b-values were acquired per metabolite, ranging from 25-1000 s ·mm−1.

Data were corrected for RF utilization and fit voxel-wise to a monoexponential decay to

generate apparent diffusion coefficient (ADC) maps for each metabolite. We found that the in

vivo lactate ADC is close to the ex vivo extracellular ADC, rather than the intracellular ADC.

We also found lactate ADC in late-stage tumors (0.65 ± 0.11 mm2 · s−1, n=4) is higher than

early-stage (0.46 mm2 · s−1, n=1), indicating there is increased lactate efflux in aggressive

cancer. In conclusion, we demonstrated that hyperpolarized diffusion weighted MRI can

provide insight into metabolite compartmentalization and lactate efflux in the prostate tumor,

and potentially assess cancer aggressiveness and therapeutic changes in a rapid, non-invasive

manner.
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Chapter 1

Introduction

Disease Background

Prostate cancer is a major health concern in the United States. It is the most frequently

diagnosed non-cutaneous cancer and the second-leading cause of cancer death among men,

with an estimated 221,000 cases and 27,500 deaths in 2015 [1]. Based on data from 2010 to

2012, the lifetime risk of developing prostate cancer for U.S. men is approximately 14% [2].

Moreover, there are an estimated 2.7 million men living with prostate cancer in the United

States [2]. The prostate cancer incidence has been rising since the 1980s, which is correlated

with the implementation of the Prostate Specific Antigen (PSA) test. This "overdiagnosis"

has caused benign and indolent prostate cancer is detected early and subsequently treated

with unnecessary aggressive approach [3].

The most characteristic feature of prostate cancer, perhaps, is its diverse range of clinical

behaviors, from clinically insignificant to lethally malignant. Despite high overall incidence

and mortality, more than half of prostate cancers are localized, non-life-threatening and do

not need radical treatments, as evidenced by the 5-year survival rate being almost 100% [4].

That being said, prostate cancer is not a trivial disease. For distant stage prostate cancer,

in which cancer spreads to distant lymph nodes and other organs, the 5-year survival rate

can be as low as 28% [4]. Therefore, it is crucial to distinguish aggressive cancers that will

potentially metastasize from indolent cancers that may never be clinically significant, and
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choose the appropriate management strategy based on the biological characteristics and the

aggressiveness of the cancer [5].

However, the current risk assessment methods for prostate cancer are often unreliable

and rely heavily on biopsy, which is invasive and mainly provides limited morphological

information on local lesions. As a result, even though there are an estimated over 100,000

patients who are candidates for active surveillance per year in the United States, more

than 90% of patients receive immediate treatment after diagnosis, as there are no accurate

diagnostic tools to evaluate and monitor cancer aggressiveness [6]. Moreover, the aggressive

treatments suffer from unwanted but unavoidable complications, such as urinary incontinence

and sexual impotence. These complications are debilitating to prostate cancer patients who

are generally over 65-years of age and tend not to die from the cancer itself.

Motivation and Significance

This project is motivated by the need for a new prostate cancer imaging method that can

noninvasively assess cancer biological behaviors, provide accurate cancer risk assessment, and

guide disease management of cancer. Accurate assessment of cancer aggressiveness can help

identify a personalized management strategy, and encourage active surveillance candidates

to stay with follow-up. From the health economics perspective, it has been estimated that

patients following active surveillance can lead to considerable medical cost savings relative to

those receiving immediate treatment [7].

Biological Rationale

Lactate, the primary byproduct of glycolysis, has been reported to play an critical

role in cancer development [8]. The famous Warburg effect states that cancer cells prefer

glycolysis, even in the presence of oxygen [9]. Although glycolysis is inefficient in producing

ATP compared to oxidative phosphorylation, this metabolic change is critical in cancer

development. The excessive proliferation of cancer cells can cause hypoxia in local tissues;
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thus, cancer cells need to adapt to the new microenvironment [10]. Given sufficient blood

supply, glycolysis is fast and can produce a large amount of ATP rapidly. Moreover, the

byproducts of glycolysis can provide carbon sources for cancer cells to synthesize nucleotides,

amino acids, and lipids that are essential for the growth of new cancer cells.

The overproduced lactate will need to be transported out of the cell, known as lactate

efflux, to forward the biochemical reactions. MCT4, a monocarboxylate transporter primarily

responsible for lactate efflux, is overexpressed in prostate cancer. The co-transport of protons

and lactate through MCT4 can acidify the extracellular environment and facilitate cancer

metastasis [11]. Also, lactate can be taken up by aerobic cancer cells and become an energy

source and metabolic intermediate [12]. It has been confirmed that lactate efflux and MCT4

expression are correlated with cancer aggressiveness [13]. High levels of lactate production

and efflux are promising indicators for predicting cancer aggressiveness, progression to metas-

tasis, and response to therapy [14] [15] [16]. These findings suggest the promise of lactate

metabolism and transport as a biomarker for cancer detection and characterization.

Technical Rationale

The assessment of lactate production and efflux and MCT4 expression has largely relied

on the in vitro molecular biology tests. Although 1H magnetic resonance spectroscopy (MRS)

can noninvasively detect metabolites such as lactate in vivo, the low concentration of lactate

and the frequency overlap between lactate and lipids are the main obstacles to acquiring

clinically useful data [17]. Fortunately, metabolic magnetic resonance imaging (MRI) with

hyperpolarized substrates has enabled real-time measures of enzymatic activity and metabolic

shift, and has shown great promise in both pre-clinical [18] and clinical studies [19] as a tool

for diagnosis, staging and assessing treatment response of cancer.

Pyruvate is readily hyperpolarized by the Dynamic Nuclear Polarization (DNP) system,

and lactate is a proven effective prostate cancer biomarker using hyperpolarized 13C imaging

[20]. It has been shown that overall production of lactate converted from hyperpolarized
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13C labeled pyruvate correlates with prostate cancer grades in mice [18]. However, previous

research has largely focused on measuring the amount of metabolites, such as the overpro-

duction of lactate, but not the transport of metabolites. A few recent studies performed at

the UCSF Kurhanewicz Lab have successfully used hyperpolarized 13C diffusion weighted

MRI/MRS to rapidly study metabolite compartmentalization in phantoms [21], cells [22], and

animals [23]. These studies demonstrated the promise that measuring extra- and intracellular

distribution of lactate by hyperpolarized diffusion weighted MRI could reveal the lactate

efflux level in vivo, thereby improving tumor detection and characterization.

Hypothesis and Study Design

The hypothesis of this project is that hyperpolarized diffusion weighted MRI can assess

cancer aggressiveness by providing cancer-specific information about lactate production and

efflux/transport, and the microstructural environment of the tumor. By this pilot study, we

wanted to evaluate the feasibility of applying hyperpolarized diffusion weighted MRI in vivo

in prostate cancer, the signal-to-noise ratio (SNR) of images, apparent diffusion coefficients

(ADC) fitting quality, and reproducibility as well as reliability of the methods. The core

measurement of this study is metabolite ADC mapping. In order to compare the metabolite

ADC difference in early- and late-stage tumors, early and late-stage transgenic adenocarcinoma

mouse prostate (TRAMP) models were injected with hyperpolarized pyruvate, then imaged

by a diffusion weighted sequence. ADC maps of pyruvate and lactate were generated by

voxel-wise fitting diffusion weighted signal to a monoexponential decay model. The results

were analyzed qualitatively and compared with a previous bioreactor study using similar

methods. The metabolite ADCs of early- and late-stage tumors were compared.
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Chapter 2

Imaging Theory

2.1 Magnetic Resonance

Nuclear Magnetic Resonance (NMR), first discovered by Isidor Isaac Rabi [24], is a physical

phenomenon where nuclear spins receive and emit electromagnetic irradiation or radiofre-

quencies (RF). All nucleons, including protons and neutrons, have the intrinsic quantum

property of spin carried by elementary particles. Nuclei with an odd number of protons

and/or neutrons, such as 1H, 13C, 31P, 15N, possess a nuclear spin angular momentum S.

Magnetic dipole momentum, µ, is associated with spin angular momentum S, and their ratio

(µ/S) is defined as gyromagnetic ratio γ, which is unique for each isotope. The nuclear spins

can only precess and resonate at a certain frequency, known as the Larmor frequency, ω,

depending on the main magnetic field and the magnetic property of the spin, as described by

the equation below,

ω = γ ·B0 (2.1)

where γ is gyromagnetic ratio (rad−1 · s−1 · T−1), and B0 (T) is external field strength.

In the absence of external magnetic fields, spins are randomly aligned; however, in the

presence of external magnetic field B0, spins tend to align in the same direction as B0 and

create a net magnetization moment M, which can be viewed as a vector and the sum of µ in

the classic description of NMR.
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A quantum mechanical description of NMR helps to explain the magnitude of M and

hyperpolarization. M exists because of the energy level splitting of non-zero spins through

the interaction with B0, as described in the Zeeman Effect [25]. For spin 1/2 nuclei, such as

1H and 13C, the energy difference, ∆E, is determined by

∆E = −µ ·B0 = h · γ
2π
·B0 (2.2)

where h is Planck’s constant (J · s). There are two energy sublevels for spin 1/2 nuclei:

parallel (n+) and antiparallel (n-). The ratio of two spin energy populations is determined

by Boltzmann distribution,
n−
n+

= exp(
−∆E

kT
) (2.3)

where k is Boltzmann’s constant (J ·K−1) and T is absolute temperature (K). The polarization,

P, is defined as the fractional difference between two spin energy populations,

P =
n+ − n−
n+ + n−

= tanh
−hγB0

2πkT
(2.4)

As shown in equation 2.4, polarization is determined by spin property (γ), external field

strength and temperature; it is very tiny at thermal equilibrium. For instance, at room

temperature and 3T, the polarization of 1H (γ= 4.3MHz/T) is 0.001%, and the polarization

of 13C (γ= 1.1MHz/T) is 0.00026%. This small net difference is the fundamental of net

magnetization moment and MR signal.

MRI is an imaging technology based on NMR phenomenon. From a classical perspective,

the net magnetization moment can be excited and torqued from its equilibrium through

interaction with an electromagnetic field rotating at the Larmor frequency, B1, also known

as radiofrequency (RF) pulse. Following excitation, the magnetization moment continues to

precess with the aim of returning to equilibrium; this process is called relaxation. During

relaxation, the transverse component of magnetization can be detected by RF coils. The

resulting signal will be processed and translated into images. The Bloch equation describes

the behavior of magnetization moment,

dM

dt
= M × γB − Mxi+Myj

T2
− (Mz −Mo)k

T1
(2.5)
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where Mx and My are transverse magnetizations, Mz is longitudinal magnetization, and i, j,

k are vector units. During relaxation, the transverse component of magnetization (Mxy) can

be detected by RF coils, and the resulting signal can be processed and translated into images.

2.2 Hyperpolarized MR

Carbon forms the backbone structure of organic molecules, including metabolites. 13C MRI

can provide metabolic information about biological tissue and disease. However,13C imaging

at thermal equilibrium condition is limited by the low signal-to-noise ratio (SNR) due to the

low concentration of metabolites and the relatively small gyromagnetic ratio. Hyperpolarized

MRI has emerged as a novel imaging technology that can noninvasively detect metabolic

shifts in cancers.

Several hyperpolarization techniques [26] have been developed to increase polarization

through perturbing spins from thermal equilibrium and increasing the fraction of parallel

spins (n+). One of most the commonly used hyperpolarization methods, dynamic nuclear

polarization (DNP) technique can increase 13C MR signal by 10,000 fold [26]. Generally

speaking, there are two sources of hyperpolarization: 1) the low temperature of 1K increases

polarization level by 300 folds, and 2) microwave irradiation transfers polarization from

electron spins to nuclear spins through “solid effect” and “thermal mixing” [27]. This con-

siderable signal enhancement, along with the chemical shift sensitivity between 13C labeled

metabolites, provides the opportunity for direct imaging of metabolites and metabolic process.

In cancer imaging, hyperpolarized MR can detect the metabolic reprogramming of cancer

cells, therefore improving the diagnosis and characterization of cancer.

2.3 Diffusion and Diffusion MR

The term "diffusion" is often used to describe various molecular and particle movements,

although the technical definition is random mass transport process without requiring bulk

7



motion [28]. Brownian motion refers to the molecular self-diffusion due to thermal energy.

Fick’s first law explains this phenomenon, written in three dimensions,

J = −D∇C (2.6)

where J is the net flux vector (mol · mm−2 · s−1), D is diffusion coefficient (mm2 · s−1),

and C is the concentration (mol · mm−3). The diffusion coefficient, also referred to as

diffusivity, is determined by the size and structure of the diffusing molecules, temperature,

and microstructure environment.

Diffusion MR can elucidate the microstructure features by incorporating diffusion weighting

gradients into the spin echo pulse sequence. Diffusion pulsed gradients are usually placed

symmetrically around the 180◦ refocusing pulse. Therefore, "diffusion" can cause phase

dispersion and signal cancelation between spins; whereas stationary spins or spins with low

diffusivity experience no or little phase shift and signal cancellation. A more accurate way to

describe the principle of diffusion MR is that it sensitizes "translational motion", rather than

"diffusion". An apparent diffusion coefficient (ADC) can be generated by fitting the diffusion

weighted signal to an exponential decay equation, such as equation 3.1. More technical details

about diffusion MR pulse sequence and parameters are described in Chapter 3.

The basic principle of measuring the extra- and intracellular distribution of metabolites by

diffusion MR is measuring the ADC of metabolites. This theory is based on prior knowledge

that: 1) diffusion of molecules is restricted by the cellular membrane, thus, intracellular

molecules have a lower ADC, whereas extracellular molecules have a more free diffusion and

much higher ADC; and 2) lactate is produced inside the cells, but can be exported out of

cells via MCT4 which is overexpressed in aggressive prostate cancer cells. Therefore, in vivo

ADC can provide information about the compartmentalization of lactate and pyruvate in the

tumor, which reflects lactate production and efflux.
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Chapter 3

Methods

3.1 Hardware

All imaging studies were performed on a 14.1 Tesla (T) Varian INOVA spectrometer (600

MHz 1H /150 MHz 13C), equipped with a 10 mm broadband probe, 100 G/cm gradients, and

Vnmrj microimaging system (Agilent Technologies). A dual-tuned 1H/13C coil was used to

acquire 1H T2 weighted anatomy images and 13C diffusion weighted images. A dedicated

proton coil was used to acquire proton diffusion weighted images.

3.2 Hyperpolarization

Sample preparation and polarization methods are similar to those published previously [26].

The [1-13C] pyruvate sample was prepared with neat pyruvic acid, 16.5 mM of the trityl radical

OX063 (GE Healthcare), and 1.5 mM gadolinium-based contrast agent Dotarem (Guerbet).

Dynamic nuclear polarization was performed at either the HyperSense System (Oxford

Instruments, Abingdon, UK) which operates at 3.35T, 1.3K and 94.072 GHz microwave

irradiation, or at a prototype DNP polarizer which operates at 3.35T, 1.4K and 94.095 GHz

microwave irradiation. To compensate for the signal loss due to diffusion weighting and

multi-excitation, 48µL aliquots of [1-13C]pyruvate, double the amount of what is regularly

used, were polarized for at least 90 minutes to increase SNR and polarization. Samples were
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rapidly thawed and neutralized to a physiologic pH with a 4.5g buffer solution comprised of

160mM NaOH, Tris buffer and EDTA.

3.3 Animal Experiment and Scan Protocol

Animal studies were performed in accordance with UCSF Institutional Animal Care and

Utilization Committee standards. The transgenic adenocarcinoma of the mouse prostate

(TRAMP) model is a well-characterized animal model that imitates the human disease

progression, histopathological and metabolic changes [29] [30]. Five TRAMP models, including

four late stage and one early stage, were used in this study. The tumor grade was estimated

by T2 weighted images and proton diffusion weighted images before the hyperpolarized study.

Animals were anesthetized with an isoflurane and oxygen mixture and placed on the hot water

tubes heated to 37◦C. All MR data acquisitions were respiratory gated except for the fast

spin echo sequence. 300 µL neutralized hyperpolarized agents were injected into the animal

through the ventral tail vein, immediately after measuring their pH value, at a constant rate

within 15 seconds. 13C diffusion weighted images were acquired at 30 or 31s after the start of

injection depending on the respiration rate. 1◦ and 90◦ spectroscopy were performed on the

whole 13C imaging slab before and after the diffusion weighted imaging, respectively.

3.4 1H Imaging

All anatomical images were be acquired in axial and coronal planes with a T2-weighed single

spin echo sequence and a fast spin echo sequence, using 13C/1H dual-tuned transmit/receive

coils. 1H diffusion weighted images were acquired with a pulsed gradient single spin echo

sequence to assess tumor condition.
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3.5 Hyperpolarized 13C Diffusion Weighted Imaging

Before acquiring diffusion data, flip angle calibrations were performed by measuring the

transmitter power required to produce a 180◦ pulse with a 13C urea phantom. Hyperpolarized

13C diffusion weighted images were acquired using a unipolar pulsed-gradient double spin

echo sequence with a single-shot flyback echo-planar imaging (EPI) readout (figure 3.1),

prescribed for a 12 mm thick slice and 2 x 2 mm in-plane resolution. The RF pulses consist of

a slice-selective excitation pulse followed with a pair of adiabatic refocusing pulses, which is

similar to previous 13C spin echo acquisitions [23] [31]. A symmetric-frequency response, single

band "true null" spectral spatial pulse was used to alternatively excite [1-13C] lactate and

[1-13C] pyruvate which have a 1850 Hz chemical shift at 14.1 T. The adiabatic 180◦ refocusing

pulses are insensitive to transmitter-gain calibrations, and can avoid signal loss by realigning

the magnetization to B0. At the end of each readout, the radiofrequency and gradient spoiling

were used to eliminate transverse magnetization. Two diffusion gradient pairs around the

refocusing pulses were applied in 3 directions (x, y, and z) to increase diffusion weighting and

achieve b-values up to 1000 s ·mm−1. A relatively large slices thickness (12 mm) was used

in all 13C scans to achieve sufficient SNR with diffusion weighting. Constant flip angles of

30◦ were used. Although the diffusion-compensated variable flip angle scheme can consume

the nonrenewable hyperpolarized signal and increase SNR at higher b-value, slice profile

difference of variable flip angles may increase bias in ADC measurement and interpretation.

In order to improve the accuracy of ADC measurement, an array of 4 b-values = [1000,

600, 300, 25] s ·mm−1 was used in this study. Both pyruvate and lactate were imaged, and 4

scans of different diffusion weighting were performed for each metabolite. TR = 0.1s, however,

due to the respiratory gating, the acquisition time of 4 b-values per metabolite is 3s. Between

scans of different diffusion weighting, only gradient amplitude was changed while gradient

duration and TE (0.0815s) were kept constant to minimize the T2 weighting differences.
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Figure 3.1: Hyperpolarized 13C Diffusion MR pulse sequence diagram

3.6 Data Analysis

ADC maps of each metabolite will be generated by fitting the signal intensity of 4 diffusion

weighted images to a monoexponential decay on a voxel-by-voxel basis:

Si = S0e
−b·ADC (3.1)

where Si is the diffusion sensitized signal for a certain b-value, and S0 is the non-diffusion-

sensitized signal. The b-values for hyperpolarized 13C scans were determined from numerical

integration [32]:

b =

∫ TE

0

k2(t)dt (3.2)

where

k(t) = γ

∫ t

0

G(t′)dt′ (3.3)

The diffusion weighting is proportional to |k2(t)| as shown by the shaded area in Figure

3.1.
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Flip angle errors can cause significant inaccuracy to ADC measurement of hyperpolarized

metabolites [23]. To correct the deviation between the actual and the expected flip angle, a B1

map was created by using the two images with flip angles 45◦ and 90◦ and their double angle

identity [33]. Moreover, a cos term was added to account for the nonrenewable hyperpolarized

magnetization:

Sn+1

Sn

=
sin(2θn)cos(θn)

sin(θn)
=

2sin(θn)cos(θn)cos(θn)

sin(θn)
= 2cos2(θn) (3.4)

where Sn is the signal from 45◦ scan and Sn+1 is the signal from 90◦ scan. Solving θn from

equation 3.4 on a voxel-by-voxel basis gives the true flip angle used in the scan. Then the

fractional error was derived for each voxel, which was subsequently used to correct the flip

angle for each scan on a voxel-by-voxel basis.

The RF utilization’s effect on non-renewable hyperpolarized signal needs to be corrected

before ADC mapping:

Sn,corr =
Sn,acq

sin(θn) ·
∏n−1

k=1 cos(θk)
(3.5)

where n can be 2, 3 and 4.

To examine metabolite ADC fitting quality, residual sum of squares (RSS) was calculate

voxel-wise. The region-wise ADC fitting quality was examined by plotting the average signal

of diffusion weighted images within the region of interest (ROI) of the tumor and the ADC

fit in the same graph. The ROIs were drawn on the axial T2 weighted proton images that are

correlated with the 13C images, and cover the whole tumor region. The average metabolite

ADC values and standard deviation within ROI were also calculated.

T1 governed hyperpolarization decay is neglected in all calculation due to the short TR

used. All data analysis was performed in MATLAB (MathWorks).
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Chapter 4

Results

Since this was the first time hyperpolarized 13C diffusion weighted MR sequence was used in

TRAMP models at 14T, the acquisition parameters were first optimized. We found that a

double dose (48 µL) of pyruvate can increase SNR significantly; 30s - 31s acquisition delay

after the injection of hyperpolarized pyruvate can provide better SNR compared to 20s and

40s delay; a maximum b-value of 1000 s ·mm−1 can achieve sufficient diffusion weighting

with reasonable SNR for ADC mapping compared to maximum b-value of 2000 s ·mm−1.

One early-stage and four late-stage TRAMP models were studied and included in the

group analysis. For each animal, two sets of data were acquired using the same parameters

on the same day, and the data set with decent SNR and fitting quality, as measured by RSS,

was included in the analysis.

The following images and spectroscopy data were acquired from a representative late

stage TRAMP model (MS 391), except as stated otherwise. 1◦ and 90◦ 13C spectroscopy

were performed on the 13C imaging slab before and after diffusion weighted imaging (DWI)

respectively (Figure 4.1). The ratio of lactate and pyruvate increased during the DWI time

frame of 6 seconds, as measured by peak height ratio, suggesting that the metabolic flux of

pyruvate-to-lactate is rapid and significant in late-stage cancer.

The diffusion weighted images can reflect the metabolic flux of pyruvate-to-lactate, as

shown by the high signal intensity of lactate images (Figure 4.2). Generally speaking,
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(a) 1◦ spectrum before DWI (b) 90◦ spectrum after DWI

Figure 4.1: 13C MR spectroscopy of the imaging slab

metabolite diffusion weighted images with low b-values have higher signal intensities than

those of high b-values.

Figure 4.2: Diffusion weighted images of lactate
From left to right, b-values = [1000, 600, 300, 25] s ·mm−1

Figure 4.3: Diffusion weighted images of pyruvate
From left to right, b-values = [1000, 600, 300, 25] s ·mm−1
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ADC maps of pyruvate and lactate were overlaid on the axial 1H anatomical image, as

shown in Figure 4.4. While the tumor is heterogeneous, the overall pyruvate ADC is higher

than lactate, as represented by yellow-red for pyruvate v.s. dark blue for lactate, indicating

differences in metabolite compartmentalization. This can also be seen in the histogram

of metabolite ADC maps of the whole tumor region (Figure 4.5). Moreover, pyruvate has

more heterogeneous distribution than lactate, suggesting that the compartmentalization of

pyruvate is more diverse and complicated than lactate. It can be seen that the ADC fits of

monoexponential decay model almost match the actual signal, as shown in Figure 4.6.

The summarized results showed that pyruvate ADC (0.91±0.12) is higher than lactate

ADC (0.65±0.91) in late-stage TRAMP. To better understand our findings, we compared

our in vivo ADC measurement to a previous study on renal cell carcinoma (RCC) bioreactor

using similar methods, where complete separation of intra- and extra-cellular signal was

achieved [34]. We found that lactate ADCs in TRAMP, regardless of stage, are close to

bioreactor extracellular ADC rather than intracellular ADC. Moreover, we found that the

ADC for lactate increases by nearly 50% in late-stage tumors compared to the early-stage

tumor [0.65 ± 0.11 (n=4) vs. 0.46 (n=1)].

MS 398 had a late-stage tumor that has a representative necrotic region with relatively

clear boundary. A case analysis was performed on MS 398 to study the effect of tumor

morphology on the metabolite diffusivity, where metabolite ADCs of homogeneous region

and necrotic region were compared (Table 4.3). The results showed that the necrotic region

had a lower metabolite ADC than in the homogeneous region for both lactate (0.44 ± 0.13 vs.

0.54 ± 0.07) and pyruvate (0.61 ± 0.25 vs. 0.79 ± 0.25). Histograms showed that pyruvate

ADCs have more diverse distribution in the homogeneous region than the necrotic region,

and lactate ADCs are less diverse in the homogeneous region.

To study the flow effects on the ADC measurement, we performed ADC fitting without

the signal of lowest b-value which is the most sensitive acquisition to the flow effect (Table

4.4). We found out that both metabolite ADCs generated without the lowest b-value are

16



Figure 4.4: Overlay of metabolite ADC maps and T2 weighted anatomy images

Figure 4.5: Histogram of Metabolite ADC maps

lower than those generated with 4 b-values (lactate: 0.59 ± 0.09 vs. 0.65 ± 0.11; pyruvate:

0.89 ± 0.15 vs. 0.91 ± 0.12). It is worth mentioning that we did not include the early-stage

TRAMP model into this analysis because the SNR for early-stage tumors are already low

and eliminating signal of one b-value could deteriorate the ADC fitting quality.

To assess tumor condition, proton diffusion weighted images were acquired, and ADC
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Figure 4.6: Fitting Quality of Metabolite ADC

Table 4.1: in vivo effective ADC of metabolites in the prostate tumor

Mean ADC value of Tumor Regions (×10−3 mm2 · s−1)
TRAMP Models Lactate Pyruvate

Late Stage

MS 381 0.77 ± 0.31 1.04 ± 0.54
MS 383 0.64 ± 0.22 0.98 ± 0.21
MS 391 0.68 ± 0.13 0.84 ± 0.24
MS 398 0.52 ± 0.095 0.77 ± 0.25

Early Stage MS 392 0.46 ± 0.37 0.85 ± 0.31

Table 4.2: Metabolite ADC comparison: in vivo vs. bioreactor

Subjects ADC Lactate Pyruvate

Bioreactor - UOK262 Intracellular 0.19 ± 0.03 0.10 ± 0.007
Extracellular 0.57 ± 0.10 1.19 ± 0.06

TRAMP - Late Stage in vivo 0.65 ± 0.11 0.91 ± 0.12
TRAMP - Early Stage in vivo 0.46 0.85

ADC unit: ×10−3 mm2 · s−1; UOK262 cells are derived from metastatic hereditary leiomyomatosis
renal cell carcinoma (HLRCC), a highly aggressive type of cancer [34].

maps were generated using the same method as 13C metabolite ADC mapping. We found

that proton/water ADC is lower than metabolite ADC, as evidenced by the color-coded ADC

map and its histogram (Figure 4.8).
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Table 4.3: Metabolite ADC comparison: the effect of tumor morphology

MS 383 Lactate Pyruvate
Homogeneous Region 0.54 ± 0.07 0.79 ± 0.25

Necrotic Region 0.44 ± 0.13 0.61 ± 0.25
Whole Tumor 0.50 ± 0.11 0.71 ± 0.27

The T2 weighted axial image of MS 398 shows a necrotic late-stage tumor, with a ROI defined as the
homogeneous region.

Figure 4.7: A case analysis on the effect of morphology on metabolite diffusivity: histogram
of ADC maps.
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Table 4.4: In vivo metabolite ADC measured without the lowest b-value

Mean ADC value of Tumor Regions (×10−3 mm2 · s−1)
TRAMP Lactate Pyruvate
MS 381 0.62 ± 0.34 0.92 ± 1.21
MS 383 0.59 ± 0.17 1.06 ± 0.48
MS 391 0.67 ± 0.33 0.86 ± 0.39
MS 398 0.46 ± 0.15 0.71 ± 0.24
Summary 0.59 ± 0.09 0.89 ± 0.15

Figure 4.8: Proton ADC map and its histogram
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Chapter 5

Discussion

This thesis work is one of the first in vivo metabolite diffusion weighted imaging studies

using hyperpolarized substrates. Although lactate is produced intracellularly, our results

demonstrate that its in vivo effective ADC is actually close to the extracellular ADC in

bioreactors. This finding suggests that lactate efflux is rapid and appreciable in prostate

cancer, and can be detected by hyperpolarized diffusion weighted MRI. On the other hand,

pyruvate in vivo ADC is lower than its ADC in the bioreactor extracellular space, possibly

due to the effects of cellularity. Moreover, we found that lactate ADC in late-stage tumors

(0.65 ± 0.11 mm2 · s−1, n=4) is higher than early-stage (0.46 mm2 · s−1, n=1), indicating

there is increased lactate efflux in late-stage cancer. Lactate efflux is a concentration driven

passive transport, and it is limited by the expression of MCT4. Our finding is consistent with

the fact that late-stage prostate cancer cells overproduce lactate and overexpress MCT4.

We tested the feasibility and reproducibility of in vivo hyperpolarized diffusion weighted

MRI. Our ADC measurements were in a similar range to previous bioreactor studies. Addi-

tionally, we could often achieve consistent results from two experiments on the same animal

and the same day. The diffusion weighted images and the histogram of metabolite ADC

show that in vivo metabolite compartmentalization is heterogeneous, especially for pyruvate.

Therefore, ADC mapping by voxel-wise fitting is particularly suitable for hyperpolarized

diffusion weighted MRI. The fitting quality was examined by plotting the signal and fit, and
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by calculating RSS; and similar fitting quality can be easily achieved on other late-stage

TRAMP models, but not on early-stage TRAMP models.

We found that in vivo pyruvate ADC is higher than lactate ADC, which is consistent

with the findings of previous bioreactor studies. There are several explanations for this

phenomenon. Firstly, lactate has more intracellular distribution than pyruvate, causing

lactate diffusion is more restricted. Secondly, although lactate and pyruvate have a similar

molecular weight, lactate has an extra hydroxyl group and thus is bulkier than pyruvate.

Moreover, the hydroxyl group enables lactate to form hydrogen bonds with other eligible

molecules, which causes decreased diffusivity.

We hypothesized that pyruvate ADC could elucidate microstructural features of the

extracellular space; to be specific, could reflect tumor cellularity via decreased ADC. However,

our results show that pyruvate ADC is not lower but slightly higher in late-stage tumors

compared to early-stage. Although cellularity is more severe in late-stage tumors, there is

also more angiogenesis than early-stage tumors. These newly formed and excessively growing

vessels are tortuous and leaky, which in turn contributes to increased overall perfusion. The

slight increase of pyruvate ADC in late-stage cancer is possibly caused by enhanced vascular

flow and the leafiness of tumor microvasculature. Although there is no particular signal

enhancement near the major vasculatures seen on the diffusion weighted images, this finding

may suggest that the amount of pyruvate presented in the microvasculature is not negligible.

On the other hand, cellularity is a confounding variable for lactate ADC interpretation.

Currently, proton DWI and ADC mapping can assess cellularity qualitatively. Possibly in

the future quantitative assessment of cellularity’s effect on lactate ADC can be achieved.

It is challenging to find the optimum b-values for hyperpolarized diffusion weighted

MRI because of the dynamic nature of metabolism and the nonrenewable nature of the

hyperpolarized signal. Flow is the net movement of molecules, which is bulk motion and a

faster movement than diffusion; therefore, it can cause greater signal cancelation and outweigh

the true "diffusion" weighting. In order to avoid the flow effect, b-value=0 was not included
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in the diffusion weighted MRI acquisition because low b-value is sensitive to fast movements,

such as flow. However, the fact that ADCs generated without the lowest b-value (25 s ·mm−1)

are lower than ADCs generated with all 4 b-bvalues suggests flow effects still exist in our

diffusion weighted signal. Another concern regarding our b-value setting is that the maximum

b-value (1000 s ·mm−1) is not high enough to sensitize intracellular diffusion. Especially

given that the in vivo ADC measured in our study is close to bioreactor extracellular ADC,

one may argue this is simply because our sequence can only sensitize extracellular diffusion.

Morphological changes in the tumors may also affect the diffusivity of metabolites. In the

comparison of metabolite ADCs of the homogeneous tumor region with the necrotic region,

we found that the necrotic region had a lower ADC for both metabolites. Necrosis happens

on the basis of imbalance between the demand and supply of energy and nutrition at the

cellular level and is an indicator of poor perfusion status. Also, the loss of viable tissues,

increased extracellular medium density due to membrane breakdown, fibrosis and steatosis of

the necrotic region can hinder the translational motion of metabolites.

There are several major factors affecting in vivo molecular translational movement:

temperature, molecular structure/interaction, concentration gradient (C in equation 2.6) and

microstructural environment. It is still not clear why water ADC is lower than metabolite ADC

in vivo, given that water has a smaller molecule size. Either a combination of these factors or

the acquisition errors caused our observations. However, there is some fundamental difference

between water and metabolite diffusion. From a physics perspective, water diffusion is self-

diffusion while metabolite diffusion is mixed diffusion. The much greater in vivo metabolite

concentration gradients may facilitate the Brownian motion of metabolites, whereas the

concentration gradient plays a lesser role in water diffusion.

Hyperpolarized 13C imaging techniques share some common drawbacks, such as coarse

spatial resolution, large thickness, and time restriction. Besides those, there are several

challenges for applying hyperpolarized diffusion weighted MRI in vivo. Firstly, unlike

bioreactor or phantom studies, the delivery of hyperpolarized agents are constrained by the
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animal’s condition, such as perfusion status and tumor volume. Secondly, the respiratory and

involuntary movement of the animal subject can introduce errors into the data acquisition

since diffusion weighted MRI is designed to detect the translational motion of molecules;

even though we used respiratory gating, the effect is far from being perfect. Thirdly, current

technology cannot separate the bulk motion, such as flow and cellular transport, from

diffusion or Brownian motion. Metabolites are still being transported across membranes and

circulating in the vasculature while diffusion gradients are on, which may complicate our

data acquisition and ADC measurement. This limitation is also true for conventional proton

diffusion. Applying lactate suppression outside of the imaging slab can help to eliminate the

effect of circulating lactate that is produced by other organs.

A major limitation of this study is the small sample volume, especially for early-stage

tumors: most of our findings are inconclusive. It was difficult to acquire diffusion weighted

images with reasonable SNR on early-stage TRAMP model due to the low metabolism and

small tumor volume. Moreover, diffusion weighted signal and ADC measurement is very

sensitive to acquisition errors and analysis bias; thus, many of the changes we observed might

be caused by our measurements rather than the biological changes. Another major limitation

is the fuzziness about ADC interpretation. ADC is a physical measurement that can be

affected by many biological parameters, including microdynamics and microstructures; its

biological significance requires further investigation.

Further efforts will focus on improving the SNR for early-stage tumors, and achieving

more precise compartmentalization of metabolites, and a better understanding of measured

metabolite ADC. For example, adding hyperpolarized urea will allow us to study perfusion

status of the tumor. A larger sample volume is needed to draw conclusions on the metabolite

ADC difference between early- and late-stage cancer. Histological analysis of the tumor will

be performed, including pathology index and MCT4 expression; then their correlation with

the imaging study will be examined.
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Chapter 6

Conclusion

We proposed a novel metabolic imaging technique, hyperpolarized diffusion weighted MRI, to

study enzyme kinetics and transporter expression in vivo, and successfully acquired data on

five TRAMP models. The measured metabolite ADC provided an insight into the localization

of metabolites. This study serves as one of the first attempts of in vivo validation of lactate

efflux theory. Moreover, it has been found that lactate ADC is higher in late-stage than

early-stage tumors, which is consistent with the overexpression of MCT4 and increased lactate

efflux in aggressive cancer.

In conclusion, we demonstrated that hyperpolarized diffusion MRI can study metabolite

compartmentalization which can reveal lactate efflux level in vivo, and potentially provide

insight into MCT4 expression in murine prostate tumors. This technique has shown great

promise in assessing cancer aggressiveness and therapeutic responses in a rapid, non-invasive

manner.
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