
UCLA
UCLA Electronic Theses and Dissertations

Title
Theory and Practice of Non-Binary Graph-Based Codes: A Combinatorial View

Permalink
https://escholarship.org/uc/item/8cr1h8d7

Author
Amiri, Behzad

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8cr1h8d7
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Theory and Practice of Non-Binary Graph-Based
Codes: A Combinatorial View

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Behzad Amiri

2015

c© Copyright by

Behzad Amiri

2015

ABSTRACT OF THE DISSERTATION

Theory and Practice of Non-Binary Graph-Based
Codes: A Combinatorial View

by

Behzad Amiri
Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2015

Professor Lara Dolecek, Chair

We are undergoing a revolution in data. The ever-growing amount of information in our

world has created an unprecedented demand for ultra-reliable, affordable, and resource-

efficient data storage systems. Error-correcting codes, as a critical component of any

memory device, will play a crucial role in the future of data storage.

One particular class of error-correcting codes, known as graph-based codes, has

drawn significant attention in both academia and in industry. Graph-based codes offer

superior performance compared to traditional algebraic codes. Recently, it has been

shown that non-binary graph-based codes, which operate over finite fields rather than

binary alphabets, outperform their binary counterparts and exhibit outstanding overall

performance. For this reason, these codes are particularly suitable for emerging data

storage systems.

In this dissertation, we present a comprehensive combinatorial analysis of non-

binary graph-based codes. We perform both finite-length and asymptotic analyses for

these codes, providing a systematic framework to evaluate and optimize various fami-

lies of non-binary graph-based codes.

In the finite-length case, we provide a mathematical characterization of the error

floor problem, including a general definition of absorbing sets over non-binary alpha-

ii

bets. We consider several structured low-density parity-check (LDPC) codes, includ-

ing quasi-cyclic and spatially-coupled codes, as well as unstructured LDPC codes. We

offer design guidelines for non-binary LDPC codes with outstanding performance in

extremely low error-rate regimes; making them excellent candidates for data storage

applications.

In the asymptotic case, we provide a novel toolbox for the evaluation of families

of non-binary graph-based codes. By utilizing insights from graph theory and combi-

natorics, we establish enumerators for a general family of graph-based codes which are

constructed based on protographs. We provide asymptotic distributions of codewords

and trapping sets for the family of protograph-based codes. Furthermore, we present an

asymptotic enumeration of binary and non-binary elementary absorbing sets for regular

code ensembles.

The contributions of this dissertation can potentially impact a broad range of data

storage and communication technologies that require excellent performance in high-

reliability regimes.

iii

The dissertation of Behzad Amiri is approved.

Mario Gerla

Richard D. Wesel

Alan J. Laub

Lara Dolecek, Committee Chair

University of California, Los Angeles

2015

iv

To my parents, Jalil and Fereshteh

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Summary of Contributions . 4

2 Preliminaries of Graph-Based Codes 7

2.1 Graphical Representation of Linear Codes 7

2.2 Decoding of Graph-Based Codes . 9

2.2.1 Maximum-Likelihood Decoding 10

2.2.2 Iterative Message-Passing Decoding 10

2.3 Objects of Interest in Graph-Based Codes 12

2.3.1 Binary Trapping Set . 13

2.3.2 Binary Absorbing Set . 13

2.4 Constructions of Structured LDPC Codes 14

2.4.1 Binary Array-Based LDPC Codes 14

2.4.2 Non-Binary Protograph-Based LDPC Codes 15

2.4.3 Non-Binary Quasi-Cyclic LDPC Codes 17

3 Finite-Length Analysis and Design of Non-Binary Block LDPC Codes . 19

3.1 Introduction . 19

3.2 Non-Binary Absorbing Sets . 20

3.3 Non-Binary Absorbing Sets as a Tool to Improve the Performance . . . 27

3.3.1 Code Design Guidelines for Non-Binary Unstructured LDPC

Codes . 29

vi

3.3.2 Code Design Guidelines for Non-Binary Quasi-Cyclic LDPC

Codes . 36

4 Asymptotic Analysis of Binary and Non-Binary LDPC Code Ensembles 46

4.1 Introduction . 46

4.2 Asymptotic Distribution of Absorbing Sets for Regular Binary and Non-

Binary Unstructured LDPC Ensembles 47

4.2.1 Random Matrix Enumeration 48

4.2.2 Asymptotic Distribution of Binary Absorbing Sets 49

4.2.3 Asymptotic Distribution of Non-Binary Absorbing Sets 65

4.3 Analysis and Enumeration of Non-Binary Protograph-Based LDPC Codes 69

4.3.1 U-NBPB Weight Enumerators 70

4.3.2 Trapping Set Enumerators for U-NBPB Ensembles 85

5 Finite-Length Analysis and Design of Spatially-Coupled Codes 90

5.1 Introduction . 90

5.2 Construction of Array-Based Spatially-Coupled LDPC Codes 91

5.3 Performance Comparison for AB-LDPC and AB-SC Codes 93

5.4 Exact Enumeration of Binary Absorbing Sets in Array-Based Spatially-

Coupled Codes . 96

5.4.1 Column Weight 3 Analysis . 97

5.4.2 Column Weights 4 Analysis 106

5.5 Optimal Cutting Vector for AB-SC Codes 110

5.6 Absorbing Set Analysis for Non-Binary AB-SC Codes 112

5.7 Experimental Results . 114

vii

6 Summary of Results . 118

References . 122

viii

LIST OF FIGURES

1.1 Annual volume of data from 2009 to 2020. 1

2.1 Tanner graph associated with binary parity check matrix in equation 2.1. 8

2.2 Tanner graph associated with non-binary parity check matrix in equa-

tion 2.2. 9

2.3 Block diagram of a generic communications system. 10

2.4 An illustrative example for maximum-likelihood decoding. 11

2.5 The original unlabeled protograph and an example of a U-NBPB code

construction with N = 3 (copy-scale-permute). 17

3.1 Tanner graph of a (4, 4) absorbing set. 21

3.2 (a) Non-binary elementary (4, 4) absorbing set over GF(8), (b) (4, z)

trapping set, 5 ≤ z ≤ 10, weights do not satisfy absorbing set condi-

tions over GF(8). 22

3.3 FER versus SNR for the original random non-binary code and for both

P- and A-method modified codes, N ≈ 2750, R ≈ 0.88, c = 4, and the

QSPA-FFT decoder. 33

3.4 FER versus SNR for the original random non-binary code and the A-

method modified code, N ≈ 2350, R ≈ 0.83, c = 5, and the QSPA-

FFT decoder. 34

3.5 FER versus SNR for the original non-binary random code and both P-

and A-method modified codes, N ≈ 2750, R ≈ 0.88, c = 4, and a

min-sum decoder. 35

3.6 FER versus SNR for non-binary QC codes and their A-method modi-

fied versions, N ≈ 1200, R ≈ 0.8, c = 4, and the QSPA-FFT decoder. . 37

ix

3.7 FER versus SNR for non-binary irregular codes and their A-method

modified versions, N ≈ 2000, R ≈ 0.85, Λ(x) = 0.5x4 + 0.5x5, and

the QSPA-FFT decoder. 37

3.8 Performance comparison for NB-QC codes, with blocklength N =

1014 for codes over GF(4), N = 3549 for codes over GF(8) and N =

2028 for codes over GF(16), rate R = 0.69, and row weight c = 4. . . . 43

3.9 Performance comparison for NB-QC codes, blocklength N = 726 for

codes over GF(4) and N = 2541 for codes over GF(8), R = 0.54, c = 5. 45

4.1 Comparison of the normalized logarithmic asymptotic distributions of

elementary trapping sets (TS) and elementary absorbing sets (AS) and

elementary fully absorbing sets (FAS) for fixed θ = 0.001 for various

G3,r
n,m collections, each indexed by (3, r). The equations in [17] are used

to plot the trapping set curves. Note that for the (3, 6) case the curves

for absorbing sets and for fully absorbing sets are completely overlapping. 62

4.2 Comparison of the normalized logarithmic asymptotic distributions of

elementary absorbing sets in G3,r
n,m and G4,r

n,m for fixed θ = 0.001, and

for ζ equal to 0.25 and 0.5. The horizontal line at zero delineates hav-

ing exponentially many absorbing sets from the exponential absence of

absorbing sets. 63

4.3 Comparison of the normalized logarithmic asymptotic distributions of

elementary trapping sets (TS) and elementary absorbing sets (AS) in

G3,6
n,m for different values of λ. The arrow indicates the increase in λ

and the circles group up curves of the same λ. The equations in [17]

are used to plot the trapping set curves. 64

x

4.4 Comparison of the normalized logarithmic asymptotic distributions of

elementary trapping sets (TS) and elementary absorbing sets (AS) in

G3,15
n,m collection for different values of λ. The arrow indicates the in-

crease in λ and the circles group up curves of the same λ. 65

4.5 Comparison of the normalized logarithmic asymptotic distributions of

elementary trapping sets (TS) and elementary absorbing sets (AS) in

the Tanner graphs in G3,r
n,m for the fixed ratio λ

θ
= 0.5. The equations

in [17] are used to plot the trapping set curves. 66

4.6 Comparison of the normalized logarithmic asymptotic distributions of

elementary trapping sets (TS) and elementary absorbing sets (AS) in

G3,6
n,m for different η = λ

θ
. Thicker lines correspond to increasing values

of η, as the arrow indicates. The circles group up curves of the same η.

The equations in [17] are used to plot the trapping set curves. 67

4.7 Comparison of the normalized logarithmic asymptotic distributions of

elementary absorbing/trapping sets of rate 1/3 regular unstructured codes

(e3,9(θ, λ)) and of trapping sets of (eRAA(θ, ηθ)) rate 1/3 RAA codes.

Note the substantial improvement in the normalized trapping set dis-

tribution offered by the RAA codes relative to the lower bound of the

regular LDPC code ensemble. The bound is based on the elementary

absorbing set distribution. 68

4.8 Normalized logarithmic asymptotic distributions of elementary trap-

ping sets (ETS) and absorbing sets (EAS) for G3,6
n,m, θ = 0.001 and

q = 2, 16. 70

4.9 Normalized logarithmic asymptotic distributions of elementary absorb-

ing sets for regular code ensemble G3,6
n,m, q = 2, 4, 8, 16 and (a) λ/θ =

0.95, (b) λ/θ = 0.1. 71

xi

4.10 Illustration of the relationship between vectors d = [d1, d2, d3] and

d1 = [d11 , d12], d2 = [d21 , d22 , d23] for an U-NBPB code with N = 3,

where d11 = d1, d12 = d2, d21 = d1, d22 = d2, d23 = d3. 79

4.11 Three candidate protographs: (a) Regular (2, 4) protograph, (b) Punc-

tured (2, 4) type 1 protograph, and (c) Punctured (2, 4) type 2 proto-

graph. Black nodes are punctured. 80

4.12 Weight enumerator for the U-NBPB ensembles of the protographs in

Fig. 4.11 over GF (8) for symbol length 32. 81

4.13 Weight enumerator for the U-NBPB ensembles of the protographs in

Fig. 4.11 over GF (8) for symbol length 80. 81

4.14 Weight enumerator for the U-NBPB ensembles of the regular (2, 4)

protograph in Fig. 4.11 for symbol length 40 and over different field

orders. 82

4.15 Asymptotic symbol weight enumerators of protographs in Fig. 4.11

over GF (8). 84

4.16 Regular (3, 6) protograph. 85

4.17 Asymptotic symbol weight enumerators of regular (3, 6) protograph for

different q. 86

4.18 Typical minimum distance of regular (3, 6) protograph for different q. . 86

4.19 Asymptotic trapping set enumerators of the (3, 6)-regular protograph

code ensemble over GF(16). 88

4.20 Asymptotic trapping set enumerators of the (3, 6)-regular protograph

code ensemble for different q with β̃ = 0.0002, for protograph shown

in Fig. 4.16. 89

xii

5.1 (a) Example of an AB-LDPC code with p = 11 and c = 3, (b) Example

of an AB-SC code with p = 11, c = 3, L = 2, and cutting vector

ξ = [3, 6, 9]. Here, ri = |Ri| for i ∈ {1, 2, 3, 4} and r′i = |R′i| for

i ∈ {1, 2, · · · , 7}. Moreover, r′1 = r1, r′2 = r2, r′3 = r3, r′4 = r4 + r1,

r′5 = r2, r′6 = r3, and r′7 = r4. 93

5.2 Performance comparison for AB-LDPC and AB-SC codes with various

random cutting vectors. 95

5.3 Structure of a (3, 3) absorbing sets over GF(q). Note that in the binary

case, w1 through w9 are equal to ‘1’. 98

5.4 (a) Example of Case 1. All VNs in region R′1. (b) Example of Case 2.

VNs 1 and 2 are in region R′1 and VN 3 is in region R′2. (c) Example

of Case 3. VN 3 is in region R′1 and VNs 1 and 2 are in region R′2. (d)

Example of Case 4. VN 3 is in region R′1, VN 2 is in region R′2 and VN

1 is in region R′3. 100

5.5 The three possible cases for (4, 2) absorbing sets. 104

5.6 Areas corresponding to valid choices for j1 and j3 in Example 12. . . . 106

5.7 Two candidate configurations for (6, 4) absorbing sets. 107

5.8 Valid areas for (6, 4) absorbing set with Configuration A, when all vari-

able nodes are in region R1. 110

5.9 Performance comparison for binary SC codes constructed by various

cutting vectors. 115

5.10 Performance comparison for optimized and unoptimized non-binary

AB-SC codes over GF(3) and GF(4) with p = 43, column weight 3

and cutting vectors ξ1 = [10, 22, 34] and ξ2 = [5, 29, 33], where ξ1 is

optimized and ξ2 selected randomly, respectively. The binary AB-SC

code has constraint length νs = 3721, and is constructed using optimal

cut for (3, 3) absorbing sets. 117

xiii

LIST OF TABLES

3.1 Error Profile, SNR = 5.2 dB,N = 2738,R = 0.891, c = 4 and GF(4),

total number of simulations ≈ 4× 108. 32

3.2 Error Profile, Eb/N0 = 5.2 dB, N = 2738, R = 0.891, c = 4 and

GF(4), total number of simulations ≈ 1.5× 107. 35

3.3 Error Profile for the performance curves shown in Figure 3.8. 44

3.4 Error Profile for the performance curves shown in Figure 3.9. 44

5.1 Error profile (the number of specific absorbing sets) for the curves

shown in Figure 2 at an SNR of 6.1 dB. 95

5.2 Valid parameters for the Configuration A for the case of z = 0. 108

5.3 Valid parameters for the Configuration A for the case of x = 0. 108

5.4 Optimal cutting vectors for various circulant sizes. 111

5.5 (3, 3) absorbing set comparison for various cutting vectors, p = 67,L =

2, q = 2. 114

xiv

ACKNOWLEDGMENTS

This dissertation would not be possible without the guidance, support, and compan-

ionship of many individuals, to whom I give my deepest thanks and appreciation.

I would like to first thank my advisor, Professor Lara Dolecek, for her guidance and

support over the years. I am truly grateful for her help throughout my Ph.D. research.

Professor Dolecek is always a great source of insight, new ideas and motivation. Many

of the ideas in this dissertation came from my discussions with her. Her emphasis

on critical thinking and improved written and verbal communication skills has greatly

influenced my graduate studies, and will continue to help me in my future career.

I would like to thank Professor Alan Laub, Professor Richard Wesel, and Professor

Mario Gerla for being on my Ph.D. qualifying exam and dissertation committees, as

well as reviewing this dissertation. I am very grateful for their time and their guidance.

I am grateful to all my collaborators for their help and insight through these years.

It was a great learning experience working with Professor Jörg Kliewer, Professor Dar-

iush Divsalar, and Professor Dejan Markovic. I was also fortunate to work with Arturo

Flores, Yuta Toriyama, Yizeng Sun, Dr. Jiadong Wang and Dr. Shayan Garani Srini-

vasa. The members of the LORIS research lab at UCLA, Frederic Sala, Ahmed Ha-

reedy, Clayton Schoeny, Amirhossein Resisizadeh, Nicolas Bitouze, Dr. Sean Huang,

Dr. Ryan Gabrys, Dr. Sadegh Tabatabaei Yazdi, and Dr. Yao Li have been great com-

panions over the past several years. They provided a great friendly and interactive

environment at the LORIS lab, which made my Ph.D. experience much more fun.

I must also thank my dear friends whom I shared so many unforgettable memories

with, Sina Basir-Kazeruni, Mahdi Ashktorab, Sina Kalbasi, Ehsan Ebrahimzadeh, Ah-

mad Ghadiri, Koosha Marashi, Mohammadreza Saba, Farid Hendi, Arman Ansari and

Farid Yaghini. Spending time with all of you was joyful and fun, and it thought me a

lot of invaluable life lessons.

I would like to thank my parents for their constant love, support, and faith in me

xv

throughout my life. My parents raised me up and gave me everything I needed. They

always put me before themselves. Without them, I would not have accomplished my

goals. My special thanks to my brothers, Babak and Bahador, whose constant and

unwavering support have kept me going during the ups and downs of my life. Their

love and encouragement significantly helped me during my graduate school career,

which included some of the most difficult challenges I have had yet to face.

Last but certainly not least, I cannot find words to express my gratitude for my

girlfriend, Ghazaleh. It is no overstatement that none of this would be possible without

her relentless support, unconditional and unmeasurable love. She is always supportive

no matter what choices I make, many times at her own sacrifice. She is my best friend,

and my best supporter.

This work was supported in part by the National Science Foundation (NSF) and the

Advanced Storage Technology Consortium (ASTC).

xvi

VITA

2010 B.S. in Electrical Engineering

Isfahan University of Technology

2009 - 2010 Research Assistant

Isfahan University of Technology

2011 - 2015 Research Assistant

Electrical Engineering Department

University of California, Los Angeles

2011 - 2012 Research Assistant

Physics Department

University of California, Los Angeles

2012 M.S. in Electrical Engineering

University of California, Los Angeles

2013 - 2015 Teaching Assistant

Electrical Engineering Department

University of California, Los Angeles

PUBLICATIONS

B. Amiri, S. Garani Srinivasa, and L. Dolecek, “Quantization, Absorbing Regions and

Practical Message Passing Decoders,” In Proceedings of the IEEE Asilomar Conference

on Signals, Systems and Computers, Monterey, CA, November 2012.

xvii

B. Amiri, C. W. Lin, and L. Dolecek, “Asymptotic Distribution of Absorbing Sets

and Fully Absorbing Sets for Regular Sparse Code Ensembles," IEEE Transactions on

Communications, vol. 61, no. 2, pp. 455 - 464, February 2013.

B. Amiri, J. Kliewer, and L. Dolecek, “Analysis and Enumeration of Absorbing Sets

for Non-Binary Graph-Based Codes,” In Proceedings of the IEEE International Sym-

posium on Information Theory, Istanbul, Turkey, July 2013.

B. Amiri, J. Kliewer, and L. Dolecek, “Analysis and Enumeration of Absorbing Sets

for Non-Binary Graph-Based Codes,” IEEE Transactions on Communications, vol. 62,

no. 2, pp. 398 - 409, February 2014.

L. Dolecek, D. Divsalar, Y. Sun, and B. Amiri, “Non-Binary Protograph-Based LDPC

Codes: Enumerators, Analysis, and Designs,” IEEE Transactions on Information The-

ory, vol. 60, no. 7, pp. 3913 - 3941, July 2014.

Y. Toriyama, B. Amiri, L. Dolecek, and D. Markovic, “Field-Order Based Hardware

Cost Analysis of Non-Binary LDPC Decoders,” In Proceedings of the IEEE Asilomar

Conference on Signals, Systems, and Computers, Monterey, CA, November 2014.

B. Amiri, A. Flores, and L. Dolecek, “Design of Non-binary Quasi-Cyclic LDPC

Codes by Absorbing Set Removal,” In Proceedings of the IEEE Information Theory

Workshop, Hobart, TAS, Australia, November 2014.

Y. Toriyama, B. Amiri, L. Dolecek, and D. Markovic, “Logarithmic Quantization

Scheme for Reduced Hardware Cost and Improved Error Floor in Non-Binary LDPC

Codes,” In Proceedings of the IEEE Globecom, Austin, TX, December 2014.

xviii

B. Amiri, A. Reisizadeh, J. Kliewer, and L. Dolecek, “Optimized Array-Based Spatially-

Coupled LDPC Codes: An Absorbing Set Approach,” In Proceedings of the IEEE In-

ternational Symposium on Information Theory, Hong Kong, June 2015.

B. Amiri, A. Reisizadeh, J. Kliewer, and L. Dolecek, “Optimized Design of Finite-

Length Spatially-Coupled Codes: An Absorbing Set-Based Analysis,” IEEE Journal

on Selected Areas in Communications, 2015, submitted.

A. Hareedy, B. Amiri, and L. Dolecek, “Non-Binary LDPC Code Optimization for

Partial-Response Channels,” IEEE Globecom, 2015, submitted.

xix

CHAPTER 1

Introduction

We are facing exponential growth in the volume of digital data. This growth is predom-

inantly driven by ever-growing demand due to technological advancements in enter-

tainment, communication, safety and security, scientific research, and numerous other

fields. As a result, the volume of data is predicted to increase from 2 zettabytes1 in 2009

to around 44 zettabytes in 2020, as shown in Figure 1.1.

0

5

10

15

20

25

30

35

40

45

50

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Vo
lu
m
e1
of
1g
en

er
at
ed

1d
at
a1
(Z
et
ta
by
te
s)

Figure 1.1: Annual volume of data from 2009 to 2020.

The majority of this enormous volume of generated data needs to be stored, result-

ing in the construction of multi-billion dollar data centers worldwide. For example, a

Utah data center, with a capacity of 10 exabytes2, was built in 2014 at a cost of 1.5 bil-

lion dollars. Advanced solutions are essential to the creation of more reliable and less
11 zettabyte is equal to 1021 bytes.
21 exabyte is equal to 1018 bytes.

1

expensive data storage systems. High-performance error-correcting codes are one such

strategy. Employing high-performance error-correcting codes results allows for more

reliable storage of data, which leads to improved device lifetimes and thus a significant

reduction in cost of storage systems.

Problems related to error-correction over noisy channels were first studied by Claude

Shannon in the 1940’s. In 1948, Shannon published a landmark paper pioneering the

concept of reliable data transmission over noisy channels [1]. He proposed a system

consisting of an encoder, a channel, and a decoder. Shannon’s work revealed that be-

yond a certain limiting data rate, called the capacity of the channel, reliable trans-

mission is impossible and that, for data rates below the channel capacity, information

can be transmitted with error probability approaching zero. The channel coding the-

orem [1] proves that there always exists a coding scheme with the property that the

decoding error approaches zero exponentially fast by increasing the blocklength of the

code. Consequently, there has been a vast amount of research focused on designing

codes that are easy to encode and decode in practice and that can also operate close to

the channel capacity.

Linear codes are a class of channel codes whose codewords form a linear vector

space over a finite field. Linear codes were first proposed by Elias [2] in 1955, and

were shown to approach the capacity of discrete memoryless channels. For a linear

code, the parity-check matrix is defined as a matrix whose rows span the null-space of

the code. Thus, linear codes can be defined in terms of their parity-check matrices as

well. Encoding of linear codes can be done by the multiplication of the information vec-

tor with a generator matrix. Consequently, linear codes are amenable to low complexity

encoding. Moreover, many algebraic linear codes have polynomial time decoding al-

gorithms, such as Hamming codes [3], BCH codes [4], and Reed-Solomon codes [5].

However, none of these codes can reach the capacity of additive white Gaussian noise

(AWGN) channels.

The discovery of capacity-approaching turbo codes [6] along with the rediscov-

2

ery of low-density parity-check (LDPC) codes [7], [8] ushered in a new era of coding

research. This period has been marked by research on so-called graph-based code con-

structions. In particular, the excellent performance of LDPC codes has resulted in their

growing use in many applications. LDPC codes reach outstanding near-capacity per-

formance with acceptable encoding/decoding complexity [9]. Therefore, the analysis

and design of LDPC codes and their decoders has drawn a lot of significant attention.

Recently, it has been shown that non-binary LDPC codes offer performance im-

provements compared to their binary counterparts [10]. As a result, several works have

been devoted to the construction of various non-binary LDPC codes [11–13]. In ad-

dition to code design, the development of low-complexity message-passing decoders

with performance close to maximum-likelihood decoding has also garnere research at-

tention [14, 15].

When relying on message-passing decoders, it is known that certain non-codewords

vie with codewords to be the output of the decoder. The presence of these non-codeword

objects can significantly undermine the performance of iteratively decoded graph-based

codes and may even result in an undesirable error floor. Given the significance of the

error floor behavior for the finite block-length performance of coding schemes, exten-

sive recent works have been devoted to studying this phenomenon for the binary case,

such as [16, 17]. In contrast, for the non-binary case much less is known about how

non-codeword objects and specific substructures in the Tanner graph affect the error

floor performance [18, 19].

This dissertation sheds light on various challenges facing the utilization of non-

binary graph-based codes. We present an analysis of and designs for non-binary graph-

based codes . We begin by characterizing the error floor problem by combinatorially

defining and analyzing non-binary absorbing sets for codes over non-binary alpha-

bets. We propose an efficient mathematical finite-length code design for structured

non-binary quasi-cyclic and spatially-coupled LDPC codes.

Using advanced combinatorics and graph theory, we present an asymptotic enu-

3

meration of non-binary elementary absorbing sets in regular LDPC code ensembles.

Moreover, we provide a comprehensive study of non-binary LDPC codes built from

protographs, including both finite-length and asymptotic codeword and trapping set

enumerators.

1.1 Summary of Contributions

We briefly outline the contributions of each chapter below.

Chapter 2 Contributions

In this chapter, we provide preliminary definitions and concepts which are necessary

for the remainder of this work. We begin with an overview of the Tanner graph rep-

resentation of linear block codes. Next, two decoding methods of graph-based codes,

maximum likelihood decoding and iterative message-passing decoding, are presented.

Objects of interest in binary codes, including binary trapping sets and binary absorbing

sets are then defined. These definitions are later used as the basis of corresponding

objects in non-binary regimes. We conclude this chapter by providing constructions of

binary array-based, non-binary quasi-cyclic, and non-binary protograph-based LDPC

codes. These families of codes will be considered in our analysis throughout this dis-

sertation.

Chapter 3 Contributions

The main contributions of this chapter are as follows:

• to define and analyze non-binary absorbing sets for codes defined over finite

fields,

• to show that the proposed definition for non-binary absorbing sets is valid over

different decoders and code constructions,

• to highlight the difference between binary absorbing sets and non-binary absorb-

ing sets, and

4

• to propose an efficient algorithm based on our classification of absorbing sets in

order to design non-binary quasi-cyclic and unstructured LDPC codes.

Chapter 4 Contributions

This chapter has two main directions:

First, we establish the asymptotic analysis of absorbing sets for regular LDPC code

ensembles, and, for the first time, we quantify the difference between the asymptotic

distributions of absorbing sets and trapping sets. When the normalized logarithmic

asymptotic absorbing set distribution (to be defined later) is almost identical to the

normalized logarithmic asymptotic trapping set distribution, most trapping sets are in

fact absorbing sets, and can represent the decoding errors accurately. On the other

hand, when the discrepancy between the trapping set and absorbing set distributions is

large, many trapping sets are not stable under finite-precision iterative decoding. Such

quantitative observations can be useful in refining algorithms that efficiently search for

absorbing sets (or relevant trapping sets).

Second, we focus our attention on the characterization of non-binary LDPC codes built

out of protographs. In particular, we consider novel non-binary code constructions that

are based on repeating the nodes and permuting the edges as in the binary case, but

are also equipped with the added freedom of choosing the non-binary edge weights.

We generalize existing definitions and techniques from the binary to the non-binary

domains. We also provide an ensemble performance evaluation of the resulting non-

binary protograph-based (NBPB) codes through the explicit computation of codeword

enumerators and key non-codeword enumerators.

Chapter 5 Contributions

In this chapter, we present a complete characterization of absorbing sets for binary

and non-binary array-based spatially-coupled (AB-SC) codes. Our contribution in this

chapter is multifold:

• we introduce an analytical approach to find the exact number of absorbing sets in

non-binary spatially-coupled codes: the original counting problem is mapped

5

to a problem of finding the number of integer points within an area in two-

dimensional space,

• we find the optimal cutting vector for AB-SC codes with an arbitrary circulant

size: analytical and experimental results reveal that the choice of the cutting

vector significantly affects the error floor performance of binary and non-binary

spatially-coupled codes, and

• we calculate the average number of absorbing sets in non-binary spatially-coupled

codes constructed by uninformed (random) assignment of edge weights on top of

a binary spatially-coupled code. This result reveals that the average number of

absorbing sets in non-binary spatially-coupled codes is significantly lower than

the average number of absorbing sets in binary spatially-coupled codes. This ex-

plains the superior error floor performance of non-binary spatially-coupled codes

compared to their binary counterparts.

6

CHAPTER 2

Preliminaries of Graph-Based Codes

Most of this dissertation deals with the analysis and design of different families of

graph-based codes, and hence we devote this chapter to some basic background material

concerning these codes.

2.1 Graphical Representation of Linear Codes

In 1981, Tanner proposed a graphical representation of a parity-check matrix of a lin-

ear code [20]. Pearl invented a belief propagation (BP) algorithm as a message passing

algorithm to perform inference over Bayesian networks [21]. Now, BP is used in many

signal processing, digital communication, and artificial intelligence algorithms such as

Viterbi algorithm, turbo decoding, Kalman filtering, etc. One of the important applica-

tions of BP is in practical decoding of LDPC codes. The performance of a BP decoder

depends on the Tanner graph that characterizes the LDPC code. On a Tanner graph with

no cycles, the BP decoder performs the same as the maximum-likelihood decoder [22]

which is the optimal decoder. The existence of short cycles in the Tanner graph affects

the performance of BP decoder and can remarkably deteriorate the error rate of BP de-

coders. Consequently, the Tanner graph representation of a code has an important role

in the decoding of an LDPC code.

Definition 1. The Tanner graph G of a code with the (n − k) × n party-check matrix

H is a bipartite graph such that each one of n bit nodes corresponds to one of the n

columns of the matrix H . Likewise, each one of n− k check nodes corresponds to one

7

of the n − k rows of the matrix H . There exists an edge between bit node j and check

node i if and only if the entry in ith row and jth column of matrix H , hij , is nonzero.

Moreover, in the case of non-binary linear codes, each edge is labeled according to the

corresponding entry in the parity-check matrix.

Figure 2.1 shows the Tanner graph of a length−7, Hamming code associated with

the parity-check matrix

H =

1 1 1 0 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

 . (2.1)

 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7

𝑐1 𝑐2 𝑐3

Figure 2.1: Tanner graph associated with binary parity check matrix in equation 2.1.

Figure 2.2 represents the Tanner graph of a length-5 LDPC code over GF (4), with

the parity-check matrix

H =

α α2 α3 0 0

0 α α2 α3 0

0 0 α α2 α3

 , (2.2)

where α is the primitive element of the GF (4). Since the parity-check matrix of

a code is not unique, there can be different Tanner graphs representing the same code.

8

 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑐1 𝑐2 𝑐3

𝛼
𝛼2

𝛼3

𝛼
𝛼2

𝛼3

𝛼
𝛼2

𝛼3

Figure 2.2: Tanner graph associated with non-binary parity check matrix in equation

2.2.

The rows of a parity-check matrix of a code define a set of constraints which each

codeword of the code must satisfy. Thus, the parity-check matrix can be interpreted as

a set of linear equations called the parity-check equations. Since any linear combination

of the parity-check equations generates another valid parity-check equation, different

parity-check matrices can represent the same code.

2.2 Decoding of Graph-Based Codes

Consider the block diagram of a communications system shown in Figure 2.3, where

a linear block code is utilized to make the transmitting data resistant to error. Given

the vector u of data, the encoder maps u to a valid codeword c, which is determined

based on the parity-check matrix of the linear block code. At receiver, given the noisy

realization from channel, r, the decoder attempts to form an estimate of the transmitted

codeword. Various algorithm are introduced in academia for the decoding process of

graph-based codes. We now briefly review the most well-known decoding approaches

of graph-based codes, the maximum-likelihood decoding and the iterative message-

passing decoding.

9

Data
Source

Noisy
Channel

Destination

𝑢

𝑢
Encoder Decoder

𝑐

𝑟

Figure 2.3: Block diagram of a generic communications system.

2.2.1 Maximum-Likelihood Decoding

In this section, we define notions of “optimal” decoding algorithms. Given a received

noisy vector r from the channel, codeword ĉ which maximizes p(c|r) is most likely

codeword to have been transmitted. If the channel is memoryless and each of the code-

words is equally likely, then this reduces to the codeword ĉ which maximizes p(r|c).

This is known as the maximum-likelihood (ML) estimate of the transmitted codeword.

Definition 2. Given a codeC and a received vector r, the maximum-likelihood decoder

has as its output

ĉ = arg maxc∈Cp(c|r) (2.3)

where ĉ is the decoded codeword and arg max is ranging over all codewords of the code

C.

An illustrative two-dimensional example for decoding process in ML decoders is

shown in Figure 2.4, where for the received realization from the channel (black dot), the

ML decoder maps this vector to the closest (most probable) codeword in the codeword

space.

2.2.2 Iterative Message-Passing Decoding

Since maximum-likelihood decoder has an extremely high computational complexity,

a lower complexity class of decoding algorithms are used in practice to decode graph-

based codes. These sub-optimal decoders are collectively named message-passing al-

10

Decoded
codeword

Codewords

Received from
channel

𝑟

𝑐5

𝑐1

𝑐2

𝑐3

𝑐4

𝑐6

𝑐7

Figure 2.4: An illustrative example for maximum-likelihood decoding.

gorithms since their operation can be explained by the passing of messages along the

edges of a Tanner graph. Each Tanner graph node works in isolation, only having ac-

cess to the information contained in the messages on the edges connected to it. The

message-passing algorithms are also known as iterative decoding algorithms as the

messages pass back and forward between the variable and check nodes iteratively un-

til a codeword is decoded or the maximum number of iterations is achieved. Several

message-passing algorithms are introduced in academia which differ from each other

due to either the type of messages passed or the type of operations performed at the

variable/check nodes.

As an example of message-passing decoders, we briefly describe the well-known

and simple bit-flipping decoder. In practical applications, more complicated but more

accurate message-passing decoders, such as sum-product decoder and min-sum de-

coder, are usually used to decode graph-based codes.

The bit-flipping algorithm is a hard-decision message-passing algorithm for LDPC

codes. A binary (hard) decision about each received bit is made by the detector and this

is passed to the decoder. The main properties of the bit-flipping algorithm is as follows:

• Messages: For the bit-flipping algorithm the messages passed along the Tanner

graph edges are binary: a variable node sends a message declaring if it is a one

or a zero, and each check node sends a message to each connected bit node,

11

declaring what value the bit is based on the information available to the check

node.

• Check node computation: Based on the values received from its neighboring

variable nodes, each check node determines whether its parity-check equation is

satisfied (i.e., if the modulo-2 sum of the incoming bit values is zero) or not.

• Variable node computation: If the majority of the messages received by a vari-

able node are different from its received value the bit node changes (flips) its

current value. This process is repeated until all of the parity-check equations are

satisfied, or until some maximum number of decoder iterations has passed and

the decoder gives up.

The bit-flipping decoder can be immediately terminated whenever a valid codeword has

been found by checking if all of the parity-check equations are satisfied. This is true

of all message-passing decoding of LDPC codes and has two important benefits; firstly

additional iterations are avoided once a solution has been found, and secondly a failure

to converge to a codeword is always detected. The bit-flipping algorithm is based on the

principal that a codeword bit involved in a large number of incorrect check equations

is likely to be incorrect itself. The sparseness of parity-check matrix in LDPC codes

helps spread out the variable nodes into check nodes so that parity-check equations are

unlikely to contain the same set of codeword bits.

2.3 Objects of Interest in Graph-Based Codes

It is well-known that for sufficiently high signal-to-noise ratios (SNRs), graph-based

codes tend to exhibit sudden changes in the slope of the bit-error rate (BER) curve.

Several researchers have investigated the problem of error floor in graph-based codes

and introduced different graphical objects to characterize the origin of error floor in

these codes. Trapping sets were first presented by Richardson in [23] to explain this

12

behavior. Several work provide analysis of trapping sets for binary and non-binary

LDPC codes [17, 42]. More recently, Dolecek [16] introduced the notion of absorbing

sets as the fixed points of message-passing decoders and provided analysis of absorb-

ing sets for a class of regular LDPC codes called array-based codes. In the following

subsections, we provide the mathematical definitions of binary tapping and absorbing

sets.

2.3.1 Binary Trapping Set

Let G = (V,C, F) denote a bipartite graph (Tanner graph) describing an LDPC code,

with the usual notation of V being the set of bit nodes, C the set of check nodes, and

the set F describing the edges between the nodes in V and C. For a given D ⊆ V , we

say that a check node c ∈ C is satisfied (unsatisfied) with respect to D if c is connected

to D even (odd) number of times. For any subset D ⊆ V , let E(D) (resp. O(D)) be

the set of neighboring satisfied (unsatisfied) checks in C. The following provides the

definition of trapping sets [17].

Definition 3. For the graph G = (V,C, F), an (a, b) trapping set Ta,b is a subset D of

V such that D contains a bit nodes and O(D), O(D) ⊆ C, contains b check nodes.

Moreover, an elementary trapping set [17] is a trapping set with each of its neigh-

boring satisfied checks having exactly two edges connected to the trapping set, and each

of its neighboring unsatisfied checks having exactly one edge connected to the trapping

set.

2.3.2 Binary Absorbing Set

Since not all trapping sets are problematic in practical (finite-precision) iterative decod-

ing algorithms, it is useful to characterize the subclass of trapping sets that is the main

cause of errors under such decoders. Absorbing set [16] are combinatorial objects in

Tanner graph that are guaranteed to be stable under a bit-flipping decoder.

13

Definition 4. An Aa,b binary absorbing set of size (a, b) is a subset D ⊆ V with size a

that connects to a subset O(D) ⊆ C with size b, where each element of D has strictly

fewer neighbors from O(D) than from C\O(D).

Clearly, there can exist even small trapping sets that do not fulfill the combina-

torial requirements of absorbing sets, and therefore would not pose problems under

bit-flipping decoder. The following statement rounds up the definitions of the graphical

objects of interest.

Definition 5. An elementary (fully) binary absorbing set is an (fully) absorbing set

with each of its neighboring satisfied checks having two edges connected to the (fully)

absorbing set, and each of its neighboring unsatisfied checks having exactly one edge

connected to the (fully) absorbing set.

2.4 Constructions of Structured LDPC Codes

In this section, we introduced the constructions of various binary and non-binary struc-

tured LDPC codes. In particular, we consider the constructions of binary array-based

codes, non-binary protograph-based codes, and non-binary quasi-cyclic codes. Each of

these constructions will be used in our discussions in the later chapters.

2.4.1 Binary Array-Based LDPC Codes

Array-based LDPC codes are a class of quasi-cyclic LDPC codes, which are first in-

troduced in [43]. These codes are parameterized by their blocklength n and column

weight c such that c ≤ p =
√
n, where p is a prime. Given a p× p permutation matrix

σ of the form

14

σ =

0 0 ... 0 1

1 0 ... 0 0

0 1 ... 0 0
...

...
...

0 0 ... 1 0

, (2.4)

we form the parity check matrix H(c, p) of an (n, n−c
√
n+c−1)1 array-based LDPC

code as

H(c, p) =

I I I ... I

I σ σ2 ... σ(p−1)

I σ2 σ4 ... σ2(p− 1)
...

...
...

I σ(c−1) σ2(c−1) ... σ(p−1)(c−1)

. (2.5)

The matrix H(c, p) can be viewed as a 2-D array of submatrices where each row (col-

umn) of matrices denotes a row (column) group i, 0 ≤ i ≤ c−1 (j, 0 ≤ j ≤ p−1). For

the sake of our discussions, we describe each column of H(c, p) by a pair (j, k) where

j is the index of the column group, and k, 0 ≤ k ≤ p − 1, is the index of the column

within the column group.

In Chapter 3, we provide the finite-length analysis of spatially-coupled codes which

are constructed based on these array-based LDPC codes.

2.4.2 Non-Binary Protograph-Based LDPC Codes

There is a considerable freedom in choosing the edge weights in constructing protograph-

based non-binary LDPC codes. In this dissertation, we consider the case where the

edges are weighted independently of each other. We refer to resultant codes as uncon-

strained non-binary protograph-based (U-NBPB) codes.

1Note that the matrix H(c, p) is not full rank.

15

A protograph G = (V,C,E) [30] consists of the set V = {v1,v2,. . . ,vnv} of vari-

able nodes, the setC = {c1,c2,. . . ,cnc} of check nodes, and the setE =
{
e1,e2,. . . ,e|E|

}
of edges connecting variable nodes and check nodes. Here, nv is the total number of

variable nodes, nc is the total number of check nodes, and |E| is the cardinality of the

edge set E.

When the graph G is copied N times, each variable node vi ∈ V (each check node

ci ∈ C) in this mother protograph produces the set Vi of variable nodes {vi1 , . . . , viN}

(the set Ci of check nodes {ci1 , . . . , ciN}) in the resultant daughter graphGN . Likewise,

each edge ei ∈ E in the mother protograph produces the set Ei of edges in the daughter

graph where Ei = {ei,1, . . . , ei,N}, and the edge ei,j for 1 ≤ j ≤ N connects the

variable node vkj and the check node clj if the edge ei connects the variable node vk

and the check node cl in the mother protograph. We denote the resultant daughter graph

GN = (V N , CN , EN).

We first provide the definition of U-NBPB codes and their ensembles. Let πi denote

the edge permutation associated with N copies of edge i.

Definition 6 (U-NBPB code). Given the mother protograph G = (V,C,E), a

(G,N, {sk}k, {πi}i) U-NBPB code is constructed from the daughter graph GN =

(V N , CN , EN) by permuting the edges in the set Ei according to πi for each 1 ≤

i ≤ |E|, followed by scaling each edge k in GN by a non-zero element sk of GF (q) for

1 ≤ k ≤ N · |E|. �

The U-NBPB code construction is illustrated in Figure 2.5(a) based on the mother

protograph with nv = 3, nc = 2 and N = 3. The U-NBPB ensemble is defined as

follows.

Definition 7 (U-NBPB code ensemble). The (G,N, q) U-NBPB ensemble is the col-

lection of all (G,N, {sk}k, {πi}i) U-NBPB codes with all possible choices of sk’s as

non-zero elements of GF (q) (for 1 ≤ k ≤ N × |E|) and {πi}’s as all possible N -

permutations (for 1 ≤ i ≤ |E|). �

16

1v 2v 3v

1c 2c

11v
21v

31v
12v

22v
32v

13v
23v

33v

11c
21c

31c
12c

22c
32c

1s

7s
9s

3s 8s

15s14s
13s12s

11s10s

2s

6s

4s
5s

Figure 2.5: The original unlabeled protograph and an example of a U-NBPB code

construction with N = 3 (copy-scale-permute).

In Chapter 4, we compute the codeword weight enumerators for U-NBPB codes,

which are known to be useful for bounding the performance under the maximum-

likelihood (ML) decoding.

2.4.3 Non-Binary Quasi-Cyclic LDPC Codes

Due to their implementation-friendly structure and superior performance, non-binary

quasi-cyclic (NB-QC) LDPC codes are well-suited for emerging data storage applica-

tions requiring very low error rates. The following describes the construction of these

codes. Assume that the following parameters are given:

• nv: the number of columns in the binary base matrix,

• nc: the number of rows in the binary base matrix,

• z: the lifting factor,

• c: the weight of each column in the binary base matrix,

• `: the weight of each row in the binary base matrix.

The construction of a (c, `)-regular NB-QC code over GF(q) using lifting involves

the following steps [44]:

17

1) Choosing the protograph: The construction starts with the choice of an nc×nv

binary parity-check matrix H with column weight c and row weight `. The parity-

check matrix H can be equivalently represented by a bipartite graph G = (V,C, F)

called the Tanner graph, with the usual notation of V being the set of variable nodes

vi, i ∈ {1, . . . , nv}, C being the set of check nodes cj, j ∈ {1, . . . , nc}, and the set F

describing the edges between the nodes in V and C. The Tanner graph G is called the

protograph of the NB-QC code.

2) Lifting the protograph: The lifted matrix Ĥ is constructed by replacing each

entry in matrix H with a z× z matrix. The zero entries in H are replaced by z× z zero

matrices. Each non-zero entry corresponding to edge e in the protograph is replaced by

a (z, de) circular permutation matrix (CPM). Here, (z, de) CPM refers to the z×z binary

matrix obtained by circularly shifting the rows of the identity matrix by de places.

Throughout the paper, de is called the lifting parameter associated with the edge e. The

corresponding Tanner graph Ĝ of matrix Ĥ is called the binary lifted graph.

3) Edge weight assignment: In this step, non-binary weights are assigned to the

edges of the binary lifted graph. Let α be a primitive element of GF(q). We choose a

parameter λ such that (q − 1)|λz. We also select a parameter ρe ∈ {0, 1, . . . , q − 2}

for each edge e in the protograph G. Then, the value of the non-zero element in the kth

row of the (z, de) CPM is replaced by αρe+(k−1)×λ. Throughout the paper, we refer to

ρe as the labeling parameter associated with the edge e.

Note that the resulting NB-QC code has the length of nvz log2 q bits and the design

rate of nv−nc
nv

. The construction introduced in [45] is a special case of the NB-QC

construction using lifting when z = q− 1, λ = 1 and de = ρe for any edge e. The code

designs in [46] and [47] are also special cases of the NB-QC construction using lifting.

18

CHAPTER 3

Finite-Length Analysis and Design of Non-Binary Block

LDPC Codes

It is empirically shown that non-binary LDPC codes perform significantly better than

their binary counterparts in moderate and high SNR regions. Therefore, non-binary

LDPC systems are considered as great candidates for emerging data storage systems.

But there are two major issues facing utilization of non-binary LDPC systems. First,

these codes, similar to binary LDPC codes, suffer from the error floor. Second, the mes-

sage passing algorithms which are currently used to decode non-binary LDPC codes

have extremely high computational complexity. In this section, we try to address the

first problem.

This chapter characterizes the error floor problem for non-binary LDPC codes and

consequently provide guidelines for designing non-binary codes with superior error

floor performance. In particular, our optimized unstructured and structured codes show

at least one order of magnitude error floor performance improvement compared to un-

optimized codes. Utilizating of these codes in practice can result in considerable im-

provement in capacity and lifetime of data storage systems.

3.1 Introduction

For the case of non-binary LDPC codes, not much is known about how non-codeword

objects and specific substructures in the Tanner graph affect the error floor performance.

In [18], the authors show that small cycles in the Tanner graph of column weight two

19

codes (i.e., the cycles that correspond to codewords with a low minimum distance) sig-

nificantly degrade the code performance in the error floor region. An effective approach

to improve the error floor performance of column weight two codes based on cycle ma-

nipulations is also introduced in [18]. Further, in the case of the binary erasure channel

(BEC), recent results include the introduction of the peeling decoder and the (general-

ized) stopping sets for non-binary LDPC codes [19]. In [24], the stopping constellation

distributions for irregular non-binary LDPC code ensembles was computed. Further,

zig-zag cycles and their relationship with the error floor were analyzed in [18, 25, 26].

Ensemble enumerators for both stopping and trapping sets were computed in [12, 27]

for protograph-based ensembles of non-binary LDPC codes. However, apart from the

recent result in [28], where a simplified absorbing set definition (compared to the one

in [16]) is given, no other results are known for non-binary absorbing sets.

The main goals of this chapter are multifold: 1) to define and analyze non-binary

absorbing sets for codes over GF(q), q > 2, 2) to highlight the difference between

binary absorbing sets and non-binary absorbing sets, and 3) to propose an efficient

code design based on our classification of absorbing sets.

3.2 Non-Binary Absorbing Sets

In contrast to binary codes, each edge in the Tanner graph of a non-binary code admits

a weight taken as a non-zero element of the underlying non-binary field. Consequently,

the edges of the subgraphs which correspond to the fixed points of non-binary LDPC

decoders need not only be topologically connected in specific ways, but also the labels

on these edges must satisfy certain conditions. In other words, suppose we consider a

topology (with no edge weight assignment) that satisfies the conditions of the (binary)

absorbing set, as given by Definition 4. Once the edge labels, taken over some field

GF(q), are chosen, the resulting object, when interpreted over GF(q), may or may not

cause a decoding error.

20

Example 1 illustrates the difference between binary and non-binary absorbing sets

and gives a motivation for the definition of non-binary absorbing sets.

𝑤9

𝑤1

𝑤11

𝑤10

𝑣1

𝑤8

𝑤7
𝑤12

𝑤6 𝑤5

𝑤4

𝑤3

𝑤2
𝑣2

𝑣4 𝑣3

 13 14

 15 16

Figure 3.1: Tanner graph of a (4, 4) absorbing set.

Example 1. Consider the graphical structure in Figure 3.1, defined over GF(q). If

there exists a set of non-zero inputs for all variable nodes that makes all degree-two

check nodes satisfied, the resulting configuration will have 4 unsatisfied checks and

each variable node will have strictly more satisfied than unsatisfied neighboring checks

(3 vs. 1). Mathematically, the inputs v1, v2, v3, v4 and weights of the edges w1, . . . , w12

then satisfy:

v1w1 = v2w2 over GF(q), v2w3 = v4w4 over GF(q), v4w5 = v3w6 over GF(q),

v3w7 = v1w8 over GF(q), v2w11 = v3w12 over GF(q), v1w9 = v4w10 over GF(q),

which leads to the following conditions:

w1w7w11 = w2w8w12 over GF(q), w3w5w12 = w4w6w11 over GF(q),

w2w4w9 = w1w3w10 over GF(q), (3.1)

where all w and v are non-zero elements of GF(q).

For example, for q = 8, Figure 3.2(a) shows a choice of weights satisfying the

conditions in (3.1). With these weights, there are q − 1 choices (out of (q − 1)4) for the

21

set (v1, v2, v3, v4) such that each variable node has exactly 3 satisfied and 1 unsatisfied

checks. One example is (1, 2, 4, 1). In contrast, the weights in Figure 3.2(b) do not

satisfy the conditions in (3.1) and result in a configuration that has 4 variable nodes

and z unsatisfied checks. Here, 5 ≤ z ≤ 10, and the value of z depends on the input

values v1 through v4. For example, the same input (1, 2, 4, 1) results in z = 10. Clearly,

this configuration with all 10 neighboring checks being unsatisfied is not expected to be

problematic for belief propagation decoding.

!

!"

"
#"

"
"

$"
"

"

" "

"

""

"
"

!""

!"

%"

!"

&"

"
'"

"
"

'"
!"

"

" "

"

""

"
"

(""

!"

$"

'"

(a)

!

!"

"
#"

"
"

$"
"

"

" "

"

""

"
"

!""

!"

%"

!"

&"

"
'"

"
"

'"
!"

"

" "

"

""

"
"

(""

!"

$"

'"

(b)

Figure 3.2: (a) Non-binary elementary (4, 4) absorbing set over GF(8), (b) (4, z) trap-

ping set, 5 ≤ z ≤ 10, weights do not satisfy absorbing set conditions over GF(8).

Example 1 above provides a motivation for studying non-binary absorbing sets.

Consider a non-binary LDPC code with an m × n parity check matrix H defined over

GF(q). The corresponding Tanner graph has n variable nodes and m check nodes.

Definition 8 below states the conditions for a subset of variable nodes to be an (a, b)

non-binary absorbing set. We assume transmission of the all-zero codeword. We also

assume that these a decoding errors only occur in variable nodes included in this ab-

sorbing set, and that values of the variable nodes outside of the absorbing set are all 0

(∈ GF(q)).

Consider a subset V of variable nodes with |V| = a. We form the ` × a matrix

22

A, a submatrix of matrix H , consisting of the columns of matrix H that correspond to

variable nodes in V and ` check nodes connected to V .

Definition 8. The configuration V is an (a, b) absorbing set over GF(q) if there exists

an (`− b)× a submatrix B of rank rB, with elements bj,i, 1 ≤ j ≤ `− b, 1 ≤ i ≤ a, in

matrix A that satisfies the following conditions.

1. Let N(B) be the null-space of matrix B and let di, 1 ≤ i ≤ b be the ith row of

matrix D, where D is formed by excluding the matrix B from A. Then,

∃x =

x1

x2
...

xa

 ∈ N(B) s.t. xi 6= 0 for ∀i ∈ {1, . . . , a} and @i, dix = 0. (3.2)

2. Let dj,i, 1 ≤ j ≤ b, 1 ≤ i ≤ a, be the elements of the matrix D. Then,

∀i ∈ {1, 2, . . . , a} :

(
`−b∑
j=1

S(bj,i)

)
>

(
b∑

j=1

S(dj,i)

)
, (3.3)

where the function S is

S(x) =

1 when x > 0,

0 when x ≤ 0.
(3.4)

Condition 1 in Definition 8 requires that there exists a vector in the null-space of the

matrixB all of whose elements are non-zero. Therefore, there exists a solution toBx =

0 over GF(q) such that all components of the solution are non-zero. A consequence of

this condition is that rB < a. Also, condition 1 guarantees that for vector x in the null-

space of matrix B, none of the check nodes associated with the rows of the matrix D

are satisfied (otherwise, input x results in an (a, b̃), b̃ < b, absorbing set). Condition 2

ensures that for each variable node, the number of connected satisfied checks is larger

than the number of connected unsatisfied checks.

23

Observe that the proposed definition is in agreement with the existing definition of

a binary absorbing set [16]. In particular, for q = 2, the condition 1 is automatically

satisfied since the variable nodes’ input vector must be an all-ones vector to satisfy the

checks. Also, the condition that each variable node in the absorbing set has strictly

more neighbors in E than in O corresponds to condition 2.

Remark 1. Our definition of a non-binary absorbing set is different from the definition

proposed in [28] where the authors define a non-binary (primitive) absorbing set as

an object which has more satisfied checks than unsatisfied checks, taken collectively

over all variable nodes in this object. In contrast, our definition, similar to the original

definition of binary absorbing sets [16], requires each variable node to be connected to

more satisfied checks than unsatisfied checks.

Remark 2. Note that whether a non-binary absorbing set as defined in Definition 8

results in a decoding error depends on the choice of the variable nodes inputs. The set

of all x’s which satisfy (3.2) is the set of all variable nodes inputs that result in an (a, b)

non-binary absorbing set. Other choices of variable nodes inputs results in other (a, b̃),

b̃ 6= b absorbing/trapping sets.

As in the binary case, we say that a non-binary absorbing set V is elementary if

all neighboring satisfied checks have degree 2 and all neighboring unsatisfied checks

have degree 1 with respect to V . It can be easily observed that an elementary non-

binary absorbing set is necessarily an elementary binary absorbing set where all non-

zero edge labels and non-zero variable node values are converted to 1 and all operations

are taken modulo 2. This observation can be used in searching for elementary non-

binary absorbing sets in the Tanner graph of non-binary codes. Clearly, the converse is

not true as the choice of non-binary labels may violate the absorbing set constraints.

In the case of elementary absorbing sets, the absorbing set conditions can be sim-

plified, as the following lemma shows. Consider a code C with a parity check matrix

H over GF(q). Let G be its Tanner graph. Let Cp be an arbitrary cycle involving p

24

distinct variable nodes and p distinct neighboring check nodes in the graph induced by

an elementary (a, b) non-binary absorbing set in G, p ≤ a. We write Cp as the oriented

traversal c1 − v1 − c2 − v2 − · · · − cp − vp − c1, where v and c denote the spanned

variable and check nodes, respectively. Let w2i+1 denote the label on the ci − vi edge,

and let w2i denote the label on the vi− ci+1 edge. The following lemma presents a nec-

essary condition for a subgraph of the Tanner graph of the code C to be an elementary

non-binary absorbing set.

Lemma 1. In the case of elementary absorbing sets over GF(q), for every cycle Cp (as

introduced above), the weights of the edges wi, i ∈ {1, 2, . . . , 2p}, satisfy the following

relation:
p∏

k=1

w2k−1 =

p∏
k=1

w2k over GF(q). (3.5)

Proof. For the cycleCp (of length 2p) we form a p×p submatrixBCp ofH , correspond-

ing to the p variable nodes and p check nodes in Cp. Since the check nodes in BCp are

satisfied, there exists a non-zero solution x to BCpx = 0 over GF(q). Therefore, for the

square matrix BCp , we have det(BCp) = 0 over GF(q). Thus,

det(BCp) = det

w1 w2 0 ... 0

0 w3 w4 ... 0
...

...

0 0 . . . w2p−3 w2p−2

w2p 0 ... 0 w2p−1

= 0 over GF(q). (3.6)

Now, in order to satisfy (3.6), the condition in (3.5) must hold. Since every permutation

of the columns of BCp results in same determinant, the chosen ordering was performed

without loss of generality.

It can be shown that if all the fundamental cycles satisfies (3.5), this also holds for

all other cycles in the graph. Thus, an elementary non-binary absorbing set not only

satisfies the topological conditions, i.e., the unlabeled subgraph is an elementary binary

absorbing sets, but also all of its fundamental cycles satisfy (3.5).

25

Remark 3. A condition similar to Lemma 1 is presented in [18] but only for regular

codes of column weight 2. In the case of column weight 2, the smallest absorbing

sets are (a, 0) absorbing sets which correspond to the minimum weight codewords, and

moreover contain only one (fundamental) cycle. The results presented in this paper

apply to general column weights wherein absorbing sets may be spanned by more than

one fundamental cycle.

Example 2. Let us interpret the configuration in Figure 3.1 as a (4, 4) non-binary

absorbing set. The conditions on the cycles in the cycle span (containing 3 cycles) in

(3.5) are precisely the one given in (3.1). If, however, (3.5) is violated for one of the

three fundamental cycles, the resulting configuration will no longer be an absorbing

set; it will instead become a (4, z), 5 ≤ z ≤ 12, trapping set (where the value of z

depends on the input and on the number of unsatisfied checks).

Lemma 2. Based on the non-binary edge weights and the variable node inputs, an

unlabeled (a, b) (i.e., binary) elementary absorbing set becomes an (a, b+) absorbing

set/trapping set in the non-binary case (b+ denotes any integer greater than or equal to

b).

Proof. Based on Definition 5, elementary unlabeled (binary) absorbing sets include

only degree two and degree one check nodes. After the assignment of non-binary edge

weights, degree one check nodes always remain unsatisfied since the multiplication

of two non-zero Galois field elements is always non-zero. Based on the inputs of the

variable nodes and the edge weights, degree two check nodes may remain satisfied or

may become unsatisfied. Therefore, after the assignment of non-binary edge weights,

the number of unsatisfied checks either stays the same or increases.

Remark 4. In Definition 8, transmission of the all-zeros codeword is assumed without

loss of generality. In transmission of any other codeword, because of the linearity of the

code, addition of the same error vector x (defined in Definition 8, Condition 1) results

in the same absorbing set error.

26

3.3 Non-Binary Absorbing Sets as a Tool to Improve the Perfor-

mance

In this section, equipped with techniques from graph theory, we find the ratio of all pos-

sible edge weight assignments which convert an (a, b) unlabeled elementary absorbing

set to an (a, b) non-binary elementary absorbing sets or to an (a, b + 1) non-binary

trapping set in GF(q). Furthermore, based on the observation that proper choices of

non-binary edge weight assignments result in non-problematic trapping sets, we pro-

pose algorithms to improve the performance of non-binary unstructured and non-binary

quasi-cyclic LDPC codes in the error floor region.

Theorem 1. Given an (a, b) unlabeled (i.e., binary) elementary absorbing set with e

satisfied checks:

1. A fraction of (q− 1)a−e−1 out of all possible edge weight assignments taken from

GF(q) results in (a, b) elementary non-binary absorbing sets.

2. A fraction of e · (q − 1)a−e−1 · (q − 2) out of all possible edge label assignments

taken from GF(q) results in (a, b+ 1) non-binary trapping sets.

Proof. The VN graph of the given unlabeled elementary absorbing set includes a ver-

tices and e edges. Each edge in the spanning tree of the VN graph corresponds to two

edges in the Tanner graph.

For part 1, the labels of the edges in the Tanner graph that are represented in the

spanning tree can be chosen arbitrarily. Therefore, we have (q − 1)2 choices for the

weights for each edge. Thus, there are (q − 1)2(a−1) weight assignments for the a − 1

edges in the spanning tree.

For each of the remaining e − (a − 1) edges in the VN graph that are not in the

spanning tree, one of the two edges in the Tanner graph can again be chosen arbitrarily

but the other edge is uniquely determined according to (3.5). Thus, there are (q −

27

1)e−a+1 weight assignments for edges not in the spanning tree. Hence, the total number

of the weight assignments resulting in elementary non-binary absorbing sets is given as

(q − 1)2(a−1) · (q − 1)e−a+1 = (q − 1)a+e−1.

Since, we have a total of (q − 1)2e possible weight assignments, the resulting fraction

follows.

For part 2, in addition to b degree one unsatisfied checks, one of the degree two

check nodes is also unsatisfied. Therefore, equation (3.5) should be satisfied for all fun-

damental cycles except the one which includes the additional unsatisfied check node.

We consider a choice of a spanning tree which does not include the edge representing

the degree two unsatisfied check node in the VN graph. Similar to part 1, the edge

weights in the Tanner graph that are included in the spanning tree can be chosen ar-

bitrarily. Thus, there are (q − 1)2(a−1) weight assignments for the a − 1 edges in the

spanning tree.

For each of e − (a − 2) edges in the VN graph which represent satisfied checks

outside of the spanning tree, one of the two edges in the Tanner graph can again be

chosen arbitrarily but the other edge is uniquely determined according to (3.5). Thus,

there are (q − 1)e−a weight assignments for edges which represent satisfied checks not

in the spanning tree of the VN graph. For the remaining edge in the spanning tree

(which corresponds to the degree two unsatisfied check node), one of the two edges in

the Tanner graph can be chosen arbitrarily (q−1 choices). The other edge in the Tanner

graph should be chosen from q− 2 weights, which results in a violation of (3.5) for the

corresponding fundamental cycle. Hence, the total number of the weight assignments

resulting in (a, b+ 1) non-binary trapping sets is given as(
e

1

)
(q − 1)2(a−1) · (q − 1)e−a · (q − 1) · (q − 2) = e(q − 1)a+e−1(q − 2).

Note that the multiplication by
(
e
1

)
is due to the choice of one degree-two check node

(from a total of e degree two check nodes) to be unsatisfied. Since we have a total of

(q − 1)2e possible weight assignments, the resulting fraction follows.

28

From Theorem 1, we can conclude that compared to the number of (a, b) non-binary

absorbing sets, a by a factor of
(
e
1

)
(q−2) larger number of (a, b+1) non-binary trapping

sets exists in the Tanner graph of a randomly generated code. However, our simulation

results will show that the error profiles of these codes do not include any errors of this

type. Therefore, our proposed absorbing set definition provides a better description of

the problematic subgraphs for the BP decoders in the error floor region.

3.3.1 Code Design Guidelines for Non-Binary Unstructured LDPC Codes

In this section, we will introduce a method to eliminate problematic non-binary absorb-

ing sets from Tanner graphs of non-binary unstructured LDPC codes. Our simulation

results will show the effectiveness of our algorithm in improving the code performance

in error floor region.

We exploit the fact that non-binary edge weights enable us to reduce the number

of absorbing sets by just changing the weights of edges in the Tanner graph without

changing its structure. The method is stated in Algorithm 1. We say that an absorbing

set Ay is defined as a child of an absorbing set Az if Az is a subgraph of Ay. The main

steps of the method can be summarized as follows:

• Step 1: For the given Tanner graph, we first choose a set W of pairwise param-

eters (i.e., W = {(a1, b1), (a2, b2), . . . , (ak, bk)}) corresponding to the k elemen-

tary absorbing sets which we want to eliminate.

• Step 2: We find the absorbing set (aj, bj) with the smallest a and b parameters in

W . If the (aj, bj) absorbing set is a child of a previously eliminated absorbing set,

we remove (aj, bj) from W and repeat this step for the next smallest parameters.

• Step 3: We find the set Uj of all binary (aj, bj) absorbing sets in the unlabeled

Tanner graph. For each absorbing set in Uj , if all fundamental cycles satisfy

(3.5), we change the weight of an edge to another non-zero element of GF(q).

29

The edge and its new weight are chosen such that the previously canceled non-

binary absorbing sets remain canceled. This process continues until all (aj, bj)

absorbing sets are eliminated. Then, we remove (aj, bj) from W .

• Step 4: If W 6= ∅, we go to Step 2. Otherwise, the algorithm terminates.

Remark 5. The work in [18] focuses on the case of column weight two and presents

an approach to cancel all cycles of length l, g ≤ l ≤ lmax, where g is the girth, for this

column weight choice. As stated in [18], it is impossible to cancel all cycles for all

lengths l. In contrast, for codes with column weights c ≥ 2, our approach only seeks

to cancel a selected number of cycles, i.e., one fundamental cycle per absorbing set of

interest. As a result, our approach allows for further flexibility in canceling cycles of

various lengths for column weights c ≥ 2.

Figure 3.3 shows the simulation results1 for random regular codes (denoted by

‘Original’) over various choices of the field order size GF(q), with block length N ≈

2750 bits, rate R ≈ 0.88, column weight c = 4, row weight r = 51 for GF(2), r = 37

for GF(4), r = 31 for GF(8), and r = 26 for GF(16), and girth g = 6, transmitted over

a binary-input additive white Gaussian noise (AWGN) channel, where the frame error

rate (FER) versus the signal-to-noise ratio (SNR) is displayed. The figure also shows

the results obtained by using a modified version of the approach presented in [18] (de-

noted by ‘P-method’) which tries to cancel all the cycles of length l, g ≤ l ≤ lmax. The

approach in [18], which was introduced for the case of c = 2, can easily and success-

fully be extended to the case of c > 2, as demonstrated in this paper. The figure also

shows the results obtained by the code modification proposed in [48] (denoted by ‘N-

method’) and our code modification specified in Algorithm 1 (denoted by ‘A-method’).

The simulations results reconfirm the superior performance of the codes modified by
1All the simulation results presented in this paper were performed over a six month period on the

Hoffman2 Cluster which is a part of High Performance Computing Resources at UCLA. The Hoffman2
cluster has more than 800 machines and about 7000 cores. The CPUs have 8, 12 or 16 cores with speed
of 2.2− 3.0 GHz. Each core has 1GB, 4GB or 8GB of memory. The Hoffman2 cluster uses the CentOS
Linux 6.2 Operating System.

30

Algorithm 1 Reduction of the number of absorbing sets in the Tanner graph of a non-

binary code
1: Input: Tanner graph T with edge weights over GF(q).

2: Choose W , the set of non-binary absorbing set to be eliminated.

3: Let X be the set of non-binary absorbing set which can not be eliminated.

4: Let X = ∅.

5: Let set A = ∅.

6: For every edge j ∈ T , Cj is the set of canceled cycles which include j.

7: ∀j ∈ T , Cj = ∅.

8: Find (aj, bj), the smallest non-binary absorbing set in W\A.

9: If this absorbing set is a child of another absorbing set in A, go to 22.

10: Find Uj , the set of all (aj, bj) absorbing sets in unlabeled Tanner graph T .

11: for ∀u ∈ Uj do

12: Find Fu, a set of fundamental cycles of u.

13: Let Eu be the set of all edges in u.

14: For an edge k ∈ Eu, let Mk be the set of cycles in Fu which include k.

15: if (3.5) is satisfied for all cycles in Fu then

16: If Eu = ∅, X ← X ∪ Uj and go to 22.

17: Find edge i ∈ Eu with minimum |Ci|.

18: wi ← wi + v with v 6= wi and v 6= 0 such that all cycles in Ci do not satisfy

(3.5). If no v exists, Eu ← Eu\i, and go to 17.

19: For every edge e in the cycles of Mi, update Ce ← Ce ∪Me.

20: end if

21: end for

22: Add (a, b) absorbing set to the set A.

23: If A 6= W , go to 8.

24: If X = ∅, all absorbing sets of interest are eliminated. Otherwise, it is not possible

to eliminate absorbing sets in X .

31

Table 3.1: Error Profile, SNR = 5.2 dB, N = 2738, R = 0.891, c = 4 and GF(4), total

number of simulations ≈ 4× 108.
Error Type (4, 4) (5, 0) (5, 2) (6, 2) (6, 4) (6, 6) (7, 4) (8, 2) other

Original 32 9 14 7 9 18 9 9 15

P-method 0 0 0 0 0 12 5 5 12

A-method 0 0 0 0 0 0 0 0 13

N-method, compared to the codes modified by P-method, as shown previously in [48].

All codes are decoded by using a Fast Fourier Transform-based q-ary SPA (FFT-QSPA)

decoder [14].

All P-method, N-method and A-method approaches enjoy the improved perfor-

mance relative to the random code construction. The performance comparison for dif-

ferent values of q reveals that the improvement is more pronounced for smaller values

of q. As we will show below in Section 4, Corollary 1, for a random code construction,

under higher field sizes, there are fewer non-binary elementary absorbing sets available

to be canceled by using the P-method, N-method, or the A-method. Table 3.1 includes

the error profiles2 for original, P-method and A-method codes over GF(4). Both the

P-method and the A-method eliminate all (4, 4) absorbing sets as well as (5, 0), (5, 2),

(6, 2) and (6, 4) absorbing sets that are children of (4, 4) absorbing sets. Additionally,

the A-method successfully eliminates all (6, 6), (7, 4) and (8, 2) absorbing sets, since

in this approach we selectively reweigh some (but not necessarily all) length-6 cycles

followed by a reweighting of some of length-8 cycles. As q increases, there are more

degrees of freedom available to change the edge weights to reweigh cycles and as a

result, the implementation of the cycle-elimination-only approach in [18] appears to

be sufficient for larger values of q. The errors labeled as ‘other’ in Table 3.1 are non-

2The error profiles are calculated as follows. After the decoder reaches its maximum number of
iterations, for each channel realization which results in a decoding error, we form the induced subgraph
corresponding to the variable nodes in error. We then determine whether the induced subgraph is an
absorbing set or not. If yes, the size of the absorbing set is also calculated. In a small minority of cases,
the induced subgraph includes two or more separate subgraphs which are independently investigated.

32

4.2 4.4 4.6 4.8 5 5.2
10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

SNR(dB)

FE
R

Original
P method
N method
A method

Binary

GF(4)

GF(8)

GF(16)

Figure 3.3: FER versus SNR for the original random non-binary code and for both

P- and A-method modified codes, N ≈ 2750, R ≈ 0.88, c = 4, and the QSPA-FFT

decoder.

converging errors. This type of error happens when the decoder does not converge to a

specific object before reaching its maximum number of iterations. In other words, we

declare “convergence” if the decision of the decoder does not change over 5 final itera-

tions of decoding (out of 50 total iterations). If the decoder decision changes, the error

is categorized as a non-converging error. This type of error is usually an oscillation

between different trapping set errors.

Note that by performing our algorithm, (a, b) absorbing sets in the error profile

of the original code are converted to structures which can turn into (a, b+) trapping

sets under appropriate variable node input values. As the error profile in Table 3.1

shows, these new structures are not problematic for the decoder. Therefore, non-binary

absorbing sets provide a better definition for problematic structures in the error floor

region compared to trapping sets.

The simulation results for random regular codes (‘Original’) and the modified codes

using the A-method over GF(q), q = 2, 4, 8, 16 with block length N ≈ 2350 bits, rate

33

4.2 4.4 4.6 4.8 5 5.2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

10 11

SNR(dB)

FE
R

Original
A method

Binary

GF(4)

GF(16)

GF(8)

Figure 3.4: FER versus SNR for the original random non-binary code and the A-method

modified code, N ≈ 2350, R ≈ 0.83, c = 5, and the QSPA-FFT decoder.

R ≈ 0.83, column weight c = 5, and row weight r = 50 for GF(2), r = 33 for

GF(4), r = 28 for GF(8), r = 24 for GF(16) are presented in Figure 3.4. This figure

again confirms the effectiveness of our algorithm in improving the performance of non-

binary codes in the error floor region. Similar improvements in performance were

also observed by using the P-method, although those results have been omitted from

Figure 3.4 for brevity. These simulations again show that the gap between the curves for

the P-method and A-method decreases for larger field sizes, and that the improvement

in the performance of the codes decreases as the Galois field size increases.

Figure 3.5 presents the simulation results for random regular codes (‘Original’) and

modified codes using the P-method and the A-method over GF(q), q = 2, 4, 8, 16 with

block length N ≈ 2750 bits, rate R ≈ 0.88, column weight c = 4, row weight r = 51

for GF(2), r = 37 for GF(4), r = 31 for GF(8), r = 26 for GF(16) and girth g = 6

using a non-binary min-sum decoder [15]. The improvement in the performance of

the code achieved by both P- and A-methods can also be observed for the min-sum

decoder. Furthermore, Table 3.2 shows the error profile of these three codes over GF(4)

34

4.4 4.6 4.8 5 5.2

10 8

10 7

10 6

10 5

10 4

SNR(dB)

FE
R

Original
P method
A method

GF(4)

GF(8)

GF(16)

Figure 3.5: FER versus SNR for the original non-binary random code and both P- and

A-method modified codes, N ≈ 2750, R ≈ 0.88, c = 4, and a min-sum decoder.

Table 3.2: Error Profile, Eb/N0 = 5.2 dB, N = 2738, R = 0.891, c = 4 and GF(4),

total number of simulations ≈ 1.5× 107.
Error Type (4, 4) (5, 0) (5, 2) (6, 2) (6, 4) (6, 6) (7, 4) (8, 2) other

Original 43 9 14 8 8 12 7 6 23

P-method 0 0 0 0 0 9 5 4 14

A-method 0 0 0 0 0 0 0 0 15

at SNR=5.2 dB using the min-sum decoder. Although both P- and A-methods decrease

the number of problematic absorbing sets in the original code, our proposed algorithm

(A-method) is more effective as it cancels all small absorbing sets in the error profile.

Figure 3.6 shows the performance of non-binary quasi-cyclic codes (QC) [49] (‘Orig-

inal’) with block length N ≈ 1200, rate R ≈ 0.8 and column weight c = 4 as well

as modified codes using our proposed algorithm (A-method). This example shows that

this algorithm works well independently of the code structure as it is effective for both

structured and random codes. We again mention that the P-method also provides an im-

provement in the performance in error floor region. Similar to our previous examples,

35

the gap between the curves for A- and P-methods diminishes for larger field sizes.

It is established that irregular non-binary codes over small field sizes provide better

error correcting performance compared to regular non-binary codes [50], [51], and [52].

Since our proposed algorithm is not limited to any specific construction of LDPC

codes, it can also be utilized for irregular codes. Figure 3.7 shows the performance

of non-binary irregular codes constructed using the Progressive Edge-Growth (PEG)

approach [51] (‘Original’) with block length N ≈ 2000 bits, rate R ≈ 0.85 and vari-

able node degree distribution3 Λ(x) = 0.5x4 + 0.5x5 as well as modified codes using

our proposed algorithm (A-method). This example reconfirms the effectiveness of our

proposed algorithm in improving the performance of various code constructions in the

error floor region.

Our various examples show that the proposed algorithm consistently improves the

performances of the original codes across different choices of codes (different block

lengths, column weights, and structures) and different decoder implementations (FFT-

QSPA and min-sum decoders). These examples also show that our proposed definition

of non-binary absorbing set appears to be applicable to any non-binary code regardless

of the choice of the decoder.

3.3.2 Code Design Guidelines for Non-Binary Quasi-Cyclic LDPC Codes

In this section, we first analyze the necessary conditions for the existence of a non-

binary elementary AS in the Tanner graph of a NB-QC code. We investigate how the

topological and weight conditions map to certain equations which include the design

parameters of NB-QC codes. This analysis enables us to propose an algorithm to design

NB-QC codes with good error floor performance. In our proposed algorithm, we design

NB-QC codes with reduced number of problematic elementary ASs by violating either

3Note that the chosen variable node degree distribution is obtained using the PEG approach in [51],
but it is not optimal in terms of girth. The optimality of the variable node degree distribution in this
example is not necessary for demostrating the effectiveness of our proposed algorithm; the example
simply shows that the proposed algorithm works for irregular codes.

36

3 3.5 4 4.5 5

10 4

10 5

10 6

10 7

10 8

10 9

10 10

10 11

SNR(dB)

FE
R

Original
A method

GF(4)

GF(8)
GF(16)

Figure 3.6: FER versus SNR for non-binary QC codes and their A-method modified

versions, N ≈ 1200, R ≈ 0.8, c = 4, and the QSPA-FFT decoder.

4 4.2 4.4 4.6 4.8 5

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

10 11

10 12

SNR(dB)

FE
R

Original
A method

Binary

GF(4)

GF(8)

GF(16)

Figure 3.7: FER versus SNR for non-binary irregular codes and their A-method mod-

ified versions, N ≈ 2000, R ≈ 0.85, Λ(x) = 0.5x4 + 0.5x5, and the QSPA-FFT

decoder.

37

the topological or the weight conditions.

According to condition 1 in Lemma 1, an unlabeled non-binary elementary AS is a

binary elementary AS. Since each binary AS is formed by a collection of cycles in the

Tanner graph, we first focus our analysis on a single cycle in the protograph G. The

following lemma identifies the relationship between a cycle in protograph G and its

corresponding cycle(s) in the binary lifted graph Ĝ.

Lemma 1. ([44]) Consider a cycle Cp involving p distinct variable nodes in the proto-

graph with edges e1, e2, . . . , e2p. After lifting, Cp results in z cycles of the same length

in the binary lifted graph if and only if the lifting parameters dei , i ∈ {1, . . . , 2p}

associated with the edges involved in Cp satisfy the following condition:
p∑
i=1

de2i−1
=

p∑
i=1

de2i mod z. (3.7)

Otherwise, Cp results in one or more cycles of larger lengths.

Corollary 1. Consider an (a, b) binary AS Aa,b in the protograph G. After lifting G by

the factor z to produce Ĝ, Aa,b results in z ASs of the same size in Ĝ if for every cycle

Cp of length 2p in Aa,b, the lifting parameters dei , i ∈ {1, 2, . . . , 2p} associated with

edges of Cp satisfy (3.7).

Based on Corollary 1, we can prevent the existence of absorbing sets in Ĝ by en-

suring that for at least one cycle Cp of AS Aa,b in G, the lifting parameters dei do not

satisfy (3.7).

The weight condition in Lemma 1 implies that a non-binary elementary AS not only

satisfies the topological condition, i.e., the unlabeled subgraph is a binary elementary

AS, but also the edge weights in all of its cycles satisfy (3.5).

We study how the weight condition of non-binary elementary ASs maps to the NB-

QC code construction. To analyze the weight condition, we first consider a single cycle.

Lemma 2. ([53]) Consider that a cycleCp in protographG with edges {e1, e2, . . . , e2p}

results in z cycles of the same length in the binary lifted graph Ĝ. The z copies of Cp

38

satisfy the weight condition in (3.5) if the labeling parameters ρei , i ∈ {1, . . . , 2p}

associated with the edges involved in Cp satisfy the following condition:

p∑
i=1

ρe2i−1
=

p∑
i=1

ρe2i mod q − 1. (3.8)

Based on Lemma 1, the edge weights of all the cycles in a non-binary elementary

AS satisfy the weight condition in (3.5). Note that an elementary AS typically consists

of more than one cycle. Therefore, Lemma 2 implies the following corollary.

Corollary 2. Consider that an elementary AS Aa,b in the protograph G results in z

binary elementary absorbing sets of the same size in Ĝ. After edge weight assignment,

the z copies of Aa,b result in z non-binary elementary absorbing sets if for each cycle

in Aa,b, the labeling parameters satisfy (3.8).

The above corollary offers an approach to avoid non-binary elementary ASs in the

edge weight assignment step of the NB-QC code design. For a binary elementary AS

present in the binary lifted graph Ĝ, the labeling parameters should be chosen such that

the weight condition is not satisfied for at least one cycle in the elementary absorb-

ing set.

We now propose an algorithm to design NB-QC codes with an improved error floor

performance. The main idea is to avoid non-binary elementary ASs in the Tanner graph

of the designed NB-QC code. Based on our earlier discussion, an elementary ASAa,b in

G results in z non-binary elementary ASs if the lifting and the labeling parameters as-

sociated with the edges in Aa,b satisfy (3.7) and (3.8). In design approach, by informed

selection of the lifting and the labeling parameters, we ensure that for each binary AS

in G, at least one cycle does not satisfy either (3.7) or (3.8).

The inputs to the algorithm are: 1. A binary protograph G which determines the

design rate, column weight and row weight of the code; 2. The finite field size, q, of the

resulting NB-QC code; 3. The lifting factor, z.

The method is stated in Algorithm 1. We first construct a random NB-QC code

39

with random assignment of the lifting and labeling parameters to all the edges in the

protograph G. Based on the parameters of G, we first choose the set W of pairwise pa-

rameters (i.e., W = {(a1, b1), (a2, b2), . . . , (ak, bk)} corresponding to the k elementary

ASs which we wish to avoid4.

We then find the smallest AS (a, b) in W and form the set U which includes all

binary (a, b) ASs in protograph G. For each AS in U , we determine if all its cycles sat-

isfy (3.7). If they do and if it is possible, we change the lifting parameters of the edges

to ensure that at least one cycle in the AS does not satisfy (3.7). For each AS which

is not avoided by the choice of lifting parameters, we determine if all the cycles sat-

isfy (3.8) or not. If yes, the labeling parameter associated with an edge will be changed

to ensure that at least one cycle of the AS does not satisfy (3.8). The new labeling

parameter is chosen such that the previously canceled NB-ASs remain canceled. This

process continues until either all ASs are canceled or no more ASs can be canceled.

Note that step 6 in Algorithm 1, where we find all (a, b) absorbing sets in the given

protograph G, dominates the computational complexity of our proposed algorithm. Al-

though it is proven that it is NP-complete to exhaustively find small error-prone sub-

structures (stopping sets and trapping sets) in LDPC codes [54], several papers, such

as [54] and [42], have proposed algorithms to reduce the computational complexity.

Note that our algorithm can be used to design both regular and irregular NB-QC

codes. In the case of irregular NB-QC codes, the protograph G is an irregular Tanner

graph.

We now present the results of our simulations for different NB-QC codes5. We

report bit error rate (BER) figures to compare the performance of our designed codes

with other state-of-the-art NB-QC codes. We also present the error profiles of the de-

coder for different code constructions which explain the superior performance of our
4Note that the parameters of G, such as the column weight and girth determine the ASs available in

G. For example, (4, 4) ASs are possible only when c = 4. For other choices of c, (4, 4) ASs do not exist
in G.

5We have performed additional simulations and have observed similar results for other choices of
code parameters (blocklength, code rate, and column weight).

40

Algorithm 2 Design of NB-QC codes with reduced number of non-binary elementary

ASs.
1: Inputs: Protograph G, field size q and lifting factor z.

2: Randomly assign a de ∈ {0, 1, . . . , z−1} and a ρe ∈ {0, 1, . . . , q−2} to each edge

e in G.

3: Choose W , the set of all ASs to be canceled .

4: Let C = ∅ be the set of ASs which can not be eliminated in the lifting process.

5: for ∀(a, b) AS ∈ W do

6: Find U , the set of all ASs of size (a, b) in G.

7: for ∀S ∈ U do

8: Let FS be the set of all the cycles in S.

9: If at least one of the cycles in FS does not satisfy (3.7), go to the next AS S

in U .

10: Let ES be the list of all the edges involved in FS .

11: Find an edge e in ES such that there exist a d′e 6= de which guarantees that

at least one of the cycles in FS does not satisfy (3.7). If the value exists, replace de

with d′e and go to 7, else C ← C ∪ S.

12: end for

13: end for

14: for ∀ absorbing set S ∈ C do

15: Let FS be the set of cycles of S.

16: If at least one of the cycles in FS does not satisfy (3.8), go to next absorbing set

S in C.

17: Let ES be the list of all the edges involved in FS .

18: Find edge e in ES such that there exist a ρ′e 6= ρe which guarantees that at least

one of the cycles in FS does not satisfy (3.8). If the value exists, replace ρe with ρ′e.

19: end for

41

designed codes. The following is the list of the code constructions that we consider:

1) Random construction: For the given protograph, we randomly assign the lifting

and labeling parameters to each edge.

2) ACE construction: We compare our results with the method recently introduced

in [44]. The algorithm in [44] has two steps. First, for each cycle in the given proto-

graph G, the algorithm finds the ACE value, which is defined as
∑

vi
dvi − 2, where

dvi is the degree of the node vi, and the summation is over all the variable nodes of the

cycle. Then, it searches for cycles in G which their associated ACE value is greater

than a bound which is given as an input to the algorithm. Then the algorithm attempts

to eliminate them in the lifted graph Ĝ, by properly choosing the lifting parameters.

In the second step, the cycles in Ĝ that violate a non-binary ACE constraint are found.

Then, the algorithm attempts to cancel these cycles by carefully choosing the labeling

parameters.

3) Absorbing set (AS) construction: Based on our proposed approach stated in

Algorithm 1, we first identify a list of problematic ASs to cancel. The algorithm at-

tempts to cancel these ASs by informed selection of the lifting and labeling parameters.

Note that unlike the ACE approach, we are able to cancel more problematic ASs by

canceling one cycle per AS in the Tanner graph of the code.

Figure 3.8 shows the simulation results for the three different constructions over

field sizes q = 4, 8, 16, design rate R = 0.69, column weight c = 4 and row weight ` =

13, transmitted over a binary-input additive white Gaussian noise (AWGN) channel.

The set of curves over GF(4) has the following parameters: block length N = 1014

bits and lifting factor z = 3. The figure also includes the set of curves for GF(8)

which have the following parameters: N = 3549 bits and lifting factor z = 7. For

GF(16) set of curves, N = 2028 bits and lifting factor z = 3. Note that the ACE

spectrum for the three ACE codes in Figure 3.8 is equal to (τ̂
(b)
2 , τ̂

(b)
4 , τ̂

(b)
6 , τ̂

(b)
8 , τ̂

(b)
10) =

(∞,∞, 6, 8, 10). Figure 3.8 shows that both ACE and AS approaches significantly

improve the performance of the NB-QC code compared to the random approach. The

42

2.2 2.4 2.6 2.8 3 3.2

10−8

10−7

10−6

10−5

10−4

10−3

Eb/N0 (dB)

Bi
t E

rro
r R

at
e

Random
ACE
AS

GF(4)
GF(8)

GF(16)

Figure 3.8: Performance comparison for NB-QC codes, with blocklength N = 1014

for codes over GF(4), N = 3549 for codes over GF(8) and N = 2028 for codes over

GF(16), rate R = 0.69, and row weight c = 4.

AS approach achieves a better performance compared to the ACE approach since it

focuses on canceling only one cycle per AS, whereas the ACE approach cancels all

the cycles that violate the ACE constraints. Therefore, the AS approach is capable

of removing more ASs. The performance comparison for different values of q and z

reveals that the performance improvement for both ACE and AS approaches is more

pronounced for smaller values of q and z, since for larger values of q and z, there

are fewer number of non-binary absorbing sets to begin with. Table 3.3 includes the

error profiles for GF(4) and GF(8) curves in Figure 3.8 at SNR= 3.2dB and SNR=

2.8dB, respectively. The table confirms that the AS approach cancels more problematic

absorbing sets from the NB-QC code. The errors listed as ‘other’ in the table include

‘oscillating’ errors, in which the decoder oscillates between different errors in its last

few iterations, and ‘non-absorbing set’ errors, in which the decoder converges to an

error which is not an AS.

Figure 3.9 presents the simulation results for codes constructed by the three differ-

43

Table 3.3: Error Profile for the performance curves shown in Figure 3.8.

Error Type (6, 4) (6, 6) (7, 4) (8, 2) (8, 4) (9, 4) (10, 4) other

GF(4), N = 1014 bits, SNR= 3.2 dB, c = 4

Random 88 14 10 33 5 8 19 15

ACE 26 8 10 4 0 4 8 21

AS 0 0 0 0 0 0 0 23

GF(8), N = 3549 bits, SNR= 2.8 dB, c = 4

Random 32 9 11 18 2 6 9 13

ACE 0 0 0 0 0 4 9 21

AS 0 0 0 0 0 0 0 29

Table 3.4: Error Profile for the performance curves shown in Figure 3.9.

Error Type (4, 8) (5, 9) (6, 8) (6, 10) (7, 9) (8, 6) (8, 8) (8, 10) other

GF(4), N = 726 bits, SNR= 3.3 dB, c = 5

Random 49 12 19 6 8 2 4 6 17

ACE 13 3 5 2 2 0 5 5 25

AS 0 0 0 0 0 0 0 0 31

ent approaches over field sizes q = 4, 8, design rate R = 0.54, column weight c = 5

and row weight ` = 11. The constructed codes over GF(4) and GF(8) have N = 726

and N = 2541 bits, respectively. Note that the ACE spectrum for the three ACE

codes in Figure 3.8 is equal to (τ̂
(b)
2 , τ̂

(b)
4 , τ̂

(b)
6 , τ̂

(b)
8 , τ̂

(b)
10) = (∞,∞, 9, 12, 15). Similar

to Figure 3.8, both the ACE approach and the AS approach have significantly better

performance in the error floor region compared to the random construction of an NB-

QC code. Table 3.4 confirms the superior performance of the AS approach: there exist

fewer ASs in the error profile of the code constructed by the AS approach.

44

2.7 2.8 2.9 3 3.1 3.2 3.3
10−8

10−7

10−6

10−5

10−4

Eb/N0 (dB)

Bi
t E

rro
r R

at
e

Random
ACE
AS

GF(4)

GF(8)

Figure 3.9: Performance comparison for NB-QC codes, blocklengthN = 726 for codes

over GF(4) and N = 2541 for codes over GF(8), R = 0.54, c = 5.

45

CHAPTER 4

Asymptotic Analysis of Binary and Non-Binary LDPC

Code Ensembles

In our attempt to find non-binary graph-based codes suitable for emerging data storage

systems, in this chapter, we study the asymptotic behavior of non-binary LDPC codes.

Our asymptotic analysis provide a new toolbox for evaluating families of non-binary

LDPC codes. For example, asymptotic distribution of objects of interest, such as code-

words and absorbing sets, provides information about performance of ensembles of

non-binary LDPC codes in error floor region.

The toolbox offered in this chapter can be used to determine whether a family of

non-binary unstructured or structured LDPC codes are proper candidates for data stor-

age applications.

4.1 Introduction

In this chapter, we consider two families of LDPC codes, regular unstructured LDPC

codes and protograph-based LDPC codes. We provide asymptotic analysis and enumer-

ation for objects of interest (codewords, psuedocodewords, trapping sets, and absorbing

sets) in these two code families. The results presented in this chapter advance the ana-

lytical toolbox of non-binary graph-based codes.

• Regular unstructured LDPC codes: In Chapter 3, we showed that non-binary

absorbing sets offer a more refined finite block length characterization of errors

46

for non-binary codes compared to trapping sets. Our results in this part extends

this observation to the asymptotic regime. In particular, we first compute the nor-

malized logarithmic asymptotic distributions of binary absorbing sets and fully

absorbing sets, including elementary (fully) absorbing sets. The calculations are

based on the trapping set enumeration method proposed by Milenkovic, Soljanin,

and Whiting. We compare distributions of absorbing and trapping sets for rep-

resentative code parameters of interest, and quantify the (lack of) discrepancies

between the two. Good absorbing set properties are implied for known structured

LDPC codes, including repeat accumulate codes and protograph-based construc-

tions. Establishing the distribution of fully absorbing sets (especially when the

discrepancy with the trapping set distribution is significant) allows one to further

refine the estimates of the error rates under bit-flipping and related decoders.

We also find the asymptotic distribution of non-binary elementary absorbing sets

in regular code ensembles by using techniques from graph theory. We also show

that in the non-binary regime, as the alphabet size q gets larger, it is harder to

satisfy edge labeling conditions of non-binary absorbing sets.

• Non-binary protograph-based LDPC codes: In this part, we generalize ex-

isting definitions and techniques from the binary to the non-binary domain and

provide ensemble performance evaluation of the resultant non-binary protograph-

based (NBPB) codes through the explicit computation of codeword, trapping sets

and pseudocodewords enumerators.

4.2 Asymptotic Distribution of Absorbing Sets for Regular Binary

and Non-Binary Unstructured LDPC Ensembles

The main contribution of this section is to establish the asymptotic analysis of binary

and non-binary absorbing sets for regular LDPC code ensembles, and to, for the first

47

time, quantify the difference between the asymptotic distributions of absorbing sets and

trapping sets.

4.2.1 Random Matrix Enumeration

An important tool for the code performance analysis is the enumeration of a random

code ensemble with certain properties. It is convenient to introduce the following col-

lection of matrices.

Definition 1. Let Λl,r
n,m be the set of all n×m binary matrices with row-weight vector

l = (l1, l2, ..., ln) and column-weight vector r = (r1, r2, ..., rm), where li, 1 ≤ i ≤ n,

represents the weight of the ith row, and rj , 1 ≤ j ≤ m, represents the weight of the jth

column of matrices in Λl,r
n,m.

We use the following theorem from [55] to asymptotically enumerate parity check

matrices under certain row and column weight constraints. Related approaches for

analyzing asymptotic properties of LDPC codes are discussed in [56] and [17].

Theorem 2. (cf. [55]) For given l = (l1, l2, ..., ln) and r = (r1, r2, ..., rm), let tn,m(l, r) =∣∣Λl,r
n,m

∣∣ be the cardinality of the collection Λl,r
n,m, and let f =

∑n
i=1 li =

∑m
j=1 rj . For

bounded values of li’s and rj’s and constant ratio m/n, as n→∞,

tn,m(l, r) .
=

f !∏n
i=1 li!

∏m
j=1 rj!

· exp

[
− 1

2f 2

n∑
i=1

li(li − 1)
m∑
j=1

rj(rj − 1)

]
, (4.1)

where the notation “tn,m(l, r) .
= vn,m(l, r)” stands for lim supn→∞

∣∣∣ tn,m(l,r)
vn,m(l,r) − 1

∣∣∣ = 0.

Lemma 3 shows how to enumerate a larger matrix by breaking it up into two ma-

trices and enumerating them separately. First, we define three collections of auxiliary

matrices. Given positive integers l, r, m, nu and n, with nu < n, and an integer-valued

vector ru = (r1, ..., rm) with each entry rj satisfying 0 ≤ rj ≤ r, we let

48

• Λl,r
n,m be the set of n × m binary matrices with rows weighted l and columns

weighted r (cf. Definition 1),

• Λl,ru
nu,m be the set of nu × m binary matrices with rows weighted l and columns

weighted ru = (r1, ..., rm), and

• Λl,rd
nd,m

be the set of nd ×m matrices, where nu + nd = n, with rows weighted l

and columns with weights rd = ((r − r1), ..., (r − rm)).

As a shorthand, l (r) denotes a vector with all entries equal to l (r) and with dimen-

sion n (m).

Lemma 3. Let Λl,r
n,m, Λl,ru

nu,m and Λl,rd
nd,m

be the three sets of matrices as defined above.

The cardinality of the set Λl,r
n,m is expressed in terms of cardinalities of constituent sets

as, ∣∣∣Λl,r
n,m

∣∣∣ =
∑

{ru: 1≤j≤m, 0≤rj≤r}

∣∣∣Λl,ru
nu,m

∣∣∣ · ∣∣∣Λl,rd
nd,m

∣∣∣ . (4.2)

Proof. For a particular choice of the vector ru, let Mu ∈ Λl,ru
nu,m and Md ∈Λl,rd

nd,m
. By

pairing up Mu and Md, such that M =
[
Mu

Md

]
, we obtain a regular matrix with rows

weighted l and columns weighted r. There are
∣∣∣Λl,ru

nu,m

∣∣∣ · ∣∣∣Λl,rd
nd,m

∣∣∣ different regular matri-

ces for a particular vector ru. Summing over all possible choices of ru leads the overall

count.

For convenience, we let Gl,r
n,m be the set of all Tanner graphs corresponding to the

parity check matrices whose transposes are in the Λl,r
n,m collection.

4.2.2 Asymptotic Distribution of Binary Absorbing Sets

In this section, we provide the normalized logarithmic asymptotic distribution of ab-

sorbing sets and fully absorbing sets for (l, r) regular LDPC code ensembles, where

l and r denote the bit node and the check node degree, respectively. Furthermore, we

49

derive simplified formulas for the normalized logarithmic asymptotic distribution of the

elementary (fully) absorbing sets for small values of l.

The normalized logarithmic asymptotic distribution of (a, b) absorbing sets is de-

fined as

el,r(θ, λ) , lim
n→∞

1

n
log pl,ra,b,n = lim

n→∞

1

n
log

zl,ra,b,n∣∣∣Λl,r
n,m

∣∣∣ , (4.3)

where θ = a
n

, λ = b
n

and pl,ra,b,n is the average number of size (a, b) absorbing sets in a

Tanner graph in Gl,r
n,m. Here, zl,ra,b,n is the number of (a, b) absorbing sets over all Tanner

graphs in Gl,r
n,m. Here and in the subsequent exposition, log is taken with base e.

We likewise define the normalized logarithmic asymptotic distribution of (a, b) fully

absorbing sets as

e(f)
l,r

(θ, λ) , lim
n→∞

1

n
log p

(f)l,r

a,b,n = lim
n→∞

1

n
log

z
(f)l,r

a,b,n∣∣∣Λl,r
n,m

∣∣∣ , (4.4)

where p(f)
l,r

a,b,n is the average number and z(f)
l,r

a,b,n is the total number of (a, b) fully absorb-

ing sets in Gl,r
n,m.

The normalized logarithmic asymptotic distributions of elementary (fully) absorb-

ing sets are defined analogously to (4.24) and (4.4); we shall use the subscript E to

denote the elementary attribute.

Let us consider an (a, b) absorbing set Aa,b in a Tanner graph in the collection

Gl,r
n,m. For 1 ≤ i ≤ a, let σi denote the number of edges that connect the ith bit node

in Aa,b to satisfied check nodes, and for 1 ≤ j ≤ m, let δj denote the number of edges

that connect the jth check node to the bit nodes in Aa,b. Theorem 3 establishes the

asymptotic logarithmic scaling of the average number of (a, b) absorbing sets in Gl,r
n,m.

Here, “pl,ra,b,n ∼= wl,ra,b,n" means “limn→∞
1
n

log pl,ra,b,n = limn→∞
1
n

logwl,ra,b,n".

Theorem 3. Let 0 < ζ, θ, λ < 1 where ζ , m
n

= l
r
. Then,

pl,ra,b,n
∼=

∑
{δj ,σi:1≤j≤m,1≤i≤n,S}

(
n
a

)(
m
b

)(
nl
al

)(
al
q

) a∏
i=1

(
l

σi

) m∏
j=1

(
r

δj

)
, (4.5)

50

where q =
∑m−b

j=1 δj and the summation goes over all δj’s, and σi’s which satisfy the

following set of conditions:

S =

m∑
j=1

δj = al;
m−b∑
j=1

δj =
a∑
i=1

σi;

l

2
< σi ≤ l for 1 ≤ i ≤ a;

δj is even for 1 ≤ j ≤ m− b;

δj is odd for m− b+ 1 ≤ j ≤ m.

(4.6)

Proof. First, for the selected Aa,b absorbing set we express the m × n parity check

matrix H as follows (for convenience, we work with the transpose of matrix H):

HT =

M1 |M2

M3

 ,
where M1 is a size a × (m − b) binary matrix corresponding to the subgraph of the

Tanner graph spanned by the bit nodes in Aa,b and the check nodes that are connected

to Aa,b even number of times (including zero times). Therefore, the matrix M1 only has

even-weighted columns. The matrix M2 is a size a × b binary matrix corresponding

to subgraph of the Tanner graph spanned by the bit nodes in Aa,b and the check nodes

that are connected to Aa,b odd number of times. The matrix M2 only has odd-weighted

columns. The matrixM3 is an (n−a)×m binary matrix corresponding to the remainder

of the Tanner graph.

Then, for 1 ≤ j ≤ m, δj is the weight of the jth column of the submatrix [M1|M2],

and for 1 ≤ i ≤ a, σi is the weight of the ith row of the submatrix M1. To ensure that

the row weight across HT is l, the weight of the ith row in M2 is (l − σi).

Likewise, the weights of columns of M3 are chosen with respect to the column

weights of matrices M1 and M2 to ensure that all columns in HT are weighted r: the

jth column of M3 has weight (r − δj). Also, by definition of an absorbing set, a size

(a, b) absorbing set requires σi > l
2

for all 1 ≤ i ≤ a.

Let Λv,v′ refer to the set of all v × v′ binary matrices. Given non-negative integers

a, b,m, n, l, r with a ≤ n, b ≤ m and nl = mr, and given non-negative integer valued

51

vectors (δ1, . . . , δm) and (σ1, . . . , σa) with 0 ≤ δj ≤ r, ∀j, and with 0 ≤ σi ≤ l, ∀i, let

us define the following collections of matrices:

Λ1 ={∀M ∈ Λa,m−b : for 1 ≤ i ≤ a,
m−b∑
h=1

M(i, h) = σi;

for 1 ≤ j ≤ m− b,
a∑
g=1

M(g, j) = δj},

Λ2 ={∀M ∈ Λa,b : for 1 ≤ i ≤ a,

b∑
h=1

M(i, h) = l − σi;

for 1 ≤ j ≤ b,
a∑
g=1

M(g, j) = δm−b+j},

Λ3 ={∀M ∈ Λn−a,m : for 1 ≤ i ≤ n− a,
m∑
h=1

M(i, h) = l;

for 1 ≤ j ≤ m,
n−a∑
g=1

M(g, j) = r − δj}.

The asymptotic cardinalities of sets Λ1, Λ2, Λ3 and Λl,r
n,m are computed using Theo-

rem 2, and are shown in (4.7) through (4.10).

The matrixHT is an n×mmatrix with all rows weighted l and all columns weighted

r which has fixed row and column orderings fixed by the choice of M1, M2 and M3.

Using Lemma 3 and accounting for the choice of which a out of n bit nodes (b out of m

check nodes) constitute the absorbing set (odd degree neighbors to the absorbing set)

we obtain:

zl,ra,b,n =
∑

{δj ,σi:1≤j≤m,1≤i≤n,S}

(
n

a

)(
m

b

)
|Λ1| |Λ2| |Λ3| , (4.11)

where the condition set S is given by (4.6). Therefore, the average number of size (a, b)

52

|Λ1|
.
=

m−b∑
j=1

δj

!

a∏
i=1

σi!
m−b∏
j=1

δj !

· exp

−

a∑
i=1

σi(σi − 1)

m−b∑
j=1

δj(δj − 1)

2

m−b∑
j=1

δj

2

, (4.7)

|Λ2|
.
=

 m∑
j=m−b+1

δj

!

a∏
i=1

(l − σi)!
m∏

j=m−b+1

δj !

· exp

−

a∑
i=1

(l − σi)(l − σi − 1)
m∑

j=m−b+1

δj(δj − 1)

2

 m∑
j=m−b+1

δj

2

,

(4.8)

|Λ3|
.
=

((n− a)l)!

(l!)n−a
m∏
j=1

(r − δj)!
· exp

−
(n− a)l(l − 1)

m∑
j=1

((r − δj)(r − δj − 1)).

2((n− a)l)2

 , (4.9)

∣∣∣Λl,r
n,m

∣∣∣ .= (nl)!

(l!)n(r!)m
· exp

[
−nl(l − 1) mr(r − 1)

2(nl)2

]
. (4.10)

absorbing sets in a Tanner graph in Gl,r
n,m is

pl,ra,b,n =
zl,ra,b,n∣∣∣Λl,r
n,m

∣∣∣
=

∑
{δj ,σi:1≤j≤m,1≤i≤n,S}

(
n

a

)(
m

b

)
|Λ1| |Λ2| |Λ3|∣∣∣Λl,r

n,m

∣∣∣ . (4.12)

Note that the exponential terms in (4.7) through (4.10) become negligible under the
1
n

log(·) operation in the limit n → ∞, since both the numerator and denominator of

each of the terms within the exponents grow quadratic with n. For example, in (4.7),

in the numerator of the term within the exponent,
∑a

i=1 σi(σi − 1) is a summation of

53

a = θn bounded terms, and
∑m−b

j=1 δj(δj − 1), is also a summation of m− b = (ζ− θ)n

bounded terms. Each summation grows linearly with n. Since the term

(
m−b∑
j=1

δj

)2

in

the denominator grows quadratic with n, the ratio vanishes under the 1
n

log(·) operation.

With some manipulations, it readily follows that

pl,ra,b,n
∼=

∑
{δj ,σi:1≤j≤m,1≤i≤n,S}

(
n
a

)(
m
b

)(
nl
al

)(
al
q

) a∏
i=1

(
l

σi

) m∏
j=1

(
r

δj

)
.

It is worth pointing out that the presented enumeration method does not double

count the configurations of interest since distinct matrices are counted exactly once.

However, certain configurations, by virtue of node symmetry, may be more likely.

For small trapping sets, most of the check nodes incident to the bit nodes in the trap-

ping set connect to the trapping set at most twice, and are therefore elementary trapping

sets [17, 57]. It is therefore of interest to also quantify distributions of elementary ab-

sorbing sets in this regime.

Corollary 3. The normalized logarithmic asymptotic distribution of (a = θn, b = λn)

elementary absorbing sets in G3,r
n,m, is given by (recall that “E" stands for “elemen-

tary"):

e3,rE (θ, λ) = −2Hb(θ, 1− θ)−Hb(ζ, 1− ζ)

+
3θ − λ

2
log

(
r

2

)
+ θHb

(
λ

θ
, 1− λ

θ

)
− 3θHb

(
λ

3θ
, 1− λ

3θ

)
+ λ log 3r

+Hb

(
1− ζ, λ, 3θ − λ

2
,
2ζ − 3θ − λ

2

)
, (4.13)

where ζ = m
n

, and Hb(p1, ..., pN) = −
∑N

i=1 pi log pi, with
∑N

i=1 pi = 1, denotes the

entropy function.

Proof. In an elementary absorbing set, check nodes are connected to bit nodes in the

absorbing set at most twice. Therefore, δj’s have values 0, 1 or 2. For m− b+ 1 6 j 6

54

m, δj = 1 since each unsatisfied check has only one edge connected to the absorbing

set.

Following the constraints on values of σi’s (for 1 ≤ i ≤ a, l
2
< σi ≤ l), σi’s are

either 2 or 3 for 1 ≤ i ≤ a. Since each column of M2 has weight 1, the total weight of

matrix M2 is λn. Each row of M2 is weighted 1 or 0, and λn number of rows of M2

are weighted 1. Thus, λn number of σi’s are equal to 2 and the rest of σi’s are equal to

3. Since the total weight in [M1|M2] is 3θn, it follows that (3θ−λ)n
2

number of δj’s are

equal to 2 and rest of them are equal to 0. By substituting in the numerical values for

δj’s and σi’s in (4.5), we have:

e3,rE (θ, λ) =
1

n
log

∑
{δj ,σi:1≤j≤m,1≤i≤n,S}

(
n
θn

)(
ζn
λn

)(
3θn

(3θ−λ)n

)(
3n
3θn

)(3

2

)λn
(

3

3

)(θ−λ)n(
r

0

) (2ζ−λ−3θ)n
2

(
r

1

)λn(
r

2

) (3θ−λ)n
2

.

(4.14)

Note that (3θ−λ)n
2

of even-valued δi’s need to be 2 and λn of σj’s also need to be

2. The summation reduces to multiplying the summand (which is now the same for

all terms), by the number of ways the values of δi’s and σj’s can be selected. The

total number of ways is
((ζ−λ)n

(3θ−λ)n
2

)(
θn
λn

)
. For n →∞, we simplify (4.14) using Stirling’s

approximation, log(n!) ≈ n log n − n, and the binomial approximation, log
(
n
ρn

)
≈

nHb(ρ, 1− ρ), to obtain the result.

A special case of Corollary 3 is when λ << θ, i.e., when there exists only a small

fraction of unsatisfied checks. In this case, we can approximate (4.13) as:

− 2Hb(θ, 1− θ) +
3θ

2
log

(
r

2

)
−Hb(ζ, 1− ζ)

+Hb

(
1− ζ, 3θ

2
,
2ζ − 3θ

2

)
, (4.15)

55

which is exactly the same result as in Corollary 3.1 of [17] for the enumeration of

elementary trapping sets. Therefore when λ << θ and θ is small, most (elementary)

trapping sets satisfy the (elementary) absorbing set conditions. This observation is also

shown in Fig. 4.6.

We derive an analogous result for when the bit node degree is 4.

Corollary 4. The normalized logarithmic asymptotic distribution of (a = θn, b = λn)

elementary absorbing sets in G4,r
n,m is given by:

e4,rE (θ, λ) = −3Hb(θ, 1− θ) + λ log 4r

+
4θ − λ

2
log

(
r

2

)
+ θHb

(
λ

θ
, 1− λ

θ

)
− 4θHb

(
λ

4θ
, 1− λ

4θ

)
−Hb(ζ, 1− ζ)

+Hb

(
1− ζ, λ, 4θ − λ

2
,
2ζ − 4θ − λ

2

)
. (4.16)

Proof. Similarly to the proof of Corollary 3, δj’s again have values 0, 1 or 2, and for

m − b + 1 ≤ j ≤ m , δj = 1. Now, σi is either 3 or 4, and there are λn rows in M2

corresponding to σi = 3. The rest of the proof mimics that of Corollary 3.

In the case of fully absorbing sets, every bit node, irrespective of whether it belongs

to the particular absorbing set or not, has fewer edges connected to the unsatisfied

checks than other checks (checks being unsatisfied with respect to the absorbing set).

Theorem 4 considers this additional constraint and provides the asymptotic scaling of

the average number of fully absorbing sets. Recall that for 1 ≤ j ≤ n, δj denotes

the number of edges that connect the jth check node to the bit nodes in A(f)
a,b , and for

1 ≤ i ≤ a, σi denotes the number of edges that connect the ith bit node in the fully

absorbing set A(f)
a,b to satisfied check nodes. Additionally, let µk, for 1 ≤ k ≤ n − a,

be the number of edges that connect the kth bit node from the subset of bit nodes not

in the fully absorbing set (that is, for 1 ≤ k ≤ n − a) to the (m − b) check nodes that

themselves have even number of connections (including zero) to A(f)
a,b .

56

Theorem 4. Let 0 < ζ, θ, λ < 1 where ζ = m
n

= l
r
. Then, as n → ∞, p(f)

l,r

a,b,n, the

average number of (a = θn, b = λn) fully absorbing sets in Gl,r
n,m scales as,

p(f)
l,r

a,b,n
∼=

∑
{δj ,σi,µk:1≤j≤m,1≤i≤a,1≤k≤n−a,S,S1}

(
n
a

)(
m
b

)(
nl
al

)(
al
q

)
1(

(n−a)·l
(m−b)·r−q

) · a∏
i=1

(
l

σi

) n−a∏
k=1

(
l

µk

) m∏
j=1

(
r

δj

)
, (4.17)

where q =
∑m−b

j=1 δj . The summation goes over all δj’s, σi’s, and µk’s under the condi-

tions S given in (6) and S1, where

S1 =

n−a∑
k=1

µk = (m− b)r − q,

∀k ∈ {1, 2, ..., n− a} , l
2
< µk ≤ l.

(4.18)

Proof. The proof of the theorem extends the proof of Theorem 3. For a given (a, b)

fully absorbing set A(f)
a,b , express the transpose of the m× n parity check matrix H as:

HT =

 M1 |M2

M31 |M32

 ,
where M1 and M2 are defined as before: the binary matrix M1 of size a× (m− b) (the

binary matrix M2 of size a× b), corresponds to the subgraph spanned by the bit nodes

in A(f)
a,b and the check nodes that are connected to A(f)

a,b even (odd) number of times. The

matrix M31 is an (n − a) × (m − b) binary matrix corresponding to the subgraph of

the Tanner graph spanned by (n − a) bit nodes not in A(f)
a,b and (m − b) check nodes

that are connected to the bit nodes in A(f)
a,b even number of times. Likewise, the matrix

M32 is an (n − a) × b matrix that corresponds to the subgraph spanned by (n − a) bit

nodes not in A(f)
a,b and b check nodes that are themselves connected to the bit nodes in

A
(f)
a,b odd number of times. Given the fully absorbing set constraints, l

2
< µk ≤ l for

1 ≤ k ≤ n− a. The values of µk’s are also constrained by the δj’s.

Following the discussion in the proof of Theorem 3, the quantities |Λ1|, |Λ2|, and∣∣∣Λl,r
n,m

∣∣∣ remain the same as in equations (4.7), (4.8) and (4.10). The original matrix

57

|Λ31|
.
=

m−b∑
j=1

(r − δj)

!

n−a∏
k=1

µk!

m−b∏
j=1

(r − δj)!

· exp

−

n−a∑
k=1

µk(µk − 1)

m−b∑
j=1

(r − δj)(r − δj − 1)

2

m−b∑
j=1

(r − δj)

2

, (4.20)

|Λ32|
.
=

 m∑
j=m−b+1

(r − δj)

!

n−a∏
k=1

(l − µk)!

m∏
j=m−b+1

(r − δj)!
·exp

−

n−a∑
k=1

(l − µk)(l − µk − 1)

m∑
j=m−b+1

(r − δj)(r − δj − 1)

2

 m∑
j=m−b+1

(r − δj)

2

.

(4.21)

M3 is partitioned into two new matrices, M31 and M32. We define Λ31 and Λ32 matrix

collections as:

Λ31 ={∀M ∈ Λ(n−a),(m−b) : for1 ≤ k ≤ n− a,
m−b∑
h=1

M(k, h) = µk;

for 1 ≤ j ≤ m− b,
n−a∑
g=1

M(g, j) = r − δj},

Λ32 ={∀M ∈ Λn−a,b : for1 ≤ k ≤ n− a,
b∑

h=1

M(k, h) = l − µk;

for1 ≤ j ≤ b,
n−a∑
g=1

M(g, j) = r − δm−b+j}.

The asymptotic scaling of |Λ31| and |Λ32| are given in (4.20) and (4.21). Now, by using

Lemma 3, we have

z(f)
l,r

a,b,n =
∑

{δj ,σi,µk:1≤j≤m,1≤i≤a,1≤k≤n−a,S,S1}

(
n

a

)(
m

b

)
· |Λ1| |Λ2| |Λ31| |Λ32| . (4.19)

58

Following the calculations in the proof of Theorem 2, as n→∞, we have

p(f)
l,r

a,b,n
∼=

∑
{δj ,σi,µk:1≤j≤m,1≤i≤a,1≤k≤n−a,S,S1}

(
n
a

)(
m
b

)(
nl
al

)(
al
q

)
.

1(
(n−a)·l

(m−b)·r−q

) · a∏
i=1

(
l

σi

) n−a∏
k=1

(
l

µk

) m∏
j=1

(
r

δj

)
.

Based on Theorem 4, we now compute the normalized logarithmic asymptotic dis-

tribution of elementary fully absorbing sets for bit degrees 3 and 4.

Corollary 5. The normalized logarithmic asymptotic distribution of (a = θn, b = λn)

elementary fully absorbing set in G3,r
n,m is given by:

e
(f)
E

3,r
(θ, λ) = −2Hb(θ, 1− θ) + λ log 3r −Hb(ζ, 1− ζ)

+
3θ − λ

2
log

(
r

2

)
+ θHb(

λ

θ
, 1− λ

θ
)

− 3θHb(
λ

3θ
, 1− λ

3θ
)

+Hb(1− ζ, λ,
3θ − λ

2
,
2ζ − 3θ − λ

2
)

+ [(1− θ)Hb(
λ(r − 1)

1− θ
, 1− λ(r − 1)

1− θ
).

− 3(1− θ)Hb.(
λ(r − 1)

3(1− θ)
, 1− λ(r − 1)

3(1− θ)
)

+ λ(r − 1) log 3]. (4.22)

Proof. Here, the constraints over δj’s and σi’s are the same as in Corollary 3. Each bit

node in the Tanner graph has fewer connections to unsatisfied checks than to satisfied

checks, irrespective of whether or not it belongs to the fully absorbing set. Since each

row of M32 has fewer than half of the 1’s in each row of the overall matrix (here l = 3),

each row of M32 has weight one or zero. In matrix M32, because every column is

weighted r − 1, we have (r − 1)b = (r − 1)λn number of 1’s. So, (r − 1)λn number

of rows of M32 are weighted 1 or equivalently (r − 1)λn rows of M31 have a weight

of two. Thus, (r − 1)λn number of µk’s are equal to 2 and n(1 − θ) − (r − 1)λn

59

of µk’s are equal to 3. By plugging in δj’s, σi’s and λk’s in Theorem 4 and using the

approximations as in Corollary 3, the result follows.

As λ → 0, the equation (4.22) reduces to (4.15), where in this regime, (elemen-

tary) trapping sets, absorbing sets, and fully absorbing sets are approximately the same

objects. This observation is illustrated in Fig. 4.1. The part inside the brackets of

(4.22) comes from the additional constraints when an absorbing set is also a fully ab-

sorbing set. When θ and λ are small, we use log(x + 1) ≈ x for x → 0, to simplify

this additional summand. Then, the term inside the brackets is approximately equal

to −2λ2(r − 1)2/3. Note that the value of this expression is always negative and it is

strictly decreasing as λ increases. It follows that the discrepancy between elementary

absorbing sets and elementary fully absorbing sets increases as λ increases (shown in

Fig. 4.1).

Using similar approximations, the following consequence of Theorem 4 readily

follows.

Corollary 6. The normalized logarithmic asymptotic distribution of (a = θn, b = λn)

elementary fully absorbing set in G4,r
n,m is given by

e
(f)
E

4,r
(θ, λ) = −3Hb(θ, 1− θ) + λ log 4r

+
4θ − λ

2
log

(
r

2

)
+ θHb(

λ

θ
, 1− λ

θ
)

− 4θHb(
λ

4θ
, 1− λ

4θ
)−Hb(ζ, 1− ζ)

+Hb(1− ζ, λ,
4θ − λ

2
,
2ζ − 4θ − λ

2
)

+ [(1− θ)Hb(
λ(r − 1)

1− θ
, 1− λ(r − 1)

1− θ
).

− 4(1− θ)Hb.(
λ(r − 1)

3(1− θ)
, 1− λ(r − 1)

3(1− θ)
)

+ λ(r − 1) log 4]. (4.23)

Note that there exists a limit for the value of λ for absorbing sets to exist.

60

Remark 1. Consider the (fully) absorbing sets in the Tanner graphs in G3,r
n,m. Note

that in order to satisfy the (fully) absorbing set condition, there can be at most one

edge connecting a bit node in the absorbing set with an unsatisfied check. Therefore,

the maximum number of edges connecting bit nodes from an absorbing set of size

a = θn with unsatisfied checks is a = θn. It follows that the maximum number of

unsatisfied checks that can be induced by this absorbing set is also a = θn, so λ
θ
≤ 1

for b = λn. In addition, since 1−R = l
r

= m
n

, where R,R < 1, is the design rate, λ is

also upper bounded by 1−R. The same argument follows for G4,r
n,m.

This observation can be used to narrow down the range of parameters where the

trapping sets are stable under bit-flipping decoding (e.g., in [57] trapping sets with
λ
θ
> 1, and therefore unstable, were considered in the analysis).

Fig. 4.1 compares the normalized logarithmic asymptotic distributions of elemen-

tary trapping sets and elementary (fully) absorbing sets for different G3,r
n,m, for θ =

0.001. In this regime, elementary absorbing sets approximate absorbing sets well. As

λ increases, the discrepancy between the trapping set and absorbing set distributions

increases, because it becomes more difficult to meet additional (fully) absorbing set

constraints. The discrepancy becomes more pronounced as the ratio ζ = l
r

is lowered

(Λ3,6
n,m vs. Λ3,15

n,m vs. Λ3,30
n,m collection), since having fewer checks of higher degrees makes

it more difficult to meet additional combinatorial constraints.

Fig. 4.2 shows the comparison of the normalized logarithmic asymptotic distribu-

tions of elementary absorbing sets for G3,r
n,m and G4,r

n,m, for θ set to 0.001. The results

are reported for ζ = 0.5 (for (l, r) equal to (3, 6) and to (4, 8)) and for ζ = 0.25 (for

(l, r) equal to (3, 15) and to (4, 20)). There are significantly fewer absorbing sets of a

particular size in G4,r
n,m than in G3,r

n,m because in the former case additional edges in

the graph make the combinatorial constraints of absorbing sets harder to meet. Also

note that the curve for the (4, 8) codes sits entirely below the horizontal line at 0 which

means that in the asymptotic limit the number of absorbing sets is subexponential for

these choices of θ and λ.

61

0 0.2 0.4 0.6 0.8 1
x 10 3

2

1

0

1

2

3

4

5
x 10 3

e
3
,
r (

,
)

TS, (3,30)
AS, (3,30)
FAS, (3,30)
TS, (3,15)
AS, (3,15)
FAS, (3,15)
TS, (3,6)
AS, (3,6)
FAS, (3,6)

Figure 4.1: Comparison of the normalized logarithmic asymptotic distributions of el-

ementary trapping sets (TS) and elementary absorbing sets (AS) and elementary fully

absorbing sets (FAS) for fixed θ = 0.001 for various G3,r
n,m collections, each indexed

by (3, r). The equations in [17] are used to plot the trapping set curves. Note that for

the (3, 6) case the curves for absorbing sets and for fully absorbing sets are completely

overlapping.

Fig. 4.3 and Fig. 4.4 show the discrepancy between the normalized logarithmic

asymptotic distributions of elementary trapping sets and absorbing sets for G3,6
n,m and

G3,15
n,m, parameterized by the number of unsatisfied checks λ. From Remark 1, it follows

that absorbing sets in G3,6
n,m and G3,15

n,m can exist only when λ
θ
≤ 1. Thus, the domain of

θ is different for different λ’s. Observe that in these two figures, for fixed θ, el,r(θ, λ)

increases as λ increases for both trapping and absorbing sets. This agrees with the result

from Fig. 4.1. We quickly remark that for r < 9 (r ≥ 9), the curves are as those shown

in Fig. 4.3 (Fig. 4.4). Thus for r ≥ 9, there are exponentially many absorbing sets

parametrized by given θ and λ, whereas for r < 9 there is a subexponential number of

absorbing sets when θ and λ are sufficiently small. Figures 4.3 and 4.4 also show that

as θ increases or as λ decreases, trapping sets become better proxies for absorbing sets.

62

0 0.2 0.4 0.6 0.8 1
x 10 3

4

3

2

1

0

1

2

3

4
x 10 3

e
l
,
r (

,
)

(3,15)
(3,6)
(4,20)
(4,8)

Figure 4.2: Comparison of the normalized logarithmic asymptotic distributions of ele-

mentary absorbing sets in G3,r
n,m and G4,r

n,m for fixed θ = 0.001, and for ζ equal to 0.25

and 0.5. The horizontal line at zero delineates having exponentially many absorbing

sets from the exponential absence of absorbing sets.

In Fig. 4.5 we plot the normalized logarithmic asymptotic elementary absorbing

set distributions under the fixed ratio η = λ
θ

for various G3,r
n,m. Although the ratio of

unsatisfied checks and absorbing set size is fixed, as θ increases, the difference between

trapping sets and absorbing sets increases. It follows that trapping sets can better ap-

proximate absorbing sets for smaller θ when η = 0.5. Following Fig. 4.5, Fig. 4.6

shows the normalized logarithmic asymptotic distributions of elementary trapping sets

and absorbing sets in G3,6
n,m under different ratios η = λ

θ
. Note that the curves corre-

sponding to small values of η have the second zero crossing (see also Fig. 4.3). This

second zero crossing can be used to represent the typical absorbing set distance (anal-

ogously to the typical trapping set distance, cf. [57]). It is also interesting to observe

that the absorbing set curves taper off in Fig. 4.6. As η increases towards 1, it again

becomes more difficult to meet the combinatorial constraints of an absorbing set.

63

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

e
3
,
6 (

,
)

TS
AS

=[2e 4, 4e 4, 1e 3, 2e 3, 3e 3, 5e 3]

Figure 4.3: Comparison of the normalized logarithmic asymptotic distributions of ele-

mentary trapping sets (TS) and elementary absorbing sets (AS) in G3,6
n,m for different

values of λ. The arrow indicates the increase in λ and the circles group up curves of the

same λ. The equations in [17] are used to plot the trapping set curves.

Since the trapping set distribution is an upper bound of the absorbing set distri-

bution, we also remark that certain known structured LDPC codes that have excellent

minimum distance properties likely also have excellent absorbing set properties. In

particular, repeat accumulate accumulate (RAA) codes of rates 1/3 and below, have

minimum distance growing linearly with blocklength [58, 59]. By comparing the re-

sults obtained here for the absorbing set analysis with the trapping set analysis of RAA

codes presented in [60], we conclude that RAA of rates 1/3 have substantially better

absorbing set asymptotics than the random ensemble with bit node 3 and check node 9

for small values of θ and λ. See Figure 4.7.

LDPC code ensembles built out of protographs are another class of high-performance

structured graph-based codes. Asymptotic enumeration of trapping sets was derived

in [57] where it was shown that (3, 6) protograph-based LDPC codes asymptotically

behave the same as regular LDPC codes with the same bit and check node degree.

64

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

e
3
,
1
5
(
,
)

TS
AS

=[2e 4, 4e 4, 1e 3, 2e 3, 3e 3, 5e 3]

Figure 4.4: Comparison of the normalized logarithmic asymptotic distributions of ele-

mentary trapping sets (TS) and elementary absorbing sets (AS) in G3,15
n,m collection for

different values of λ. The arrow indicates the increase in λ and the circles group up

curves of the same λ.

Therefore these codes too should have asymptotic absorbing set properties no worse

than the (unstructured) (3, 6) regular ensemble.

4.2.3 Asymptotic Distribution of Non-Binary Absorbing Sets

Based on Theorem 1 in Chapter 3, we have the following corollary. Note that in order

to distinguish unlabeled absorbing sets and non-binary absorbing sets, we refer to the

weight assignments obeying the conditions in Definition 8 as problematic.

Corollary 1. For regular code ensembles with column weight c and a given unlabeled

(a, b) elementary absorbing set, the fraction of problematic weight assignments is given

as (q − 1)
b−(c−2)a−2

2 .

We now consider the asymptotic distribution of the non-binary absorbing sets. Let

Gc,rn,m,q denote the regular code ensemble with parity check matrices from the set Λc,r
n,m,q

65

0 0.5 1 1.5 2
x 10 3

0

1

2

3

4

5

6
x 10 3

e
3
,
r (

,
)

TS, (3,15)
AS, (3,15)
TS, (3,6)
AS, (3,6)
TS, (3,5)
AS, (3,5)

Figure 4.5: Comparison of the normalized logarithmic asymptotic distributions of ele-

mentary trapping sets (TS) and elementary absorbing sets (AS) in the Tanner graphs in

G3,r
n,m for the fixed ratio λ

θ
= 0.5. The equations in [17] are used to plot the trapping set

curves.

which consists of all regular matrices of column-weight c and row weight r with el-

ements from GF(q). The asymptotic distribution of non-binary absorbing sets in the

regular code ensemble is defined as follows:

ec,r(θ, λ) , lim
n→∞

1

n
log

zc,ra,b,n
|Λc,r

n,m,q|
, (4.24)

where θ = a
n

, λ = b
n

, and zc,ra,b,n is the number of (a, b) absorbing sets over all matrices

in Λc,r
n,m,q. In (4.24) and in the following, log is taken to the base e.

The following lemma specifies the normalized asymptotic distribution for the c = 4

case.

Lemma 3. The normalized logarithmic asymptotic distribution of (a = θn, b = λn)

elementary absorbing sets in G4,rn,m regular code ensemble over GF(q) is given as

66

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

e
3
,
6 (

,
)

TS
AS

=[0.005, 0.025, 0.1, 0.2, 0.5, 1.0]

Figure 4.6: Comparison of the normalized logarithmic asymptotic distributions of el-

ementary trapping sets (TS) and elementary absorbing sets (AS) in G3,6
n,m for different

η = λ
θ
. Thicker lines correspond to increasing values of η, as the arrow indicates.

The circles group up curves of the same η. The equations in [17] are used to plot the

trapping set curves.

e4,r(θ, λ) = −3Hb(θ, 1− θ)−Hb(ζ, 1− ζ) + λ log 4r +
4θ − λ

2
log

(
r

2

)
+ θHb

(
λ

θ
, 1− λ

θ

)
+Hb

(
1− ζ, λ, 4θ − λ

2
,
2ζ − 4θ − λ

2

)
− 4θHb

(
λ

4θ
, 1− λ

4θ

)
− 2θ − λ

2
log(q − 1),

(4.25)

where ζ = m
n

, and Hb(p1, · · · , pN) = −
∑N

i=1 pi log pi with
∑N

i=1 pi = 1 denotes the

entropy function. The equation for e3,r(θ, λ) can be found similarly.

Proof. Using Corollary 1, from all unlabeled (binary) (θn, λn) absorbing sets in the

Tanner graphs of regular code ensembles (enumerated in [29]), a fraction of (q −

1)
(λ−(c−2)θ)n−2

2 of all possible weight assignments results in (θn, λn) non-binary ab-

sorbing sets. For the details of the proof please see the Appendix.

67

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.05

0.1

0.15

0.2

e
3
,
9 (

,

)
,
e
R
A
A(

,

)

 =0.005, regular
=0.01, regular
=0.1, regular
=0.005, RAA
=0.01, RAA
=0.1, RAA

Figure 4.7: Comparison of the normalized logarithmic asymptotic distributions of ele-

mentary absorbing/trapping sets of rate 1/3 regular unstructured codes (e3,9(θ, λ)) and

of trapping sets of (eRAA(θ, ηθ)) rate 1/3 RAA codes. Note the substantial improve-

ment in the normalized trapping set distribution offered by the RAA codes relative to

the lower bound of the regular LDPC code ensemble. The bound is based on the ele-

mentary absorbing set distribution.

Note that (4.25) indicates that the normalized asymptotic number of absorbing sets

in the ensemble is a decreasing function in the field size q for fixed θ and λ.

For a (3, 6) regular ensemble, Figure 4.8 shows the asymptotic distribution of un-

labeled (θn, λn) elementary (binary) trapping sets using the results in [17], as well as

(θn, λn) problematic elementary absorbing sets for q = 2, 16 and fixed θ = 0.001. Note

that all unlabeled (θn, λn) elementary (binary) trapping sets will result in (θn, λn+)

non-binary trapping sets after labeling of the Tanner graph. We can observe that in

particular for larger λ and for q = 16, the normalized asymptotic distribution of ele-

mentary absorbing sets is smaller than the one for elementary trapping sets. The reason

for this behavior is that after the weight assignment in the non-binary case a smaller

fraction of unlabeled trapping sets leads to problematic absorbing sets. Therefore, the

68

resulting non-binary absorbing set enumerators provide a better assessment of the er-

ror floor compared to trapping set enumerators. Also, as the value of λ gets smaller,

both curves for unlabeled elementary trapping sets and binary elementary absorbing set

converge, which means that most of the unlabeled elementary trapping sets result in

problematic elementary absorbing sets in this case.

Figure 4.9(a) shows the asymptotic distribution of absorbing sets for regular (3, 6)

ensemble and fixed λ/θ ≈ 1. In this case, the distributions are similar for different

values of q, since the absorbing sets include only one (fundamental) cycle and as a a

result, there is one constraint on the edge weights of absorbing sets. Therefore, the

difference between the asymptotic distributions curves for different values of q is negli-

gible in logarithmic domain. On the other hand, in Figure 4.9(b) where λ/θ = 0.1, the

number of satisfied checks and consequently the number of fundamental cycles in the

VN graph increases, which puts more constraints on edge weights to be problematic.

This leads to an increasing gap between the curves for the binary and the non-binary

cases. We also observe that an increase of q results in a smaller number of normalized

asymptotic absorbing sets. The intuition for this behavior is that as q increases, the

number of possible weight assignments also increases for an unlabeled structure and

as a result, a smaller fraction of weight assignments satisfy the condition in Lemma 1.

Figure 4.9(b) also demonstrates that as q increases, the second zero crossing of the ab-

sorbing set growth rate curve, i.e., the typical relative smallest absorbing set, increases

as well.

4.3 Analysis and Enumeration of Non-Binary Protograph-Based

LDPC Codes

In this section, we generalize existing definitions and techniques from the binary to the

non-binary domain and provide ensemble performance evaluation of the resultant non-

binary protograph-based (NBPB) codes through the explicit computation of codeword

69

0 0.2 0.4 0.6 0.8 1
x 10 3

3

2

1

0

1

2

3 x 10 3

e3,
6 (

,
)

Unlabeled ETS
q=2, Problematic EAS
q=16, Problematic EAS

Figure 4.8: Normalized logarithmic asymptotic distributions of elementary trapping

sets (ETS) and absorbing sets (EAS) for G3,6
n,m, θ = 0.001 and q = 2, 16.

enumerator.

4.3.1 U-NBPB Weight Enumerators

In this subsection, we compute the codeword weight enumerators which are known

to be useful for bounding the performance under the maximum likelihood (ML) de-

coding. The section is composed of three parts. We first provide the exact weight

enumerator of a code induced by one check node (Subsection 4.3.1.1). We then discuss

non-asymptotic ensemble weight enumerators (Subsection 4.3.1.2) and the asymptotic

ensemble weight enumerators (Subsection 4.3.1.3). Some of the presented results build

upon [33], and generalize these known results to the non-binary set-up. Throughout the

section, illustrative examples accompany the derivations.

70

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2

0.25

Ab
so

rb
in

g
se

t g
ro

w
th

 ra
te

q=2
q=4
q=8
q=16

(a) λ/θ = 0.95

0 0.05 0.1 0.15
0.05

0

0.05

0.1

0.15

0.2

Ab
so

rb
in

g
se

t g
ro

w
th

 ra
te

q=2
q=4
q=8
q=16

second zero crossing

(b) λ/θ = 0.1

Figure 4.9: Normalized logarithmic asymptotic distributions of elementary absorbing

sets for regular code ensemble G3,6
n,m, q = 2, 4, 8, 16 and (a) λ/θ = 0.95, (b) λ/θ = 0.1.

4.3.1.1 Weight Enumerator of A Check Node and Its Replicas

Let us begin building the enumerator result by first considering a check node cj with

degree mj in the mother protograph G. We first establish the necessary notation.

71

It is convenient to view this check node cj as a (mj , mj − 1) linear block code Cj

over GF (q). Let Kj = q(mj−1) denote the number of codewords in Cj . Further, let

MCj be the Kj × mj matrix with the codewords of Cj as its rows (whose entries are

by construction in GF (q)), and let MCj
b be the Kj × mj binary matrix obtained by

converting all non-zero entries of MCj to 1. Note that by construction, some rows of

M
Cj
b may be the same. Let the collectionMCj

b represent all rows x of MCj
b , where x =

[x1, x2, . . . , xmj], xi ∈ {0, 1}. Define a Kj,r ×mj binary matrix M
Cj
b,r as the submatrix

of MCj
b that consists of all distinct rows of MCj

b . The number of rows in M
Cj
b,r is Kj,r =

1 +
∑mj

i=2

(
mj
i

)
. Let the setMCj

b,r represent the rows xk = [xk,1, xk,2, . . . , xk,mj], xk,i ∈

{0, 1}, for i = 1, 2, . . .mj, k = 1, 2, . . . , Kj,r of MCj
b,r.

Following the proposed construction of U-NBPB codes, we consider the N copies

of node cj in the daughter graph, and call the resultant (Nmj , N(mj − 1)) linear

block code CNj . It is convenient to denote by nk the number of occurrences of the

kth codeword among these N copies of cj , and to collect them into the vector n, where

n = [n1, n2, . . . , nKj]. Lastly, let AC
N
j (w) denote the weight-vector enumerator of

CNj where w = [w1, w2, . . . , wmj] is the weight vector of the input message in CNj ,

where the entry wi denotes the number of occurrences of a non-zero value in position

i, 1 ≤ i ≤ mj , over the set of input messages.

With the above, the main result of this subsection is provided in the following the-

orem that characterizes the weight enumerator of the code CNj (in the daughter graph

GN) that is described by N copies of the single check node cj (in the mother graph G).

For the ease of exposition and since we currently focus on the single check node, we

suppress the index j in cj , CNj and Kj,r, and simply refer to the check node as c, its

resultant code as CN , and reduced row dimension as Kr.

Throughout the analysis

C (N ;x1, x2, · · · , xL) =
N !

x1!x2! · · · xL!
, (4.26)

denotes the multinomial coefficient, where xi’s are non-negative integers summing to

72

N .

Theorem 5. The weight-vector enumerator AC
N

(w) of CN is given by,

AC
N

(w) =
∑
{n}

C (N ;n1, n2, . . . , nKr) e
n·fTq , (4.27)

where C (N ;n1, n2, . . . , nKr) is the multinomial coefficient specified in (4.26), and

{n} is the set of integer-vector solutions to w = n ·MC
b,r, with n1, n2, . . . , nKr ≥ 0, and∑Kr

k=1 nk = N . The vector fq = [fq,1, fq,2 . . . , fq,Kr] has entries fq,k = ln g(q, |xk|),

where xk is the k-th element ofMC
b,r, |xk| is the weight of xk, and g(q, i) = q−1

q
[(q −

1)i−1 + (−1)i].

Proof. The weight-vector enumerators {ACN (w)} may be found as the coefficients of

a multi-dimensional generating function of {ACN (w)}. The generating function of the

code C induced by the check node c is
∑

x∈MCb
W x1

1 W x2
2 · · ·W xm

m , where the Wi’s are

indeterminate bookkeeping variables.

From [32], the weight generating function for the code C induced by a single check

node c of degree m, is given by AC(W) = 1
q
[(1 + (q − 1)W)m + (q − 1)(1 −W)m],

which also holds for GF (q). This generating function can also be written as AC(W) =∑m
w=0

(
m
w

)
g(q, w)Ww. For our problem, the number g(q, w) represents exactly the

number of repeated rows with weight w in MC
b . Thus,

∑
x∈MCb

W x1
1 W x2

2 · · ·W xm
m =∑

∀xk∈MCb,r
g(q, |xk|)W

xk,1
1 W

xk,2
2 · · ·W xk,m

m , where xk is the k-th element ofMC
b,r and

|xk| is its weight (that is, the sum of its entries). The generating function for N copies

of this check node in the daughter graph is then

AC
N

(W1,W2, . . . ,Wm) = ∑
∀xk∈MCb,r

g(q, |xk|) W
xk,1
1 W

xk,2
2 · · ·W xk,m

m

N

.
(4.28)

73

Applying the multinomial theorem to (4.28) yields,

AC
N

(W1,W2, . . . ,Wm) =∑
n1,n2,...,nKr≥0

n1+n2+···+nKr=N

C (N ;n1, n2, . . . , nKr)

×
∏

∀xk∈MCb,r

(
g(q, |xk|)W

xk,1
1 W

xk,2
2 · · ·W xk,m

m

)nk .
(4.29)

Then, (4.29) can be written as

AC
N

(W1,W2, . . . ,Wm) =
∑
w

∑
{n}

C (N ;n1, n2, . . . , nKr)

×

 ∏
∀xk∈MCb,r

[g(q, |xk|)]nk

×Ww1

1 Ww2
2 · · ·Wwm

m ,

(4.30)

where {n} is the set of integer solutions to w = n · MC
b,r, under the constraints

n1, n2, . . . , nKr ≥ 0 and
∑Kr

k=1 nk = N , and where wl =
∑
∀xk∈MCb,r

xk,lnk, l =

{1, 2, . . . ,m}. To see the last step, note that the product in (4.29) can be manipulated

as follows ∏
∀xk∈MCb,r

(
W

xk,1
1 W

xk,2
2 · · ·W xk,m

m

)nk = Ww1
1 Ww2

2 · · ·Wwm
m . (4.31)

Also, if w = n ·MC
b,r has more than one solution for n, the term Ww1

1 Ww2
2 · · ·Wwm

m

will appear as a common factor in all of the terms that are associated with these solu-

tions. This observation explains the presence of the second summation in (4.30). The

generating function of {ACN (w)} can also be written as

AC
N

(W1,W2, . . . ,Wm) =
∑
w

AC
N

(w)Ww1
1 Ww2

2 · · ·Wwm
m . (4.32)

Finally, comparing (4.32) and (4.30) leads to (4.27).

Note that if we choose to useMC
b (which has repeated elements) then

AC
N

(w) =
∑
{n}

C (N ;n1, n2, . . . , nK) , (4.33)

74

where {n} is now the set of integer-vector solutions to w = n·MC
b , with n1, n2, . . . , nK ≥

0,
∑K

k=1 nk = N , and K = qm−1. We now provide an illustrative example.

Example 3. Consider a (3, 2) linear block code overGF (q) replicatedN times, whose

weight enumerator we seek to compute. There is only one check node so we simply refer

to this node as c and to the code it generates as C. Let CN denote the (3N, 2N) code

obtained by replicating C code N times. Our objective is to evaluate AC
N

(w1, w2, w3).

We now show that if we start with (4.33) we can in fact obtain (4.27) with reduced

computational complexity. Observe that MC
b is a q2 × 3 (binary) matrix with repeated

rows. Solving the equation w = n ·MC
b for K = q2 integers ni, i ∈ {1, 2, . . . , K}, only

requires to solve for 5 integers.

In the set of codewords (x1, x2, x3) of this (3, 2) code, apart from the all-zeros

codeword, there are (q − 1) codewords of Hamming weight 2, where xi and xj are

non-zero, and xk is zero element of GF (q), for i, j, k distinct indices from the set

{1, 2, 3}. There are also (q − 1)(q − 2) codewords of Hamming weight 3. The set

MC
b,r is {[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0], [1, 1, 1]} and the matrix MC

b,r (the reduced

version of the matrix MC
b) is then the lexicographical ordering of these rows.

Computing the solution to w = n ·MC
b is equivalent to solving the set of equa-

tions w = k · MC
b,r, n1 = k1,

∑q
i=2 ni = k2,

∑2q−1
i=q+1 ni = k3,

∑3q−2
i=2q ni = k4,∑q2

i=3q−1 ni = k5, where k = [k1, k2, k3, k4, k5], and w = [w1, w2, w3]. An application

of the multinomial theorem results in
∑

i1,i2,...,il≥0
i1+i2+···+il=t

1
i1!i2!...il!

= lt

t!
. Using this equality,

one can show that (4.33) reduces to

AC
N

(w) =
∑
{k}

C (N ; k1, . . . , k5) (q − 1)k2+k3+k4+k5(q − 2)k5 , (4.34)

where {k} is the set of integer-vector solutions to w = k ·MC
b,r, with k1, k2, . . . , k5 ≥ 0

and
∑5

i=1 ki = N . Solving this set of equations we get k1 = N − s + k5/2, k2 =

s−w1−k5/2, k3 = s−w2−k5/2, and k4 = s−w3−k5/2, where s = (w1+w2+w3)/2.

Since ki ≥ 0, we have max{0, 2(s−N)} ≤ k5 ≤ 2s− 2 max{w1, w2, w3}.

75

If w1 + w2 + w3 is even, then

AC
N

(w) =
∑

l C (N ; (N − s+ l), (s− w1 − l),

(s− w2 − l), (s− w3 − l), (2l)
)
× (q − 1)(s−l)(q − 2)2l,

(4.35)

where l = k5/2 and k5 is even. If w1 + w2 + w3 is odd, then

AC
N

(w) =
∑

l C
(
N ; (N − s+ l + 1/2), (s− w1 − l − 1/2),

(s− w2 − l − 1/2), (s− w3 − l − 1/2), (2l + 1)
)

×(q − 1)(s−l−1/2)(q − 2)2l+1,

(4.36)

where l = (k5 − 1)/2 and k5 is odd. �

Based on this exact combinatorial count on the per-node basis, in the next section

we derive the exact weight enumerator of the U-NBPB ensemble.

4.3.1.2 Weight Enumerator of the U-NBPB Ensemble

Before stating the enumerator result, we first define the non-binary uniform interleaver.

Definition 9 (Non-binary uniform interleaver). A length-L non-binary uniform inter-

leaver over GF (q) is a probabilistic device that maps each input of length L and of

Hamming weight w into the (q − 1)w
(
L
w

)
distinct weighted permutations of the input,

such that it generates each weighted permutation with equal probability, 1

(q−1)w(Lw)
. �

The notion of Uniform Codeword Selector (UCS) was introduced in [61] in the

context of the concatenation of non-binary product codes. This definition is equivalent

to the notion of non-binary uniform interleaver in this paper.

With the protograph based set-up, it is convenient to view the resultant code as a

serial concatenation of certain component codes (cf. [62]). Suppose C1 and C2 are two

serially concatenated block codes over GF (q) that are connected by a length-L non-

binary uniform interleaver over GF (q). For the given codes C1 and C2, let SCC =

SCC(C1, C2) be the resultant ensemble over all possible interleavers.

76

Lemma 4. Consider two block codes C1 and C2 of dimensionsKl and codeword lengths

Nl, l = 1, 2, that are serially concatenated via a non-binary uniform interleaver, with

all system components over GF (q). The average number of codewords of Hamming

weight d that are created by inputs of Hamming weight f in the resultant SCC ensem-

ble is given by

ASCCf,d =
∑
w

AC1f,wA
C2
w,d

(q − 1)w
(
K2

w

) , (4.37)

where AC1f,w is the number of codewords in C1 of Hamming weight w corresponding to

C1-encoder inputs of Hamming weight f , and AC2w,d is the number of codewords in C2 of

Hamming weight d corresponding to C2-encoder inputs of Hamming weight w.

Proof. For the constituent code C1, there are (q − 1)f
(
K1

f

)
possible encoder inputs of

Hamming weight f , and they produce AC1f,w codewords of Hamming weight w. Like-

wise, for the constituent code C2, there are (q − 1)w
(
K2

w

)
possible encoder inputs of

weight w, and they produce AC2w,d codewords of Hamming weight d. When C1 and

C2 are connected via a length-K2 non-binary uniform interleaver (K2 = N1), each of

these AC1f,w codewords in C1 maps into one of the AC2w,d codewords of C2 with probability
1

(q−1)w(K2
w)

.

Averaged over the resultant SCC ensemble, there areAC1f,wA
C2
w,d/(q − 1)w

(
K2

w

)
code-

words of Hamming weight d corresponding to the SCC encoder inputs of weight f and

to the C2-encoder inputs of weight w. Summing these codewords over all w, (4.37) fol-

lows.

Based on Lemma 4 we derive the exact weight enumerator over the entire U-NBPB

ensemble as follows.

Recall that there are nv variable nodes and nc check nodes in the mother protograph

G, and that mj denotes the degree of the check node cj . Let ti denote the degree of the

variable node vi. Recall that the U-NBPB ensemble consists of all codes obtained by

performing all possible weight permutations on the edges of the daughter graph GN .

77

Let dj =
[
dj1 , dj2 , ..., djmj

]
be the weight vector which describes the weights of the N

symbol words on the edges connected to check node cj, produced by the variable nodes

{vj1 , vj2 , ..., vjmj } neighboring cj .

It is convenient to specify Kronecker Delta κx,y as

κx,y =

 1 if x = y, and

0 ifx 6= y.
(4.38)

If x and y are vectors, we interpret Kronecker Delta having value 1 only if x and y

agree in all components.

Theorem 6. The weight-vector enumerator of the U-NBPB code averaged over the

entire ensemble is

A(d) =

∏nc
j=1A

CNj (dj)∏nv
i=1 (q − 1)di(ti−1)

(
N
di

)ti−1 , (4.39)

whereAC
N
j (dj) is the weight-vector enumerator of the code CNj induced by theN copies

of the check node cj . Here, the elements of dj comprise a subset of the elements of

d = [d1, d2, ..., dnv], and this subset is obtained from the edge connections in the mother

protograph G (see Fig. 4.10 for illustration).

Proof. Consider N copies of each node in the protograph as a constituent code. These

constituent codes are then inter-connected through non-binary uniform interleavers

each of size N × N . The N copies of each variable node vi ∈ G can be treated as

a constituent code with one input of weight di and ti outputs [wi,1, wi,2, . . . , wi,ti]. The

input-output weight coefficient for node vi is then (q − 1)di
(
N
di

)
κdi,wi,1 · · ·κdi,wi,ti . The

N copies of each check node cj ∈ G can be treated as a constituent code with mj input

weights wj = [wj,1, wj,2, . . . , wj,mj] and no output.

LetAC
N
j (wj) be the input weight enumerator of the check node group CNj . LetA(d)

represent the number of sequences each with weight vector d = [d1, d2, . . . , dnv] that is

applied to the variable nodes according to the protograph constraints.

78

11v
21v

31v

11c

12v
22v

32v
13v

23v
33v

21c
31c

12c
22c

32c

1d 2d 3d

],[
21 111 ddd],,[

321 2222 dddd

1s 8s 3s 11s 13s

15s
10s5s14s9s

4s
6s

12s2s
7s

Figure 4.10: Illustration of the relationship between vectors d = [d1, d2, d3] and

d1 = [d11 , d12], d2 = [d21 , d22 , d23] for an U-NBPB code with N = 3, where d11 = d1,

d12 = d2, d21 = d1, d22 = d2, d23 = d3.

Then, the result of Lemma 4 is applied to individual concatenations to obtain the

average protograph weight-vector enumerator as,

A(d) =
∑

wm,u
m=1,...,nv
u=1,...,tm

∏nv
k=1[(q−1)

dk(Ndk)gdk,wk,1 ...gdk,wk,tk]∏nv
s=1

∏ts
r=1 (q−1)

ws,r(N
ws,r

)

×
∏nc

i=1A
CNj (wj).

(4.40)

Here, the summation is over all weights wm,u, where wm,u is the weight along the uth

edge of variable node vm. Note that wj,l = wi,k if the lth edge of check node cj is the

kth edge of variable node vi. The vector dj =
[
dj1 , dj2 , ..., djmj

]
is a weight vector

which describes the weights of the N -symbol words on the edges connected to check

node cj, produced by the variable nodes neighboring cj . The elements of dj comprise

a subset of the elements of d. Then, (4.40) reduces to

A(d) =

∏nc
j=1A

CNj (dj)∏nv
i=1 (q − 1)di(ti−1)

(
N
di

)ti−1 ,
as desired.

79

(a) (b) (c)

Figure 4.11: Three candidate protographs: (a) Regular (2, 4) protograph, (b) Punctured

(2, 4) type 1 protograph, and (c) Punctured (2, 4) type 2 protograph. Black nodes are

punctured.

The average number of codewords of symbol weight d in the ensemble, denoted by

Ad, equals the sum of A(d) over all d for which
∑
{di:vi∈V } di = d.

Example 4. In this example we calculate the symbol weight enumerator for the three

protographs given in Fig. 4.11. The first protograph describes a regular (2, 4) code,

the second and the third protographs are obtained by adding an accumulator to the

regular (2, 4) protograph followed by puncturing of a node. We refer to the former as

the punctured (2, 4) type 1 protograph and we refer to the latter as the punctured (2, 4)

type 2 protograph. Here and in subsequent examples black nodes are punctured. In

the calculations, all three code ensembles have 32 transmitted variable nodes and are

defined over GF (8), so the total number of bits is 96. As a result, the first code has

N = 16, and the second and the third code have N = 8. The results for the average

weight enumerator Ad are shown in Fig. 4.12 for the smallest 9 non-zero codeword

symbol weights. To further illustrate the enumeration technique, we plot the weight

enumerators of the three protograph code ensembles with 80 transmitted variable nodes

over GF (8), i.e., N = 40 for the first code and N = 20 for the second and third codes.

The results are shown in Fig. 4.13, also for the lowest 9 non-zero codeword symbol

weights. We note that, relative to the regular (2, 4) code, the punctured type 1 code and

the punctured type 2 code both have on average fewer low symbol weight codewords,

and that the type 2 code has the best distribution of the three codes for small codeword

weights.

80

1 2 3 4 5 6 7 8 9

10 2

100

102

104

106

Av
er

ag
e

nu
m

be
r o

f c
od

ew
or

ds
 A

d

Symbol weight d

Regular (2,4) code
Punctured (2,4) type 1 code
Punctured (2,4) type 2 code

Figure 4.12: Weight enumerator for the U-NBPB ensembles of the protographs in Fig.

4.11 over GF (8) for symbol length 32.

1 2 3 4 5 6 7 8 9
10 4

10 2

100

102

104

106

Av
er

ag
e

nu
m

be
r o

f c
od

ew
or

ds
 A

d

Symbol weight d

Regular (2,4) code
Punctured (2,4) type 1 code
Punctured (2,4) type 2 code

Figure 4.13: Weight enumerator for the U-NBPB ensembles of the protographs in Fig.

4.11 over GF (8) for symbol length 80.

81

2 3 4 5 6 7 8
100

101

102

103

104

105

106

107

Av
er

ag
e

nu
m

be
r o

f c
od

ew
or

ds
 A

d

Symbol weight d

q=2
q=8
q=32
q=128

Figure 4.14: Weight enumerator for the U-NBPB ensembles of the regular (2, 4) proto-

graph in Fig. 4.11 for symbol length 40 and over different field orders.

Example 5. Continuing on with the baseline regular (2, 4) protograph repeated N =

20 times (i.e., with 40 symbols), in Fig. 4.14, we now plot the average number of code-

words, Ad, as a function of the field order q for the first few smallest values of the

non-zero symbol weight. As expected, the average number of codewords increases with

q.

4.3.1.3 Asymptotic Ensemble Weight Enumerators

Given that the formulas in the previous subsection involve the number of copies N , we

define the normalized logarithmic asymptotic weight (the growth rate) to be

r(δ) = lim sup
N→∞

lnAd
N

= lim sup
N→∞

lnAδN
N

, (4.41)

where δ = d/N . Note that n = nv ·N , so the growth rate in terms of n can be expressed

as

82

r̃(δ̃) = lim sup
n→∞

lnAd
n

, (4.42)

where r̃(δ̃) = 1
nv
r(δ̃nv).

From (4.39), we have

lnA(d) =

nc∑
j=1

lnAC
N
j (dj)−

nv∑
i=1

(ti − 1)

[
di ln(q − 1) + ln

(
N

di

)]
. (4.43)

Let δi = di/N , and take the limit as N → ∞. Using lim supN→∞ ln
(
N
di

)
/N =

H(δi) = −(1− δi) ln(1− δi)− δi ln δi, [31], we obtain

r(δ) = max
{δl:vl∈V }

{
nc∑
j=1

acj(δj)−
nv∑
i=1

(ti − 1)[Hq(δi)]

}
, (4.44)

under the constraint
∑
{δi:vi∈V } δi = δ, and Hq(δi) , δi ln(q − 1) + H(δi). In (4.44),

acj(δj) is the asymptotic weight-vector enumerator associated with the check node cj ,

defined as

acj(ω) = lim sup
N→∞

lnAC
N
j (w)

N
, (4.45)

where ω = w/N , and δj = dj/N .

Let Pω = [p1, p2, . . . , pK] be the relative proportion of occurrences of each code-

word of constituent check node code C in a sequence of N codewords, where pk =

nk/N and nk is the number of occurrences of the kth codeword. We then let the type

class of Pω , T (Pω), be the set of all length-N sequences of codewords in C, each

containing nk occurrences of the kth codeword in C, for k = 1, 2, ..., Kr. Observe

that |T (Pω)| = C (N ;n1, n2, . . . , nKr). From [31, Thm.12.1.3] and [33], |T (Pω)| →

eN ·H(Pω), as N →∞, where H(Pω) = −
∑Kr

k=1 pk ln pk. As N →∞ (4.27) is

AC(w) =
∑
{n}C (N ;n1, n2, . . . , nKr) e

n·fTq

=
∑
{Pω}

|T (Pω)|eNPω ·fTq →
∑
{Pω}

eN [H(Pω)+Pω ·fTq],

under the constraint that {Pω} is the set of solutions toω = Pω·MC
b,r, with p1, p2, . . . , pKr ≥

0 and
∑Kr

k=1 pk = 1. It follows from (4.45) that

aC(ω) = max
{Pω}

{
H(Pω) + Pω · fTq

}
. (4.46)

83

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

δ̃

r̃(
δ̃)

Regular (2,4) protograph
Punctured (2,4) type 1 protograph
Punctured (2,4) type 2 protograph
Gilbert Varshamov bound

0 0.02 0.04
0

0.02

0.04

Figure 4.15: Asymptotic symbol weight enumerators of protographs in Fig. 4.11 over

GF (8).

Example 6. Continuing with the protographs discussed in Example 4, we compute the

asymptotic symbol weight enumerators for the three protographs for q = 8, as shown

in Fig 4.15. As we can see, in the asymptotic case, the punctured type 1 protograph

and the punctured type 2 protograph both have on average fewer low symbol weight

codewords than the regular (2, 4) protograph. This result is in agreement with the finite

length calculation (and will be later shown to be also consistent with the threshold

calculations).

Note that the ensemble of all rate-R, q-ary (“random") linear codes (whose parity-

check matrix entries are i.i.d. uniform) has the weight enumerator AC(w) = (q −

1)w
(
n
w

)
e−n(1−R) ln(q) and the asymptotic weight enumerator [32]

r̃(δ̃) = Hq(δ̃)− (1−R) ln(q), (4.47)

which corresponds to the asymptotic Gilbert-Varshamov bound for the non-binary case.

In Fig. 4.15, we plot the Gilbert-Varshamov bound for q = 8. Similar to the binary pro-

tograph case studied in [33], the asymptotic symbol weight enumerators converge to

84

Figure 4.16: Regular (3, 6) protograph.

the Gilbert-Varshamov bound as δ̃ gets larger. Here, again, of the three candidate pro-

tographs, the punctured type 2 protograph offers the growth rate closest to the Gilbert-

Varshamov bound.

Example 7. In this example, we provide the asymptotic weight enumerator for the

regular (3, 6) protograph (presented in Fig. 4.16) over GF (q), as shown in Fig. 4.17.

We also note that our result for GF (2) is in agreement with [33]. From the figure, we

can see that as q increases, there are fewer low weight codewords. In addition, as q

increases, the growth rate of high weight codewords increases. We use νmin to denote

the second zero crossing of r̃(δ̃) (the first zero crossing is r̃(0) = 0). The second zero

crossing, if it exists, is called the typical relative minimum distance.

Fig. 4.18 shows how the typical relative minimum distance νmin changes with vary-

ing q. Consistent with [34], while the Gilbert -Varshamov bound grows monotonically

with q, νmin is in fact non-monotonic. In particular, νmin attains maximum value for

q = 64, 128.

4.3.2 Trapping Set Enumerators for U-NBPB Ensembles

In this section we consider the trapping set enumerators of the U-NBPB.Let us consider

a Ta,b trapping set in the Tanner graph corresponding to the U-NBPB code (G,N, SN ,Π)

over GF(q). In the spirit of the approach in [33], first we set the values of these a vari-

able nodes in Ta,b to (arbitrary) non-zero elements of GF(q) and set the values of all

remaining variable nodes to the zero element of GF(q), so that b neighboring check

nodes are unsatisfied. We then attach additional b variable nodes, one to each of these b

85

0 0.05 0.1 0.15 0.2
0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

δ̃

r̃(
δ̃)

GF(2)
GF(16)
GF(64)
GF(128)
GF(256)
GF(1024)

Figure 4.17: Asymptotic symbol weight enumerators of regular (3, 6) protograph for

different q.

2 4 8 16 32 64 128 256 512 1024
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

q

ν m
in

Regular (3,6) protograph
Gilbert Varshamov bound

Figure 4.18: Typical minimum distance of regular (3, 6) protograph for different q.

86

check nodes in the graph G̃. The attached nodes are connected via new edges of weight

1 each, and have a non-zero value uniquely chosen to force all check nodes to be satis-

fied. This operation can then be interpreted as suitably adding degree-1 variable nodes

to all check nodes in the underlying protograph G. Let this set of nodes be F and call

the new graph G′. We can then obtain the trapping set enumerator of the U-NBPB en-

semble specified by G from the weight enumerator of the U-NBPB ensemble specified

by G′. In particular, the Ta,b trapping set enumerator A(t)
a,b is computed as

A
(t)
a,b =

∑
{di:vi∈V }

∑
{dk:vk∈F}

A(d), (4.48)

under the constraints
∑
{di:vi∈V } di = a and

∑
{di:vi∈F} di = b, where

A(d) =

∏nc
j=1A

C′Nj (dj)∏nv
i=1 (q − 1)di(ti−1)

(
N
di

)ti−1 . (4.49)

We use C ′Nj instead of CNj in (4.49) to indicate that the weight vector enumerators in

(4.49) are obtained from the check nodes in G′. These weight vector enumerators can

be evaluated using (4.27).

As in Section 4.3.1.3, we define the normalized logarithmic asymptotic trapping set

enumerator r̃(t)(α̃, β̃), as

r̃(t)(α̃, β̃) = lim sup
n→∞

lnA
(t)

α̃n,β̃n

n
, (4.50)

for given α̃ > 0 and β̃ > 0 (which are independent of n). The derivation of an expres-

sion for (4.50) from (4.49) uses the same steps used in deriving r̃(δ̃), and yields

r̃(t)(α̃, β̃) =
1

nv
r(t)(α̃nv, β̃nv), (4.51)

where

r(t)(α, β) = max
{δl:vl∈V }

{ max
{δk:vk∈F}

{
nc∑
j=1

ac
′
j(δj)−

nv∑
i=1

Hq(δi)}}, (4.52)

under the constraints
∑
{δi:vi∈V } δi = α, and

∑
{δi:vi∈F} δi = β. The asymptotic weight

vector enumerator, ac
′
j(δj), can be evaluated using (4.46).

87

0 0.02 0.04 0.06 0.08 0.1
0.03

0.02

0.01

0

0.01

0.02

0.03

0.04

0.05

α̃

r(
t)

(α̃
,β̃

)

β̃ = 0

β̃ = 0.0002

β̃ = 0.0005

β̃ = 0.001

β̃ = 0.005

Figure 4.19: Asymptotic trapping set enumerators of the (3, 6)-regular protograph code

ensemble over GF(16).

Example 8. Let us consider the (3, 6)-regular protograph code ensemble over GF(16).

The asymptotic trapping set enumerators are plotted for different β̃ in Fig. 4.19. Note

when β̃ = 0, by our definition, the curve corresponds to the asymptotic symbol weight

enumerator of the (3, 6)-regular protograph. In the figure, when α̃ is fixed, r̃(t)(α̃, β̃)

increases with increasing β̃. This result is consistent with the trapping set enumerator

for binary protograph-based LDPC codes reported in [33].

Example 9. In this example, we consider the (3, 6)-regular protograph code ensemble

for different q’s with fixed β̃ = 0.0002. The asymptotic enumeration results are shown

in Fig. 4.20. In the figure, we can see that when β̃ = 0.0002, there always exists

the second zero-crossing, i.e., there exist the typical relative r̃(t)(α̃, 0.0002) smallest

trapping sets for different q’s. Also, when α̃ is fixed, r̃(t)(α̃, 0.0002) decreases as q

increases. This indicates that for β̃ = 0.0002 (and more generally), codes over larger

q have fewer trapping sets.

88

0 0.02 0.04 0.06 0.08 0.1
0.03

0.02

0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

α̃

r(
t)

(α̃
,0

.0
0
0
2
)

q=2
q=4
q=8
q=16

Figure 4.20: Asymptotic trapping set enumerators of the (3, 6)-regular protograph code

ensemble for different q with β̃ = 0.0002, for protograph shown in Fig. 4.16.

89

CHAPTER 5

Finite-Length Analysis and Design of Spatially-Coupled

Codes

In Chapters 3 and 4, we studied finite-length and asymptotic properties of non-binary

LDPC block codes. In this chapter, we consider a new class of graph-based codes,

called spatially-coupled codes, which have shown to have desirable properties for data

storage applications. In the asymptotic regime, spatially-coupled codes are known to

reach capacity-approaching threshold under belief-propagation decoding, which im-

plies outstanding finite-length performance required in storage applications. Further-

more, the introduction of lower complexity sliding window decoding makes spatially-

couple codes well-suited for practical applications.

This section provides mathematical analysis for finite-length error floor perfor-

mance of spatially-coupled codes. By employing our analysis, we offer spatially-

coupled codes which have outstanding performance in low-error rate regions targeted

in data storage applications. Our study is a first step to design spatially-coupled code

systems applicable to future data storage systems.

5.1 Introduction

In this chapter, and inspired in part by [63], we present a complete characterization of

absorbing sets for binary and non-binary array-based spatially-coupled (AB-SC) codes.

Our contributions include:

90

1. We introduce an analytical approach to find the exact number of absorbing sets in

AB-SC codes: the original counting problem is mapped to a problem of finding

the number of integer points within an area in 2D space.

2. We find the optimal cutting vector for AB-SC codes with arbitrary circulant size:

analytical and experimental results reveal that the choice of the cutting vector

significantly affects the error floor performance of binary AB-SC codes.

3. We calculate the average number of absorbing sets in non-binary AB-SC codes

constructed by uninformed (random) assignment of edge weights on top of a

binary AB-SC code. This result reveals that the average number of absorbing

sets in non-binary AB-SC codes is significantly lower than the average number

of absorbing sets in binary AB-SC codes. This explains the superior error floor

performance of non-binary AB-SC codes compared to their binary counterparts.

5.2 Construction of Array-Based Spatially-Coupled LDPC Codes

In this section, we review the construction of AB-SC codes [63]. Let p be a prime

number indicating the circulant size and row weight, c be the column weight, and L

be the coupling length. Moreover, let ξ = [ξ0, · · · , ξc−1] be the cutting vector 1 where

0 ≤ ξ0 < ξ1 < · · · < ξc−1 ≤ p. We first construct the cp × p2 underlying array-based

LDPC (AB-LDPC) code as follows:

H(c, p) =

I I I ... I

I σ σ2 · · · σ(p−1)

...
...

...
. . .

...

I σ(c−1) σ2(c−1) · · · σ(p−1)(c−1)

 , (5.1)

where σ is a p× p circulant matrix formed by cyclically shifting all rows of the identity

matrix one element to the left. Remember that the matrix H(c, p) can be viewed as a

1We assume that ξi, i ∈ {0, 1, · · · , c − 1} are distinct. In the general case, these parameters are not
necessarily distinct.

91

2-D array of submatrices where each row (column) of matrices denotes a row (column)

group i, 0 ≤ i ≤ c − 1 (j, 0 ≤ j ≤ p − 1). For our discussions, we describe each

column of H(c, p) by a pair (j, k) where j is the index of the column group, and k,

0 ≤ k ≤ p− 1, is the index of the column within the column group.

Based on the given cutting vector ξ, the matrix H0 of size cp × p2 is formed by

assigning each circulant matrix in row group i and column group j, j < ξi, of H(c, p)

to the equivalent position in H0. All other remaining elements of H0 are then set to 0.

Furthermore, the matrix H1 is defined as H1 = H(c, p)−H0.

The parity-check matrix of an AB-SC code with given coupling length L is then

defined as

H(c, p, L, ξ) ,

H0 0 0 · · · 0 0

H1 H0 0 · · · 0 0

0 H1 H0 · · · 0 0
...

...
...

0 0 0 · · · H1 H0

0 0 0 · · · 0 H1

. (5.2)

For the considered construction, the constraint length, which is the maximal width

of the non-zero area in each row of H(c, p, L, ξ), is equal to νs = p2. Note that in the

above construction the syndrome former memory ms is assumed to be 1. In the general

case, where ms ≥ 1, we have H(c, p) = H0 + H1 + · · · + Hms . Figure 5.1 shows an

example of an AB-SC construction where c = 3, p = 11, L = 2 and ξ = [3, 6, 9]. For

the sake of our later discussion, we define the region Rn, n ∈ {1, · · · , c+ 1} in H(c, p)

as the set of column groups with indices between ξn−2 and ξn−1 (cmp. Figure 5.1(a)).

We assume ξ−1 = 0 and ξc = p, and the number of column groups within the region

Rn, n ∈ {1, · · · , c + 1} is denoted by rn. The definition of regions can be expanded

to AB-SC codes, where each region is similarly defined as the set of column groups

between two consecutive edges of the cutting vector (cmp. Figure 5.1(b)).

92

!(!, !)=!
!! !!! !!!! !!! !!! !!! !!!! !!!!! !!!! !!!!! !!!
! ! !! !! !! !! !! !! !! !! !!"
!! !! !! !! !! !!" !! !! !! !! !!

!!

!! !!! !!!

!(!, !, !, !)=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ !!! !!! ! ! !! ! ! ! !! !! !! !!
!! !! !! !! !! !!" !! !! !!

!!! !!! !!! !! !!!!! !! !!!! !!!
!! !! !! !! !!"

!! !!
!!! !!! !!!!
! ! !! !! !! !!
!! !! !! !! !! !!" !! !! !!

!
!! !! !! !! !!"

!! !! ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

!

!′! = !!!!′! = !! + !!! !′! = !!!

!′!! !′!! !′!! !′!! !′!! !′!! !′!!

!′2 = !2!

!2

!!! !!! !!! !! !!!!! !! !! !!!

!′1 = !1! !′7 = !4!!′6 = !3!(a)

!(!, !)=!
!! !!! !!!! !!! !!! !!! !!!! !!!!! !!!! !!!!! !!!
! ! !! !! !! !! !! !! !! !! !!"
!! !! !! !! !! !!" !! !! !! !! !!

!!

!!! !!! !!! !!!

!! !!! !!!

!(!, !, !, !)=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ !!! !!! ! ! !! ! ! ! !! !! !! !!
!! !! !! !! !! !!" !! !! !!

!!! !!! !!! !! !!!!! !! !!!! !!!
!! !! !! !! !!"

!! !!
!!! !!! !!!!
! ! !! !! !! !!
!! !! !! !! !! !!" !! !! !!

!
!! !! !! !! !!"

!! !! ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

!

!′!! !′!! !′!! !′!! !′!! !′!! !′!!

!2

!!! !!! !!! !! !!!!! !! !! !!!

(b)

Figure 5.1: (a) Example of an AB-LDPC code with p = 11 and c = 3, (b) Example

of an AB-SC code with p = 11, c = 3, L = 2, and cutting vector ξ = [3, 6, 9]. Here,

ri = |Ri| for i ∈ {1, 2, 3, 4} and r′i = |R′i| for i ∈ {1, 2, · · · , 7}. Moreover, r′1 = r1,

r′2 = r2, r′3 = r3, r′4 = r4 + r1, r′5 = r2, r′6 = r3, and r′7 = r4.

The following remark describes the construction of non-binary AB-SC codes.

Remark 2. For a given matrix H(c, p) of a binary AB-LDPC code, the parity-check

matrix Hq(c, p) of a non-binary AB-LDPC code over GF(q) can be constructed by

replacing the elements with value ‘1’ of H(c, p) with non-zero elements of GF(q). The

parity-check matrix Hq(c, p, L, ξ) of a non-binary AB-SC code is then constructed by

the same edge spreading procedure as above.

5.3 Performance Comparison for AB-LDPC and AB-SC Codes

In the following, we study the error floor performance of spatially-coupled codes. We

unveil the properties of the error profile spectrum of these codes and exploit these prop-

erties to optimize the code design. In particular, we will show the following properties:

a) AB-SC codes have better performance in the low error rate (error floor) region com-

pared to AB-LDPC codes. This observation motivates us to characterize absorbing

sets in AB-SC codes and present an exact enumeration of small absorbing sets in these

codes. Based on these results we then show that due to partitioning of the underlying

parity check matrix into H0 and H1 components, some absorbing sets are broken and

thus do not exist in the Tanner graph of the resulting AB-SC code. The reduction in

93

the number of small problematic absorbing sets in moving from block to SC designs

can in part explain the superior error floor performance of AB-SC codes compared to

AB-LDPC codes.

b) The choice of the cutting vector significantly affects the performance of binary AB-

SC codes in the low error rate region. Through our analysis we find the exact number

of small absorbing sets as a function of the cutting vector. This analysis enables us to

optimize the choice of the cutting vector to design AB-SC codes with the minimum

number of problematic absorbing sets.

c) The error profile spectra are different for AB-LDPC and AB-SC codes. We show

that the number of dominant absorbing sets in the error profile of an array-based code

significantly change as we apply the coupling process.

Before we lay down the theoretical framework for this analysis we motivate the

work with the following example.

Example 10. Figure 2 shows simulation results2 for an AB-LDPC code with block

length 4489 bits, circulant size 67, column weight 3, and rate ≈ 0.9. We also present

the performance curves for comparable AB-SC codes with same constraint length νs =

4489, and column weight 3. Note that distinct cutting vectors 3 are chosen uniformly

at random for the construction of each AB-SC code shown in Figure 2. Table 5.1

includes the error profiles, i.e., the number of specific absorbing sets, for the curves in

Figure 2 at an SNR of 6.1dB. Figure 2 shows that AB-SC codes have a performance

improvement of around one order of magnitude compared to AB-LDPC codes. We also

observe that different cutting vectors result in a change of the error floor performance

of AB-SC codes. This observation suggests that the number of problematic absorbing

sets in the Tanner graph of SB-SC codes changes with the choice of the cutting vector.

2All the simulation results presented in this paper were performed on the Hoffman2 Cluster which is
a part of High Performance Computing Resources at UCLA. The Hoffman2 cluster has more than 800
machines and about 7000 cores. The CPUs have 8, 12 or 16 cores with speed of 2.2 − 3.0 GHz. Each
core has 1GB, 4GB or 8GB of memory.

3For code 1, ξ = [10, 18, 56], for code 2, ξ = [22, 28, 55], for code 3, ξ = [8, 31, 40], and for code 4,
ξ = [15, 31, 47].

94

5 5.2 5.4 5.6 5.8 6 6.2

10−5

10−4

10−3

10−2

SNR (dB)

Fr
am

e
Er

ro
r R

at
e

AB−LDPC
AB−SC, code 1
AB−SC, code 2
AB−SC, code 3
AB−SC, code 4

Figure 5.2: Performance comparison for AB-LDPC and AB-SC codes with various

random cutting vectors.

Table 5.1: Error profile (the number of specific absorbing sets) for the curves shown in

Figure 2 at an SNR of 6.1 dB.

Error Type (3, 3) (4, 2) (4, 4) (5, 1) (5, 3) (5, 5) other

AB-LDPC 55 23 13 2 3 8 17

AB-SC, code 1 71 6 8 0 4 3 21

Table 5.1 also shows that the distribution of absorbing set errors is different for AB-

LDPC and AB-SC codes. For exampe, the percentage of (4, 4) absorbing set errors are

significantly different (19% vs. 5.3%). Our forthcoming analysis will mathematically

justify the above observations.

95

5.4 Exact Enumeration of Binary Absorbing Sets in Array-Based

Spatially-Coupled Codes

In this section, we first observe that the structure of AB-SC codes imposes additional

constraints (relative to the block case) on two variable nodes sharing a check in an

absorbing set. We then introduce an approach to calculate the exact number of absorb-

ing sets for binary AB-SC codes. Although our procedure is applicable to any column

weight, for the ease of discussion we limit our analysis to column weight 3 and 4 codes.

We first revisit the bit, check, and pattern consistency conditions for AB-LDPC

codes from [16].

Lemma 4. Bit consistency: The neighboring CNs of a VN must have distinct row-

group indices i.

Check consistency: The neighboring VNs of a CN must have distinct column-group

indices j.

Pattern consistency: If two VNs corresponding to columns (j1, k1) and (j2, k2) share a

CN c1 in row group i1, then

k1 + i1j1 ≡ k2 + i1j2 mod p. (5.3)

Remark 3. In a spatially-coupled structure, each CN can only be connected to VNs

within a window of at most c consecutive regions4, where c is the column weight of the

code. As an example, each CN in the parity-check matrix shown in Figure 5.1(b) is

connected to the VNs in a window of at most c = 3 regions. In addition to the pattern

consistency condition, this property imposes extra constraints on the valid choices for

column groups of two VNs sharing a CN.

The following example clarifies Remark 3.

Example 11. Consider the H(3, 11, 2, [3, 6, 9]) parity-check matrix in Figure 5.1(b).

If two VNs share a CN in the second row group (i = 1), then the regions which the
4Note that the width of the window is shorter for the first and last c− 1 columns in H(c, p, L, ξ).

96

two VNs belong to must be within the set {R′1, R′2}. Assuming that v1 belongs to R′1

with width r1 = 3 and that v2 belongs to R′2 with width r2 = 3, the following three

conditions must be satisfied:

k1 + j1 = k2 + j2 mod p, 0 ≤ j1 ≤ r1 − 1, r1 ≤ j2 ≤ r1 + r2 − 1.

5.4.1 Column Weight 3 Analysis

In this subsection, we present the exact number of minimal absorbing sets in c = 3

AB-SC codes. The following lemma presents the size of minimal absorbing sets in

AB-SC codes with column weight 3.

Lemma 5. ([63]) The smallest possible absorbing sets in the Tanner graph ofH(3, p, L, ξ)

are (3, 3) and (4, 2) absorbing sets.

Since small absorbing sets typically contribute the most to the error floors of LDPC

codes, we focus our analysis on (3, 3) and (4, 2) absorbing sets. In [63], the authors

show that the number of minimal absorbing sets in column weight 3 AB-SC codes

grows linearly with the coupling length L. Through our analysis, we provide the exact

number of (3, 3) and (4, 2) absorbing sets in the Tanner graph of H(3, p, L, ξ) as a

function of circulant size p, coupling length L, and the cutting vector ξ.

5.4.1.1 Analysis of (3, 3) absorbing sets

We consider the (3, 3) absorbing set structure shown in Figure 5.3. Without loss of

generality, we assume that v1 and v2 share a check in the row group i1 = 0, v2 and v3

share a check in the row group i2 = 1, and v1 and v3 share a check in the row group

i3 = 2. Thus, the pattern consistency constraints lead to:

k1 + 2j1 ≡ k3 + 2j3, k1 = k2, k2 + j2 ≡ k3 + j3, (5.4)

97

v1 v2 v3

c1 c2 c3 c4 c5 c6
w1

w2

w3

w4

w5w6
w7 w8 w9

(j1,k1)

i1=0 i2=1 i3=2 i4=1 i5=2 i6=0

(j2,k2) (j3,k3)

Figure 5.3: Structure of a (3, 3) absorbing sets over GF(q). Note that in the binary case,

w1 through w9 are equal to ‘1’.

where j1, j2, j3, k1, k2, and k3 are in {0, 1, · · · , p− 1} and all equations are modulo p.

The above equations results in the following equation, involving only the indices of the

column groups:

j2 ≡ 2j1 − j3 mod p. (5.5)

It was shown in [16] that by fixing the values of j1, j3, and k1 in the above equations,

the values of all other variables can be uniquely determined. In the case of AB-LDPC

codes, j1 and j3 can take any pair of distinct values between 0 and p − 1. Index k1

also can take any integer value between 0 and p − 1. Therefore there exist p2(p − 1)

absorbing sets of size (3, 3) in column weight 3 AB-LDPC codes. Through our analysis

below, we show that not all pairs of (j1, j3) are valid in the case of AB-SC codes; this

constraint results in a fewer number of (3, 3) absorbing sets. This reduction in the

number of (3, 3) absorbing set in AB-SC codes compared to AB-LDPC codes in part

explains our initial observation in Example 10 where AB-SC codes showed a superior

error floor performance compared to AB-LDPC codes.

Lemma 6. The three VNs in a (3, 3) absorbing sets span at most three consecutive

regions.

Proof. Based on Remark 3 and the fact that each pair of VNs in a (3, 3) absorbing set

are connected through a satisfied CN (Figure 5.3), the three VNs span at most three

consecutive regions.

98

Lemma 6 enables us to categorize all (3, 3) absorbing sets in H(3, p, L, ξ) into four

exhaustive mutually-exclusive cases5:

Case 1: All three VNs are in the same region.

Case 2: Two VNs are in the same region, the third VN is in the next region.

Case 3: Two VNs are in the same region, the third VN is in the previous region.

Case 4: The three VNs each belong to a different region and the three regions are

consecutive.

(a) Number of absorbing sets in Case 1: In this case, we put a window over each

region (R′1 to R′3L+1) and count the number of (3, 3) absorbing sets within that window.

Lemma 7. The total number of (3, 3) absorbing sets in Case 1, denoted byF1(p, L, r1, r2, r3, r4),

is:

F1(p, L, r1, r2, r3, r4) = FR1
1 (p, r1) + L · FR1

1 (p, r2)

+ (L− 1) · FR1
1 (p, r1 + r4) + L · FR1

1 (p, r3) + FR1
1 (p, r4),

(5.6)

where FRn
1 (p,m) is the number of (3, 3) absorbing sets within region Rn of width m,

for a given circulant size p.

Proof. The total number of (3, 3) absorbing set in Case 1 is equal to the summation of

the counted absorbing sets within regions R′1 through R′3L+1, i.e.,

F1(p, L, r1, r2, r3, r4) =
3L+1∑
n=1

F
R′n
1 (p, r′n). (5.7)

One can show that

FR1
1 (p,m) = F

R′n
1 (p,m), n ∈ {1, · · · , 3L+ 1}. (5.8)

5It is trivial to show that due to the check consistency property of AB-LDPC codes [16], it is not
possible to have two VNs in the same region Rn and the third VN in the region Rn−2 or Rn+2.

99

S3

j1

j3

r1-1

r1-1

S1

S2

j1

j3

r1-1

r1

S5
S4

r1+r2-1

j1

j3

r1

S6

S7
r1+r2-1

r1-1

j1

j3

S8

S9

r1-1

r1+r2

r1+r2+r3-1

(a) (b) (c) (d)

Figure 5.4: (a) Example of Case 1. All VNs in region R′1. (b) Example of Case 2. VNs

1 and 2 are in region R′1 and VN 3 is in region R′2. (c) Example of Case 3. VN 3 is in

region R′1 and VNs 1 and 2 are in region R′2. (d) Example of Case 4. VN 3 is in region

R′1, VN 2 is in region R′2 and VN 1 is in region R′3.

By substituting each term in (5.7) with the LHS of (5.8), and by the fact that for any

k ∈ N, 1 ≤ k ≤ 3L+ 1,

r′1 = r1, {k : (k mod 3) = 2} → r′k = r2,

r′3L+1 = r4, {k : (k mod 3) = 3} → r′k = r3,

{k : (k mod 3) = 1, k 6= 1, k 6= 3L+ 1} → r′k = r1 + r4,

(5.6) can be obtained.

As an example, we consider that all the VNs are in region R′1. The problem of

finding valid column groups j1 and j3 can be graphically interpreted as the problem

of counting the integer pairs (j1, j3) within the areas S1, S2 and S3 in Figure 5.4(a).

Note that based on the values of p and r1, areas S2 and S3 can be either the empty set

∅ or a triangle. The number of (integer) points existing in S1, S2 and S3, denoted by

NS1(r1), NS2(p, r1) and NS3(p, r1), respectively, can be found by (for brevity, details

are omitted)

NS1(r1) =

(r1−1)2

2
if r1 is odd,

r1(r1−2)
2

if r1 is even,
and NS2(p, r1) = NS3(p, r1) =

(2r1−p)2−1

4
if 2r1 ≥ p+ 2,

0 if 2r1 < p+ 2.

100

Therefore, the total number of absorbing sets within region R1 is

FR1
1 (p, r1) = p · (NS1(r1) +NS2(p, r1) +NS3(p, r1)) . (5.9)

Note that the multiplication by p in (5.9) is due to p choices for k1. As an example,

if p = 11 and r1 = 8, the number of (3, 3) absorbing sets with all their three variable

nodes in region 1 is equal to 11× (24 + 6 + 6) = 386.

(b) Number of absorbing sets in Case 2: Here, we put a window over each two

consecutive regions ({R′1, R′2} through {R′6, R′7}).

Lemma 8. The total number of (3, 3) absorbing sets in Case 2 is obtained as follows:

F2(p, L, r1, r2, r3, r4) = FR1
2 (p, r1, r2) + L·FR2

2 (p, r2, r3) + (L− 1)·FR3
2 (p, r3, r1 + r4)

+ (L− 1)·FR1
2 (p, r1 + r4, r2) + FR3

2 (p, r3, r4), (5.10)

where FRn
2 (p,m, k) denotes the number of (3, 3) absorbing sets with two VNs in Rn of

width m and one VN in Rn+1 of width k.

A complete discussion of the calculation for each term on the RHS in (5.10) as well

as for the related terms F
R1/2/3

3 and F
R1/2/3

4 below in Lemma 9 and 10, respectively, can

be found in [64].

As an example, the valid areas for the pair (j1, j3) when VNs 1 and 2 are in R1 and

VN 3 is in R2 are shown in Figure 5.4(b). Note that based on the values of p, r1 and r2,

the areas S4 and S5 can be empty set ∅, a triangle, or a trapezoid.

(c) Number of absorbing sets in Case 3: Similar to Case 2, we put a window

over each two consecutive regions. Here, we count the number of (3, 3) absorbing sets

which have two VNs in the second region and one VN in the first region.

Lemma 9. The total number of (3, 3) absorbing sets in Case 3 is obtained as follows:

F3(p, L, r1, r2, r3, r4) = FR1
3 (p, r1, r2) + L·FR2

3 (p, r2, r3) + (L− 1)·FR3
3 (p, r3, r1 + r4)

+ (L− 1)·FR1
3 (p, r1 + r4, r2) + FR3

3 (p, r3, r4), (5.11)

101

where FRn
3 (p,m, k) is the number of (3, 3) absorbing sets with one VN in Rn of width

m and two VNs in Rn+1 of width k.

As an example for Case 3, the areas for the pair (j1, j3), when VN 3 is in R1 and

VNs 2 and 3 are in R2, are displayed in Figure 5.4(c). Again based on the values of p,

r1, and r2, areas S6 and S7 can be ∅, a triangle, or a trapezoid.

(d) Number of absorbing sets in Case 4: Here, we put a window over each three

consecutive regions. For each window, we count the number of (3, 3) absorbing sets

which have one VNs in each region.

Lemma 10. The total number of (3, 3) absorbing sets in Case 4 is obtained as follows:

F4(p, L, r1, r2, r3, r4) = (L− 1)·FR2
4 (p, r2, r3, r1 + r4) + FR1

4 (p, r1, r2, r3) + FR2
4 (p, r2, r3, r4)

+ (L− 1)·FR3
4 (p, r3, r1 + r4, r2) + (L− 1)·FR1

4 (p, r1 + r4, r2, r3),

(5.12)

where FRn
4 (p,m, k, `) is the number of (3, 3) absorbing sets with one VN in Rn of

width m, one VN in Rn+1 of width k and one VN in Rn+2 of width `.

As an example, Figure 5.4(d) highlights the valid areas for the pair (j1, j3) when

VN 3 is in R1, VN 2 is in R2, and VN 1 is in R3. Again based on the values of p, r1, r2

and r3, the areas S8 and S9 can be ∅, a triangle or a trapezoid.

For a given circulant size p, a coupling length L and a cutting vector ξ, the follow-

ing equation provides the exact number of (3, 3) absorbing sets, which is denoted by

A(3,3)(3, p, L, ξ):

A(3,3)(3, p, L, ξ) =
4∑

n=1

Fn(p, L, r1, r2, r3, r4), (5.13)

where r1 = ξ1, r2 = ξ2 − ξ1, r3 = ξ3 − ξ2 and r4 = p − ξ3, and the functions

Fn(p, L, r1, r2, r3, r4), n = {1, 2, 3, 4}, can be calculated as in (5.6), (5.10), (5.11), and

(5.12).

102

Remark 4. The absorbing set enumeration method presented in this section can be

applied to any (a, b) absorbing set. However, for larger absorbing sets, the problem

is more involved as the problem of finding the valid points for the column group in-

dices is over higher dimensional spaces. For larger absorbing sets, column group

indices can not necessarily be specified as a function of only two column groups in-

dices. Therefore, the areas for the valid column groups must be described over higher

dimensional spaces.

5.4.1.2 Analysis of (4, 2) absorbing sets

In this section, we provide an approach to find the exact number of (4, 2) absorbing

sets in AB-SC codes with column weight 3 based on the number of (3, 3) absorbing

sets presented in the previous section. These results further explain the differences in

both the error profile spectrum and the performance between AB-LDPC and AB-SC

codes observed in Example 10.

It was shown in [16] that (in the block case) each (4, 2) absorbing sets is formed by

exactly two distinct (3, 3) absorbing sets. We first review how to count the number of

(4, 2) absorbing sets in AB-LDPC codes [16].

Lemma 11. ([16]) The total number of (4, 2) absorbing sets in the Tanner graph cor-

responding to H(3, p) is equal to 3p2(p−1)
2

.

Proof. Each (4, 2) absorbing sets is formed by connecting a pair of unsatisfied check

nodes in a (3, 3) absorbing set by a new check node. Since each (3, 3) absorbing set

has 3 unsatisfied check nodes, this results in
(
3
2

)
= 3 size (4, 2) absorbing sets.

Note that in the case of AB-LDPC codes, as discussed in the proof above, each

(3, 3) absorbing set always leads to three (4, 2) absorbing sets. In other words, for each

two chosen unsatisfied check nodes, there always exists a new variable node to satisfy

these check nodes in a (4, 2) absorbing set. This is illustrated in Figure 5.5 which

103

v1 v2 v3

c1 c2 c3 c4 c5 c6

(j1,k1)

i1=0 i2=1 i3=2 i4=1 i5=2 i6=0

(j2,k2) (j3,k3)
v4

(j4,k4)
c7
i7=1

(a)

v1 v2 v3

c1 c2 c3 c4 c5 c6

(j1,k1)

i1=0 i2=1 i3=2 i4=1 i5=2 i6=0

(j2,k2) (j3,k3)
v4

(j4,k4)
c7
i7=2

(b)

v1 v2 v3

c1 c2 c3 c4 c5 c6

(j1,k1)

i1=0 i2=1 i3=2 i4=1 i5=2 i6=0

(j2,k2) (j3,k3)
v4

(j4,k4)
c7
i7=0

(c)

Figure 5.5: The three possible cases for (4, 2) absorbing sets.

shows the three possible cases for (4, 2) absorbing sets. In contrast, in the case of AB-

SC codes, due to the structure of these codes, one may not always be able to find a new

variable node connected to each pair of unsatisfied check nodes in a (3, 3) absorbing

set to complete a (4, 2) absorbing set configuration.

We first categorize (4, 2) absorbing sets into three cases based on the row group

indices of the satisfied check nodes connected to variable node v4:

• Case (a): v4 is connected to satisfied check nodes with i = 0 and i = 2 (Fig-

ure 5.5(a)).

• Case (b): v4 is connected to satisfied check nodes with i = 0 and i = 1 (Fig-

ure 5.5(b)).

• Case (c): v4 is connected to satisfied check nodes with i = 1 and i = 2 (Fig-

ure 5.5(c)).

In addition to the conditions in (5.4), each case above imposes a separate new pattern

consistency condition. Case (a) imposes that k3 ≡ k4 mod p and k2 + 2j2 ≡ k4 + 2j4

mod p, where k2, k3, k4, j2, and j4 can be any integer in {0, 1, · · · , p − 1}. These

conditions lead to

j1 ≡ j4 mod p. (5.14)

The configuration in Case (b) results in the equations k3 ≡ k4 mod p and k2 + 2j2 ≡

k4 + 2j4 mod p which lead to

2j3 − j1 ≡ j4 mod p. (5.15)

104

Similarly, the pattern consistency in Case (c) leads to k2 + 2j2 ≡ k4 + 2j4 mod p and

k1 + j1 ≡ k4 + j4 mod p, that result in

3j1 − 2j3 ≡ j4 mod p. (5.16)

In the previous subsection, the problem of counting (3, 3) absorbing sets was mapped

into a problem of counting the number of valid points for the pair (j1, j3) in a two

dimensional space. Here, we apply a similar approach to count the number of (4, 2)

absorbing sets. Equations (5.14), (5.15), and (5.16) further limit the areas for valid

choices of (j1, j3) pairs in the two dimensional space. The following example clarifies

the procedure for counting the number of (4, 2) absorbing sets in AB-SC codes based

on the previously counted (3, 3) absorbing sets.

Example 12. Consider (3, 3) absorbing sets with v1, v2, and v3 all in region R1. The

valid area for the choice of the pair (j1, j3) in this case is shown in Figure 5.4(a) and

the count of these absorbing sets is expressed as FR1
1 (p, r1) in (5.9). Based on (5.14),

(5.15), and (5.16), we find the areas for the valid choices of pairs (j1, j3) in the three

(4, 2) absorbing set cases discussed above, shown in Figure 5.6.

• Case (a): v4 is connected to the two unsatisfied check nodes of (3, 3) absorbing

set with i = 0 and i = 2. This condition imposes that v4 be in the region R1

(i.e., 0 ≤ j4 ≤ r1 − 1). As shown in (5.14), j4 = j1 and k4 = k3. Since

0 ≤ j4 ≤ r1 − 1, the addition of variable node v4 does not impose any new

constraints of the choice of the pair (j1, j3), as shown in Figure 5.6(a).

• Case (b): Since v4 is connected to the unsatisfied check node of (3, 3) absorbing

set with i = 0, it must lie again within R1. Therefore, we obtain 0 ≤ j4 ≤ r1− 1,

and based on (5.15), 0 ≤ 2j3− j1 ≤ r1−1 mod p. This inequality imposes new

constraints on the allowable choices for the pair (j1, j3), as illustrated in Figure

5.6(b).

• Case (c): In this case, v4 belongs to either R1 or R2. Thus, 0 ≤ j4 ≤ r1 + r2− 1.

105

j1

j3

r1-1

r1-1

(a)

j1

j3

r1-1

r1-1

(b)

j1

j3

r1-1

r1-1

(c)

Figure 5.6: Areas corresponding to valid choices for j1 and j3 in Example 12.

Using (5.15), 0 ≤ 3j1 − 2j3 ≤ r1 + r2 − 1 mod p. This inequality imposes

additional constraints on the choice of (j1, j3), as shown in Figure 5.6(c).

In the above example, we have only considered (3, 3) absorbing sets with all their

variable nodes in region R1 and we have computed the number of the resultant (4, 2)

absorbing sets. To enumerate all (4, 2) absorbing sets, we need to consider each term

in Lemmas 5, 6, 7, and 8 one by one. A detailed discussion on valid choices for pairs

(j1, j3) for each term in Lemmas 5, 6, 7, and 8 can be found in [64].

Remark 5. Note that each (3, 3) absorbing set in AB-LDPC codes results in three (4, 2)

absorbing sets whereas each (3, 3) absorbing set in AB-SC codes does not necessarily

result in three (4, 2) absorbing sets. The reason is that in the AB-SC case, the valid

areas for the pairs (j1, j3) in the cases (a), (b), and (c) above are always subareas

of the valid area for (3, 3) absorbing sets. This is demonstrated in Example 12 and

explains our observation in Example 10 where, compared to AB-LDPC codes, a smaller

percentage of errors in the error profile of AB-SC codes is due to (4, 2) absorbing sets.

5.4.2 Column Weights 4 Analysis

In this section, we provide analysis of the minimal absorbing sets for c = 4 AB-SC

codes.

106

(a) Configuration A (b) Configuration B

Figure 5.7: Two candidate configurations for (6, 4) absorbing sets.

Lemma 12. The smallest absorbing set possible in Tanner graph of AB-SC codes with

column weight 4 is a (6, 4) absorbing set.

Proof. The proof follows immediately from the arguments in [16].

As shown in [16], there are two possible configurations for (6, 4) absorbing sets in

AB-LDPC codes, shown in Figures 5.7(a), 5.7(b). In this section, we will present the

derivations for Configuration A shown in Figure 5.7(a). A similar approach can be used

for the analysis of Configuration B. Details can be found in [64].

Based on the bit consistency condition, it is shown in [16] that there are only two

distinct labelings possible for row groups of the check nodes in this configuration:

(i1, i2, i3, i4, i5, i6, i7, i8, i9, i10) ∈ {(x, y, z, w, y, x, w, z, z, y), (x, y, z, w, y, z, w, x, w, y)},

(5.17)

where w, x, y, and z are distinct row group indices in {0, 1, 2, 3}. However, the label-

ing (x, y, z, w, y, z, w, x, w, y) do not lead to valid solutions for p /∈ {2, 3, 5, 7, 37} as

shown in [16]. Therefore, we only consider the labeling (x, y, z, w, y, x, w, z, z, y) in

107

Table 5.2: Valid parameters for the Configuration A for the case of z = 0.
x, y, w j1 j2 j3 j4 j5 j6 k1 k2 k3 k4 k5 k6

1, 3, 2 ρ ρ+ 4τ ρ+ 3τ ρ+ τ ρ+ τ ρ+ 3τ δ δ − 6τ δ − 3τ δ − 3τ δ δ − 6τ

Table 5.3: Valid parameters for the Configuration A for the case of x = 0.
y, z, w j1 j2 j3 j4 j5 j6 k1 k2 k3 k4 k5 k6

2, 1, 3 ρ ρ ρ− τ ρ+ τ ρ− τ ρ+ τ δ δ − 2τ δ δ − 2τ δ + τ δ − 3τ

our discussion. By symmetry, it can be shown that all valid choices for row group in-

dices can be categorized into (1) Case z = 0 and (2) Case x = 0. By applying the patter

consistency, it is shown in [16] that the only valid choices for column group indices j1

through j6 and also k1 through k6 are the ones shown in Tables 5.2 and 5.3.

The structure of AB-SC codes imposes additional constraints on the choice of col-

umn group indices in (6, 4) absorbing sets, as shown in the following Lemma.

Lemma 13. The six VNs of (6, 4) absorbing sets in an AB-SC code span at most seven

consecutive regions.

Proof. Our proof is based on contradiction. Assume that the six VNs in a (6, 4) absorb-

ing set span eight consecutive regions, namely R1 through R8. Based on the structure

of AB-SC codes, two VNs sharing a satisfied CN must belong to a window of at most

c = 4 consecutive regions. For instance, suppose that j1 ∈ R1 and j2 ∈ R8. According

to the configuration, j1 and j3 share a satisfied CN, therefore j3 must belong to one of

the regions R1, R2, R3, or R4. VN j3 also shares a satisfied CN with j2, thus, j3 must

belong to one of regions R5, R6, R7, or R8, which is in contradiction with the former

argument. The same logic holds for choices other than j1 and j2 for the first and last

regions.

Based on the fact that the six VNs of the (6, 4) absorbing set, {j1, j2, j3, j4, j5, j6},

span at most seven consecutive regions, the following cases must be considered in the

enumeration of (6, 4) absorbing sets.

108

• Case 1: All the six VNs are in the same region.

• Case 2: The six VNs span two consecutive regions.

• Case 3: The six VNs span three consecutive regions.

• Case 4: The six VNs span four consecutive regions.

• Case 5: The six VNs span five consecutive regions.

• Case 6: The six VNs span six consecutive regions.

• Case 7: The six VNs span seven consecutive regions.

For brevity of the discussion we consider Case 1 and illustrate the counting pro-

cedure with an example. A similar procedure can be applied to other JKcases, where

details can be found in [64].

Example 13. In this example, we provide the exact number of (6, 4) absorbing sets with

Configuration A (shown in Figure 5.7(a)), when all variable nodes are within region

R1. In the case that z = 0, the valid choices for the column group indices are given in

Table 5.2. These valid column group assignments impose that 4j3 = 4j6 = 3j2−j1 and

4j4 = 4j5 = 3j1 + j2. Since 0 ≤ j1, j2, j3, j4, j5, j6 ≤ r1− 1, the following inequalities

must be satisfied for the choice of the pair (j1, j2).

0 ≤ j1 ≤ r1 − 1, 0 ≤ j2 ≤ r1 − 1,

0 ≤ 1

4
(3j2 − j1) ≤ r1 − 1 mod p,

0 ≤ 1

4
(3j1 + j2) ≤ r1 − 1 mod p.

The valid area corresponding to the above inequalities is shown in Figure 5.8(a). Sim-

ilarly, for the case that x = 0, we have j2 = j1, j3 = j6 = 2j1− j3. The valid areas for

the pair (j1, j3) in this case is shown in Figure 5.8(b). As a numerical example, assume

109

j1

j3

r1-1

r1-1

(a)

j1

j3

r1-1

r1-1

(b)

Figure 5.8: Valid areas for (6, 4) absorbing set with Configuration A, when all variable

nodes are in region R1.

that p = 53 and the width of regionR1 is r1 = 18. Then, the number of integer points in

the valid areas shown in Figures 5.8(a) and 5.8(b) are 82 and 162, respectively. Since

there exist p = 53 choices for k1, in this example, the total number of (6, 4) absorb-

ing sets with Configuration A when all variable nodes are within region R1 is equal to

53 · (162 + 82) = 12932.

5.5 Optimal Cutting Vector for AB-SC Codes

Based on our analysis in Section 5.4, we provide the optimal choice of the cutting

vector for AB-SC codes.

Definition 2. ([63]) For any given prime circulant size p, a optimal cutting vector corre-

sponding to absorbing set (a, b) is defined as ξ∗(a,b)(p) = arg minξ limL→∞A(a,b)(c, p, L, ξ).

Theorem 7. An optimal cutting vector for (3, 3) absorbing sets in column weight 3

110

Table 5.4: Optimal cutting vectors for various circulant sizes.

p Optimal cutting vector

67 [15, 31, 47]

97 [23, 48, 73]

107 [28, 54, 81]

113 [29, 57, 88]

AB-SC codes with circulant size p is

ξ∗(a,b)(p) = arg min
ξ
{FR1

1 (p, r2) + FR1
1 (p, r1 + r4) + FR1

1 (p, r3)

+ FR2
2 (p, r2, r3) + FR3

2 (p, r3, r1 + r4) + FR1
2 (p, r1 + r4, r2) + FR2

3 (p, r2, r3)

+ FR3
3 (p, r3, r1 + r4) + FR1

3 (p, r1 + r4, r2) + FR2
4 (p, r2, r3, r1 + r4)

+ FR3
4 (p, r3, r1 + r4, r2) + FR1

4 (p, r1 + r4, r2, r3)}, (5.18)

where r1 = ξ1, r2 = ξ2 − ξ1, r3 = ξ3 − ξ2 and r4 = p− ξ3 and the functions on the

RHS of (5.18) are shown in Lemma 7, 8, 9, and 10.

Proof. As L → ∞, the terms in (5.6), (5.10), (5.11), and (5.12) grow linearly with L

and therefore become dominant terms. By summing these dominant terms we obtain

the RHS of (5.18).

Remark 6. Based on Theorem 7, the problem of finding the optimal cutting vector is

essentially mapped to finding an integer vector which minimizes the function in (5.18).

Compared to [63], where the optimal cutting vector for p ≤ 23 is found by an ex-

haustive computer search, our approach is computationally less complex and offers the

optimal cutting vector for large choices of p. As an example, a list of optimal cutting

vectors for p = 67, 97, 107, 113 is provided in Table 5.4.

Our experimental results in Section 5.7 show that binary AB-SC codes with the

optimal cutting vector provide a performance improvement by more than one order of

magnitude compared to AB-SC codes with randomly chosen cutting vectors.

111

Although the choice of cutting vector significantly affects the performance of binary

AB-SC codes, we show in Section 5.6 that the choice of the cutting vector is not a

critical parameter in optimizing non-binary AB-SC codes since the non-binary edge

weights provide enough degree of freedom to remove problematic absorbing sets from

non-binary AB-SC codes.

5.6 Absorbing Set Analysis for Non-Binary AB-SC Codes

It was recently shown that non-binary spatially-coupled codes have superior iterative

threshold and finite-length performance compared to non-binary block LDPC codes

[65–67]. Motivated by these findings, in this section we provide a study of non-binary

absorbing sets for non-binary AB-SC codes. In particular, we first present the aver-

age number of (3, 3) non-binary absorbing sets in non-binary AB-SC codes. We also

provide an approach to design non-binary AB-SC codes with a reduced number of

problematic non-binary absorbing sets.

The following theorem provides the average number of (3, 3) non-binary absorbing

sets in non-binary AB-SC codes with column weight 3.

Theorem 8. Consider an AB-SC code over GF(q), where q is a power of a prime num-

ber, with circulant size p, coupling length L, cutting vector ξ, and random assignment

of edge weights. The number of (3, 3) non-binary absorbing sets, averaged over all

possible edge weight assignments, denoted by A
q

(3,3)(3, p, L, ξ), is

A
q

(3,3)(3, p, L, ξ) =
1

(q − 1)

4∑
n=1

Fn(p, L, r1, r2, r3, r4), (5.19)

where r1 = ξ1, r2 = ξ2 − ξ1, r3 = ξ3 − ξ2 and r4 = p − ξ3, and the functions

Fn(p, L, r1, r2, r3, r4), n = {1, 2, 3, 4}, can be calculated as in (5.6), (5.10), (5.11),

and (5.12).

Proof. Consider the structure of an (3, 3) absorbing set in Figure 5.3 with non-binary

edge weights w1,w2, . . . ,w6. There exist (q − 1)6 unique choices for a set of six

112

edge weights. Based on the weight condition of non-binary absorbing sets in (3.5),

the edge weights in a non-binary absorbing set satisfy w1w3w5 = w2w4w6 mod q. By

choosing w1 through w5 independently from GF (q)\0, the edge weight w6 can be

uniquely determined. Thus, there exist (q − 1)5 choices for edge weights which result

in absorbing sets over GF(q). As a result, the average number of (3, 3) non-binary

absorbing sets is

A
q

(3,3)(3, p, L, ξ) =
(q − 1)5

(q − 1)6
A(3,3)(3, p, L, ξ) =

1

(q − 1)

4∑
n=1

Fn(p, L, r1, r2, r3, r4).

The above theorem illustrates that on average, a ratio of 1
(q−1) of all binary (3, 3)

absorbing sets in the unlabeled Tanner graph of a non-binary AB-SC code result in

problematic non-binary absorbing sets. As an example, consider q = 3. Then, on

average, 50% of the binary absorbing sets in the unlabeled Tanner graph do not result

in problematic substructures in the Tanner graph after a random assignment of edge

weights over GF(3). This observation in part explains the better performance of non-

binary AB-SC codes in error floor region compared to their binary counterparts.

Our results in Section 5.7 show that our optimized NB AB-SC have performance

improvements of more than one order of magnitude compared to unoptimized6 non-

binary AB-SC codes.

Remark 7. In Section 5.4, we have observed that in the case of binary AB-SC codes

the number of binary absorbing sets is significantly affected by the choice of the cutting

vector. In contrast to binary AB-SC codes, the choice of the cutting vector in non-binary

AB-SC codes is not as critical since, irrespective of the choice of the cutting vector, the

non-binary edge weights offer enough degree of freedom to remove problematic small

absorbing sets. For a given underlying AB-LDPC code, different choices of the cutting

6The unoptimized AB-SC are constructed by randomly assigning non-binary edge weights to an
unlabeled AB Tanner graph.

113

Table 5.5: (3, 3) absorbing set comparison for various cutting vectors, p = 67, L = 2,

q = 2.

Optimal Random ([10, 18, 56]) Average

273561 379957 441293

vector result in
(
p
c

)
different binary AB-SC codes. For a given underlying binary AB-

LDPC code, both a fixed cutting vector and field size q, there are (q − 1)cp
2

different

non-binary AB-SC codes (obtained by different edge weight selections). Since generally

(q − 1)cp
2
>>

(
p
c

)
, this roughly verifies the significantly larger degrees of freedom

offered by the choice of the edge weights compared to the ones offered by the choice of

the cutting vector.

5.7 Experimental Results

In this section, we present the simulation results for our designed binary and non-binary

AB-SC codes. In the binary case we show that the choice of the optimal cutting vector

in the design of AB-SC codes results in fewest binary absorbing sets, and as a result, in

a superior error floor performance. In the non-binary case, our results demonstrate that

our algorithm discussed in Section 5.6 significantly reduces the non-binary absorbing

sets. Therefore, our optimized non-binary AB-SC codes have better error floor perfor-

mance compared to non-binary AB-SC codes with randomly assigned edge weights.

Figure 5.9 shows the performance comparison between binary AB-SC codes with

constraint length νs = 4489, p = 67 and L = 2, constructed using cutting vectors ξ∗(3,3)

(optimal for (3, 3) absorbing sets), ξ∗(4,2) (optimal for (4, 2) absorbing sets) and a ran-

domly selected cutting vector ξ = [10, 18, 56], when decoded using a sliding window

decoder implemented based on the soft-xor [35] algorithm. The code with cutting vec-

tor ξ∗(3,3) shows about one order of magnitude performance improvement in the error

114

5.4 5.6 5.8 6 6.2

10−5

10−4

SNR (dB)

Fr
am

e
Er

ro
r R

at
e

Random ξ=[10,18,56]
ξ*

(4,2)=[18,29,45]

ξ*
(3,3)=[15,31,47]

Figure 5.9: Performance comparison for binary SC codes constructed by various cutting

vectors.

floor region, compared to the code with the random cutting vector. Furthermore, the

code with cutting vector ξ∗(3,3) performs significantly better that the one with ξ∗(4,2). This

is consistent with our initial observation in Example 1, where the dominant absorbing

set in error profile of the AB-SC code was (3, 3), and the number of (4, 2) absorbing

sets was negligible. Therefore, it is clear that the code optimized to minimize (3, 3)

absorbing sets performs better in the error floor region.

Table 5.5 compares the number of (3, 3) binary absorbing sets for the codes shown

in Figure 5.9. Table 5.5 also includes the average number of (3, 3) absorbing sets over

all possible selections of cutting vectors for H(3, p, L, ξ). It can be observed that the

optimal cutting vector reduces the number of (3, 3) absorbing sets by approximately

39% compared to the average number of absorbing sets over all possible cuts.

For the binary AB-SC codes, our code design is limited to the choice of the cutting

vector, once the underlying block code is specified. In the non-binary case, the choice

of the edge weights offers significantly more degrees of freedom that can be exploited

in an optimized code design. In fact, our results show that the cutting vector choice is

not a critical parameter in the design of non-binary AB-SC codes since we can remove

115

all non-binary absorbing sets of interest only by manipulating the edge weights.

Figure 5.10 shows the simulation results for non-binary AB-SC codes over GF(4)

with constraint length νs = 3698 bits. To construct the non-binary codes, we first

form binary AB-SC parity-check matrices with p = 43 and column weight 3 using

the optimal cutting vector (ξ1 = [10, 22, 34]) and a randomly chosen cutting vector

(ξ2 = [5, 29, 33]). Then, the unoptimized non-binary AB-SC codes are constructed by

randomly assigning non-binary edge weights on top of the unlabeled AB-SC Tanner

graphs. The optimized codes are constructed by manipulating the edge weights (based

on the algorithm addressed in Section 5.6) such that (3, 3), (4, 2), and (4, 4) non-binary

absorbing sets are completely removed from the Tanner graphs of the original codes.

Figure 5.10 shows that our optimized codes have a performance improvement of more

than one order of magnitude compared to the original codes. Furthermore, we observe

that the performance of the optimized code with a randomly chosen cutting vector is

very close to the optimized code with the optimal cutting vector. This observation sug-

gests that the choice of the cutting vector does not significantly affect the performance

of our designed non-binary AB-SC codes. The non-binary edge weight offers enough

degrees of freedom in codes design such that all problematic small non-binary absorb-

ing set can be removed from the designed codes, regardless of the choice of the cutting

vector. In the same figure, it is shown that the unoptimized AB-SC code over GF(3) and

GF(4) has better FER performances compared to the binary AB-SC code. An interest-

ing observation is the improved FER performance of the optimized AB-SC code over

GF(3) compared to the unoptimized AB-SC code over GF(4), which in combination

with its lower decoder complexity, can make the optimized AB-SC code over GF(3)

a very attractive candidate for practical implementation. The performance of a binary

AB-SC code with νs = 3721, p = 61 constructed using optimal cutting vector for (3, 3)

absorbing set ξ∗(3,3) = [14, 29, 46] is also plotted in Figure 5.10. It can be observed that

although the constraint length of the binary AB-SC code and non-binary AB-SC codes

are similar, the non-binary codes have superior performance.

116

4 4.5 5 5.5 610−8

10−6

10−4

10−2

100

SNR (dB)

Fr
am

e
Er

ro
r R

at
e

Binary, ξ*
(3,3)=[14,29,46]

GF(4), Unoptimized, ξ1
GF(4), Unoptimized, ξ2
GF(4), Optimized, ξ1
GF(4), Optimized, ξ2
GF(3), Unoptimized, ξ1
GF(3), Optimized, ξ1

Figure 5.10: Performance comparison for optimized and unoptimized non-binary

AB-SC codes over GF(3) and GF(4) with p = 43, column weight 3 and cutting vectors

ξ1 = [10, 22, 34] and ξ2 = [5, 29, 33], where ξ1 is optimized and ξ2 selected randomly,

respectively. The binary AB-SC code has constraint length νs = 3721, and is con-

structed using optimal cut for (3, 3) absorbing sets.

117

CHAPTER 6

Summary of Results

In this dissertation, we provided new combinatorial-based insight into analysis and

design of non-binary graph-based codes.

We first started by providing finite-length analysis of non-binary graph-based codes.

We introduced a generalized absorbing set definition for non-binary graph-based codes

over GF(q). We observed that for non-binary codes where each edge in the Tanner

graph has a weight chosen from non-zero elements of GF(q), not only the edges of ab-

sorbing sets are topologically connected in specific ways, but also their weights must

satisfy certain conditions. We showed that in the case of non-binary elementary ab-

sorbing sets, the weight conditions can be simplified. Further, depending on the vari-

able node input of a subgraph which satisfies the non-binary absorbing set conditions,

the subgraph may or may not result in an absorbing set error (i.e., the error is input

dependent). We proposed an algorithm to decrease the number of absorbing sets in the

Tanner graph by only changing carefully chosen edge weights while the topology of the

Tanner graph remains the same. Our simulation results using different code parameters

and code structures as well as using different decoders confirmed the effectiveness of

our proposed approach. Using techniques from graph theory, we showed that as field

size gets larger, it is harder to satisfy the edge labeling conditions for absorbing sets

and as a result the number of absorbing sets decreases for larger field sizes.

Next, we presented the asymptotic analysis for binary and non-binary regular LDPC

codes. We computed the normalized logarithmic asymptotic distributions of absorb-

ing sets and fully absorbing sets for regular LDPC code ensembles. The results are

118

based on the approach for the trapping set analysis previously proposed by Milenkovic.

We also derived simplified formulas for enumerating elementary absorbing sets of the

(3, r) and (4, r) LDPC code ensembles. By fixing different graph-theoretic parameters,

we analyzed different sizes of (elementary) trapping sets, elementary absorbing sets,

and elementary fully absorbing sets of random LDPC code ensembles. These results

quantify discrepancies among trapping sets, absorbing sets and fully absorbing sets.

Our results show that for small θ and λ, when the rate is moderate, absorbing sets are

approximately fully absorbing sets, but that the discrepancy increases with rate. We

showed that denser graphs of the prescribed code rate can prevent certain absorbing

sets to exist altogether. Also, trapping sets are approximately absorbing sets when θ

and λ are small and when the ratio λ is smaller θ than 1. As the ratio approaches 1,

the discrepancy between trapping and absorbing sets increases dramatically. Such an

observation implies that a trapping set enumeration alone may not give a good indica-

tion of error floor under practical (bit-flipping like) decoders. Comparison with known

results on trapping sets of some popular structured LDPC code ensembles suggests that

these codes asymptotically possess good absorbing set properties. We also computed

the normalized logarithmic asymptotic distributions of non-binary absorbing sets for

regular (3, r) and (4, r) LDPC code ensembles. We observed that only a small fraction

of unlabeled trapping sets leads to problematic non-binary absorbing sets; this results

in non-binary absorbing set enumerators providing a better assessment of the error floor

compared to trapping set enumerators.

We also looked at a family of structured LDPC codes which are constructed based

on protographs. We first presented a class of structured non-binary LDPC codes built

out of protographs, called NBPB codes, wherein we considered unconstrained edge

weight selections. Equipped with combinatorial definitions extended to the non-binary

domain, ensemble enumerators of codewords and trapping sets are calculated. The ex-

act enumerators are presented in the finite-length regime, and the corresponding growth

rates are calculated in the asymptotic regime. In many instances, non-binary construc-

119

tions were shown to have superior properties compared to their binary counterparts.

The results presented provide a new analytical toolbox for analysis of non-binary graph-

based codes.

We also studied graph-based codes which are constructed by spatially-coupling of

LDPC block codes. In particular, we provided a detailed mathematical analysis for the

finite-length performance of both binary and non-binary array-based spatially-coupled

codes. We presented an approach to enumerate the problematic absorbing sets in array-

based spatially-coupled codes. We graphically mapped the absorbing set enumeration

problem to a problem of counting the number of valid integer points inside an area in

2-dimensional space. Using this method, the exact number of smallest absorbing sets

in column weight 3 and 4 binary array-based spatially-coupled codes was presented as

a function of the code parameters (circulant size, coupling length, and cutting vector).

Based on our absorbing set enumeration, we found the optimal cutting vector, which

minimizes the number of absorbing sets for any choice of the circulant size in binary

array-based spatially-coupled codes. In our example, we showed that, compared to the

average number of binary absorbing sets over all possible cutting vectors, choosing the

minimum cutting vector results in a significant reduction of the number of absorbing

sets. In the case of non-binary spatially-coupled codes, we first provided the average

number of (3, 3) absorbing sets in array-based spatially-coupled codes over GF(q). We

showed that on average, only ratio of 1
q−1 of binary absorbing sets in unlabeled Tanner

graph result in problematic non-binary absorbing sets, when we use a random assign-

ment of non-binary edge weights. This analysis in part explains the superior error floor

performance of non-binary spatially-coupled codes compared to their binary counter-

parts. We also provided an optimization algorithm for non-binary code design. By

manipulation of selected edge weights in the Tanner graph of array-based spatially-

coupled codes, our optimization algorithm further reduced the number of non-binary

absorbing sets in the Tanner graph of non-binary array-based codes. Simulation re-

sults confirmed the improved performance for our designed both binary and non-binary

120

spatially-coupled codes.

121

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,”The Bell Systems
Technical Journal, vol. 27, pp. 379 - 423, 623 - 656, Oct. 1948.

[2] P. Elias, “Coding over noisy channels,” IRE International Convention Record, vol.
3, no. 4, pp. 37 - 46, 1955.

[3] R.W. Hamming, “Error detecting and error correcting codes,” The Bell Systems
Technical Journal, vol. 29, no. 2, pp. 147 - 150, Apr. 1950.

[4] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting binary group
codes,” Information and Control, vol. 3, pp. 68 - 79, Mar. 1960.

[5] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal
of the Society for Industrial and Applied Mathematics, vol. 8, pp. 300 - 304, Jun.
1960.

[6] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error correct-
ing coding and decoding,” in Proceedings of the IEEE International Conference
on Communications, pp. 1064 - 1070, May 1993.

[7] R. G. Gallager. Low-Density Parity-Check Codes. Cambridge, MA: MIT Press,
1963.

[8] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density
parity check codes,” Electronic Letters, vol. 32, p. 1645, Aug. 1996.

[9] Y. Y. Tai, L. Lan, L. Zeng, S. Lin, and K. Abdel-Ghaffar, “Algebraic construction
of quasi-cyclic LDPC codes for the AWGN and erasure channels,” IEEE Trans.
Info. Theory, vol. 54(10), pp. 1765 - 1774, Oct. 2006.

[10] M. Davey and D. MacKay, “Low-density parity check codes over GF(q),” IEEE
Commun. Lett., vol. 2, no. 6, pp. 165-167, Jun. 1998.

[11] J. Kang, Q. Huang, L. Zhang, B. Zhou, and S. Lin, “Quasi-cyclic LDPC codes: an
algebraic construction,” IEEE Trans. on Commun., vol. 58, no. 5, pp. 1383-1396,
May 2010.

[12] D. Divsalar and L. Dolecek, “Enumerators for protograph-based ensembles of
nonbinary LDPC codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Saint-
Petersburg, Russia, Jul.- Aug. 2011, pp. 913 - 917.

[13] I. Andriyanova, D. Maurice, and J-P. Tillich, “Quantum LDPC codes obtained by
non-binary constructions,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Boston,
MA, Jul. 2012, pp. 343 - 347.

122

[14] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes
over GF(q),” IEEE Trans. on Commun., vol. 55, no. 4, pp. 633-643, Apr. 2007.

[15] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-complexity
decoding for non-binary LDPC codes in high order fields,” IEEE Trans. on Com-
mun., vol. 58, no. 5, pp. 1365-1375, May 2010.

[16] L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic„ “Anal-
ysis of absorbing sets and fully absorbing sets of array-based LDPC codes,” IEEE
Trans. on Inf. Theory, vol. 56, no. 1, pp. 181-201, Jan. 2010.

[17] O. Milenkovic, E. Soljanin, and P. Whiting, “Asymptotic spectra of trapping sets
in regular and irregular LDPC code ensembles,” IEEE Trans. on Inf. Theory, vol.
53, no. 1, pp. 39-55, Jan. 2007.

[18] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2, dc)−LDPC
codes over GF(q) using their binary images,” IEEE Trans. on Commun., vol. 56,
no. 10, pp. 1626-1635, Oct. 2008.

[19] V. Rathi and I. Andriyanova, “Some results on MAP decoding of non-binary
LDPC codes over the BEC,”’ IEEE Trans. on Inf. Theory, vol. 57, no. 4, pp.
2225-2242, Apr. 2011.

[20] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions
on Information Theory, vol. 27, pp. 533 - 547, Sep. 1981.

[21] J. Pearl, “Reverend Bayes on inference engines: a distributed hierarchical ap-
proach,” in Proceedings of American Association for Artificial Intelligence Na-
tional Conference on AI, pp. 133 - 136, 1982.

[22] T. J. Richardson, and R. L. Urbanke, Modern Coding Theory, Cambridge Univer-
sity Press, 2008.

[23] T. J. Richardson, “Error floors of LDPC codes,” in Proc. 41st Allerton Conf. on
Comm., Cont., and Comp., Allerton, IL, Oct. 2003, pp. 1426-1435.

[24] T. Nozaki, K. Kasai, and K. Sakaniwa, “Analysis of stopping constellation distri-
bution for irregular non-binary LDPC code ensemble,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Saint-Petersburg, Russia, Jul.- Aug. 2011, pp. 1101-1105.

[25] T. Nozaki, K. Kasai, and K. Sakaniwa, “’Error floors of non-binary LDPC codes”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Austin, TX, Jun. 2010, pp. 729 - 733.

[26] T. Nozaki, K. Kasai, and K. Sakaniwa, “Analysis of error floors of generalized
non-binary LDPC codes over q-ary memoryless symmetric channels,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Boston, MA, Jul. 2012, pp. 2341 - 2345.

123

[27] L. Dolecek, D. Divsalar, Y. Sun, and B. Amiri, “Non-binary protograph-based
LDPC codes: enumerators, analysis, and designs,” Submitted to IEEE Trans. on
Inf. Theory, 2013.

[28] A. Poloni, S. Valle, and S. Vincenti, “NB-LDPC: Absorbing set and importance
sampling,” Inter. Symp. on Turbo Codes and Iter. Inf. Proc. (ISTC), Gothenburg,
Sweden, Aug. 2012, pp. 101-105.

[29] B. Amiri, C. W. Lin and L. Dolecek, “Asymptotic distribution of absorbing sets
and fully absorbing sets for regular sparse code ensembles,” IEEE Trans. on Com-
mun., vol. 61, no. 2, pp. 455 - 464, Feb. 2013.

[30] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from pro-
tographs,” IPN Progress Report, Tech. Rep. 42-154, Aug. 2003.

[31] T. Cover and J. Thomas, Elements of Information Theory, 2nd Ed. Wiley-
Interscience, 2006.

[32] R. G. Gallager, Low-Density Parity-Check Codes, Cambridge, MA, MIT Press,
1963.

[33] S. Abu-Surra, D. Divsalar and W. E. Ryan, “Enumerators for protograph-based
ensembles of LDPC and generalized LDPC codes," IEEE Trans. on Inf. Theory,
vol. 57, no. 2, pp. 858-886, Feb. 2011.

[34] D. Divsalar and L. Dolecek, “On the typical minimum distance of protograph-
based non-binary LDPC codes,” in UCSD Workshop on Inf. Theory and Its Appli-
cations (ITA), San Diego, CA, Feb, 2012.

[35] M. M. Mansour and N.R. Shanbhag, “High-throughput LDPC decoders,” IEEE
Trans. on VLSI Systems, vol. 11, no. 6, pp. 976 - 996, Dec. 2003.

[36] L. Dolecek, “On absorbing sets of structured sparse graph codes,” in Proc. Info.
Theory and Applications (ITA) Workshop, San Diego, CA, Feb. 2010.

[37] S. Zhang and C. Schlegel, “Causes and dynamics of LDPC error floors on AWGN
channels,” in Proc. 49th Allerton Conf., pp.1025-1032, Sep. 2011.

[38] J. Kang, Q. Huang, S. Lin and K. Abdel-Ghaffar, “An iterative decoding algorithm
with backtracking to Lower the error-floors of LDPC codes,” IEEE Trans. on
Comm., vol. 59, no. 1, pp. 64-73, Jan. 2011.

[39] J. Felstrom and K. S. Zigangirov, “Time-varying periodic convolutional codes
with low-density parity-check matrix,” IEEE Trans. Inf. Theory, vol. 45, no. 6,
pp. 2181-2191, 1999.

[40] M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov, “Iterative decod-
ing threshold analysis for LDPC convolutional codes,” IEEE Trans. Inf. Theory,
vol. 56, pp. 5274-5289, Oct. 2010.

124

[41] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation via spatial
coupling: Why convolutional LDPC ensembles perform so well over the BEC,”
IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 803-834, 2011.

[42] M. Karimi and A. H. Banihashemi, “An efficient algorithm for finding dominant
trapping sets of LDPC codes,” IEEE Trans. Inf. Theory, vol. 58, pp. 6942 - 6958,
Nov. 2012.

[43] J. L. Fan, “Array codes as low-density parity-check codes,” in Proc. 2nd Int. Symp.
on Turbo Codes, Brest, France, Sep. 2000.

[44] A. Bazarsky, N. Presman, and S. Litsyn, “Design of non-binary quasi-cyclic
LDPC codes by ACE optimization” Submitted to IEEE Trans. on Inf. Theory,
2013, Available at: http://arxiv.org/abs/1304.7487.

[45] L. Zeng et al., “Constructions of nonbinary quasi-cyclic LDPC codes: a finite
field approach,” IEEE Trans. Commun., Apr. 2008.

[46] J. Huang et al., “Large-girth nonbinary QC-codes of various lengths,” IEEE Trans.
Commun., Dec. 2010.

[47] L. Zhang et al., “Quasi-cyclic LDPC codes: An algebraic construction, rank anal-
ysis, and codes on Latin squares,” IEEE Trans. Commun., 2010.

[48] T. Nozaki, K. Kasai, and K. Sakaniwa, “Analysis of error floors of non-binary
LDPC codes over MBIOS channel,” in Proc. IEEE Int. Conf. on Commun. (ICC),
Kyoto, Japan, Jun. 2011, pp. 1 - 5.

[49] B. Zhou, J. Kang, Y. Y. Tai, S. Lin, and Z. Ding, “High performance non-binary
quasi-cyclic LDPC codes on Euclidean geometries,” IEEE Trans. Commun., vol.
57, no. 5, pp. 1298 - 1311, 2009.

[50] B.-Y. Chang, D. Divsalar, and L. Dolecek, “Non-binary protograph-based LDPC
codes for short blocklengths,” in IEEE Inf. Theory Workshop (ITW), Lausanne,
Switzerland, Sept. 2012, pp. 282 - 286.

[51] X.Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular progressive edge-
growth Tanner graphs,” IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 386 - 398, Jan.
2005.

[52] J. Huang, S. Zhou, and P. Willett, “Nonbinary LDPC coding for multicarrier un-
derwater acoustic communication,” IEEE J. Sel. Areas Commun., vol. 26, no. 9,
pp. 1684 - 1696, Dec. 2008.

[53] R.-H. Peng and R. R. Chen, “Design of nonbinary quasi-cyclic LDPC cycle
codes,” in Proc. IEEE Inform. Theory Workshop, Tahoe City, CA Sep. 2007, pp.
13-18.

125

[54] C-C. Wang et al., “Finding all small error-prone substructures in LDPC codes,”
IEEE Trans. Inform. Theory, Apr. 2009.

[55] E. A. Bender, “The asymptotic number of nonnegative integer matrices with given
row and column sums,” Discrete Math, vol. 10, no. 2, pp. 217-223, 1974.

[56] S. Litsyn and V. Shevelev, “On ensembles of low-density parity-check codes:
asymptotic distance distributions,” IEEE Trans. on Inform. Theory, vol. 48, no.
4, pp. 887-908, Apr. 2002.

[57] S. Abu-Surra, D. Divsalar, and W. E. Ryan, “Enumerators for protograph-based
ensembles of LDPC and generalized LDPC codes,” IEEE Trans. on Inform. The-
ory, vol. 57, no. 2, pp. 858-886, Feb. 2011.

[58] J. Kliewer, K. S. Zigangirov, C. Koller, and D. J. Costello, Jr., “Coding theorems
for repeat multiple accumulate codes,” submitted to IEEE Trans. on Info. Theory,
Oct. 2008. Available at http://arxiv.org/abs/0810.3422/.

[59] H. D. Pfister, On the Capacity of Finite State Channels and the Analysis of Convo-
lutional Accumulate-m Codes, Ph.D. Thesis, University of California, San Diego,
2003.

[60] C. Koller, A. Graell i Amat, J. Kliewer, and D. J. Costello, “Trapping set enumer-
ators for repeat multiple accumulate code ensembles,” in Proc. IEEE Int. Symp.
on Inform. Theory (ISIT), Seoul, Korea, Jun. - Jul. 2009, pp. 1818-1823.

[61] M. El-Khamy, “New approaches to the analysis and design of Reed-Solomon re-
lated codes," Ph.D. Thesis, California Institute of Technology, Sep. 2006.

[62] S. Benedetto, D. Divsalar, G.Montorsi, and F. Pollara, “Serial concatenation of
interleaved codes: performance analysis, design, and iterative decoding," IEEE
Trans. on Inf. Theory, vol. 44, no. 3, pp. 909 - 926, May 1998.

[63] D. G. M. Mitchell, L. Dolecek, and D. J. Costello, Jr., “Absorbing set character-
ization of array-based spatially-coupled LDPC codes,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Honolulu, HI, Jun. 2014, pp. 886 - 890.

[64] B. Amiri, A. Resisizadeh, J. Kliewer, and L. Dolecek, “Optimized design of finite-
length spatially-coupled codes: an absorbing set-based analysis,” Technical Re-
port, [online]. Available: http://amiri.bol.ucla.edu/TechnicalReport.pdf

[65] I. Andriyanova and A. Graell i Amat, “Threshold saturation for non-binary SC-
LDPC codes on the binary erasure channel,” Submitted to IEEE Trans. on Inf.
Theory, 2013. [online]. Available: http://arxiv.org/abs/1311.2003

[66] L. Wei, D. G. M. Mitchell, T. E. Fuja, and D. J. Costello, Jr., “Design of spatially-
coupled LDPC codes over GF(q) for windowed decoding,” Submitted to IEEE
Trans. on Inf. Theory, 2014. [online]. Available: http://arxiv.org/abs/1411.4373

126

[67] K. Huang, D. G. M. Mitchell, L. Wei, X. Ma, and D. J. Costello, Jr., “Performance
comparison of LDPC block and spatially-coupled codes over GF(q),” Submitted
to IEEE Trans. Commun., 2014.

127

