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Longitudinal neuroanatomical and cognitive
progression of posterior cortical atrophy

Nicholas C. Firth,1,2,* Silvia Primativo,1,3,* Razvan-Valentin Marinescu,2,*
Timothy J. Shakespeare,1 Aida Suarez-Gonzalez,1,4 Manja Lehmann,1,5 Amelia Carton,1

Dilek Ocal,1 Ivanna Pavisic,1 Ross W. Paterson,1 Catherine F. Slattery,1

Alexander J.M. Foulkes,1 Basil H. Ridha,1 Eulogio Gil-Néciga,4 Neil P. Oxtoby,2

Alexandra L. Young,2 Marc Modat,6 M. Jorge Cardoso,6 Sebastien Ourselin,6

Natalie S. Ryan,1 Bruce L. Miller,5 Gil D. Rabinovici,5 Elizabeth K. Warrington,1

Martin N. Rossor,1 Nick C. Fox,1 Jason D. Warren,1 Daniel C. Alexander,2

Jonathan M. Schott,1 Keir X.X. Yong1,† and Sebastian J. Crutch1,†

*,†These authors contributed equally to this work.

Posterior cortical atrophy is a clinico-radiological syndrome characterized by progressive decline in visual processing and atrophy

of posterior brain regions. With the majority of cases attributable to Alzheimer’s disease and recent evidence for genetic risk factors

specifically related to posterior cortical atrophy, the syndrome can provide important insights into selective vulnerability and

phenotypic diversity. The present study describes the first major longitudinal investigation of posterior cortical atrophy disease

progression. Three hundred and sixty-one individuals (117 posterior cortical atrophy, 106 typical Alzheimer’s disease, 138 con-

trols) fulfilling consensus criteria for posterior cortical atrophy-pure and typical Alzheimer’s disease were recruited from three

centres in the UK, Spain and USA. Participants underwent up to six annual assessments involving MRI scans and neuropsycho-

logical testing. We constructed longitudinal trajectories of regional brain volumes within posterior cortical atrophy and typical

Alzheimer’s disease using differential equation models. We compared and contrasted the order in which regional brain volumes

become abnormal within posterior cortical atrophy and typical Alzheimer’s disease using event-based models. We also examined

trajectories of cognitive decline and the order in which different cognitive tests show abnormality using the same models.

Temporally aligned trajectories for eight regions of interest revealed distinct (P5 0.002) patterns of progression in posterior

cortical atrophy and typical Alzheimer’s disease. Patients with posterior cortical atrophy showed early occipital and parietal

atrophy, with subsequent higher rates of temporal atrophy and ventricular expansion leading to tissue loss of comparable

extent later. Hippocampal, entorhinal and frontal regions underwent a lower rate of change and never approached the extent

of posterior cortical involvement. Patients with typical Alzheimer’s disease showed early hippocampal atrophy, with subsequent

higher rates of temporal atrophy and ventricular expansion. Cognitive models showed tests sensitive to visuospatial dysfunction

declined earlier in posterior cortical atrophy than typical Alzheimer’s disease whilst tests sensitive to working memory impairment

declined earlier in typical Alzheimer’s disease than posterior cortical atrophy. These findings indicate that posterior cortical atrophy

and typical Alzheimer’s disease have distinct sites of onset and different profiles of spatial and temporal progression. The ordering

of disease events both motivates investigation of biological factors underpinning phenotypic heterogeneity, and informs the selec-

tion of measures for clinical trials in posterior cortical atrophy.
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Introduction
Considerable heterogeneity is evident among individuals

with Alzheimer’s disease both clinically (e.g. amnesic,

visual, dysexecutive/behavioural and aphasic presentations

of Alzheimer’s disease) (Galton et al., 2000) and patho-

logically (e.g. hippocampal sparing and limbic-predominant

Alzheimer’s disease subtypes accounting for 25% of cases)

(Murray et al., 2011). This heterogeneity provides an im-

portant opportunity to explore the factors that promote or

inhibit disease progression, both spatially and temporally.

One recent example is the discovery of structural variations

in amyloid-b fibrils between individuals with rapidly and

slowly progressing forms of Alzheimer’s disease (Qiang

et al., 2017). In this context, longitudinal quantitative

tracking of variations in regional tissue damage in large

cohorts of patients with different phenotypic expressions

of a disease can reveal the temporal profiles of disease evo-

lution and permit testing of the hypothesis that differen-

tially distributed molecular lesions predict particular

patterns of disease progression.

Perhaps the most striking example of heterogeneity in

Alzheimer’s disease is seen in posterior cortical atrophy

(PCA). PCA is a clinico-radiological syndrome involving a

progressive, dramatic and relatively selective decline in

higher visual processing and other posterior cortical func-

tions (Benson et al., 1988; Crutch et al., 2012). The con-

dition is most commonly associated with the

histopathological features of Alzheimer’s disease, but the

distribution of pathology differs from typical Alzheimer’s

disease. PCA involves prominent tissue loss in the posterior

regions of the brain, with a greater density of neurofibril-

lary tangles (and to a lesser extent, neuritic plaques) in

occipital, posterior parietal and temporo-occipital cortex

and fewer pathological changes in more anterior areas

such as prefrontal cortex (Hof et al., 1990, 1997; Levine

et al., 1993; Ross et al., 1996). A small number of cases of

PCA have been attributed to alternative aetiologies includ-

ing corticobasal degeneration (CBD), Lewy body disease

(LBD), and prion disease (Tang-Wai et al., 2003a, b;

Renner et al., 2004). The prevalence and incidence of

PCA are not known but age of onset is most commonly

in the fifties or sixties (Mendez et al., 2002; Schott et al.,

2016). The atypical, predominantly posterior distribution

of damage in PCA relative to typical Alzheimer’s disease

has been confirmed using a number of structural and func-

tional neuroimaging metrics [e.g. grey matter atrophy

(Lehmann et al., 2011), white matter atrophy and altered

diffusivity (Migliaccio et al., 2012), and cerebral blood flow

(Kas et al., 2011; Lehmann et al., 2016)]. Although certain

molecular pathological metrics show little if any difference

between mild-to-moderately affected PCA and typical

Alzheimer’s disease patients (e.g. widespread amyloid

tracer uptake) (Lehmann et al., 2016), comparable CSF-

amyloid-b42 levels (Ossenkoppele et al., 2015b), the pattern

of tau tracer binding associates strongly with clinical

phenotype (Ossenkoppele et al., 2016). Individuals with

PCA and typical Alzheimer’s disease also show distinct pat-

terns of anti-amyloid-b antibodies (Dorothée et al., 2012)

and microglial activation patterns (Kreisl et al., 2017), rais-

ing the possibility that immunological responses could con-

tribute to shaping Alzheimer’s disease phenotypes.

Genetically, apolipoprotein E (APOE) e4 allele status

alters PCA risk but with a smaller effect than for typical

Alzheimer’s disease (Schott et al., 2006; Snowden et al.,

2007) and an exploratory genome-wide association study

has identified three candidate genetic risk factors that may

be specific to PCA (Schott et al., 2016).

Understanding the temporal changes associated with neu-

rodegeneration requires longitudinal studies, and to date

there have been no systematic longitudinal studies of

PCA. A small number of longitudinal case reports and

case series have described the clinico-radiological progres-

sion of the condition (Ross et al., 1996; Goethals and

Santens, 2001; Giovagnoli et al., 2009; Kennedy et al.,

2012; Chang et al., 2015; Crutch et al., 2017) or the de-

velopment of specific cognitive deficits [e.g. dyslexia and

excessive visual crowding (Yong et al., 2016), dysgraphia

(Primativo et al., 2017)]. The only previous longitudinal

group study found comparable rates of widespread grey
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matter loss in patients with PCA and typical Alzheimer’s

disease with a mean disease duration of 5 years, but par-

ticipant numbers were small (17 PCA, 16 typical

Alzheimer’s disease) and the time window limited (1-year

interval) (Lehmann et al., 2012). A large cross-sectional

dataset has been used to make inferences regarding pro-

gression, suggesting an early overlap across Alzheimer’s dis-

ease phenotypes in temporoparietal and posterior cingulate

atrophy and additional involvement of visual association

cortices in PCA, a pattern further emphasized in patients

at later disease stages (Ossenkoppele et al., 2015a).

In this study, we used longitudinal structural imaging and

cognitive profiles of individuals with PCA to track long-

term trajectories of change via event-based modelling

(EBM) and differential equation-based approaches.

Continuous trajectories, as well as the ordering of regional

volume loss on structural imaging measures were estimated

for PCA and typical Alzheimer’s disease relative to a con-

trol group. Similar estimations were carried out for trajec-

tories of cognitive decline and ordering of impaired

performance on neuropsychological measures. Our

hypothesis was that atrophy rates would be highest in

phenotype-specific brain regions early in the disease

course but subsequently show convergence, with atrophy

rates highest across a wider set of contiguous, phenotype

non-specific but Alzheimer’s disease-relevant networks as

the disease evolves.

Materials and methods

Participants

A flow chart of participants included and excluded from the
overall study and analyses is shown in Fig. 1. The longitudinal
study involved both prospective recruitment from research co-
horts, clinics at specialist centres (January 2005 to December
2016) and retrospective case note review (dating back to
December 1996). One hundred and seventeen individuals
with a clinical diagnosis of PCA were recruited at three spe-
cialist centres: 100 patients at the Dementia Research Centre
(DRC) at the National Hospital for Neurology and
Neurosurgery London (UK), nine patients at the University
Hospital Virgen del Rocio (HUVR) Memory Disorders Unit
(Spain), and eight patients at the University of California San
Francisco (UCSF) Memory and Aging Center (USA). All PCA
patients met both Tang-Wai et al. (2004) and Mendez et al.
(2002) criteria based on available information at baseline and
expert retrospective clinical review. Prospective participants
(n = 10) with clinical features of another neurodegenerative
syndrome (LBD, CBD, prion disease), were excluded (example
features: visual hallucinations, pyramidal signs, reduplicative
phenomena, parkinsonism, alien limb syndrome, asymmetric
dystonia and myoclonus, ataxia); thus all patients included
fulfilled consensus criteria for PCA-pure (Crutch et al.,
2017). One hundred and six patients with typical amnestic-
predominant Alzheimer’s disease and 138 healthy individuals
contributed to patient and control reference samples. All pa-
tients with typical Alzheimer’s disease fulfilled clinical criteria

for probable Alzheimer’s disease (McKhann et al., 2011); one
prospective participant was found to be carrying a presenilin 1
(PSEN1) mutation and was excluded. All available molecular
or pathological evidence for patients [45/117 (38%) PCA; 49/
106 (46%) typical Alzheimer’s disease] supported underlying
Alzheimer’s disease pathology [73 had a CSF profile compat-
ible with Alzheimer’s disease (Shaw et al., 2009; Duits et al.,
2014) (see Supplementary material for assay-specific cut-offs);
six had positive amyloid PET scans; 14 had autopsy-proven
Alzheimer’s disease], with the exception of one patient with
PCA found to have a CSF profile borderline compatible with
Alzheimer’s disease (increased amyloid-b1–42 and p-tau,
decreased total-tau). In addition to the patients presented
above, three patients (two PCA, one typical Alzheimer’s dis-
ease) that were initially recruited were excluded from analysis
based on their CSF profile not being compatible with under-
lying Alzheimer’s disease (Duits et al., 2014). Patients with
biomarker evidence of Alzheimer’s disease pathology met the
McKhann et al. (2011) criteria for probable Alzheimer’s dis-
ease with high biomarker probability of Alzheimer’s disease
aetiology (Dubois et al., 2010). Patients with PCA were fol-
lowed-up annually until cognitive and/or physical decline pre-
vented further participation (Fig. 1), together with a reference
subset of typical Alzheimer’s disease and control participants.
Prior ethical approval for the study was provided by the
National Research Ethics Service Committee London Queen
Square and written informed consent was provided by all par-
ticipants according to the Declaration of Helsinki.

See Table 1 for demographic details of participants at initial
visits and for subsets of participants completing follow-up
visits. Of the 361 individuals contributing data to the study,
270 completed at least one neuroimaging assessment and 216
at least one cognitive assessment. From the 270 participants
contributing neuroimaging data, a total of 553 scans gathered
over a maximum period of 6 years were included in the ana-
lysis. From the 216 participants contributing cognitive data, a
total of 419 assessments gathered over a maximum period of 6
years were included in the analysis. Participants were well
matched for age and patient participants were matched for
age at onset at first cognitive assessment. There were more
female than male participants in the PCA relative to typical
Alzheimer’s disease group (%male: PCA: 39%; typical
Alzheimer’s disease: 62%; controls: 50%; P50.01). Patient
groups were matched for Mini-Mental State Examination
(MMSE) score at first assessment, with both groups signifi-
cantly impaired relative to controls (PCA: 20.88 � 5.17;
typical Alzheimer’s disease: 19.38 � 4.85; controls:
29.02 � 0.98).

Procedures

T1-weighted volumetric magnetic resonance scans were
acquired on five different scanners [two 3 T Trio (DRC and
UCSF), 1.5 T Intera (HUVR), and two 1.5 Signa units (DRC)]
using spoiled gradient recalled or gradient echo (MPRAGE)
sequences. The scans consisted of full brain coverage coronal
or sagittal slices running between 124 and 208 contiguous
slices of 1.5 or 1.0 mm. Full details of imaging parameters
are shown in the Supplementary material, and site and scanner
distribution in earlier and later PCA are shown in the
Supplementary material.
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To estimate regional brain volumes, we used the Geodesic
Information Flows (GIF) algorithm (Cardoso et al., 2012) to
perform tissue segmentation and parcellation. The

Neuromorphometrics atlas was used for segmentation, which
produced 144 different brain regions of interest across the left
and right hemisphere. Segmentation failed for six scans belong-
ing to five subjects (three controls, one PCA and one typical
Alzheimer’s disease) due to motion artefacts; these scans were
subsequently removed and not included in the statistics in
Table 1. Brain volumes were corrected for total intracranial
volume (TIV), age and gender, scanner type (1.5 T, 3 T) and
site (DRC, UCSF, HUVR) using a general linear model, where
gender, scanner type and site were encoded using one-hot
encoding. A total of 52 brain regions of interest were removed
(18 were not part of the cerebral cortex, six had segmentation
errors, 28 were grouped into larger regions of interest). Left
and right brain regions were averaged into one region, provid-
ing a total of 46 regions of interest, which were further

averaged into eight regions of interest corresponding to
whole brain, hippocampal, occipital, frontal, entorhinal, tem-
poral (excluding hippocampal), parietal and ventricle volumes.

Participants in the prospective study phase completed an
annual battery of neuropsychological tests. This general neuro-
psychological battery (see Lehmann et al., 2011 for detailed
references) includes standard tests of general cognitive function
(Supplementary Table 1). Individual test administration was
discontinued at subsequent visits for participants scoring at
floor, in which case a floor score was assigned for this test
at next assessment, with scores at all following assessments
classified as missing data.

Statistical analysis

The differential equation model (DEM) (Villemagne et al.,
2013) was used to estimate long-term neuroanatomical and
cognitive biomarker trajectories from multiple short-term

Figure 1 Study flow chart showing participants included and excluded from analyses. Study participants were recruited from three

different centres from the Dementia Research Centre (DRC), University of California San Francisco (UCSF) and University Hospital Virgen del

Rocio (HUVR). Of all the study participants, some underwent neuroimaging (Table 1) and neuropsychological testing (Table 1 and Supplementary

Table 1). We performed statistical analysis both longitudinally, using the differential equation model (DEM) and cross-sectionally, using the EBM.

Full results are also shown in the Supplementary material on the subset of patients with molecular and pathological evidence of Alzheimer’s

disease pathology. AD = Alzheimer’s disease; tAD = typical Alzheimer’s disease; DLB = dementia with Lewy bodies; CBD = corticobasal degen-

eration; MMSE = Mini-Mental State Examination.
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longitudinal data. For each region of interest or cognitive test
the DEM calculates the rate of change for each individual
across each of the visits (Fig. 2A). The rate of change of a
biomarker was assumed to be a function of the mean bio-
marker value for each participant. In order to make minimal
assumptions on the subsequent trajectory shape, a non-
parametric Gaussian process regression model was then fit to
all of the participants’ values to give an average rate of change
for all biomarker values (Fig. 2B). This function was then
integrated, giving an average biomarker value as a function
of time (Fig. 2C). With no reliable means of measuring age
at onset, biomarker trajectories were aligned by defining a
reference time t0 (t = 0; Fig. 2D) as the threshold that best
separated controls from patients. See the Supplementary ma-
terial for full DEM method. All participants with more than
one assessment were included in these analyses.

To estimate disease progression from limited datasets and to
validate the DEM trajectories, we used the EBM (Fonteijn
et al., 2012). The EBM derives a probabilistic ordering in
which biomarkers show detectable abnormality. The most
likely sequence provides a staging system expressing the most
likely position of a subject along the most likely sequence of
events. In this work, two formulations of the EBM were used
corresponding to MRI brain volume data and cognitive test
data. For the EBMs using MRI data, the previously published
formulation of the model was used. For cognitive data models
of normal and abnormal biomarker distributions were repre-
sented using kernel density estimation instead of simple para-
metric distributions used previously in the EBM. See
Supplementary material for complete formulations of both
EBMs. All available data at baseline visit were included in
these analyses.

For DEM results, we tested for differences in estimated bio-
marker values between time points (�10, 0, and 10 years from
t0) both within- and between-group. Within-group differences
in estimated biomarker values were assessed using two-tailed

paired t-tests for all pairs of biomarkers (e.g. within PCA,
values of biomarker i versus biomarker j for all i,j) at �10,
0, and 10 years since t0. Between-group (PCA versus typical
Alzheimer’s disease) differences in estimated biomarker values
were assessed using two-tailed two sample t-tests for all bio-
markers at each time point. For EBM results, we tested for
statistically significant differences in the estimated abnormality
sequences, both within and between groups. Non-parametric
tests were used because of non-Gaussianity of the data (data
are ordinal representing ranks) and samples were thinned (1
every 100) as adjacent samples in Markov Chain Monte Carlo
(MCMC) sampling are correlated. Within-group differences
were assessed using Wilcoxon signed-rank one-tailed tests for
all pairs of biomarkers (i,j), which assesses whether biomarker
i becomes abnormal before biomarker j. Significant differences
in the relative position of a biomarker within the EBM abnor-
mality sequence between groups (PCA versus typical
Alzheimer’s disease) were assessed using two-tailed Mann-
Whitney U-tests. We applied Bonferroni-corrected thresholds
for all tests performed on EBM and DEM results.

Data availability

The data that support the findings of this study are available
from the corresponding author, upon reasonable request. All
the algorithms used in the present paper are reported in the
Supplementary material.

Results
To give the reader a sense of the raw neuroimaging data,

we show in Fig. 3 longitudinal data for two exemplar

metrics—occipital and hippocampal atrophy. Compared

to patients with typical Alzheimer’s disease, PCA patients

showed more occipital (PCA: mean volume

Table 1 Demographic details for participants in the study contributing neuroimaging and neuropsychological data

Total study participants

PCA (n = 117) Typical Alzheimer’s disease (n = 106) Controls (n = 138)

Visits Number

of

subjects

Age (SD) Gender

(M:F)

Age at

onset

(SD)

Number

of

subjects

Age Gender

(M:F)

Age at

onset

(SD)

Number

of

subjects

Age (SD) Gender

(M:F)

Age at

onset

(SD)

Neuroimaging

51 89 63.52 (6.91) 55:34 58.50 (6.86) 66 66.39 (8.58) 31:35 61.71 (8.37) 115 61.87 (10.43) 70:45 -

52 46 62.11 (6.52) 29:17 58.15 (6.58) 37 66.84 (8.83) 17:20 62.38 (8.52) 50 61.00 (12.01) 31:19 -

53 31 62.75 (6.50) 19:12 59.16 (6.67) 21 71.00 (6.97) 10:11 65.86 (7.45) 28 65.75 (5.96) 16:12 -

54 15 61.46 (4.44) 11:4 58.73 (4.61) 14 70.89 (6.33) 8:6 66.93 (6.67) 17 66.82 (4.88) 10:7 -

55 9 61.73 (4.06) 7:2 58.56 (4.72) 4 72.08 (4.81) 3:1 68.75 (4.87) 8 66.11 (4.83) 3:5 -

56 2 62.35 (1.65) 1:1 58.50 (1.50) 1 79.90 (0.00) 1:0 76.00 (0.00) 115 61.87 (10.43) 70:45 -

Neuropsychology

51 109 64.49 (7.54) 41:68 59.99 (8.08) 58 65.68 (7.57) 36:22 54.74 (4.93) 49 63.12 (5.90) 12:37 -

52 70 63.64 (7.32) 23:47 59.35 (7.72) 28 64.58 (7.08) 13:15 54.08 (4.78) 18 60.00 (5.87) 0:18 -

53 45 62.73 (7.26) 16:29 58.70 (7.53) 5 66.08 (2.78) 2:3 56.00 (0.00) 0 - - -

54 20 63.19 (7.00) 7:13 59.84 (6.46) 0 - - - 0 - - -

55 7 59.44 (4.84) 2:5 56.25 (4.62) 0 - - - 0 - - -

56 2 57.22 (3.49) 1:1 55.32 (1.32) 0 - - - 0 - - -

Details are presented at initial visit (in bold) and for subsets of participants who completed follow-up assessments (up to a maximum of six). Number of individuals at each

assessment, mean (and standard deviation, SD) age, gender and mean age at onset (and standard deviation) are shown per number of visits. F = female; M = male.
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z-score = �3.74; typical Alzheimer’s disease: �1.33,

P51 � 10�9) and less hippocampal atrophy (PCA: z-

score = �0.74; typical Alzheimer’s disease: z = �2.09,

P51 � 10�4) at baseline.

Temporally-aligned average DEM trajectories for eight

regions of interest were calculated for participants with

PCA (Fig. 4A) and typical Alzheimer’s disease (Fig. 4B).

Confidence estimates using bootstraps for each average tra-

jectory were also calculated (Fig. 5). Amongst patients with

PCA, occipital and parietal atrophy was most evident

before t0, and by t0 we also observe considerable atrophy

in the temporal lobe. Across the 10 years following t0, we

observe a marked increase in the rate of occipital, parietal

and temporal atrophy and ventricular expansion. By con-

trast, hippocampal, entorhinal and frontal atrophy never

match the extent of tissue loss in posterior and temporal

regions. More than 10 years from t0, atrophy rates in oc-

cipital, parietal and temporal lobes seem to slow down, but

limited data in this time window prevent the drawing of

any clear conclusions.

By contrast, before t0 patients with typical Alzheimer’s

disease showed most extensive tissue loss in the hippocam-

pus, with subsequent rates of change highest for temporal

atrophy and ventricular expansion. It should be noted that

within 12 years from t0, model estimates of parietal and

ventricular abnormality amongst patients with typical

Alzheimer’s disease are equivalent to or exceed the relative

extent of hippocampal abnormality. Comparing PCA and

typical Alzheimer’s disease trajectories directly at t0 (Fig. 5),

the estimated region of interest volumes were lower in pos-

terior regions (parietal: P5 1 � 10�6; occipital:

P5 2 � 10�3) in PCA relative to typical Alzheimer’s pa-

tients overall. On the other hand, participants with PCA

had higher hippocampal and entorhinal estimated volumes

(both P5 1 � 10�9) and lower ventricular volume

(P5 2 � 10�3) compared to patients with typical

Alzheimer’s disease. Comparison of estimated frontal or

temporal region of interest volumes at t0 did not find evi-

dence of differences between patient groups following

Bonferroni correction (both P4 2 � 10�3). For a summary

Figure 2 Diagram of the differential equation model. (A) Measuring biomarker rate of change from line of best fit. The biomarker

measurements for each subject were plotted against time since baseline, and a line was fit for each subject independently. The slope of these lines

was then used as a measure of the biomarker rate of change. (B) Rate of change model. The slopes of each fitted line were plotted against the

average biomarker value of each subject (blue crosses). A non-parametric model (Gaussian process regression, green line) was then fitted on

measurements, which gave a model prediction and also a 95% confidence interval. (C) Trajectory reconstruction. A line integral was performed

on the rate of change model from B. The integration limits were defined as the biomarker values where the corresponding change is zero or at

the limits of the data. Starting from the upper integration limit, the trajectory was reconstructed from the rate of change prediction, which

represents the slope corresponding to that biomarker value. Before integration, an arbitrary starting time point, t0 = 0, was defined, thus all time

is relative to t0. (D) Anchoring process. In the absence of a reliable estimate of time since disease onset, the origin t0 was set as the point that best

separates controls from patients, which have been staged along the time axis using their biomarker data. Moreover, to make trajectories

comparable across biomarkers we convert the biomarker values to Z-scores with respect to controls, which results in a scaling along the y-axis.

The process (A–D) was repeated for each biomarker independently. After fitting each biomarker, the subjects can be staged along the disease

timeline, as in (D), using the trajectories from all biomarkers.
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of the statistical tests including comparisons 10 years

before and following t0, see Supplementary Table 9.

Differences between PCA and typical Alzheimer’s disease

progression are also recapitulated with the EBM. Figure 4C

and D shows, for both PCA and typical Alzheimer’s dis-

ease, snapshots of brain atrophy at model stages 4, 8, 16,

24, 32, 40, and 46 (of 46) generated from the positional

variance diagrams (Supplementary Fig. 1). Patients with

PCA showed early atrophy in occipital (inferior, anterior,

superior, lateral) and superior parietal areas, whilst patients

with typical Alzheimer’s disease showed early atrophy in

the amygdala, hippocampus and entorhinal cortex, fol-

lowed by temporal areas. The ordering is largely preserved

under bootstrapping and supported by statistical testing

(Supplementary Figs 2 and 3). Comparing PCA and typical

Alzheimer’s disease abnormality sequences provided evi-

dence of differences in ordering of disease events between

patient groups (Supplementary Table 9). Most occipital

Figure 3 Observed longitudinal occipital (A–D) and hippocampal (E–H) atrophy, relative to controls, for PCA (left) and typical

Alzheimer’s disease patients (right). (A–B and E–F) Spaghetti plots anchored at baseline visit. (C–D and G–H) Hairy line plots for observed

longitudinal data anchored to the group trajectory using the baseline value. tAD = typical Alzheimer’s disease.
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regions were estimated to become abnormal significantly

earlier in PCA compared to typical Alzheimer’s disease,

with the exception of the occipital pole, which was esti-

mated to become abnormal earlier in typical Alzheimer’s

disease. Temporal, frontal, hippocampus and entorhinal re-

gions were estimated to become abnormal significantly ear-

lier in typical Alzheimer’s disease compared to PCA. There

was mixed evidence of parietal regions differing in

estimated ordering of abnormality between patient

groups. For example, superior parietal and precuneus re-

gions were estimated to become abnormal significantly ear-

lier in PCA and typical Alzheimer’s disease, respectively,

although test effect sizes were small. Full statistical testing

can be found in Supplementary Fig. 4.

A summary of all available baseline cognitive data is

shown in Supplementary Table 1. A number of MMSE

Figure 4 Region of interest trajectories and ordering of atrophy. (A and B) Trajectories of different region of interest volumes from the

DEM for (A) PCA progression and (B) typical Alzheimer’s disease (AD) progression. The x-axis shows the number of years since t0, and the y-axis

shows the Z-score of the region of interest volume relative to controls. The trajectories of the ventricles have been flipped to aid comparison.

Overlaid are histograms of subject stages based on the estimated trajectories. (C and D) Ordering of atrophy in (C) PCA patients and (D) typical

Alzheimer’s disease patients according to the EBM. White regions are within the volume range of healthy controls, while red regions are abnormal

by the corresponding stage, with shading indicating the probability of abnormality. By stage k, a number of k biomarkers shaded in red became

abnormal. For positional variance diagrams used to generate brain figures and full details on methodology, see the Supplementary material.

Longitudinal progression of PCA BRAIN 2019: 142; 2082–2095 | 2089

https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awz136#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awz136#supplementary-data
https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awz136#supplementary-data


scores were available in typical Alzheimer’s disease partici-

pants who did not undergo the full neuropsychological as-

sessment (n = 31), but are included for disease staging

purposes. Both patient groups showed evidence of dimin-

ished performance on all of the available cognitive meas-

ures relative to controls. The two patient groups had

comparable scores on MMSE, visual episodic memory

and working memory. Nonetheless, consistent with stand-

ard phenotypic descriptions, notable cognitive patterns

could be observed as differences in performance between

the two groups. Overall, PCA patients exhibited signifi-

cantly poorer performance in numeracy, basic vision,

space and object perception relative to their typical

Alzheimer’s disease counterparts. Overall, patients with

typical Alzheimer’s disease had a lower performance in

verbal episodic memory compared to PCA patients.

To evaluate the cognitive changes due to disease, an EBM

maximum likelihood sequence of biomarker abnormality

was estimated for both PCA and typical Alzheimer’s disease

using 13 cognitive test baseline measures (Fig. 6A and B).

Uncertainty in these orderings was estimated using a boot-

strapping procedure (Supplementary Fig. 5) (Young et al.,

2014). Patients with PCA showed early impairment on per-

ceptual, spatial, numeracy (GDA subtraction) and working

memory tasks (digit span backwards). Patients with typical

Alzheimer’s disease showed early deficits in working

memory, verbal episodic memory and numeracy (addition

and subtraction), with impairment on visual tasks a

consistently later feature (4/5 visual/visuomotor tasks oc-

cupying the latest positions in the sequence). The most not-

able differences between the PCA and typical Alzheimer’s

disease maximum likelihood sequences were the occurrence

of the spatially demanding A cancellation time measure

(PCA: event 4/13; typical Alzheimer’s disease: event 13/

13; P5 7 � 10�4) and the working memory measure of

digit span forwards (PCA: event 13/13; typical

Alzheimer’s disease: event 1/13; P5 7 � 10�4). These

measures were selected as exemplar cognitive tasks; corres-

ponding individual observed longitudinal data outline the

variability of longitudinal performance on cognitive meas-

ures (Fig. 7). Compared to patients with typical Alzheimer’s

disease, PCA patients showed significantly poorer A cancel-

lation (PCA: z-score = �10.91; typical Alzheimer’s disease:

�5.03; P5 1 � 10�5) and comparable digit span forward

performance (PCA: z-score = �1.10; typical Alzheimer’s

disease: z = �1.48; P4 0.05). Differences between PCA

and typical Alzheimer’s disease sequences of cognitive

changes were also statistically significant (Supplementary

Figs 7 and 8).

Average trajectories for 13 cognitive measures were cal-

culated for participants with PCA (Fig. 6C). Trajectories

for typical Alzheimer’s disease were not calculated due to

insufficient follow-up visits from these participants.

Confidence estimates for each average trajectory were

also calculated (Supplementary Fig. 11). Fragmented letters,

dot counting and A cancellation metrics showed greatest

Figure 5 Mean trajectories for region of interest volumes for PCA and typical Alzheimer’s disease aligned on the same

temporal scale with samples from the posterior distribution showing the confidence of the mean trajectory. The x-axis shows the

number of years since t0, and the y-axis shows the z-score of the region of interest volume relative to controls. The trajectories for the ventricles

have been flipped to aid visual comparison. AD = Alzheimer’s disease.
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impairment at t0. These measures also showed the greatest

subsequent rates of change, likely reflecting both progres-

sion of cognitive impairment but also the psychometric

properties of the tests. A second cluster of tasks showing

comparable rates of decline included MMSE, shape dis-

crimination, object decision and visual and verbal episodic

memory. Of the remaining tasks, working memory meas-

ures showed later impairment and lower rates of decline.

Discussion
This first major longitudinal investigation of disease pro-

gression in PCA revealed distinct patterns of tissue loss as

compared to typical Alzheimer’s disease. Following the

early neuroanatomical signature of occipital and parietal

atrophy characterized in previous cross-sectional studies,

individuals with PCA underwent further atrophy in those

regions as well as temporal lobe atrophy and ventricular

expansion. These changes were commensurate in relative

extent with occipital and parietal damage within an esti-

mated 10 years of t0. By contrast, entorhinal, hippocampal

and frontal regions underwent a lower rate of change

which, whilst notably abnormal, did not result in the rela-

tive magnitude of loss seen even initially in the key

posterior regions. Although in PCA there was markedly

greater parietal than hippocampal atrophy throughout the

disease course, the reverse was not true for typical

Alzheimer’s disease; in these individuals the relative extent

of parietal atrophy matched that of the hippocampal re-

gions within 11 years of t0.

Overall, findings are consistent with a space of continu-

ous phenotypic variability across the full spectrum of

Alzheimer’s disease, as is increasingly being recognized

both clinically (Dickerson et al., 2011) and pathologically

(Murray et al., 2011; Whitwell et al., 2012).

The findings of this study support the idea that the spa-

tial and temporal profiles of PCA and typical Alzheimer’s

disease phenotypes may be the consequence of insults ori-

ginating at different sites within a common disease-relevant

network of brain regions (Warren et al., 2013). Findings

suggest selective intracortical vulnerability, with early

abnormalities estimated for some (e.g. occipital: inferior/su-

perior/middle/fusiform) but not all regions (occipital pole)

for the PCA group overall, consistent with relative preser-

vation of visual acuity in PCA (Lehmann et al., 2011).

Regions considered key sites of pathological activity in

Alzheimer’s disease, such as the entorhinal cortex and

hippocampus, exhibit neuroanatomical distinctions between

PCA and typical Alzheimer’s disease; such distinctions are

Figure 6 (A and B) Positional variance diagrams for (A) PCA and (B) typical Alzheimer’s disease showing estimated order of

impairment on 14 cognitive metrics (y-axis) across different stages (positions on x-axis). Each entry (x,y) represents the probability of

a particular cognitive metric becoming abnormal at a given position in the sequence (darker shades = higher probability). (C) Trajectories of

different cognitive tests from the differential equation model for PCA progression. The x-axis shows the number of years since t0, and the y-axis

shows the z-score on each cognitive test relative to controls. Overlaid are also the histograms of the subjects, as they have been staged by the

model.
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evident not only early in the disease, but throughout the

disease course. Accordingly, serious consideration must be

given to whether trajectories are dictated by a combination

of site of origin, relevant connectivity and time, or alterna-

tively by protective factors which reduce the vulnerability

of certain networks. For example, between 0 and 10 years

from t0, PCA subjects revealed more pronounced extent

and rate of atrophy overall and within phenotype-specific

regions of interest compared to typical Alzheimer’s disease,

which suggest that factors other than site of origin or brain

connectivity might also be involved. Similarly, the longitu-

dinal clinical data and model-based estimation of change

over a near 30-year window mean such distinctions cannot

be dismissed as minor variations in early disease expres-

sion, as could have been argued or hypothesized previously

from solely cross-sectional data.

A key strength of the study is the ability to compare and

contrast atrophy and cognitive change between individuals

Figure 7 Observed longitudinal data from example cognitive tasks. Observed longitudinal A cancellation (A–D) and digit span for-

wards (E–H) scores, relative to controls, for PCA (left) and typical Alzheimer’s disease patients (right). (A–B and E–F) Spaghetti plots anchored at

baseline visit. (C–D and G–H) Hairy line plots for observed longitudinal data anchored to the group trajectory using the baseline value.

tAD = typical Alzheimer’s disease.
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with PCA and typical Alzheimer’s disease. The DEM can

infer long-term progression from short-term longitudinal

data, which is critical in the case of a sporadic syndrome

like PCA, which is relatively rare and cannot practically be

identified and followed in asymptomatic individuals. The

DEM, unlike the EBM, includes time in the model to

permit the estimation of rates of change, although the ap-

proach can only integrate the rate of change to a trajectory

of data where the modelled average rate of change does not

alternate between increasing and decreasing. Another

unique advantage of this study is the EBM’s capacity to

estimate longitudinal patterns from sufficient, representative

cross-sectional data.

The results on neuropsychological data highlight differ-

ences and similarities between patients with PCA and typ-

ical Alzheimer’s disease in terms of both early cognitive

difficulties and trajectories. At the early stages both patient

groups demonstrated widespread cognitive decline com-

pared to controls and the two groups did not differ in

terms of MMSE, working memory and visual episodic

memory, which might be comparably impaired but with

different underlying cognitive mechanisms. The differences

between the two groups included lower performance in nu-

meracy, visuoperceptual and visuospatial processing in

PCA relative to typical Alzheimer’s disease. In contrast,

lower performance in verbal episodic memory was

observed in typical Alzheimer’s disease compared to PCA

patients. The different pattern of results observed for visual

and verbal episodic memory suggest that the former involve

an important component of visual processing and might

represent an unreliable measure of episodic memory in

PCA. Longitudinally, the data highlighted different trajec-

tories of decline for different cognitive domains in the two

groups of patients. Among the most striking differences,

performance on measures sensitive to visuospatial process-

ing (such as the A cancellation test) was estimated to de-

cline early in PCA and relatively late in typical Alzheimer’s

disease. Conversely, performance on measures of working

memory (such as the forward digit span) were estimated to

decline early in typical Alzheimer’s disease and late in PCA.

An apparently unexpected result may relate to the back-

ward digit span being estimated as becoming abnormal

relatively early in PCA. The backward digit span is

indeed a measure of working memory. Nonetheless, the

recent literature on cognitive psychology and neuroimaging

suggests that the backward digit span is a complex cogni-

tive test, which requires the activation of multiple cognitive

systems and brain circuits. In particular, the prominent

contribution of visuospatial imagery and the high activa-

tion of the dorsolateral prefrontal cortex have been shown

(Rapport et al., 1994; Reynolds et al., 1997; Hoshi et al.,

2000; Hilbert et al., 2014). The literature thus seems to

suggest that caution must be placed when interpreting the

cognitive processes underlying this test, since cognitive

functions other than working memory, some of which are

already known to be impaired in PCA, might cause a de-

cline in performance.

While the current study represents the largest longitu-

dinal investigation of PCA to date comprising analyses of

structural imaging and comprehensive neuropsychological

measures, several limitations should be noted. Owing to

the relative rarity of PCA, data were acquired over an ex-

tended time period; for the majority of this period (from

1996 onwards), evidence for underlying Alzheimer’s disease

pathology was only routinely available at autopsy.

Correspondingly, amyloid PET imaging and CSF were

only available in a proportion of patients, with non-

Alzheimer’s disease aetiologies (DLB, CBD) ruled out

based on available clinical information. Nevertheless, re-

peating analyses on the subset of patients with evidence

of underlying Alzheimer’s disease pathology generated find-

ings that were consistent with overall results

(Supplementary Figs 9–17). Another limitation of our

study is that imaging data were acquired on different scan-

ners of different strengths, although these covariates were

regressed out after the estimation of regional brain vol-

umes. Moreover, another limitation is the comparatively

small amount of data collected from sites outside of the

UCL Dementia Research Centre, thus limiting our under-

standing of PCA outside of this centre. Imbalanced num-

bers from different sites is a limitation in many multicentre

studies, in particular in studies in which cognitive tests are

administered in different languages. Controlling for differ-

ences across centres becomes increasingly challenging with

smaller numbers in specific centres as unintended variance

may be removed by regressing out differences between cen-

tres. We hope that improvements in the diagnosis of PCA

will promote more studies spanning different countries and

socioeconomic areas, and more large-scale analyses to in-

corporate these data. While numbers of time points varied

between participants, the EBM and DEM approaches out-

lined above enabled the estimation of ordering of disease

events and non-linear trajectories based on cross-sectional

and participant-specific short-term longitudinal data. These

approaches have characteristic assumptions that are im-

portant to consider when interpreting the current findings.

First of all, the DEM estimates every trajectory independ-

ently, so after DEM fitting we need to put multiple trajec-

tories on a common axis, which also requires normalization

and a time anchor. Here we used the threshold that best

separates controls from patients to anchor the time (t = 0).

The DEM trajectories are also susceptible to floor and ceil-

ing effects in both brain volumes and cognitive measures,

but the probabilistic nature of the DEM goes some way to

ameliorating this. With regards to the EBM, it assumes

trajectories are step-functions, where biomarkers switch

from a normal to an abnormal value. Finally, both the

EBM and DEM estimate a population-average disease pro-

gression, which is not necessarily indicative of how each

individual will progress.

Future studies will need to focus on disentangling the

genetic, pathological, molecular and neurodevelopmental

factors responsible for the distinction in long-term disease

pathways and progression reported in this paper. For
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example, pilot genome-wide association study findings in

PCA implicate genes associated with intercellular commu-

nication, signalling pathways related to retinal degeneration

and the development of the visual system, but these results

must be replicated in larger samples and the impacts of

heterogeneity and young age at onset be further disambig-

uated. Building on the insights of the landmark investiga-

tions 20 years ago (Hof et al., 1997, 1990),

neuropathological studies must also examine the relative

impact of disease upon specific neuronal populations and

different inflammatory processes. It is hoped that better

understanding the causes of phenotypic heterogeneity in

Alzheimer’s disease may prove a catalyst for novel thera-

peutic strategies.
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