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ABSTRACT 

SPATIAL VARIABILITY OF SUSPENDED PARTICULATE MATTER IN  

SAN FRANCISCO BAY 

Nicole Chin Taylor 

Understanding spatial variability of water quality in estuary systems is 

important for making monitoring decisions and designing sampling strategies. In 

San Francisco Bay, the largest estuary system on the west coast of North 

America, tracking the concentration of suspended materials in water is largely 

limited to point measurements with the assumption that each point is 

representative of its surrounding area. In this study, we 1) quantify spatial 

variability in Suspended Particulate Matter (SPM) concentrations as a proxy for 

water quality at different spatial scales to contextualize this assumption and 2) 

demonstrate the potential of satellite and shipboard remote sensing to supplement 

current monitoring methods. We collected radiometric data from the bow of a 

research vessel on three dates in 2019 corresponding to satellite overpasses by 

Sentinel-2. Using our ship-based data, we tracked the location of a low-salinity, 

high-turbidity zone to show that remote sensing of SPM can inform on physical 

environmental conditions. We found that features exist that are not picked up by 

current point sampling, which prompted us to examine how much variability 

exists at spatial scales between 20 m and 10 km in San Francisco Bay using 10 m 

resolution Sentinel-2 imagery. We found 23%-80% variability in SPM at the 5km 

scale (the scale at which point sampling occurs), demonstrating the risk in 
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assuming a single measurement is representative of a 5km area. In addition, 

current monitoring takes place along a transect within the Bay’s main shipping 

channel, which we show underestimates the spatial variance of the full bay. Our 

results suggest that spatial structure and spatial variability in the Bay change 

seasonally based on freshwater inflow to the Bay, tidal state, and wind speed. We 

recommend monitoring programs take this into account when designing sampling 

strategies, and that end-users account for the inherent spatial uncertainty 

associated with the resolution at which data is collected. This analysis also 

highlights the applicability of remotely sensed data to augment traditional 

sampling strategies.        
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CHAPTER 1 

INTRODUCTION 

San Francisco Bay  

San Francisco Bay is the most extensive estuary system on the west coast 

of North America. Draining roughly 40% of California’s land area (Conomos et 

al. 1985), the bay is a dynamic environment, with continually evolving water 

masses influenced both by natural processes and anthropogenic activities. The 

economic and societal importance of San Francisco Bay is profound: 

approximately 1.5 million metric tons of general cargo moves through the bay on 

an annual basis, and in 2019 an estimated three hundred thousand people traveled 

as passengers out of the port of San Francisco (sfport.com). The bay is home to 

eight operational bridges, numerous oil and auto ships, constant dredging 

operations, and a booming tourism and recreation industry, as well as a variety of 

unique wetland and estuarine ecosystems.  

The physical environment of the bay is as dynamic as the economic 

system it supports. The bay itself can be simplified into three main regions: the 

North Bay, Central Bay, and South Bay. The Sacramento and San Joaquin rivers 

combine to form the San Francisco Bay Delta, which feeds into the east end of 

North Bay and account for 90% of the total freshwater inflow. North Bay is 

therefore characterized by a strong salinity gradient, starting at 0 at the mouth of 

the delta and increasing to 33ppt at Central Bay. This inflow of river water is the 

primary control on bay-wide salinity (Conomos, Smith, and Gartner 1985) and a 
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main source of dissolved organic carbon, nutrients, and freshwater phytoplankton 

to the estuarine system (Davis 1982). Freshwater input to South Bay comes from 

runoff and small streams, accounting for the remaining 10% of freshwater inflow. 

High levels of evaporation compared to precipitation increase the salinity in South 

Bay, which is a more static environment than its northern counterpart. Water 

retention time in South Bay is on the order of 3-5 months, while in North Bay 

water moves through as quickly as 2 weeks (Davis 1982). South and North Bay 

connect at Central Bay, which in turn interfaces with the Pacific Ocean. 

Throughout the bay, high terrigenous influence and turbulent mixing from 

wind result in high levels of dissolved organic matter and suspended sediment 

concentrations (Davis 1982). The rivers also contribute extremely high levels of 

sediment and organic matter to the system (Davis 1982; Fichot and Benner 2012; 

Hooker et al. 2020). Suspended solid content ranges from over 250 mg/L in 

shallow turbid areas of South Bay to lower than 10mg/L in deeper areas of 

Central Bay (sfbay.wr.usgs.gov). Horizontal mixing through the bay is primarily 

controlled by ocean tides and freshwater inflow from the delta. Tides have a 

strong effect on horizontal mixing in the bay, moving water back and forth over 

10’s of km, but flow out of the Golden Gate is primarily controlled by the amount 

of freshwater inflow from the delta (Davis 1982). This freshwater inflow is 

strongly seasonal and links the terrestrial environment to the distribution of 

salinity through North Bay. In summer months, precipitation over California 

decreases, leading to less runoff and lower flow from the San Joaquin and 



 3 

Sacramento Rivers. This allows salt water to intrude farther into the bay in the 

summer and fall. Conversely, in the winter and spring when precipitation is 

higher, the inflow from the delta increases and the salinity gradient moves 

westward towards San Pablo Bay (Davis 1982; Hutton, Rath, and Roy 2017). The 

2ppt bottom salinity level has been defined as a metric for keeping track of these 

cyclic shifts in North Bay salinity, and is known as the x2 marker (Jassby et al. 

1995). This virtual marker is indicative of a change in the dominant water body 

and is linked to the level of influence freshwater inflow has on biologic and 

physical aspects of the bay.  

 Keeping track of these intense shifts in water quality and suspended 

materials is a vital component in the management of San Francisco Bay. To fill 

this requirement, the USGS has conducted monthly monitoring cruises through 

San Francisco Bay since 1965. Each full-bay cruise traverses a 20 station transect 

starting in Redwood City and ending in Rio Vista on board the R/V Peterson (see 

figure 1, Schraga and Cloern 2017; T.S. Schraga et al. 2018). Data from these 

cruises are publicly available through the USGS San Francisco Bay water quality-

monitoring program, and can be queried at sfbay.wr.usgs.gov. 

 Although the quality and length of this dataset is incredible, the USGS 

water quality monitoring in SFB is largely limited to point measurements, which 

while highly accurate, limit our ability to understand the spatial distribution of 

water quality in the bay. Monitoring water quality on a wide spatial scale with 

high continuity would be beneficial from both socio-economic and ecosystem 
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management perspectives. Remote sensing methods could provide this spatially 

comprehensive view of water quality in San Francisco Bay. 

 

Remote Sensing in the Environment 

The color of a water body is inherently linked to the materials suspended 

within it. Starting with the Coastal Zone Color Scanner in 1978, oceanographers 

have taken advantage of the relationships between quantified color and 

concentrations of water constituents. Passive remote sensing of biological 

variables, such as open-ocean chlorophyll, are commonplace and frequently used 

to answer questions about biogeochemical cycles and ocean ecology. However, in 

ocean margins, coastal processes result in complex environments with dissolved 

organics, multiple phytoplankton types, and various suspended particulates 

contributing to the overall visible signal. Pure deep water appears blue because of 

the scattering of short wavelengths (blue) light and the attenuation/absorption of 

longer wavelengths (red). Absorption and scattering of light by suspended 

materials influences the visible light coming off of the water, and defines the 

apparent color of the water body (Jerlov 1968). This visible light is quantifiable as 

the Remote Sensing Reflectance (Rrs), which is wavelength dependent and related 

to the total absorption and backscattering of materials in the water. This 

relationship is enumerated via the equation: 

𝑅 (휆) =
푡
푛

𝑓
𝑄(휆)

𝑏 (휆)
𝑏 (휆) +  𝑎(휆)                  (1) 
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where λ is wavelength, t is transmittance across the air-sea interface, n is the 

seawater index of refraction, f  is the fraction of direct sunlight transmitted 

through the surface into the water, Q(λ) is the ratio of upwelling irradiance to 

radiance, bb(λ) is the spectral backscatter coefficient, and 𝑎(휆) is the total spectral 

absorption coefficient. The first four terms are generally treated as constant, and 

so the equation can be simplified to: 

𝑅 (휆) = 𝐶
𝑏 (휆)

𝑏 (휆) +  𝑎(휆)                   (2) 

 The applications of remote sensing take advantage of the link between 

inherent optical properties (absorption and backscatter) to apparent optical 

properties such, as Rrs. Features of the Rrs spectra can inform on the scattering and 

absorption properties of the water, which are in turn inherently linked to particle 

properties. Changes in important water quality indicators—including suspended 

particulate matter (SPM), chlorophyll-a, and colored dissolved organic matter 

(CDOM)—have a direct effect on the optical properties of water. CDOM absorbs 

primarily blue light, appearing yellow or brown to the eye (i.e. Fichot and Benner 

2012). SPM dominated by inorganic sediment scatters light strongly, and makes 

the apparent signal brighter in longer wavelengths at higher concentrations (Han 

1997; Novoa et al. 2017). Algal particles—phytoplankton—contain a variety of 

absorptive colored photosynthetic pigments, the most common of which is the 

bright green pigment chlorophyll. CDOM, SPM, and total Chl-a serve as three 

baseline indicators that characterize the water quality of a particular area, 
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informing on the concentration of dissolved carbon, inorganic particles, and 

productivity of a water mass. These indicators serve as proxies for other 

biogeochemical variables that cannot be directly measured using passive remote 

sensing (i.e. Fichot et al. 2016; Fichot and Benner 2012; Hilton et al. 2018). 

Changes in these indicators are thus discernable in the visible Rrs spectra and 

quantifiable with multi-spectral visible imaging spectroscopy (i.e. Dierssen et al. 

2006; Fichot et al. 2016; Nechad, Ruddick, and Park 2010). Traditional remote 

sensing methods are most useful in optically simple environments, where one 

component dominates the visible signal and other constituents are relatively low-

concentration and co-varying (www.oceanopticsbook.info). Optically complex 

environments, like coastal oceans and San Francisco Bay, have optically active 

components that do not always co-vary, resulting in a more complex and nuanced 

total signal. New technologies present opportunities for improving retrievals of 

biophysical variables from remote sensing data in complex coastal environments. 

The advent of hyperspectral sensors provides increased spectral information 

available for remote sensing algorithms to use. Hyperspectral sensors have the 

advantage over multi-spectral sensors in that they provide much higher spectral 

resolution, rather than just a few bands.  

Understanding spatial variability and water quality patterns in the San 

Francisco Bay environment could advance monitoring efforts and elevate our 

understanding of the estuary. Traditional remote sensing is underutilized in San 

Francisco Bay because: 1) high levels of sediment, algae, and other material result 
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in complicated signals (Mao et al. 2010), and 2) high spatial variability across 

small length scales make coarse (>200m) resolution problematic (Davis et al. 

2007; Moses et al. 2016), and 3) the dense fog often masks the Bay Area. In this 

thesis address we use the USGS R/V Peterson as a remote sensing platform and 

combine data with high resolution multispectral data from Sentinel 2 to examine 

spatial variability of SPM in San Francisco Bay. 
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CHAPTER 2 

SPATIAL VARIABILITY OF SUSPENDED PARTICULATE MATTER IN SAN 

FRANCISCO BAY 

INTRODUCTION 

San Francisco (SF) Bay is the most extensive estuary system on the west coast 

of North America, draining roughly 40% of California’s land area into the Pacific 

Ocean (Conomos et al. 1985). The bay is home to over 500 species of birds, fish, 

and other wildlife: it is an important feeding area and wintering ground for 

migrating birds, and two-thirds of California’s salmon migrate through SF Bay 

annually. In addition to the wildlife it supports, the surround Bay Area is home to 

over 7 million people and supports important tourism, technology, and 

agricultural economies. The bay is home to eight operational bridges, numerous 

oil and auto ships, constant dredging operations, a booming tourism and 

recreation industry, and a variety of unique wetland and estuarine ecosystems. 

 The Bay itself is a shallow wetland system, with most of the bay less than 6 

m deep. The exception is a shipping channel which runs through the middle of the 

Bay (Figure 1). This shipping channel is the deepest part of the Bay with depths 

greater than 10 m and is dredged regularly to facilitate the movement of ship 

traffic. This stark difference in bathymetry and higher flow velocities in the 

shipping channel (Bever and MacWilliams 2013) make it distinctive from the rest 

of the Bay. 
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SF Bay can be simplified into three main regions: the North Bay, Central Bay, 

and South Bay (Figure 1). These regions can be approximately defined by the 

location of bridges crossing the Bay: North Bay is the region of the Bay north of 

the Richmond Bridge, Central Bay is the region between the Richmond and Bay 

Bridges, and South Bay is the region south of the Bay Bridge. These regions each 

experience different physical processes driving water movement and spatial 

variability.  

The full SF Bay is connected to two major water bodies: the San Francisco 

Bay Delta in the Northeast, and the Pacific Ocean in the West. The San Francisco 

Bay Delta feeds into east North Bay and is where the Sacramento and San Joaquin 

rivers combine. Inflow from the Delta accounts for 90% of the total freshwater 

inflow to the Bay. North Bay is therefore characterized by a strong salinity 

gradient, starting at 0 at the mouth of the delta and increasing to 33ppt at Central 

Bay. This inflow of river water is the primary control on bay-wide salinity 

(Conomos, Smith, and Gartner 1985) and the primary source of suspended 

sediments, nutrients, and freshwater phytoplankton to the estuarine system (Davis 

1982). The remaining 10% of inflow to the Bay comes from runoff and other 

point sources.  

Flow out of SF Bay is primarily controlled by the amount of freshwater inflow 

from the Delta (Davis 1982). The Bay drains into the Pacific Ocean through the 

Golden Gate (Figure 1). The Pacific Ocean exerts strong tidal influence on 

horizontal mixing SF Bay, moving water back and forth over 10’s of km. The 
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combination of inflow from the Delta, tidal mixing from the Pacific, varied 

bathymetry, and wind-driven mixing creates a highly dynamic system. Each type 

of physical forcing has different levels of influence on North, Central, and South 

Bay: for example, the strong salinity gradient set up by Delta flow in North Bay 

creates a very different environment than South Bay. Water retention time in 

South Bay is on the order of 3-5 months, while in North Bay water moves through 

as quickly as 2 weeks (Davis 1982).  

The spatial distribution of Suspended Particulate Matter (SPM) is tied to 

physical mixing dynamics in SF Bay. The Delta is the main source of SPM into 

the Bay (Powell et al. 1989), SPM moves with tidal pumping (Ganju et al. 2004), 

and wind-driven resuspension over different bathymetry drives localized SPM 

concentrations (Schoellhamer 2011, Bever et al. 2018). SPM can also be used as a 

proxy for a variety of water quality applications: SPM concentrations are linked to 

other environmental conditions in SF Bay, including flow velocities, salinity 

(Schoellhamer 2000), anthropogenic pollutants (Hilton et al. 2018), 

Methylmercury (Fichot et al. 2016), nutrients, and light availability. Therefore, 

understanding spatial distributions and patterns in SPM informs on other 

environmental conditions.  

Keeping track of SPM and other water quality metrics is currently done via 

point monitoring and regular sampling. The USGS Water Quality Monitoring 

Program has conducted monthly monitoring cruises through San Francisco Bay 

since 1964. Each full-bay cruise traverses a 20 station transect starting in 
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Redwood City and ending in Rio Vista onboard the R/V Peterson (Figure 1, 

Schraga and Cloern 2017; T.S. Schraga et al. 2018). These monitoring stations are 

strategically set up to track mean bay-wide conditions, but not to capture spatial 

variability in water quality properties (Jassby et al. 1997). The transect is also 

conducted exclusively in the shipping channel, which is distinctive from the rest 

of the Bay because it is deeper and has higher flow velocities (Bever and 

MacWilliams 2013). Localized studies supplement bay-wide monitoring with 

higher-resolution information on specific inflow points around SF Bay (i.e. 

Morgan-King and Schoellhamer 2013). However, as SF Bay undergoes 

continuous change and restoration, expanding monitoring efforts to be more 

spatially resolved is becoming more important.  

 One way to expand monitoring efforts is with remote sensing, which 

provides broad spatial coverage and the ability to collect a large amount of data 

regularly. Remote sensing has provided a coarse overview of SPM concentrations 

in the Bay (Ruhl et al. 2001), but in general has been underutilized in SF Bay 

because of high spatial variability and comparatively low sensor resolution. The 

advent of high-resolution remote sensing technology and satellite imagery has 

expanded the potential for remote sensing of sediments in SF Bay. In recent years, 

remote sensing technology has advanced and made remote sensing of SF Bay in 

high-resolution possible. Notably, Fichot et al. (2016) used the JPL PRISM sensor 

to map turbidity and water quality at high (2 m) resolution in a northern area of 

SF Bay (Grizzly Bay). Although flying high-altitude aircraft is a logistically 
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difficult way to regularly monitor water quality, surface-level sensors are 

becoming smaller and more feasible for regular deployment onboard ships (e.g. 

the Ferry Ocean Colour Observation Systems (FOCOS) project, Brando et al. 

2015), and provide data at similar resolution to airborne systems. In addition, the 

launch of higher resolution sensors like the European Space Agency’s 10m 

resolution MultiSpectral Instrument (MSI) onboard the Sentinel-2 satellite 

provide imagery capable of resolving small-scale features across the entire bay.  

 These new high-resolution satellite sensors and new ship-based systems 

can help expand monitoring efforts in two ways: 1) by being an additional data 

source, and 2) by providing more spatial information for making sampling 

decisions. Our study has two main goals. The first goal is to compare shipboard 

and satellite remote sensing of SPM in SF Bay to examine how each data type 

contributes to monitoring in terms of accuracy and spatial coverage. The second 

goal is to quantify spatial variability of SPM in SF Bay using remote sensing, to 

contextualize sampling strategies and future monitoring. Specifically, we use 

remote sensing of SPM to address the question:  How much spatial variability 

exists at different spatial scales in SF Bay, and how much is captured by 

monitoring at different resolutions? Overall, this project seeks to provide 

information on 1) how remote sensing can directly contribute to monitoring water 

quality in SF Bay, and 2) the overall variability that exists at different scales in the 

Bay. 
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METHODS 

Data collection and data types 

To examine how remote sensing methods can supplement existing in-

water monitoring methods, we collected four types of data in collaboration with 

the USGS Water Quality Monitoring Program. We used in situ SPM grab sample 

measurements and continuous turbidity flow-through data taken by the USGS as 

part of their standard monitoring procedure; continuous radiometric data taken 

from the bow of the USGS research vessel, the R/V Peterson; and 10 m satellite 

imagery from the MultiSpectral Imager onboard the European Space Agency’s 

Sentinel-2 satellite. In sum, we are using discrete SPM grab samples, continuous 

flow-through and shipboard radiometry taken along a transect, and spatially 

complete satellite imagery covering the full bay. 

The ground-based data used in this study were collected on April 25, June 

4, and October 23, 2019 onboard the Peterson. Each cruise began at 

approximately 6:00am local time (PDT) from Redwood City harbor and ended 

between 3-5:00pm in Antioch (Figure 1). Sentinel-2 imagery was always acquired 

at 11:30am PDT. Sentinel-2 overpasses occurred on both the April and June dates. 

No Sentinel overpasses occurred on October 23, so instead we used imagery that 

was collected on October 22. Because the October overpass occurred on a 

different day than the cruise, we did not directly compare ship and satellite data 

for October. 
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Discrete in situ grab samples 

Water quality measurements including SPM concentration (mg/L) were 

collected at regular point stations (Figure 1) at 2m depth, according to USGS 

standard operating procedures. Quality controlled data from the USGS are 

available for public use (sfbay.wr.usgs.gov).  

 

Continuous Flow-through Data 

Continuous underway measurements of turbidity were collected every 5 

seconds at 2 meters depth throughout each cruise using a Self-Contained 

Underwater Fluorescence Apparatus (SCUFA). These underway flow-through 

data were validated following the standard operating procedure of the USGS San 

Francisco Bay Water Quality Monitoring program (Schraga et al. 2020). To 

summarize, data were filtered using a low-pass filter with a 60 second corner 

frequency to remove bubble noise in the system. Flow-through data taken while 

the ship was sampling at designated stations (Figure 1) were averaged and 

compared to corresponding discrete samples using linear regression. If the 

regression line had an R2 > 0.7, the relationship was accepted and used to convert 

all the filtered flow-through data to SPM units. If the R2 was less than 0.7, the 

data was geographically split into groups of at least three points. A new regression 

was fit for each group and used to convert flow-through data contained in each 

group to SPM. 
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Continuous Shipboard Radiometry Data 

In addition to the regular USGS data, a HOBI Labs HydroRad-3 

(HydroRad) hyperspectral radiometer was mounted at the ship’s bow and set to 

record continuously throughout each cruise. Discrete hyperspectral measurements 

from an Analytical Spectral Device (ASD) FieldSpec HandHeld 2 

Spectroradiometer were also taken to corroborate HydroRad data at locations 

corresponding to simultaneous water quality measurements. Prior to being 

deployed, the data quality and signal to noise ratio of the HydroRad were checked 

against the ASD in stable conditions. 

Onboard the R/V Peterson, the HydroRad recorded continuous radiometry 

measurements of downwelling irradiance (Ed), sky radiance (Lsky), and total 

radiance from the water (LT). Care was taken throughout the cruise to keep the 

HydroRad’s sensors pointing 100˚-130˚ from the sun. The HydroRad’s three 

sensors were fixed 2 m above the main deck on the ship bow. LT was fixed 40˚ 

down from horizontal, Ld was fixed 40˚ up from horizontal, and Ed was fixed 

straight up.  

HydroRad data collected before station 18 were removed to eliminate data 

taken in low-light conditions (i.e., solar elevation below 30˚). The remaining data 

were processed following Mobley (1999). Remote sensing reflectance was 

calculated from the HydroRad data using the equation:   

𝑅 (휆) =
𝐿 (휆) − 휌 𝐿 (휆)

𝐸 (휆)
                 (1) 
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Where λ is wavelength, and ρsky = 0.1 to correct for skylight reflectance off the 

water surface (Austin 1974, Mobley 1999). Data were inspected for quality 

control and manually compared to ASD measurements. Flat spectra and spectra 

with negative values were removed, and a running 10-point median filter was 

applied to remove high frequency noise (attributed to glint) from the remaining 

data. The total number of data points were N = 1,398, N = 1,995, and N = 849 for 

April, June, and October, respectively. The average distance between Rrs data 

points depended on the sensor’s automatic integration time and light conditions, 

and was 79 m, 95 m, and 113 m for each of the three cruises.  

 SPM was calculated from HydroRad Rrs along each cruise track using the 

algorithm developed by Nechad et al. (2010), which was chosen because it has 

been shown to work well in this region (Hilton et al. 2018). This algorithm uses a 

single channel to determine SPM based on spectral brightness, and then uses an 

empirically derived set of coefficients to calculate SPM. We chose to synthesize a 

band centered at 700 nm by averaging all hyperspectral channels within an 8 nm 

window. 700 nm was deemed appropriate based on the recommendations in 

Nechad et al. (2010), preliminary tests, and an observed increase in sensor noise 

above 700 nm. Retrieved SPM values from data taken at stations were compared 

to validated flow-through SPM for each cruise (Figure 2). 

 

Satellite Processing 
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 To examine SPM outside the shipping channel, we use imagery from 

Sentinel-2 overpasses on April 25, June 4, and October 22, 2019. Concurrent 

USGS cruises with radiometry occurred on April 25, and June 4. No ground data 

were collected on October 22 but were collected on October 23. A 1-day 

difference is outside the temporal window for comparison in SF Bay (Hilton et al. 

2018). Consequently, direct comparisons between ground and satellite data are 

only made for April and June, and the October data were simply used as a sanity 

check.  

 For each date, two images of SF Bay were acquired immediately after each 

other at approximately 11:30am PDT. Imagery was downloaded from the ESA 

open-access data portal (scihub.copernicus.eu) in two different versions; one set 

processed to Level 2A standard reflectance, and a second set processed to Level 

1C standard normalized water-leaving radiance. 

 Images were mosaicked using the ESA’s open-source imaging processing 

software, SNAP, to create a full Level 2A reflectance image and a full Level 1C 

radiance image for each date. No imagery was available for the Delta region 

encompassing station 657 for any date as it is outside of the satellite footprint. 

 The Nechad et al. (2010) SPM algorithm was applied to the Level 2A 

reflectance image to retrieve SPM concentrations for the full bay. However, April 

and June images displayed a false elevation of SPM in the Central Bay region 

near station 18 and in the Sacramento River near stations 3 and 649 (Figure 2) 

when compared to in situ data. This could be due to inaccuracies in the standard 
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atmospheric correction over water. We therefore tried using a different processing 

strategy: we tested using the Case 2 Regional CoastColour (CR2CC) processor in 

SNAP with Level 1C radiance imagery. The CR2CC processor uses a set of 

neural networks to match observed conditions with a library of radiative transfer 

simulations representative of different water types (Brockmann et al. 2016). It has 

been specifically developed to work with certain satellite sensors and takes 

atmospheric conditions into account and is available to use in SNAP. CR2CC 

does a simultaneous atmospheric correction and SPM retrieval. 

 We compared the reflectance from Sentinel-2 processed with C2RCC, the 

reflectance from the standard Level 2A Sentinel-2 product, and the reflectance 

taken by the HydroRad in Figure (Figure 3). We also compared the SPM results 

from CR2CC, the SPM results from Nechad and the standard Level 2A 

reflectance product, SPM from the HydroRad, and in situ data (Figure 3). The 

C2RCC results matched both the HydroRad reflectance and the in situ SPM data 

better than the Level 2A with Nechad algorithm, and so we used the C2RCC 

results for the rest of our analysis. 

 

Spatial Variability Analysis 

 We examine spatial variability using the SPM distribution maps created 

from Sentinel-2 imagery using the Coefficient of Variance (CV) method outlined 

by Moses et al. (2016). This analysis defines the amount of spatial variability at 

different scales. The method is similar to a semi-variogram or spatial 
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autocorrelation, but we chose this method over others because it is mathematically 

similar to an inverted Signal to Noise Ratio or uncertainty metric. This allows us 

to think of the CV as a measure of how representative a single sample is for an 

area. As larger and larger areas are considered, the variability increases rapidly at 

small scales first and then more slowly at larger scales, following a logarithmic 

relationship. 

The amount of spatial variability is calculated as a function of increasing 

distance or area (Ground Sampling Distance, GSD).  Spatial variability was 

quantified as the Coefficient of Variance (CV, Moses et al. 2016), defined as 

𝐶𝑉 =
1
푛 1 +

1
4𝑘

휎
푥               (2) 

where n is the number of segments the dataset is broken into, k is the number of 

data points in each segment, 푥  is the within-segment mean, and 휎  is the within-

segment bias-corrected standard deviation. The CV is essentially a measure of 

how representative a single measurement is for a region defined by GSD. 

 The rate at which variability is gained with distance can be quantified as 

dCV/dGSD. We modeled the relationships between CV and GSD for each dataset 

using a logarithmic function (Moses et al. 2016). The transition point where this 

rate changes (GSDT) represents the sampling distance at which variability begins 

to increase more slowly. Moses et al. used two different methods for finding the 

transition GSD: the first was the find a log-log intersect, and the second was to 

identify the GSD where slopes reached the 66th percentile. Our data didn’t display 
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any clear log-log intersect, and the 66th percentile method was arbitrary and did 

not transfer to our study. Instead, we defined the GSDT as the GSD where 

dCVx/dGSD = 1x10-4, i.e. where the slope transitioned through 1% CV per 100m. 

This gives us a fixed metric to compare across our datasets and represents a clear 

transition point in dCVx/dGSD.  

 We conducted three distinct SPM spatial variability comparisons. First, we 

calculated the CV/GSD relationship for the full Bay on each date to examine how 

variability changed between months. Second, we compared those full Bay 

relationships with variability in just the shipping channel. This was done by 

extracting just SPM values along the USGS cruise transect. The analysis was 

repeated using just the data that lie within the shipping channel. Third, we 

examined the variability in different regions of the Bay by repeating the analysis 

for the North, Central, and South Bay regions.   

 

Environment Conditions 

 We obtained Delta flow data from the California Natural Resources 

Agency’s Dayflow dataset, which is a computer program used for tracking 

historical mean daily flows into SF Bay from the Delta 

(data.cnra.ca.gov/dataset/dayflow). Information on tidal phase and state is from 

NOAA’s Tides and Currents Water Level product for SF Bay 

(tidesandcurrents.noaa.gov). Wind data were taken in situ at each station as part 

of the radiometry data collection protocol. At the time of each satellite overpass, 
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wind was measured at 7.7 m/s, 0.5 m/s, and 1.3 m/s at USGS station 13, which is 

where the R/V Peterson was sampling at the time.  

 Tidal conditions on each date were as follows. In April, SF Bay was 

switching from spring to neap tide conditions, and imagery was taken at a peak 

high tide of 1.6 m. The June image was taken at the height of spring tide, during a 

falling tide at 0.6 ft with the tide going out at time of satellite overpass. In October 

conditions were switching from spring to neap tide, and it was a falling tide at 0.6 

ft with tide going out at time of satellite overpass. All imagery was taken at 11:30 

am PDT. 

 Delta flow on each date followed seasonal patterns. The inflow from the 

Delta was similar for April and June (rainy season), then much lower in October 

(dry season). Delta inflow in April was 68,464 cfs (cubic feet per second) and in 

June was 66,005 cfs. The April cruise occurred following peak flooding and the 

June cruise occurred at a local peak in delta flow (relatively smaller flood event). 

In October, Delta inflow dropped by a factor of four to 15,845 cfs. 

 

RESULTS 

Shipboard Radiometry vs. in situ Flow-through SPM 

 The relationship between retrieved SPM from the HydroRad and in situ 

SPM from the flow-through system was highly correlated (R2 ≥ 0.49) on each 

cruise. This correlation stayed near a 1:1 relationship but differed from cruise to 

cruise. HydroRad SPM underestimated the flow-through SPM (slope = 2.15) in 
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April but were more aligned in June and October (slopes of 1.08 and 0.87, 

respectively). The steep slope in the April data could be due to high stratification 

between the in situ grab samples at 2m depth and the surface SPM concentration 

retrieved by the shipboard HydroRad data, but this is unconfirmed. 

 The full transects of HydroRad SPM, flow-through SPM, and in situ grab 

samples are compared in Figure 3. The average distance of grab sample 

measurements is 8 km, and the average distance between HydroRad 

measurements was 95.8 m, excluding repeats taken when the boat was paused at 

stations. Notably, the turbidity maximum can be identified in all datasets but is 

better resolved in the HydroRad data. The central peak and eastern side of the 

turbidity maximum corresponds with the location and slope of the salinity 

gradient. In April the turbidity and salinity transition point are mid-way in the 

Carquinez Strait near station 9; in June, both features are present just west of 

station 9; and in October, the transition point moves eastward into the Sacramento 

River near station 3.  

 Smaller notable features also occur in the transects. A significant peak 

occurs near station 9 for all dates, although the exact location of the peak shifts 

slightly. This persistent turbidity feature in the Carquinez straight is not captured 

by the grab sample stations. The magnitude of this feature changes, from around 

40 mg/L in April, up to 120 mg/L in June, and down to 15 mg/L in October. This 

feature can also be seen in the satellite imagery from each date as tongue of 
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elevated SPM reaching down from Grizzly Bay into the Carquinez straight 

(Figure 6). 

 

Satellite Radiometry vs Shipboard Radiometry 

 The standard Sentinel-2 Level 2A reflectance overestimates the spectral 

brightness compared to the HydroRad spectra. The Sentinel-2 C2RCC spectra 

match the HydroRad spectra more closely. Figure 3 shows the comparison of the 

standard Level 2A and the C2RCC Sentinel-2 spectra against the HydroRad 

spectra at the stations closest in time to the Sentinel-2 overpass.  

 

Satellite SPM results 

 C2RCC provided the most accurate SPM retrievals with the Sentinel-2 data, 

and was used to generate maps of SPM on April 25, June 4, and October 22. 

General statistics for each date are presented in Table 1. April and June displayed 

high concentrations of SPM, with mean values of 46.25 mg/L and 47.78 mg/L 

respectively. In contrast, October had a mean value of 9.06 mg/L. The range for 

each date was 149.58 mg/L, 148.83 mg/L, and 46.21 mg/L for April, June, and 

October respectively. Lower South Bay and upper San Pablo Bay consistently had 

the highest SPM. Central Bay had the lowest SPM values—in June and October 

the lowest SPM values are at the Golden Gate, but in April that section of SF Bay 

was blocked by clouds. Other prevalent spatial patterns included low SPM values 
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in the northern section of the shipping channel in April and June, and consistent 

filamented structure in the middle of South Bay.  

  Differences in SPM and spatial structure on each date are apparent. Worth 

noting is the widening of the low-SPM area in the shipping channel through San 

Pablo Bay in the June image compared to the April image. Changes in SPM along 

the Delta to North Bay gradient through Grizzly Bay occur as the system shifts 

from high Delta flow conditions (April and June) to low Delta flow (October). 

Closer inspection of the Carquinez straight and Grizzly Bay also elucidates the 

structure of the Carquinez straight feature observed in the transect data: a filament 

of high SPM runs along the northwestern shore of Grizzly Bay and intrudes into 

the shipping channel cruise track. This pattern is most pronounced in the June 

image. The high-SPM filament moves from the shore in April/June to the middle 

of the channel in October.  

 

Spatial Variability Analysis 

 To quantify how much variability exists at different spatial scales in SF 

Bay, we calculated the relationship between spatial scales defined by the Ground 

Sampling Distance (GSD) and variability defined by the Coefficient of Variance 

(CV). For all datasets, the relationship between GSD and CV followed the 

logarithmic relationship described by Moses et al. (2016). We considered the 

modeled CV as a measure of how representative a single measurement is of a 
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surrounding area of size GSD. The rate of change, dGSD/dCV, was consistently 

positive for all datasets.  

 We talk specifically about two metrics: the Transition GSD (GSDT); and the 

CV at a GSD of 5 km (CV5km). The GSDT is the inflection point where 

dGSD/dCV switches from rapidly increasing to slowly increasing and indicates 

the scale (GSD) at which variability begins to level off. The CV5km is the CV at 

the 5 km scale, which is the approximate scale of USGS point sampling in the 

Bay.  

  

Comparison Between Dates 

 April had the most variability across all scales (GSDs) of all the dates. 

Specifically, the CV5km decreased 20% from April to June and October (full area 

CV5km of 51%, 32%, 32%). June and October had much more similar variability 

with CV5km of 32% for both dates. This is also reflected in the GSDT metric for 

each date: April, June, and October respectively had GSDT values of 921 m, 461 

m, and 421 m, indicating much more heterogeneous conditions in April than the 

other two months.  

 This pattern of heterogeneity was not reflected in the shipping channel-only 

analysis. Although April still had the highest variability, June and October had 

different levels of variability within the shipping channel. CV5km within the 

shipping channel was 20%, 16%, and 12% for April, June, and October 

respectively.  
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Comparing the shipping channel to the full area of SF Bay, we found that 

on average there is approximately twice the amount of variability in the full area 

than just the shipping channel transect. This approximate doubling of variability is 

consistent across different regions and dates but does change with scale. At 

smaller scales (i.e. 100m), the ratio of area variability to transect variability is 

about 1.5, but above a 1 km scale the ratio is about 2.  

 

Regional Comparison 

 For all dates, Central Bay had the highest CV at all GSDs, followed by 

South Bay, and North Bay had the lowest CVs. Specifically considering the 

average across all dates, North, Central, and South Bay had an average CV5km of 

30%, 53%, and 43% respectively. At a smaller scale of GSD = 100 m, North, 

Central, and South Bay each had an average CV of 10%, 18%, 13% compared to 

an average full bay CV of 12%. The dGSD/dCV for South Bay was lower than 

other regions of SF Bay (illustrated by slower increase in CV/GSD relationship, 

Figure 5), implying less small-scale variability. Variability conditions in Central 

and South Bay were also more inconsistent than North Bay: between all dates at 

GSD = 10 km, the CV of Central Bay ranged 32%-89%, South Bay ranged is 

32%-81%, and North Bay ranged 33%-37%. This indicates that North Bay has the 

most consistent CV/GSD relationship and spatial structure of the three regions. 

 The GSDT values for each region (Table 2) also indicate that North Bay has 

less spatial variability than Central and South. The GSDT represents the scale at 
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which spatial patterns begin to become more homogenous and indicates dominant 

physical mixing processes. A larger GSDT corresponds to more spatial variability 

in the environment, and a lower GSDT corresponds to less spatial variability. The 

average GSDT for each region was 451 m, 894 m, and 698 m for North, Central, 

and South Bays respectively, and 601 m for the full bay. A similar but less 

pronounced pattern is represented in the transect GSDT values of 118 m, 138 m, 

and 174 m for North, Central, and South Bays and 161 m for the full bay. 

Notably, the GSDT of the shipping channel transect through a region on a specific 

date does not necessarily represent the corresponding GSDT of the fully resolved 

area. For example, in June, South Bay has the highest GSDT for both the transect 

and areas, and North Bay has the lowest. However, in October, the transect GSDT 

suggest Central Bay is more small-scale dominated than North or South Bay, but 

the area GSDT suggests that Central Bay has more variability than the other two 

regions.  

 

DISCUSSION 

The objectives of this study were to 1) examine the ways in which remote 

sensing data could provide increased spatial coverage for monitoring programs in 

SF Bay, and 2) to quantify the amount of spatial variability that exists at different 

spatial scales in the Bay. Our results show that remote sensing data provide higher 

spatial coverage at the cost of accuracy: continuous SPM retrievals taken along a 

transect are slightly less accurate than discrete SPM samples, and both are more 
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accurate than satellite SPM retrievals. We also found that continuous SPM 

retrievals from a shipboard radiometry system are comparable to continuous SPM 

measurements taken with a flow-through system. This is important for monitoring 

efforts because shipboard radiometry is more feasible than flow-through systems 

for setup on non-research vessels. 

In our spatial variability analysis, we found that different physical 

environmental conditions at different times of year correspond to the total overall 

heterogeneity of SPM in the bay. We also found that the amount of variability is 

different in different parts of the bay. Central Bay has the most variability, 

followed by South Bay and then North Bay. In addition, the shipping channel 

displayed consistently less variability across spatial scales than the full Bay. This 

is important for understanding how monitoring programs and sampling strategies 

in different regions of the bay are capturing variability in water quality.  

 

Comparison of datasets 

Shipboard radiometry retrievals matched in situ measurements better than 

retrievals from the Sentinel-2 data, for both April and June (Figure 3). The 

HydroRad and underway flow-through data both followed the same spatial pattern 

as the in situ measurements (Figure 2). Changes in the relationship between 

HydroRad retrieved SPM and validated flow-through SPM occurred on each date, 

notably the April matchup relationship had a slope of 2.15 rather than 1 (Figure 

2). This is likely because flow-through data were taken at 2 m depth, while 
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shipboard retrievals are of surface concentration. Intensified stratification from 

high Delta inflow and switching tides could have contributed to this inconsistency 

between surface radiometry data and flow-through data at depth. The shipboard 

radiometry has comparable data to a flow-through system and is more convenient 

in that it could easily be set it up on small boats or commercial boats already 

moving around SF Bay. This concept is being explored in other areas (i.e. the 

FOCUS project in British Columbia) and could be highly relevant in SF Bay if 

scientists partner with commercial vessels.  

Both sources of continuous data from the boat show more variability and SPM 

features than point sampling. Additional features are visible in the higher 

resolution radiometry and flow-through datasets than the in situ point sampling, 

notably including a peak just after station 9. This feature occurs as part of a sill on 

the eastern side of the Carquinez straight due to gravitational circulation 

(Schoellhamer, 2000) and extends along the west side of Grizzly Bay (Figure 6). 

At a larger scale, all three datasets clearly capture a regional maximum in SPM 

that corresponds to the location of the X2 change in salinity marker (Figure 2). 

This matches what has been described in previous work as the North Bay Estuary 

Turbidity Maximum (ETM) zone (D. H. Schoellhamer 2000) which serves as an 

important habitat for estuarine species and marks the transition from fresh to salt 

water. X2 is used as a habitat indicator because it tracks the location of the ETM 

and is a salinity preferred by estuarine species (2 psu).  
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The location of the ETM is controlled by flooding events from the Delta and 

tides. Flooding controls sediment supply, while tides and wind control sediment 

suspension (Schoellhamer 2011). Tides create oscillations in ETM location, 

which may explain the land- and seaward shifts in the ETM observed in our data. 

In April, June, and October, the ETM moved landward, seaward, and then 

landward again associated with a tide coming in, tide going out, and coming in 

again. The magnitude of the ETM somewhat corresponded to the strength of the 

Delta flow: April and June both had higher flow (over 66,000 cfs) and ETMs of at 

least 50 mg/L in the flow-through data, while October had lower flow (15,000 

cfs) and an ETM of about 15 mg/L (Figure 2).  

Shipboard radiometry systems like the HydroRad used in our study provide 

hyperspectral data. We did not explicitly use the sensor’s hyperspectral capacity 

in this study, but calls for increasing the collection of hyperspectral data in coastal 

ocean systems are increasingly widespread (Muller-Karger et al. 2018; Werdell et 

al. 2018). Consistent hyperspectral data sources could expand biological 

monitoring in SF Bay and improve our understanding of chlorophyll spatial 

variability and phytoplankton functional types (Mouw et al. 2017; Muller-Karger 

et al. 2018). At minimum, collecting shipboard radiometry provides hyperspectral 

data with no atmospheric influence at ~100 m resolution that could be used for 

calibration and validation of future hyperspectral sensors like PACE and SBG. 

Although this study largely overlooks the advantages of having a hyperspectral 

data source, other studies have demonstrated the potential for retrieving multiple 
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water quality variables from hyperspectral data (Fichot et al. 2018, Jensen et al. 

2019). Using hyperspectral data may help retrieve chlorophyll-a and 

phytoplankton type information, which would be particularly helpful for ongoing 

monitoring of chlorophyll-a and other biological variables in SF Bay. Standard 

chlorophyll-a algorithms (like OCx) are not developed for high-sediment waters. 

Limited preliminary analysis of Sentinel C2RCC chlorophyll-a retrievals and 

Shipboard Radiometry Fluorescent Line Height products were conducted, but 

match-ups varied widely across dates and space. Some success has been had with 

retrieving chlorophyll-a in SF Bay with empirical PLSR methods (Fichot et al. 

2016; Jensen et al. 2019), but they aren’t reliably portable across days/locations, 

and the overall accuracy was estimated to be around 60% (Fichot et al. 2016). 

Despite the many potential advantages to shipboard remote sensing, one major 

disadvantage is that it can only record data along a line. High resolution satellite 

imagery like that from Sentinel-2 provides significantly more spatial context than 

one-dimensional transect data. High spatial resolution helps resolve features in SF 

Bay, and is more important than spectral resolution for monitoring SPM 

variability. Satellite imagery has inherently more uncertainty, primarily from 

atmospheric effects, making it overall less accurate than ship-board monitoring. 

However, for monitoring highly accessible optical components like sediments, 

satellite imagery works well. We encourage the scientific community to continue 

exploring the application of shipboard radiometry as a hyperspectral data source 

unaffected by atmospheric interference.  
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Atmospheric effects might influence variability results in our Sentinel-2 SPM 

images. Nazirova et al. (2021) obtained the most accurate retrievals with C2RCC 

in a different estuary system, but observed some spatial heterogeneity in C2RCC 

results that were not apparent in other results from other algorithms (i.e. Nechad 

et al. 2010). In our data processing, we observed features in the standard Level-

2A reflectance product that were not present in the shipboard ground-truth 

datasets. Overall, our C2RCC results matched best with in situ measurements, 

both in terms of reflectance data (Figure 3) and SPM retrievals (Figure 4). 

 

Spatial Variability Analysis 

In the spatial variability analysis, we examined the amount of spatial 

variability at different scales in SF Bay using the Sentinel-2 data. Satellite 

imagery provides context and a detailed picture of spatial patterns on each date, in 

different regions, and between the full bay and just within the shipping channel 

(Figure 6). We discuss the differences between dates, between regions, and in the 

shipping channel below. 

 

Differences Between Dates 

Changes in the CV/GSD relationships between dates corresponded to changes 

in environmental conditions. Seasonal changes in Delta flow and wind speed in 

combination with different tidal phase are well-known to influence SPM 

variability (Powell et al. 1989, Downing-Kunz et al. 2021), and influence GSDT 
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and CVs across scales. The high variability in April corresponded to the highest 

amount of Delta inflow of any of the three dates examined. Although April and 

June had very similar levels of flow, April 25 was during a period of quickly 

declining Delta flow. In contrast, June 4 was a local peak in Delta flow. Similarly, 

April 25 occurred just before a spring tide, while June 4 occurred at the height of 

a strong spring tide. These factors point to the system being broadly in more of a 

transitional state in April than it was in June. In addition, the April image was 

taken during a high tide of 5.26 ft, and the June image was taken at a falling tide 

of 1.8 ft. Changes in tidal height between images account for significant 

differences in spatial distribution of turbidity and SPM (Fichot et al. 2016).  

The influence of wind-driven resuspension is also extremely important when 

considering SPM spatial distribution (Bever et al. 2018), and it should be noted 

that April had higher winds than June. Wind direction is also important (Bever et 

al. 2018) and was not recorded, so more data would need to be examined to draw 

specific conclusions about the effects of wind on the dates we examined. Overall, 

it seems there were more environmental conditions in flux during April than in 

June, which explains the difference in variability metrics between the two dates 

despite them having similar Delta flow states. October was notably different from 

the April and June dates. Delta flow decreased by a factor of 4 to 15,000 cfs, and 

the tidal phase was entering neap tide. As consequence, the system was relaxing 

and had significantly lower SPM overall, as well as less spatial variability. These 
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seasonal changes in variability are likely manifestations of seasonal changes in 

physical environmental conditions.   

We only consider three dates from 2019, and do not have data covering a long 

time series. Conditions in SF Bay can change dramatically year to year: for 

example, Delta flow throughout 2020 was much more similar to flow in October 

2019 than April or June 2019. Future research should examine spatial structure 

and variability during more tidal states, Delta flow conditions and more extensive 

wind data. We recommend using a Principal Component Analysis or similar 

method to observe spatial variability through time, and to identify the regions of 

high and low SPM variability. 

 

Differences Between the Shipping Channel and Full Bay 

In the full bay vs. shipping channel analysis, the variability of the entire 

bay was consistently higher than the variability observed in the shipping channel 

(Figure 6a,6c,6e). Results show there is twice as much variability when 

considering the full bay compared to just the shipping channel transect. Our 

results suggest that data taken just within the shipping channel will underestimate 

the variability than exists in the full bay. This can be attributed to two things: first, 

the shipping channel is a distinctive region from the rest of the bay: it is 

potentially more homogeneous than the rest of SF Bay because it is consistently 

deeper (Figure 1) and experiences less wind-driven resuspension of SPM (Bever 

et al. 2018). Second, the data in the shipping channel were extracted along a 
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transect and are therefore one-dimensional while the full area dataset is two-

dimensional. This is important because variability in SF Bay is not isotropic. 

Previous studies that have looked at spatial variability in the cross-channel 

direction (Fichot et al. 2016, Ruhl et al. 2001, Powell et al. 1989) confirm that 

spatial variability in SF Bay is anisotropic, with more heterogeneity in cross-

channel datasets than within-channel datasets. 

Our CV/GSD analysis assumes isotropic conditions in the Bay and overlooks 

the longitudinal anisotropy that exists because of the shipping channel’s 

distinctiveness. Anisotropy could be examined more effectively using a different 

spatial variability analysis, such as a semi-variogram method that considers the 

North-South anisotropy introduced by the shipping channel. This can be done by 

including the direction of strongest correlation, and the anisotropy ratio which 

conceptually quantifies how far from isotropic the situation is.  

Despite its limitations, the CV/GSD analysis does effectively illustrate the 

potential issues with monitoring the Bay only along the shipping channel transect: 

the channel is physically distinctive and sometimes less heterogeneous than the 

full bay. Integrating satellite image processing with current monitoring methods 

would not only provide spatially resolved information, but also context on cross-

channel variability that is not regularly tracked. 

 

Differences Between Regions 
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The results from the CV/GSD relationships between regions show that North 

Bay has consistently less spatial heterogeneity than Central and South Bay 

(Figure 6b,d,f), represented by a lower GSDT for North Bay compared to the other 

regions. This is initially counterintuitive because North Bay is often thought of as 

highly dynamic compared to South Bay: water residence times in North Bay are 

about 2 weeks, compared to South Bay water residence times of about 3-5 months 

(Conomos 1979). However, this relatively low heterogeneity matches what is seen 

in the satellite imagery. For example, if we consider April as a case example: the 

GSDT of North Bay is 621 m compared to 1.7 km and 1.2 km for Central and 

South Bay, respectively. Looking at the SPM map for that day, we see that the 

main source of variation in North Bay is the distinctive shipping channel. 

However, most of the North Bay region falls within the smaller range of SPM = 

60-145 mg/L, whereas both Central and South Bay have a larger range of SPM = 

~30-145 mg/L. Central and South Bay also don’t have just one single distinctive 

feature the way North Bay does—instead, there is more widespread heterogeneity 

across the full area of each region, driving up the GSDT. The strong influence of 

Delta flow in North Bay results in dynamic movement, but steady spatial 

structure. In contrast, Central and South Bay water movement is less controlled by 

Delta flow and instead primarily correlated to tidal phase (Cloern et al. 1989, 

Tobler 1970), which sets up less consistent structure and results in higher spatial 

variability. South Bay CV/GSD has a lower slope than other regions, which is 
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especially apparent in the transect data. This implies variability is being gained 

more slowly (less sub-1km) variability than other regions. 

 

Implications for Monitoring 

Monitoring at different resolutions in different parts of SF Bay could be 

informed by this analysis. Like results from other coastal areas (Moses et al. 

2016), high variability at sub-kilometer scales is observed in SF Bay. The highly 

dynamic nature of the SF Bay estuary system essentially means that there is no 

point at which spatial structure becomes uniform. Therefore, monitoring decisions 

about sampling resolution and strategy should be made on a case-by-case basis, 

based on what processes are being examined and when and where the monitoring 

is occurring. 

We make several recommendations for general sampling based on our results. 

First and foremost, we emphasize that recognizing the lack of variability captured 

in the shipping channel is important. Spatial variability in SF Bay is not isotropic, 

and the spatial structure of the shipping channel is not necessarily representative 

of the spatial variability in the rest of SF Bay. Considering data taken at dispersed 

stations throughout the area of SF Bay is important for any research looking to 

assess water quality changes or changes in SF Bay conditions. Reliance on point 

measurements or transect data taken solely in the shipping channel increases the 

likelihood of missing important outflow events or seeing peaks that are part of a 

larger feature or small filament.   
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Similarly, monitoring in different areas of SF Bay should consider the scales 

at which processes occur, and consider how much inherent uncertainty is 

incorporated with monitoring at different resolutions. For example, using the 

CV/GSD relationship established for April, Central Bay 10% variability (CV = 

0.1) at 20 m resolution compared to 10% uncertainty in North Bay at 190m 

resolution. This information, in combination with using satellite imagery to 

identify unique and distinct features, provides a targeted view of SF Bay and 

context for monitoring at different times of year, different tidal states and 

different Delta conditions.  
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Fig. 1. Map of San Francisco Bay showing bathymetry, USGS cruise track and 
sampling stations used in this study, and the three regions of the Bay (North, 
Central, South). Flow-through data and Shipboard Radiometry were collected 
continuously along the ship track (red line). Radiometry average distance between 
samples is ~120m, Flowthrough is ~30m. Total Suspended Particulate Matter 
samples were collected at USGS stations (orange dots) at 2m depth. 
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Fig. 2. SPM concentration measured by in situ grab samples, validated SCUFA 
flowthrough, and retrieved by the HydroRad along the cruise transect for A) 
April, B) June, and C) October. Transects start at USGS station 18 in Central Bay 
and end at station 657 near the mouth of the Delta. The x-axis is USGS station 
number. D, E, and F show match-ups between HydroRad retrievals and 
Flowthrough SPM.  
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Fig. 3. Radiometric comparison of Remote Sensing Reflectance (Rrs) from the 
HydroRad at the surface (orange line), Sentinel-2 processed to Level 2A with the 
standard ESA correction (light blue dotted line), and Sentinel-2 reflectance 
processed from Level 1C using C2RCC. The comparisons shown are taken at the 
closest stations visited to the time of the Sentinel-2 overpass. For April, this was 
stations 15 and 13 (panels A and C). For June, this was stations 13 and 9 (panels 
B and D). 
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Fig. 4. SPM retrievals through SFB from the HydroRad using the Nechad et al. 
(2010) algorithm (solid orange line), Sentinel 2 L2A data using the Nechad 
algorithm (dashed light blue line), and Sentinel 2 L1C processed with CR2CC 
(dashed dark blue line), compared to in situ grab samples (black). The top axis for 
each panel is USGS station from station 30 (South Bay) to station 657 (mouth of 
Delta). The bottom axis is the time that the R/V Peterson was at each station. The 
vertical light grey line shows the time that Sentinel 2 imagery was taken. 
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Fig. 5. SPM images generated from Sentinel-2 for each cruise date. Note the 
significantly higher SPM in April and June than October. In April and June, Delta 
flow was about 66,000 cfs, while in October Delta flow decreased to around 
15,000 cfs.  
 

Fig. 6. Spatial variability (CV/GSD) relationships for the full San Francisco Bay 
on each date (black dashed lines). The left panels (A,C,E) show the CV/GSD 
relationship for the shipping channel. Right panels (B,D,F) show the CV/GSD 
relationships for each of the regions mapped in Figure 1.  
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 April June October 

Min [SPM] 3 0.011 0.5 

Max [SPM] 152.58 148.84 46.71 

Mean [SPM] 46.25 47.78 9.06 

Std [SPM] 44.94 36.13 4.94 

Median [SPM] 24.99 32.46 7.11 

Delta Flow (cfs) 68,464 66,005 15,845 

Tidal Height (ft) 5.26 1.8 1.8 

Wind speed (m/s) 7.7 0.5 1.3 
 
Table 1. Statistics from the Sentinel 2 images of SPM generated with C2RCC and 
environmental data for each date.  
 
 
 

TRANSECTS 

Region April June October Average 

North 140 m  110 m 100 m 116.67 
Central 210 m 130 m 70 m 136.67 
South 230 m 180 m 110 m 173.33 
Full 210 m 170 m 100 m 160.00 

     
AREAS 

Region April June October Average 

North 620 m 340 m 390 m 450.00 
Central 1740 m 490 m 450 m 893.33 
South 1190 m 530 m 371 m 697.00 
Full 920 m 460 m 420 m 600.00 

 
Table 2. Transition GSDs (GSDT) for each region on each date, calculated for just 
the shipping channel transect (top panel) and for the full area of the region 
(bottom panel).   
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CHAPTER 3 

CONCLUSION 

 Monitoring stations placed 5 km apart diagnose general water quality and 

keep track of changes in overall Bay health but miss multiple features and do not 

capture the full variability of SF Bay. Remote sensing data from satellites and 

from ships can supplement existing monitoring programs by providing increased 

resolution and broader spatial coverage. We demonstrate this by using a ship-

based radiometer and three Sentinel-2 images collected within a day of each other 

and in situ measurements. The retrievals from the ship-based data were more 

accurate than the retrievals from the satellite data (Figure 3) and were used to 

track the location of the Estuary Turbidity Maximum (ETM), which is linked to 

other physical variables and informs on habitat conditions. Satellite imagery of 

SPM spatial distributions were used to understand spatial variability in different 

areas of SF Bay in April, June, and October—each of which was associated with 

very different physical environmental conditions. We found that Central Bay 

consistently has the most spatial variability across all scales, while North Bay has 

the lowest heterogeneity. In addition, we show variability in the main shipping 

channel of SF Bay is about half of the variability represented in the full Bay on 

any given date. We suggest that the strength and type of physical processes 

occurring in different regions of SF Bay are what account for different levels of 

heterogeneity, and caution that variability in SF Bay is not isotropic. 

 




