
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Three Essays on Energy Economics

Permalink
https://escholarship.org/uc/item/8cr2190b

Author
Preonas, Louis Demetri

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8cr2190b
https://escholarship.org
http://www.cdlib.org/


Three Essays on Energy Economics

by

Louis Demetri Preonas

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Agricultural and Resource Economics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Meredith Fowlie, Co-chair
Professor Severin Borenstein, Co-chair
Professor Maximilian Auffhammer
Assistant Professor W. Reed Walker

Spring 2018



Three Essays on Energy Economics

Copyright 2018
by

Louis Demetri Preonas



1

Abstract

Three Essays on Energy Economics

by

Louis Demetri Preonas

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Associate Professor Meredith Fowlie, Co-chair

Professor Severin Borenstein, Co-chair

Electricity powers the modern economy, and the electricity supply chain is notoriously
complex. Power plants must develop stable relationships for fuel procurement, as their
long-run profitability hinges on securing a cheap, reliable fuel supply. Electric utilities
may also lack the incentive to provide a reliable power supply to all potential customers,
which could hamper economic productivity. The physical properties of electricity trans-
mission create inherent challenges in providing power to all regions of the grid, while
simultaneously incentivizing economically efficient production decisions. In this disser-
tation, I study three potential market failures in electricity supply: (i) market power in
U.S. coal transportation; (ii) under-electrification of India’s rural poor; and (iii) short-run
allocative inefficiencies in Indian electricity dispatch. In each case, my findings are of
substantial economic importance due the scale of the electric power industry, which is
essential to virtually all economic activity. Climate change only raises the stakes, and al-
leviating electricity market failures has the potential to increase carbon dioxide emissions
and further harm the planet.

In the first chapter, I investigate how market power in the transportation of coal might
impact U.S. climate policies. Economists have widely endorsed pricing CO2 emissions to
internalize climate change-related externalities. Doing so would significantly affect coal,
which is the most carbon-intensive major energy source. However, U.S. coal markets
exhibit an additional distortion, as the railroads that transport coal to power plants can
exert market power. This upstream distortion can mute the price signal of a corrective tax,
due to changes in markups or incomplete tax pass-through. I provide the first empirical
estimates of how coal-by-rail markups respond to changes in coal demand. I find that
rail carriers reduce coal markups when downstream power plant demand changes, due
to a decrease in the price of natural gas (a competing fuel). I estimate markup changes
that vary substantially across coal plants, resulting from a combination of heterogeneous
transportation market structure and plant-specific demand shocks. Since low natural gas
prices and a CO2 emissions tax similarly disadvantage coal, observed decreases in coal
markups imply that pass-through of a federal carbon tax to coal power plants may be
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heterogeneous and incomplete. This could substantially erode the environmental benefits
of a price-based climate policy. My results suggest that decreases in coal markups have
increased recent climate damages by $2.3 billion, compared to a counterfactual where
markups do not change.

In the second chapter, coauthored with Fiona Burlig, we study the impacts of energy
access in the developing world. Over 1 billion people still lack electricity access. Devel-
oping countries are investing billions of dollars in rural electrification, targeting economic
growth and poverty reduction, despite limited empirical evidence. We estimate the effects
of rural electrification on economic development in the context of India’s national electri-
fication program, which reached over 400,000 villages. We use a regression discontinuity
design and high-resolution geospatial data to identify medium-run economic impacts of
electrification. We find a substantial increase in electricity use, but reject effects larger
than 0.26 standard deviations across numerous measures of economic development, sug-
gesting that rural electrification may be less beneficial than previously thought.

In the third chapter, coauthored with Fiona Burlig and Akshaya Jha, we examine
short-run allocative inefficiencies in Indian electricity supply. Electricity consumption is
highly correlated with economic development. Understanding and resolving the drivers
of economic inefficiencies in electricity markets is critical to supporting economic growth.
We quantify the costs of short-run misallocation in Indian electricity supply. We assemble
a novel dataset on daily production from each utility-scale power plant in the country and
administrative measures of plant-specific marginal operating costs, and calculate the total
variable costs of electricity generation in India to be approximately $29 billion per year.
We next construct the “least-cost” counterfactual where we dispatch power plants in order
of lowest-to-highest marginal cost. We find that this least-cost dispatch results in total
annual operating costs that are roughly $4.7 billion lower than observed dispatch. Once
we account for transmission constraints, we find a remaining misallocation wedge of $3.2
billion per year. We find evidence that this wedge results from market design and political
economy considerations, but find little evidence of market power.
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Chapter 1

Market Power in Coal Shipping and
Implications for U.S. Climate Policy1

1.1 Introduction
Economists have widely advocated policies that price carbon dioxide emissions to reflect
their marginal external cost (Nordhaus (1993)). While such policies are efficient under
perfect competition (Pigou (1932)), additional distortions such as market power reduce
the efficiency of a Pigouvian tax (Buchanan (1969); Barnett (1980)). Economists have
long understood that firms with market power may adjust prices in response to taxation
(Cournot (1838)). However, there exists surprisingly little empirical research on how
market power impacts the pass-through of an environmental tax, or the transmission of
the desired price signal to market participants.

This paper investigates market power in the transportation of coal, and analyzes its
potential impacts on the efficacy and efficiency of U.S. climate policy. Coal is likely
the most environmentally damaging and carbon-intensive industry in the U.S. economy
(Muller, Mendelsohn, and Nordhaus (2011)). Many geographically concentrated mines
supply coal to many geographically dispersed power plants, and the railroads that trans-
port coal from mines to plants can exercise market power (Busse and Keohane (2007)).
If a carbon tax causes these oligopolist railroads to reduce coal markups, this could mute
the carbon price signal received by power plants and erode the environmental benefits
of the tax. While previous research has studied environmental and economic outcomes

1I thank Meredith Fowlie, Severin Borenstein, Maximilian Auffhammer, Lint Barrage, Cyndi Berck,
Peter Berck, Susanna Berkouwer, Joshua Blonz, Fiona Burlig, Lucas Davis, Karl Dunkle Werner, Don
Fullerton, James Gillan, Stephen Jarvis, Akshaya Jha, Jeremy Magruder, Dave McLaughlin, Elisabeth
Sadoulet, James Sallee, Leo Simon, James Stock, Sofia Villas-Boas, Reed Walker, Matt Woerman, Cather-
ine Wolfram, and Derek Wolfson for their invaluable feedback on this dissertation chapter. I also thank
seminar participants at the Energy Institute at Haas, UC Berkeley, the Heartland ERE Workshop at
University of Illinois Urbana-Champaign, University of Nevada Reno, University of Maryland, Cornell
University, UC Santa Barbara, University fo Utah, Georgia State University, and University of Pennsyl-
vania. All remaining errors are mine.
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under a carbon tax, I provide the first estimates of how upstream market power in coal
supply might impact climate policy outcomes.

I begin by estimating the size of the market power distortion in coal transportation,
or the average markup levels faced by coal power plants. Then, I estimate how markups
change due to changes in the demand for coal. Theory suggests that a shift in coal demand
should cause a profit-maximizing railroad to reoptimize coal markups. Recent decreases
in the price of natural gas, coal’s primary competitor in electricity markets, represent a
negative shock to power plants’ coal demand. Since a carbon tax would induce a similar
shift in coal demand, observed changes in coal markups due to decreases in the gas price
may predict how railroads would reoptimize markups under a carbon tax.2

To identify markup levels, I exploit predetermined cross-sectional heterogeneity in mar-
ket power. Some coal plants are “captive” to a single rail carrier and face an effective trans-
portation monopoly; other plants may purchase coal from multiple railroads, and these
“non-captive” plants face more competitive coal shipping. I implement a nearest-neighbor
matching strategy to compare the price of coal delivered to captive vs. non-captive plants,
which takes advantage of plants’ inability to arbitrage spatial price differences. By flexi-
bly controlling for coal commodity value and railroad freight costs, I recover the average
differential markup faced by captive plants.

I use a difference-in-differences design to identify changes in coal markups caused
by changes in the price of natural gas. This leverages two sources of cross-sectional
heterogeneity: (i) geographic variation in transport market power, and (ii) variation in
coal plants’ sensitivity to gas price changes, which I predict from microdata on U.S.
electricity generation. Using a simple oligopoly model as a guide, I combine these two
sources of variation into a single cross-sectional predictor of markup changes, and interact
this variable with the time series of gas prices. Regressing the delivered price of coal on
this interaction in a panel fixed effects framework, I estimate the extent to which gas price
changes cause differential changes in coal markups. Given that natural gas is the primary
substitute for coal in electricity supply, negative shocks to the gas price disadvantage coal
generation in a manner similar to a tax on CO2 emissions (Cullen and Mansur (2017)).
Hence, observed gas price shocks mimic the variation of a carbon tax, and my estimates
of markup changes can help predict the pass-through of such a tax.

I find that coal plants facing the most market power in transportation pay $2–5 per
ton higher average markups, compared to plants facing the least market power. This
translates to an average markup of 4–14 percent of delivered coal prices, explaining 13–
41 percent of the average spatial gap between mines’ sales prices and plants’ delivered
prices. I also find robust and statistically significant changes in markups for approximately
43 percent of plants—the subset of plants that face the most market power and are
sensitive to competition from gas-fired generation. For these “markup-sensitive” plants,
a $1/MMBTU drop in gas price causes coal markups to fall by $1 per ton. I find no
evidence that markups change for the remaining 57 percent of coal plants, which are less
sensitive to gas-fired competition or face relatively little market power.

2I use the terms “natural gas” and “gas” interchangeably. My analysis does not relate to gasoline.
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I demonstrate that rail carriers reoptimize markups to effectively insulate some coal
plants against shocks to their competitiveness. As decreasing gas prices reduce the
marginal cost of gas-fired generation, “markup-sensitive” plants see their coal prices de-
crease, thereby reducing these plants’ own marginal costs. Such offsetting changes in
markups help this subset of coal plants to remain competitive with their gas-fired rivals.
By contrast, over half of coal plants experience the full gas price shock, as their markups
do not adjust. These heterogeneous impacts across plants are qualitatively consistent with
the predictions of the static oligopoly model that I develop, implying that rail carriers
indeed reoptimize markups heterogeneously to maximize profits in coal shipping.

Falling gas prices have given gas-fired plants a competitive advantage over coal-fired
plants. This is similar to what might occur under a carbon tax, which would penalize coal
as the more carbon-intensive fuel. Therefore, I can convert my estimated markup changes
into the pass-through rates of an implicit carbon tax, or the rates at which rail carriers
would have passed a mine-mouth carbon tax on to delivered coal prices.3 For the subset
of plants whose markups do not change, this translates to full pass-through, or implied
pass-through rates statistically indistinguishable from 1. By contrast, this translates to
incomplete pass-through for “markup-sensitive” plants, with plant-specific pass-through
rates ranging from 0.98 to 0.42. This suggests that market imperfections in coal shipping
are likely to distort the price signal of a federal carbon tax, such that certain coal plants
may experience as little as 42 percent of the desired cost increase.

This paper contributes to four different literatures. First, my results contribute to
the literature on market power in intermediaries. Atkin and Donaldson (2015) develop
techniques to identify markups separately from transportation costs, and several recent
papers estimate how oligopolistic intermediaries influence both upstream and downstream
outcomes (e.g., Startz (2016); Ganapati (2017)). While these studies typically focus on
differentiated product markets, coal is a globally traded commodity that is relatively ho-
mogeneous. I leverage a unique feature of coal markets—limited spatial arbitrage between
power plants—to credibly identify transport markups while invoking relatively few struc-
tural assumptions on coal demand. My results have important implications for many
commodities with high geographic specificity and high transportation costs, including
crude oil, cement, and metals.

My analysis also contributes to the literature on coal intermediaries, which has largely
focused on the railroads’ interactions with upstream mines (e.g., Kolstad and Wolak
(1983); Wolak and Kolstad (1988)), rather than downstream power plants. A notable
exception is Busse and Keohane (2007), who provide the first evidence of price discrimi-
nation due to geographic variation in coal shipping during the 1990s. My results demon-
strate that heterogeneous coal markups have persisted through recent years, and I am the

3The physical location of the tax along the coal supply chain should not change the economic in-
terpretation of pass-through, in the absence of additional market distortions beyond rail market power
(Weyl and Fabinger (2013)). “Forward” pass-through of a mine-mouth tax (i.e. a cost shock to rail ship-
ping) follows the standard formulation of a cost shock passed through to final goods prices. However, in
practice, carbon taxes are typically levied on electricity sales.
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first to show that markup changes have led to economically meaningful impacts on CO2

emissions.
Second, my results contribute to a growing empirical literature on environmental pol-

icy in the presence of market power. Given widespread evidence of market power in major
polluting industries (e.g., Bushnell, Mansur, and Saravia (2008) on electricity markets;
Hastings (2004) on gasoline markets), surprisingly few studies have empirically estimated
the theoretically ambiguous interactions of these two market failures. Mansur (2007)
finds that market power in electricity markets can increase pollution abatement under
environmental regulation. On the other hand, Ryan (2012) and Fowlie, Reguant, and
Ryan (2016) find that emissions regulation exacerbates market power distortions in the
cement industry. I find that changes in coal markups may significantly erode the environ-
mental benefits of a carbon tax, as incomplete pass-through would mute the price signal
felt by a subset of coal plants. My results suggest that incomplete pass-through increased
CO2 emissions damages during my sample period by roughly $2.3 billion, compared to a
full pass-through counterfactual. Hence, the magnitude of this effect would likely be eco-
nomically meaningful, despite the fact that incomplete pass-through would only impact
a fraction of coal plants.

Incomplete pass-through of a carbon tax could increase or decrease welfare, depending
on the size of the tax relative to marginal external costs. If the tax were equal to the
social cost of carbon, then the presence of markups would restrict coal consumption past
the socially optimal quantity. In this case, incomplete pass-through would reduce the
markup distortion and likely increase welfare.4 However, real-world carbon prices are
typically much smaller than the estimated social cost of carbon (Carl and Fedor (2016);
Revesz et al. (2017)). Under a suboptimally low carbon tax, coal markups would increase
welfare by raising coal prices closer to their marginal social cost. In this case, incomplete
pass-through would lower coal markups and reduce welfare.

Third, my analysis contributes to the literature on estimating tax pass-through in
energy markets. Previous studies have often found heterogeneous pass-through of energy
taxes, due to variation in market structure both across and within industries (e.g., Gana-
pati, Shapiro, and Walker (2016) in manufacturing; Pouliot, Smith, and Stock (2017) in
transport fuels). Muehlegger and Sweeney (2017) find that pass-through in petroleum
refining also varies by whether cost shocks are firm-specific or common across all firms. I
find heterogeneous pass-through due to a combination of these two effects: spatial vari-
ation in the competitiveness of coal shipping, and variation in coal plants’ sensitivity to
relative fuel price shocks. To my knowledge, this is the first evidence that pass-through
of a carbon tax in the U.S. electricity sector may be heterogeneous and incomplete.

Heterogeneous pass-through implies that the economic incidence of a carbon tax would
likely vary across coal plants. I apply the theoretical tools of Weyl and Fabinger (2013) to
translate pass-through to incidence, which reveals substantial heterogeneity in the share

4Coal also emits harmful local air pollutants such as SO2, NOx, and particulate matter. A tax
greater than the social cost of carbon may partially internalize damages from these other pollutants.
Hence, incomplete pass-through could reduce welfare even under a tax equal to marginal CO2 damages.
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of the implied tax burden borne by plants. While most plants bear the full decline in
profits from a gas price drop, a subset of plants bear less than half, with the remainder
coming out of railroad oligopoly rents. This finding contributes to the literature on envi-
ronmental tax incidence, which has shown that imperfect competition and heterogeneous
pass-through can shift the tax burden towards producers and make climate policy less re-
gressive (Ganapati, Shapiro, and Walker (2016); Stolper (2017)). In my setting, shifting
a share of the tax burden upstream from coal power plants may also benefit electricity
consumers, potentially reducing the regressivity of a carbon tax.

Finally, my results contribute to the literature on fuel-switching between coal and
natural gas. Recent decreases in the gas price have crowded out coal-fired generation,
thereby reducing CO2 emissions from the U.S. electricity sector. While several previous
studies have estimated the magnitude of these environmental benefits (e.g., Holladay and
LaRiviere (2017); Fell and Kaffine (forthcoming)), I show that decreasing coal markups
have likely attenuated this shift away from coal. A simple counterfactual exercise suggests
that short-run fuel substitution could have yielded 8 percent greater CO2 abatement, if
coal markups had not changed. This suggests that previous retrospective analyses may
have understated the potential environmental benefits of a carbon tax, if the tax is large
enough to drive coal markups close to zero and eliminate the countervailing effect of
incomplete pass-through.

This paper proceeds as follows. Section 1.2 describes the institutions of U.S. coal
markets and the recent boom in natural gas production. Section 1.3 develops a static
oligopoly model to predict how railroads reoptimize markups as gas prices change. Section
1.4 outlines the data I use to implement my empirical strategy, detailed in Section 1.5.
Section 1.6 reports results from estimating levels and changes of coal markups. Section
1.7 analyzes the implications of these results for climate policy. Section 1.8 concludes.

1.2 U.S. Coal Markets
U.S. coal markets feature three primary types of agents: mining firms, power plants, and
transport intermediaries.5 Mines are spatially concentrated in regions with productive
coal deposits, most notably the Powder River Basin in northeastern Wyoming, and the
Appalachian Basin in West Virginia and Kentucky. By contrast, coal power plants are
spatially dispersed across the country, due to the regionally fragmented nature of electric-
ity markets. Coal is heavy relative to its commodity value, and plants located far from
mines incur substantial coal shipping costs (Joskow (1985)). Railroads are the dominant
transportation mode, and a few large rail carriers deliver over 70 percent of coal ship-
ments. Figure 1.2.1 maps the geographic configuration of coal producing regions, coal
power plants, and major rail lines. Plants located on navigable waterways may also re-

5Over 90 percent of U.S. coal consumption occurs in the electric power sector. My analysis does
not include other industrial consumers of coal, such as steel, cement, and paper manufacturers. I also
ignore coal imports (less than 2 percent of U.S. consumption) and exports (roughly 3 percent of U.S.
production).
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Figure 1.2.1: U.S. Coal Geography

Notes: This top panel maps all productive deposits of power plant grade coal (i.e. bituminous and sub-
bituminous) in the contiguous U.S. The vast majority of coal production occurs in three regions: the
Powder River Basin in northeastern Wyoming; the Appalachian Basin in West Virginia and eastern
Kentucky; and the Illinois Basin in southern Illinois and western Kentucky. Dots denote all 430 large
coal-fired electric power plants that operated between 2002–2015. The bottom panel maps major rail
lines owned and operated by the seven Class I rail carriers. Two rail carriers each dominate the West
(BNSF, Union Pacific) and East (CSX Transportation, Norfolk Southern). I combine the remaining three
carriers (Canadian National, Canadian Pacific, Kansas City Southern) into a single color, as these rail
carriers cover smaller territories far from most major coal deposits.
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ceive coal shipments via barge, a more competitive outside option with low barriers to
entry. Barges contribute roughly 17 percent of coal deliveries.6

Four firms control most of the coal shipping industry, with two large rail carriers
dominating both the western and eastern U.S. (see Figure 1.2.1). Ever since the Staggers
Act of 1980 substantially weakened rail price regulations, railroads have been able to set
freight shipping rates with limited government oversight (MacDonald (1989)).7 In cases
where a single rail carrier exhibits “market dominance” along a given route, regulators
may intervene to prevent rail revenues from exceeding 180 percent of total variable costs.8
This means that rail oligopolists have significant leeway to exercise market power and
negotiate complex long-term contracts with power plants (Joskow (1988)). By allowing
carriers to extract oligopoly rents and exploit economies of scale, the Staggers Act also
spurred a series of railroad mergers; the 33 “Class I” railroads of 1980 have consolidated
into the 7 Class I railroads of today (Schmidt (2001); Prater, Sparger, and O’Neil (2014)).9

Three factors have led to substantial spatial dispersion in coal-by-rail markups. First,
unlike most commodities, coal consumption must occur in precise geographic locations
with potentially limited access to transportation networks. While some power plants
have the option to purchase coal from multiple rail carriers or via barge (by virtue of
their locations), other plants must rely on a single rail carrier for all coal deliveries.
Second, many plants are constrained to buy a particular type of coal, produced in only
one mining region (Joskow (1987)). This further restricts plants’ shipping options, as
mines may also have limited access to rail and water networks.10 Third, the resale of coal
is cost-prohibitive, because infrastructure is built to carry coal to (not away from) plants
(Busse and Keohane (2007); Jha (2015)). Hence, plants are unable to arbitrage away
spatial price differences, allowing railroads to charge higher markups to plants with fewer
shipping options.11

6Trucks also transport a small share of coal deliveries. However, trucking is relatively costly and
likely cannot compete directly with rail and water (Busse and Keohane (2007)).

7MacDonald (2013) offers a comprehensive history of U.S. railroad regulation.
8In practice, regulators loosely interpret this threshold such that railroads may earn an adequate

return on investment (Wilson (1996)). While the Surface Transportation Board reviews only 1–7 rate
challenges each year, rate cases for coal shipping occur more frequently than for all other commodities
combined (https://www.stb.gov/stb/industry/Rate_Cases.htm).

9The Class I designation includes carriers with annual operating revenues exceeding $453 million.
These seven firms account for approximately 69 percent of rail mileage and 94 percent of rail freight
revenues.

10Coal’s physical characteristics vary across coal regions, and even across mines within a region.
Plants typically value coal with high energy content (or BTUs per ton), and with low sulfur and ash
content (which create local air pollution). Plants self-calibrate to a pre-specified mix of coal attributes,
and deviations can reduce the efficiency of boilers and pollution-control devices (Kerkvliet and Shogren
(1992)). Also, many plants comply with SO2 regulations by burning low-sulfur coal from Wyoming’s
Powder River Basin (Schmalensee and Stavins (2013)). If such a plant has access to two rail carriers and
the Ohio River, but only one rail carrier connects to the Powder River Basin, then it has effectively one
shipping option.

11Power plants may purchase coal directly from rail carriers; alternatively, plants may purchase freight
services from railroads and separately purchase coal from upstream mines. This distinction does not

https://www.stb.gov/stb/industry/Rate_Cases.htm
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Figure 1.2.2: U.S. Fuel Prices and Electricity Generation
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tent. The bottom panel plots U.S. monthly electricity generation by fuel as a
percent of total monthly generation, controlling for month fixed effects and a
2000–2008 time trend for each fuel.
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U.S. coal consumption has declined over the past decade, largely due to decreases
in the price of natural gas. Technological advances in hydraulic fracturing (“fracking”)
have led to a boom in natural gas extraction, causing a historic drop in U.S. gas prices.12

Because coal plants compete directly with natural gas generation in electricity markets,
low gas prices have crowded out coal-fired electricity generation. The top panel of Figure
1.2.2 shows how the fracking boom has led to a decline in U.S. gas prices since 2008, and
the bottom panel illustrates how the electricity sector has shifted towards gas and away
from coal. The corresponding decrease in coal demand has likely caused rail oligopolists
to reoptimize coal markups. These observed changes in markups can predict what might
occur under a carbon tax, which would similarly disadvantage coal relative to low-carbon
natural gas (Cullen and Mansur (2017)). If coal markups decrease (increase), this would
dampen (magnify) the carbon tax price signal as it passes along the coal supply chain.
This effect would likely be heterogeneous across plants, due to variation in pre-existing
markups and variation in plants’ exposure to gas-fired competition.13

1.3 Theoretical Framework
In this section, I develop a simple Cournot oligopoly model of railroad intermediaries who
sell coal to power plants. This allows me to predict how markups should respond to gas
price changes, which depends on three key dimensions of plant heterogeneity: (1) number
of potential rail carriers; (2) availability of water transport as a more competitive outside
option; and (3) price elasticity of demand for coal as an input to electricity production.

1.3.1 Symmetric Rail Oligopoly

Consider power plant j that is a price-taker in the market for coal. This plant consumes
a specific type of coal from origin o, which is produced at constant marginal cost by
a perfectly competitive mining sector.14 Plant j is fully captive to Noj identical rail

affect the economic interpretation of delivered coal markups. My analysis treats rail intermediaries as
both the owners of the commodity and the providers of freight services.

12Two separate technological innovations have facilitated the “fracking boom”: horizontal drilling and
hydraulic fracturing. Fitzgerald (2013) provides a comprehensive overview of these technological advances
and their effect on the costs of gas extraction. The physical properties of natural gas make it expensive
to export, which is why a domestic supply glut has depressed U.S. gas prices.

13Low gas prices have not impacted all coal plants equally. For a coal plant located in an electricity
market with many gas-fired competitors, a negative gas price shock will likely cause its coal demand to
decrease. For a coal plant in a market without any gas-fired competitors, the same gas price shock may
have no effect on its coal demand. Coal plants also vary in their productive efficiency, and low gas prices
should disproportionately hurt relatively inefficient plants.

14This assumption greatly simplifies my theoretical framework. In reality, coal supply may be upward-
sloping, and mining need not be perfectly competitive, especially in Wyoming’s Powder River Basin where
a few large firms dominate mining operations (Atkinson and Kerkvliet (1986)). Appendix A.1.3 discusses
the welfare implications of alternative market structures.
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carriers for its coal deliveries from origin o, and each rail carrier i chooses the best-
response quantity of coal qioj that maximizes its profits on route oj. In equilibrium, plant
j consumes Nojqioj = Qoj units of coal at price Poj. Plant j cannot resell its purchased
coal, meaning that Poj is not restricted by a binding arbitrage condition and rail carriers
may effectively treat each plant as its own isolated coal market.

Rail carrier i’s profits from selling coal from origin o to plant j are:

(1.1) πioj(qioj) = qioj

[
Poj(Qoj;Zoj)− Co − S(Toj)

]
− Foj

where Poj is the plant j’s inverse demand for coal shipped from origin o, as a function of
Qoj and a vector of parameters Zoj. Co is the exogenous mine-mouth coal price in origin o.
The function S(Toj) denotes the average per-unit cost of shipping coal on route oj, where
Toj is a vector of transportation cost parameters, including rail mileage, diesel costs, and
the opportunity cost of a rail car. Finally, the oligopolist incurs Foj, a fixed cost of entry
on shipping route oj.15 In reality, carrier i maybe also be subject to regulatory oversight,
but I abstract from rail regulation in this simple model.

Taking rail carrier i’s first-order condition, and rearranging in terms of a price-cost
markup µoj:

(1.2) µoj ≡ Poj − Co − S(Toj) = −
(
θoj
Noj

)
∂Poj
∂Qoj

Qoj

where the “conduct parameter” θoj equals 1 under a pure Cournot oligopoly and 0 under
perfect competition.16 Plant j’s markup depends on both its coal transportation options
and its demand for type-o coal. If plant j is captive to a single rail carrier (i.e., Noj = 1),
it should face higher markups than if multiple carriers were competing on route oj. At the
same time, if plant j is located on a navigable waterway and can receive type-o coal via
barge, this should limit railroads’ ability to set high markups. Since waterways have less
restricted usage rights and lower barriers to entry, I treat barge shipments as a competitive
outside option (i.e., θoj = 0). Finally, if plant j’s inverse demand for coal is relatively
inelastic, it should face relatively higher markups, all else equal.

1.3.2 Comparative Statics for Coal Markups

Coal demand depends on the price of natural gas, because the two fuels compete in
electricity dispatch. If the gas price decreases (increases), a coal plant may supply less

15I use a symmetric oligopoly model for tractability. In reality, each firm’s shipping routes are con-
strained by track ownership and trackage rights, implying non-identical costs S(Toj) and Foj . For
simplicity, I assume that quantity qioj does not enter into S(Toj), which ignores rail capacity constraints
or increasing returns to scale in shipping. My empirical analysis relaxes this assumption.

16θoj =
∂Qoj

∂qioj
is identical for all i, by symmetry. I use this “conduct parameter” formulation for

notational convenience (following Atkin and Donaldson (2015); Bergquist (2017)), and I treat θoj only as
a continuous heuristic for distance from perfect competition. Calibrating θoj as a structural parameter
can be problematic, as it only takes on a well-defined interpretation at a few values (Corts (1999)).
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(more) electricity at a given coal price. The gas price also influences the elasticity of coal
demand, by determining the range of coal prices over which a coal plant is marginal in
electricity supply. A marginal plant has (locally) elastic coal demand, because its coal
consumption responds to small changes in coal price. At lower coal prices, a coal plant will
be inframarginal and its strict capacity constraint will bind. This translates to (locally)
inelastic coal demand, as small changes in coal price will not change its coal consumption.

Figure 1.3.3 presents a stylized electricity market to illustrate how a negative gas
price shock impacts both the level and slope of coal demand. There is a single coal
plant with constant marginal cost, and an upward-sloping supply of gas-fired generation.
Each technology’s marginal costs scale with its respective fuel price, and the aggregate
electricity supply curve depends on both fuel prices. The top panels show four supply
curves, for four combinations of coal price (low, high) and gas price (high, low). In
reality, electricity demand is stochastic and extremely inelastic; for simplicity, this stylized
example assumes electricity demand is deterministic and perfectly inelastic.

At a given gas price, the plant’s coal demand is the 1-to-1 mapping between coal
price and coal consumption. Under a high coal price and high gas price (i.e., the solid
supply curve in the top-right panel), the coal plant is marginal in the electricity market
and generates at 70 percent capacity. Hence, it demands 70 percent of its throughput
capacity for coal, or Q∗ in the bottom-left panel. Comparing the bottom two panels, the
gas price governs the range of coal prices for which the plant is marginal, and coal demand
is not vertical. A negative gas price shock causes inverse coal demand to shift down and
become less steep.17

Using my symmetric oligopoly model, I can derive how rail carriers should reoptimize
coal markups in response to gas price changes. Let Zj denote the gas price of coal plant
j’s competitors, which enters plant j’s inverse demand function as an element of the
parameter vector Zoj. The change in markup µoj that results from a small change in gas
price Zj is:18

(1.3)
dµoj
dZj

=

∂Poj
∂Zj

(2 + EDoj
−Noj)−

∂2Poj
∂Qoj∂Zj

Qojθoj

2 + EDoj

where EDoj
is the elasticity of the slope of inverse demand scaled by the degree of com-

petitiveness θoj
Noj

:

(1.4) EDoj
≡
(
∂2Poj
∂Q2

oj

)(
∂Poj
∂Qoj

)−1

Qoj

(
θoj
Noj

)
17In reality, electricity dispatch may not order plants from lowest-to-highest cost, and plants may

not maximize short-run profits. Demand realizations come from a continuous probability distribution,
and electricity is not storable. Coal storage enables to plants to hedge against uncertainty in electricity
markets, which must clear instantaneously. Hence, coal markets clear on a longer timescale, and coal
demand should not have sharp kinks.

18Appendix A.1.1 provides a full derivation of this comparative static.



12

Figure 1.3.3: Coal Demand and Natural Gas Prices

Notes: This figure presents a stylized electricity market to illustrate the relationship between gas prices
and coal demand. There is one coal generator with a fixed capacity, and constant marginal cost at a
given coal price (MC(Pcoal), in blue). There is also an upward-sloping supply of many small natural
gas generators, with marginal costs that scale multiplicatively with the gas price (MC(Pgas), in grey).
Electricity demand (D) is perfectly inelastic, and deterministic (for simplicity). The top panels show
four electricity supply curves, each for a given combination of coal price (low in the left panel, high in
the right panel) and gas price (high for solid lines, low for dashed lines). The bottom panels translate
the coal plant’s electricity production into its corresponding demand for coal (MWh out as a function of
MMBTU of coal in, given the plant’s fixed production technology). Under a high gas price (PHgas), the
coal plant consumes at full capacity (Qcap) given a low coal price (PLcoal) and at Q∗ given a high coal
price (PHcoal). If the gas price decreases to PLgas, the coal plant is now marginal given PLcoal (where it had
been inframarginal) and above the margin given PHcoal (where it had been marginal). The decrease in gas
price has caused inverse coal demand at Q∗ to shift down and become less steep.
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Equation (1.3) depends on the level, slope, and curvature of plant j’s inverse demand.
∂Poj

∂Zj
captures how gas price affects the level of inverse coal demand. If a negative gas

price shock (i.e. dZj < 0) causes plant j’s inverse coal demand to shift down as in Figure
1.3.3, then ∂Poj

∂Zj
> 0. The cross-partial ∂2Poj

∂Qoj∂Zj
captures how gas price affects the slope

of inverse coal demand. If lower gas prices make inverse coal demand less steep (i.e. if
dZj < 0 causes ∂Poj

∂Qoj
to become less negative), then ∂2Poj

∂Qoj∂Zj
< 0. Finally, the change in

markup depends on the degree to which inverse demand is concave (EDoj
> 0) or convex

(EDoj
< 0). More concave demand will tend to increase dµoj

dZj
, while more convex demand

will tend to decrease dµoj
dZj

.19

These three features of coal demand interact with route oj’s rail market size (Noj)
and structure (θoj) to jointly determine how railroads should reoptimize markups when
the gas price changes. The sign of dµoj

dZj
is theoretically ambiguous and depends on the

relative sizes of ∂Poj

∂Zj
, ∂2Poj

∂Qoj∂Zj
, and EDoj

, which may vary considerably across heterogeneous
coal plants. Rail carrier behavior may also depart from the predictions of this simple
model, especially if regulatory constraints bind or if markups are not truly independent
across plants.20 Below, I econometrically estimate the degree to which observed gas price
changes have caused changes in coal markups. I directly estimate plant-specific demand
parameters ∂Poj

∂Zj
, ∂2Poj

∂Qoj∂Zj
, and EDoj

, which I use to construct an empirical approximation

of dµoj
dZj

. This allows me to test the theoretical predictions and empirical magnitudes of
Equation (1.3).

1.4 Data
My analysis combines several publicly available datasets, published by U.S. government
agencies. This section highlights the core datasets for my empirical analysis, including
data on coal shipments, power plants, and the U.S. rail network.21 It also describes how
I use GIS data to construct a measure of plants’ rail captiveness.

1.4.1 Data Sources

The Energy Information Administration’s (EIA) Form 923 collects detailed data on coal
deliveries to power plants, for all large U.S. coal plants. These data are at the month-

19This is a standard finding from the pass-through literature on imperfectly competitive product
markets, where the pass-through rate is closely related to the curvature of demand (Weyl and Fabinger
(2013)).

20In reality, rate regulation prevents carriers from extracting full (unconstrained) oligopoly rents.
This simple model does not account for multiple-market negotiations between rail carriers or dynamic
interactions between carriers and plants.

21Appendix A.2 describes each of these datasets in further detail, while also describing how I merge
datasets and construct key variables.
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shipment level, where “shipments” aggregate deliveries received on a single purchase order
or contract, in a given month, with the same supplier, county of origin, and coal rank (i.e.
bituminous vs. sub-bituminous). For each observation, EIA reports the total tons of coal
delivered; their average BTU, sulfur, and ash content by weight; and the primary modes
of transportation (e.g., rail, barge, truck). EIA also classifies each shipment as either a
long-term contract or a spot market transaction.

Coal plants must report the average prices for each observation, inclusive of commodity
costs, transportation costs, and markups. EIA redacts price data for independent power
producers, and I only observe prices for utility-owned plants. My empirical analysis
focuses on this subset of plants, which represent 77 percent of coal deliveries since 2002.22

Because coal is a heterogeneous commodity without a uniform price index, I control
for average mine-mouth prices at the county-year level, published in EIA’s Annual Coal
Report.

I merge coal shipment data with several EIA datasets on power plant characteristics
(Form 860), operations (Forms 906 and 923), and pollution abatement (Forms 767, 860,
and 923). The EPA eGRID database reports each plant’s power control area (PCA), or
its region on the electricity transmission grid. To estimate plant-specific coal demand
parameters, I leverage data from the EPA’s Continuous Emissions Monitoring System
(CEMS), which report hourly generation and emissions for all large fossil fuel generating
units.23 This allows me to estimate each coal unit’s probability of generating in a given
hour, conditional on the relative prices of coal and natural gas.

I use detailed GIS data on the U.S. rail network published by the Bureau of Trans-
portation Statistics (BTS). I apply a graph algorithm to find the shortest path along the
rail network connecting each coal-producing county to each power plant destination.24

Then, I calculate the proportion of each shortest route owned or operated by each of the
7 Class I rail carriers, and assign a “dominant” (modal) carrier to each route. BTS also
reports the average traffic density of rail lines, which I integrate over the full length of
each route as a proxy for rail network congestion. To control for time-series variation in
shipping costs, I use the Association of American Railroads’ (AAR) monthly fuel price
index, which compiles survey data on actual diesel prices paid by railroad operators.25 I
also calculate each plant’s proximity to a navigable river, Great Lake, or coastline. This
allows me to identify the subset of plants with the option to receive waterborne coal
deliveries.

22Beginning in the late 1990s, electricity market restructuring forced many vertically integrated utilities
to sell their coal plants. Most of these divestments were in just four states (Pennsylvania, Illinois, Ohio,
and New York), and the vast majority occurred before the start of the fracking boom. Previous research
has focused directly on the effects of coal plant divestment (Cicala (2015); Chan et al. (2017)), and these
studies have obtained non-disclosure agreements with EIA to unmask prices for non-utility plants.

23Most coal plants comprise multiple generating units (or boilers), each with different operating con-
straints and variable costs.

24Hughes (2011) applies a similar algorithm to calculate the shortest rail distance, and finds that GIS-
derived shortest distances closely approximate (yet slightly understate) actual rail shipping distances.
Appendix A.3 describes this shortest-distance algorithm in detail.

25Diesel purchases represent roughly half of railroads’ total variable transportation costs.
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1.4.2 Defining Rail Captiveness

I treat each power plant’s location on the rail network as pre-determined. Plant geographic
locations are obviously fixed, and I exclude the few plants constructed during my 2002–
2015 sample period. More importantly, the rail network was largely static throughout
this period, with very few changes in the ownership or trackage rights of individual rail
lines.26 This means that each coal plant has faced the same set of potential rail carriers.

I partition plants into two time-invariant groups, “captive” and “non-captive”, based on
their locations on the rail network and the counties from which they purchase coal. I define
the “captive” group as plants that either (i) become unconnected from the rail network
after removing any single Class I carrier, or (ii) become unconnected from all observed
trading partners after removing the dominant carrier along each origin-destination route.
For example, consider a plant that only purchases coal from two counties in Wyoming. I
classify this plant as captive if a single Class I carrier controls all terminal nodes within
a 7-mile radius. This plant is also captive if, after removing the dominant carrier on its
shortest route to each Wyoming county, the new shortest routes both increase by over 300
miles.27

1.5 Empirical Strategy
The goal of my empirical analysis is to estimate how coal-by-rail markups vary across
heterogeneous power plants. First, I estimate how markup levels vary across captive vs.
non-captive plants, using a nearest-neighbor matching strategy. Then, I estimate how gas
price shocks cause markups to change differentially across two sources of heterogeneity:
(i) variation in market power, and (ii) variation in plants’ sensitivity to competition from
natural gas generation. These difference-in-differences estimates combine data on plants’
transportation options with plant-specific coal demand estimates, using the comparative
static dµ

dZ
from my oligopoly model as a guide.

1.5.1 Matching Captive vs. Non-Captive Plants

Rail captiveness is not randomly assigned, and we might expect captive and non-captive
plants to differ systematically. Because captiveness depends on geography, plants of each
group might be spatially concentrated and burn similar types of coal, have similar op-
erating characteristics, or face similar market conditions. Any observed or unobserved
differences that are correlated with rail markups would lead to biased estimates of the
markup differential between captive and non-captive groups.

26The last merger between Class I carriers occurred in 1999. 99.3 percent of Class I track mileage
maintained constant ownership since 2006, the earliest year of available BTS data.

27Each of these thresholds is quite conservative. 7 miles is the 95th percentile of plants’ distance to the
closest rail node. A 300-mile increase in distance implies a 20 percent increase over the median delivered
coal price. Appendix A.3 discusses my choice of thresholds, while Appendix A.5 reports sensitivity
analysis.
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Figure 1.5.4: Nearest Neighbor Matching

Notes: This map plots the location of all 324 utility-owned coal power plants in the full 2002–2015 sample.
Rail captive plants are in navy and non-captive plants are in light blue; plants in the matched sample
are filled, while unmatched plants are hollow. Match criteria: up to k nearest neighbors (k = 3), with
a maximum distance of 200 miles; exact matches on coal rank; and removing non-utility and non-rail
plants.

To address this identification challenge, I apply a nearest-neighbor matching strat-
egy in the tradition of Heckman, Ichimura, and Todd (1997). I match each plant in the
“captive” group to k plants in the “non-captive” group with the closest geographic prox-
imity, with a maximum distance of 200 miles between matched plants. I also force exact
matches on plants’ preferred coal type from the pre-fracking period (2002–2006). I omit
plants that rely exclusively on non-rail shipping modes (i.e. barges and trucks), and plants
that are not utility-owned (for which I do not observe coal price data). I assign nearest-
neighbor weights as the inverse of the number of matches. For example, if a non-captive
plant is one of 3 matches for captive plant A and one of 2 matches for captive plant B,
it receives a weight of 1

3
+ 1

2
= 5

6
. Matched captive plants receive a weight of 1, while

all unmatched plants receive a weight of 0. This ensures that weights sum to twice the
number of matched captive plants.28

28My approach closely resembles that of Cicala (2015), who also imposes a maximum match distance
of 200 miles. He and Lee (2016) similarly match coal plants that sell gypsum byproduct vs. non-gypsum
plants.
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Figure 1.5.4 maps the full sample of captive and non-captive plants. This reveals broad
geographic overlap, except for certain regions where plants tend to be either only captive
(i.e. the western Great Plains) or only non-captive (i.e. Michigan). This map also shows
the outcome of my matching algorithm with k = 3 nearest neighbors. Matched plants
tend to be located near multiple plants of the opposite group. While I allow matches up
to 200 miles apart, most matched plants have a nearest neighbor within 100 miles.29

Table 1.5.1 presents summary statistics for both groups of plants from 2002–2006,
including plant and coal characteristics. In the full sample, captive plants systematically
purchase more low sulfur, sub-bituminous coal, and are more likely to participate in
wholesale electricity markets. However, nearest-neighbor weights adjust the distributions
of both captive and non-captive plants such that they are no longer statistically different.
While geographic proximity alone does not ensure that matched non-captive plants can
serve as plausible controls, distance-based matching yields covariate balance across a wide
range of observables.

1.5.2 Markup Levels

I begin by estimating differences in markups between captive and non-captive plants. I
estimate the following OLS regression, which is analogous to the markup expression I
derive in Equation (1.2):

(1.5) Pojms = τDj + βCCojms + S(Tojms ; βT ) + βXXjm + ηo + δm + εojms

Pojms is the average delivered price of coal, for shipment s from county o to plant j in
month m. Dj is an indicator for rail captiveness, and the coefficient τ estimates the
average differential markup faced by captive plants, relative to non-captive plants. Since
I do not directly observe coal markups, I use price as an outcome variable and control for
shipment-level variation in both commodity value and shipping costs (i.e. Co + S(Toj) in
Equation (1.2)). I also include nearest-neighbor weights and plant-specific controls (Xjm),
in the style of a doubly robust estimator (Wooldridge (2007)). After controlling for both
county fixed effects (ηo) and month-of-sample fixed effects (δm), the remaining variation
in Pojms is close to the variation I would use in the ideal experiment: comparing the price
of two identical coal shipments to two otherwise identical coal plants, where only one
plant is rail captive.

The matrix Cojms controls for determinants of commodity value, including average
heat, sulfur, and ash content; coal rank; and the average annual mine-mouth price for
coal produced in county o. Cojms also includes dummies for spot market transactions
and contracts expiring within 2 years, since plants pay higher prices for (longer) contracts
that minimize the risk of supply disruptions.30 The matrix Tojms controls for the two

29Appendix A.5.1 reports sensitivity analysis on the number of matches (k) and maximum match
distance.

30Wolak (1996) finds that coal plants simultaneously purchase on long-term contracts and the spot
market, even as contract purchases tend to have higher delivered prices. Jha (2017) estimates that the
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Table 1.5.1: Summary Statistics – Captive vs. Non-Captive Coal Plants (2002–2006)
Full sample Matched sample (k = 3)

A. Plant characteristics Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Total plant capacity (MW) 908.19 865.73 42.46 900.89 940.81 −39.92
(780.72) (742.77) [0.57] (69.32) (92.86) [0.73]

Coal-fired capacity (MW) 806.13 760.84 45.29 815.64 822.25 −6.61
(738.72) (703.91) [0.52] (66.58) (89.73) [0.95]

Number of coal units 2.36 2.62 −0.26 2.59 2.60 −0.01
(1.32) (1.64) [0.08]∗ (0.15) (0.15) [0.96]

Coal unit vintage (year) 1968.85 1962.88 5.97 1966.25 1962.46 3.79
(13.90) (13.34) [0.00]∗∗∗ (1.39) (1.41) [0.06]∗

Annual capacity factor 0.63 0.60 0.03 0.63 0.63 −0.00
(0.17) (0.17) [0.04]∗∗ (0.01) (0.01) [0.93]

Heat rate (MMBTU/MWh) 11.09 11.06 0.03 10.97 10.73 0.24
(1.40) (1.52) [0.86] (0.14) (0.13) [0.20]

Scrubber installed 0.36 0.29 0.07 0.28 0.28 −0.00
(0.48) (0.45) [0.12] (0.05) (0.06) [0.95]

Market participant 0.49 0.71 −0.22 0.46 0.50 −0.04
(0.50) (0.46) [0.00]∗∗∗ (0.05) (0.06) [0.62]

Full sample Matched sample (k = 3)

B. Coal deliveries Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Deliveries (million MMBTU/year) 48.82 44.00 4.82 47.44 44.96 2.48
(47.90) (43.70) [0.29] (4.10) (5.19) [0.71]

Sulfur content (lbs/MMBTU) 0.87 1.02 −0.15 0.79 0.85 −0.05
(0.61) (0.79) [0.03]∗∗ (0.06) (0.07) [0.56]

Ash content (lbs/MMBTU) 8.46 8.96 −0.50 8.08 7.94 0.14
(4.21) (8.24) [0.46] (0.37) (0.42) [0.80]

Share spot market 0.19 0.19 −0.00 0.18 0.16 0.02
(0.29) (0.25) [0.87] (0.03) (0.02) [0.65]

Share contracts expiring ≤ 2 years 0.22 0.24 −0.01 0.19 0.19 −0.00
(0.25) (0.26) [0.61] (0.02) (0.02) [0.97]

Share sub-bituminous 0.41 0.31 0.10 0.43 0.41 0.02
(0.47) (0.42) [0.03]∗∗ (0.05) (0.06) [0.80]

Average rail distance (miles) 554.91 620.34 −65.43 565.67 583.36 −17.69
(385.90) (417.90) [0.12] (40.37) (42.48) [0.76]

Full sample Matched sample (k = 3)

C. Number of plants Rail
Captive

Not Rail
Captive Total Rail

Captive
Not Rail
Captive Total

Preferred coal rank: bituminous 94 149 243 49 59 108
Preferred coal rank: sub-bituminous 77 76 153 36 36 72
Non-rail plants 17 14 31 0 0 0
Utility plants 148 176 324 87 96 183
Total plants 190 240 430 87 96 183

Notes: This table compares coal plants captive to a single rail carrier to non-captive plants. The left three
columns include all CEMS electric power plants with at least 1 coal generating unit in 2002–2015, and with
at least 1 reported coal delivery in both 2002–2006 and 2007–2015. The right three columns are weighted by
nearest-neighbor matches, with unmatched plants receiving weight 0, matched captive plants receiving weight 1,
and matched non-captive plants weighted by the inverse of the number of matches. Matching criteria: up to k
nearest neighbors (k = 3), with a maximum distance of 200 miles; exact matches on preferred coal rank; and
removing non-utility and non-rail plants. Standard deviations are in parentheses, and p-values [in brackets] are
clustered at the plant level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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primary factors affecting the cost of transporting coal: the shortest rail distance between
coal county o and plant j, and the average diesel price paid by rail carriers in month
m. Tojms also includes the log of shipment size, as marginal freight costs are likely
decreasing in tons shipped. Finally, Tojms includes the proportion of the shortest oj
route on rail lines with high traffic density, to allow for higher costs along more congested
routes. The function S( · ) flexibly models shipping costs as the four-way interaction of
the components of Tojms.31 The matrix Xjm controls for both predetermined and time-
varying plant characteristics, including each of the variables in panel A of Table 1.5.1. I
cluster standard errors at the plant level, which allows for arbitrary within-plant serial
correlation. In order to adjust the distribution of captive vs. non-captive plants, while
also inflating each observation by the quantity of coal transacted, I weight by the product
of the nearest-neighbor weights and shipment size.32

To interpret τ̂ as causal, Dj must be uncorrelated with plant unobservables, after
nearest-neighbor matching and conditioning on observable characteristics in Xjm. Cap-
tiveness is geographically predetermined, and 85 percent of matched plants predate the
1980 Staggers Act, which effectively legalized rail price discrimination. These plants likely
could not have strategically influenced their degree of captiveness. It is also unlikely that
coal plant unobservables impacted railroads’ decisions to consolidate and increase market
power, given that individual coal plants are small relative to the rail network. Spuri-
ous correlations could violate this identifying assumption if, for example, captive plants
tended to have less sophisticated managers. As such a violation is unlikely, I interpret τ̂
as the causal effect of rail captiveness on markups. My subsequent results do not hinge
on this interpretation.

1.5.3 Coal Demand Estimation

My theoretical framework illustrates how changes in markups likely depend on coal plants’
sensitivity to the natural gas price. In order to account for this additional source of
variation, I estimate plant-specific coal demand curves. In most settings with detailed data
on production functions, this demand would follow from applying the Envelope Theorem
to the firm’s profit function at different factor prices, and inverting its production function
to solve for the corresponding input quantity. However, four features of electricity markets
make this approach infeasible for deriving coal demand.

First, regulated coal plants do not behave as short-run profit-maximizers; their prof-
its are calibrated to a fixed rate-of-return, and they are not the residual claimants on

average regulated coal plant is willing to trade a $1.66 increase in expected delivered coal price for a $1.00
decrease in the standard deviation of delivered coal price.

31Appendix A.5 demonstrates that Equation (1.5) is not sensitive to the components of Cojms and
Tojms, which supports my interpretation of τ̂ as an average differential markup. Misspecification of these
cost controls would mean that τ̂ might confound markups and cost differences.

32Observations in EIA’s coal delivery data vary substantially by size, and this enables me to estimate
the differential markup for the average ton of coal shipped, giving each ton of coal equal weight. Equation
(1.5) also includes the log of shipment size as a linear control, as part of Tojms.
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marginal costs of coal purchases or marginal revenues from electricity production. Second,
for plants that do not participate in wholesale electricity markets, production decisions
depend on complex engineering algorithms designed to balance the electricity grid; such
algorithms may not define a marginal electricity price. Third, it would be extremely dif-
ficult to characterize the spatial and temporal constraints of the grid, where supply must
respond to instantaneous changes in electricity demand, subject to available transmis-
sion capacity. Fourth, coal plants face their own dynamic operating constraints; delayed
startup/shutdown decisions, ramping constraints, and maintenance outages would imply
a unique state-dependent objective function for each plant.33

For these reasons, I estimate coal demand using a semi-parametric policy function
approach, following Davis and Hausman (2016).34 I predict electricity generation con-
ditional on market conditions and fuel prices, allowing me to infer plant-specific coal
demand curves (as in Figure 1.3.3). For each coal generating unit, I estimate the follow-
ing time series regression, where CFuh is unit u’s capacity factor (i.e. generation divided
by capacity) in hour h:

(1.6) CFuh =
∑
b

αub1[Guh ∈ b] +
∑
b

γub1[Guh ∈ b] · CRud + ζuCRud + ξuGuh + ωuh

Each unit-specific regression predicts unit u’s generation conditional on aggregate fossil
electricity generation in u’s market region (Guh, in discrete bins b), the daily ratio of u’s
marginal costs relative to the marginal costs of gas generators (CRud), and a matrix of
controls (Guh).35

After estimating Equation (1.6) for each unit, I solve each fitted model in terms of
the coal price (a component of CRud), and derive the counterfactual prices for which
ĈF uh = 0.5. These are the predicted coal prices at which unit u would have been exactly
marginal in electricity supply, in each hour h. I integrate the distribution of counterfactual
coal prices across all hours in each month and across each of plant j’s units, transforming

33A large body of research addresses each of these issues. Fowlie (2010) finds that rate-of-return
regulation distorts coal plants’ incentives to adopt least-cost pollution abatement strategies, while Cicala
(2015) finds that regulated plants do not minimize coal purchase costs. Cicala (2017) demonstrates that
the lack of a marginal electricity price signal leads to large allocative inefficiencies under non-market
dispatch. Borenstein, Bushnell, and Stoft (2000); and Davis and Hausman (2016) demonstrate how
transmission constraints directly impact electricity market outcomes. Mansur (2008) and Reguant (2014)
focus on power plants’ dynamic production constraints and non-convex operating costs.

34I use the term “policy function” because I treat coal demand estimation as a prediction problem,
rather than estimating an optimized function of price or quantity.

35CFuh ∈ [0, 1] by construction, and CFuh = 0 if unit u does not operate in hour h. Guh sums hourly
CEMS generation across all units in u’s market region. The cost ratio CRud divides unit u’s marginal
cost (including coal price and marginal environmental costs) by the average marginal cost of gas units
in the same PCA. Generation bins b allow for a flexible relationship between CFuh, Guh, and CRud.
Guh includes the daily sum, maximum, minimum, and standard deviation of Guh; the daily maximum
temperature; hour-of-day, quarter-of-year, and year-of-sample fixed effects; and year dummies interacted
with the daily sum of Guh. Appendix A.4 describes my demand estimation procedure in further detail,
and conducts sensitivity analysis on Equation (1.6).



21

Figure 1.5.5: Coal Demand Estimation Example
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Notes: This figure plots two estimated coal demand curves for a representative plant j. The solid curve
shows plant j’s monthly coal demand for May 2006, when the gas price was high; the dashed curve shows
its demand for May 2012, when the gas price was low. I estimate how a change in gas price affects the
level (λ̂0j) and slope (λ̂1j) of plant j’s coal demand. In this simplified example, a decrease in gas price
decreases the level of inverse demand (i.e., λ̂0j > 0 at Q0) and makes its slope less negative (i.e., λ̂1j < 0

at Q1). The third parameter λ̂2j estimates the average (local) curvature of coal demand, which is concave
(i.e., λ̂2j > 0) at Q2. My algorithm estimates all three parameters at plant j’s observed coal quantities,
using estimated demand curves and gas prices for all months. Appendix A.4.1 describes this algorithm
in further detail.
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unit-specific capacity factors into their corresponding coal quantities. This yields price-
quantity mappings, or coal demand curves for each plant-month. Finally, I use monthly
gas price variation to estimate three parameters that map directly to my comparative
static in Equation (1.3):

(1.7) λ̂0j ∼
∂Poj
∂Zj

λ̂1j ∼
∂2Poj

∂Qoj∂Zj
Qj λ̂2j

θoj
Noj

∼ EDoj

λ̂0j and λ̂1j estimate how gas price affects the level and slope of plant j’s inverse demand,
respectively. λ̂2j estimates the average curvature of plant j’s inverse demand, where EDoj

is the elasticity of the slope of inverse demand (as defined in Equation (1.4)). Figure
1.5.5 describes these parameters graphically, using two estimated demand curves from
one plant.

Figure 1.5.6 presents the estimated distributions of these parameters, separately for
captive and non-captive plants. The distribution of λ̂0j has a median of 0.46, which
implies that for a $1 per MMBTU decrease in gas prices, coal prices would need to fall by
$0.46 per MMBTU to maintain the median plant’s baseline coal consumption.36 These
estimates reveal considerable heterogeneity across coal plants, with λ̂0j ∈ [0, 1] for 86
percent of plants, implying reasonable elasticities of substitution between coal and gas.
λ̂1j < 0 for 88 percent of plants, implying that low gas prices have caused most plants’
inverse coal demand to become less steep. As gas prices have fallen, most coal plants
have become more marginal in electricity markets, which has made them more coal-price-
elastic. Finally, λ̂2j > 0 for 67 percent of plants, suggesting that coal demand tends to be
(locally) concave.

Importantly, λ̂0j, λ̂1j, and λ̂2j are the outcome of a linear prediction algorithm that
imposes no assumptions on plant j’s objective function. I do assume that plants with
multiple generating units operate these units independently, that Equation (1.6) is not
misspecified, and that counterfactual coal consumption in each hour is either zero or at
maximum capacity. Counterfactual coal prices also hold the rest of the electricity market
constant, including the coal prices faced by other plants.37 This means that my demand
estimates could not predict the effects of a common shock to coal commodity prices.
However, they can predict variation in plant j’s idiosyncratic opportunity cost of coal —
the very type of price changes that occur when a rail carrier reoptimizes plant-specific
markups.

36Unlike my regressions on coal shipments where the rail carrier’s relevant price is in dollars per ton,
these demand parameters use dollars per MMBTU, in order to denominate coal in terms of its energy
content (i.e. its value to power plants as a fuel input). BTU content varies substantially across coal
shipments, with a mean (standard deviation) of 19.7 (3.4) MMBTU/ton in my estimation sample.

37In reality, rail carriers may jointly reoptimize markups across multiple coal plants selling into the
same electricity market. If plants j markups move in the same direction as other plants’ markups, then
my estimates for plant j’s coal demand may be too large (small) at low (high) coal prices.



23

Figure 1.5.6: Coal Demand Estimation Results
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Notes: These histograms report the distributions of estimated demand parameters (λ̂0j , λ̂1j , λ̂2j from
Equation (1.7)), and the empirical approximation of the comparative static dµ

dZ from Equation (1.8). Each
histogram includes one observation per plant and applies nearest neighbor weights (k = 3). Matching
criteria: up to k nearest neighbors, with a maximum distance of 200 miles; exact matches on coal rank;
and removing non-utility and non-rail plants. The outermost bins are bottom-coded and top-coded, for
ease of presentation. These outliers likely reflect idiosyncratic factors (other than the gas price) that have
affected coal demand. Each histogram includes 86 captive plants and 96 matched non-captive plants.



24

1.5.4 Markup Changes

Changes in plant j’s markups will depend on both its coal demand and the extent to which
it faces market power in coal shipping. Recall the comparative static from Equation (1.3):

dµoj
dZj

=

∂Poj
∂Zj

(2 + EDoj
−Noj)−

∂2Poj
∂Qoj∂Zj

Qojθoj

2 + EDoj

Using this theory as a guide, I can construct an empirical approximation for the change
in plant j’s average markup, µj, that should result from a change the gas price, Zj:

⇒ Mj ≡
λ̂0j

[
Dj + λ̂2j(1−Wj)(2−Dj)

−1
]
− λ̂1j(1−Wj)

2 + λ̂2j(1−Wj)(2−Dj)−1
(1.8)

This variableMj combines my estimated demand parameters (λ̂0j, λ̂1j, and λ̂2j) with data
on plant j’s transport market structure. I can translate the captiveness indicator Dj into
a binary version of Noj, where N̂j = 2−Dj: for plants captive to a single carrier, N̂j = 1;
for non-captive plants, N̂j = 2.38 Likewise, the option to receive waterborne deliveries
can serve as a (crude) empirical proxy for the conduct parameter θ̂j = 1−Wj, where Wj

is an indicator of water access. For plants without a water option, θ̂j = 1, consistent with
Cournot oligopoly; for plants with the ability to receive barge deliveries that bypass rail
carriers, θ̂j = 0, consistent with a competitive fringe.

The bottom-right panel in Figure 1.5.6 reports the distributions of Mj, separately for
captive and non-captive plants. This underscores two potentially important shortcom-
ings of a difference-in-differences strategy that would split plants based on captiveness
alone. First, Mj varies considerably across captive plants, with a median of 0.43 and an
interquartile range of [0.23, 0.70]. This suggests that a captive plant at the 75th percentile
of this distribution should have experienced three times larger changes in markups, com-
pared to a captive plant at the 25th percentile. The binary indicator Dj = 1 obscures
this key heterogeneity.39 Second, while the distribution of Mj for non-captive plants has
a large mass at 0, Mj is positive for 43 percent of non-captive plants. In fact, for many
non-captive plants, Mj is larger than for their captive counterparts, implying that Wj,
λ̂0j, λ̂1j, and λ̂2j combine to outweigh Dj = 0. This suggests that non-captive plants
likely also experienced decreases in markups as gas prices fell, even though these plants
face less rail market power.

38Given that the rail network is close to a duopoly in both the western and eastern U.S., I assign
N̂j = 2 for non-captive plants. Using this formulation, EDj

∼ λ̂2j(1−Wj)(2−Dj)
−1.

39In the absence of a theory model, one might interact Dj with the gas price to estimate a reduced-
form difference-in-differences version of Equation (1.5). Appendix A.5.3 reports results from this model,
which yields imprecise point estimates close to zero. This is unsurprising, given that these regressions
rely on captiveness alone, while ignoring heterogeneity in coal demand.
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UsingMj as cross-sectional variation, I estimate markup changes with a lagged difference-
in-differences model:

Pojms = τMj · ZHH
m−L +

L−1∑
`=0

τ`Mj ·∆ZHH
m−` . . .

+ βCCojms + S(Tojms ; βT ) + βXXjm + ηoj + δm + εojms(1.9)

ZHH
m is the average Henry Hub spot price in month m, and ∆ZHH

m = ZHH
m − ZHH

m−1. The
coefficient of interest τ captures the cumulative effect of a $1/MMBTU change in gas
price, over L = 36 months. Each lagged coefficient τ` captures the cumulative effect after
`months, for a plant withMj = 1 relative to a plant withMj = 0. I accommodate delayed
effects of gas prices on markups because most coal deliveries occur on long-term contracts,
which may be slow to adjust to changing market conditions.40 Equation (1.9) includes
origin-destination fixed effects ηoj, which control for the average markup of all shipments
from county o to plant j. As in Equation (1.5), Cojms and S(Tojms) control for the costs
of each coal shipment, while Xjm controls for time-varying plant characteristics. I cluster
standard errors by plant, and weight observations by the product of nearest-neighbor
weights and shipment size.

I interpret τ̂ as the causal effect of gas price changes on coal-by-rail markups. The
key identifying assumption is that gas price changes are uncorrelated with other factors
affecting the differential trajectory of coal markups, after controlling for time-varying
plant characteristics in Xjm. Technological advances of the fracking boom were unrelated
to coal mining costs; the Henry Hub spot price is also uncorrelated with U.S. diesel prices,
which drive coal shipping costs.41 A violation of parallel trends would occur if a coal plant
unobservable that is correlated with coal prices (e.g., how electricity regulators monitor
plants’ coal purchase costs) changed differentially for plants with high vs. low Mj.42

40It is common to allow for delayed pass-through, in settings where price changes may not be instan-
taneous. Pouliot, Smith, and Stock (2017) use the same differenced lag structure to estimate delayed
pass-through in the market for renewable fuel credits. This is algebraically equivalent to the standard
(non-differenced) distributed lag model,

∑L
`=0 β`Dj ·ZHHm−`, where

∑L
`=0 β` = τ . Coal prices for long-term

contracts should be quite sticky, even though many coal contracts include flexible price-adjustment pro-
visions that enable rail carriers to partially re-optimize markups before these contracts expire (Joskow
(1988); Kosnik and Lange (2011)). I estimate Equation (1.9) separately for contract and spot market
shipments.

41The fracking boom may have impacted local labor markets in certain coal mining regions, and oil-
by-rail shipping increased congestion in certain portions of the rail network. However, my results are
largely consistent across geographic regions, making these violations of parallel trends unlikely. During
2002–2015, the correlation between Henry Hub and U.S. average monthly diesel prices was −0.01. If
these two price series were correlated, I would worry about multicollinearity between ZHHm and diesel
prices in Tojms.

42Christian and Barrett (2017) show that even spurious time trends can induce bias for a difference-
in-differences treatment variable that interacts a cross-sectional characteristic with an exogenous time
series. In Appendix A.5.4.2, I show that my data exhibit parallel pre-trends in Mj . I also use interacted
time fixed effects to help rule out potential time-varying confounders.
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1.6 Results

1.6.1 Markup Levels

Table 1.6.2 reports results from estimating Equation (1.5), which demonstrate that captive
plants indeed face higher markups than their matched non-captive counterparts. Point
estimates of $2–3 translate to average differential markups of 4–7 percent, on an average
delivered price of $37–40 per ton for non-captive plants. The implies that markups for
captive plants contribute 13–24 percent of the spatial gap between mine-mouth prices
(averaging $22–24 per ton) and delivered prices. Given that the indicator Dj applies
an arbitrary threshold to define captiveness, and non-captive plants likely face nonzero
markups, these estimated differentials likely understate the average markup level faced
by captive plants.

These results are robust to the number of nearest-neighbor matches, which I vary
from k = 1 to k = 5. I construct my estimation sample to exclude the (very few)
coal plants constructed after 2001, but many plants retired during my 2002–2015 sample
period. If these plants’ exit decisions were correlated with their delivered coal prices, which
affected their ability to compete with low-cost natural gas, endogenous exit could bias
my estimates in an unbalanced panel. Columns (4)–(6) in Table 1.6.2 restrict the sample
to plants receiving at least 1 delivery in each year.43 While this removes 31 percent of
plants, point estimates remain statistically significant and increase slightly in magnitude.

Table 1.6.3 interacts rail captiveness with another pre-determined plant characteristic
likely to affect markups: an indicator for access to waterborne shipments. These results
reveal differential markups of $2–5 per ton for captive plants with no coal-by-barge option,
relative to plants with the most competitive shipping regimes (i.e. the omitted group with
multiple rail carriers and barges). While these point estimates are more sensitive to the
number of nearest neighbors and to balancing the panel, they show that the markup
distortion may be as large as $4–5 per ton, or 11–14 percent of the average delivered
coal price. This implies markups of up to 30–41 above rail carriers’ marginal shipping
costs. My point estimates are consistent with the magnitudes of Busse and Keohane
(2007), who estimate differential markups of $4 per ton for coal shipped from Wyoming
in the late 1990s. My analysis demonstrates that coal-by-rail price discrimination, due
to geographic variation in market power, has persisted through recent years and across
multiple coal-producing regions.44

43This is not a fully balanced panel. Coal shipments are lumpy, and many active plants do not report
deliveries in each month. I “balance” the panel to mitigate any confounding effects from plant exit, not
to take a stand on the timing of coal deliveries. Olley and Pakes (1996) demonstrate that bias due to
endogenous exit may remain even after balancing the panel, if exit is correlated with unobserved firm
productivity. This is not a concern in my setting, as I directly control for each plant’s productivity (i.e.
its heat rate).

44My estimates are consistent if I restrict the sample by origin or destination region. Appendix A.5.2
reports these results, along with additional sensitivity analyses.
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Table 1.6.2: Markup Levels – Captive vs. Non-Captive Coal Plants

(1) (2) (3) (4) (5) (6)

1[Captive]j 2.190∗∗∗ 1.821∗∗∗ 1.637∗∗∗ 2.783∗∗∗ 2.301∗∗∗ 1.995∗∗∗

(0.748) (0.612) (0.579) (0.806) (0.655) (0.607)

k nearest neighbors 1 3 5 1 3 5

Balanced panel Yes Yes Yes
Coal county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 40.16 37.67 38.96 39.88 36.85 38.04
Plants 141 183 195 97 127 134
Captive plants 87 87 87 61 61 61
Plant-county-months 33,114 44,797 48,227 27,522 37,168 39,732
Observations 66,552 88,384 94,275 58,192 77,115 81,948

Notes: Each regression estimates Equation (1.5) at the coal shipment level, with delivered coal price
($ per short ton) as the dependent variable. I control for shipping costs using the 4-way interaction
of rail distance, diesel price, tons shipped, and rail traffic density. Plant- and delivery-specific controls
are listed in panels A and B of Table 1.5.1, respectively. I also control for the average annual coal price
from the originating county, each plant’s distance to its closest rail terminal, and baseload natural gas
capacity in each plant’s PCA. Matching criteria: up to k nearest neighbors within a 200-mile radius;
exact matches on coal rank; and removing non-utility and non-rail plants. Regressions apply nearest-
neighbor weights, and also weight each observation by the quantity of coal transacted. Balanced panels
include plants receiving at least 1 shipment in each sample year (2002–2015). I report means of the
dependent variable for non-captive plants only. Standard errors are clustered by plant. Significance:
*** p < 0.01, ** p < 0.05, * p < 0.10.
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1.6.2 Markup Changes

Having established that markup levels vary across coal plants, I now estimate heteroge-
neous changes in markups due to changes in the gas price. I identify markup changes
using cross-sectional variation in Mj, a predictor of how railroads reoptimize markups
due to variation in both transport market power and plant-specific coal demand. Table
1.6.4 reports cumulative effects across 36 months, from estimating Equation (1.9). I find
positive, statistically significant point estimates, which are qualitatively consistent with
the predictions of my oligopoly model. As gas prices fell during the fracking boom, rail
carriers reoptimized markups heterogeneously across plants, causing markups to decrease
more for plants with greater Mj.

I estimate separate regressions for long-term contracts vs. spot-market shipments, as
the timing of markup changes will likely differ by transaction type. Rail carriers should be
able to reoptimize spot markups more quickly than contract markups; however, markup
changes for relatively less flexible contracts should be more persistent, yielding larger
cumulative effects. Figure 1.6.7 plots lagged coefficients τ̂` for each regression in Table
1.6.4, where each coefficient represents the cumulative effect through ` months. This
reveals that contract markups begin to adjust 6 months after a gas price shock, with
delayed effects that accumulate until month 18 and persist through month 36. By contrast,
the effects for spot market shipments attenuate and lose significance after 36 months. This
likely reflects a difference in transaction costs, as bilateral contract negotiations facilitate
greater opportunity for price discrimination than posted spot shipping rates.45 Table
1.6.5 reveals that differential changes in markups were more pronounced for bituminous
coal and for plants in the South and East, even though my results remain statistically
significant across coal ranks and plant regions.

Table 1.6.4 implies that for a $1/MMBTU decrease in gas price, markups decreased
by $1.19–1.57/ton for a plant with Mj = 1, compared to plants with Mj = 0. However,
a literal interpretation of Mj = 1 would suggest an effect size of $1/MMBTU of coal,
equivalent to roughly $20/ton of coal.46 This mismatch in magnitudes underscores the
shortcomings of my oligopoly model, which does not account for railroad regulation or
the threat of arbitrage. Suppose that binding regulation limited the maximum markup to
$5/ton, but unconstrained markups would have been $14/ton before the fracking boom
and $4/ton after the fracking boom. In this case, I would only observe a $1/ton decrease
in markups, rather than the $10/ton decrease predicted by an unconstrained model. This
explains why Mj does not generate accurate quantitative predictions of how markups
change.47 However, my results in Table 1.6.4 demonstrate that Mj can generate accu-

45Railroads likely invest more resources in reoptimizing less flexible, longer-lived contracts. Whereas
pooled and contract results are robust to alternative nearest-neighbor weights, fixed effects, and controls,
spot market results are not. Appendix A.5.4 reports these sensitivities, and additional robustness checks.

46Recall that Mj is in units of $/MMBTU of coal, but the dependent variable in Tables 1.6.4–1.6.6
is the coal price in $/ton of coal. BTU content varies across coal shipments, with an average of 19.7
MMBTU/ton.

47My model also assumes that markups are independent across plants. If rail carriers jointly optimize
markups across multiple markets, this would attenuate my estimates. Mj linearly extrapolates to a finite
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Table 1.6.4: Markup Changes – Demand Parameters Interacted with Gas Price

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

( ̂∆Markup)j×(Gas Price)m 1.411∗∗∗ 1.187∗∗∗ 1.572∗∗∗ 1.533∗∗∗ 1.624 0.488
(0.405) (0.408) (0.295) (0.287) (1.117) (0.923)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 33.27 34.20 32.07 33.04 41.76 41.39
Plants 94 124 92 122 85 115
Plant-county-months 26,060 35,651 22,000 29,806 6,796 9,630
Observations 56,219 75,089 44,651 59,178 11,487 15,797

Notes: Each regression estimates Equation (1.9) at the coal shipment level, with delivered coal price
($ per ton) as the dependent variable. The first 2 columns pool long-term contracts and spot market
shipments, while the middle and right columns split the sample by transaction type. The DD treatment
variable interacts the empirical approximation Mj of the comparative static dµ

dZ (from Equation (1.8))
with the Henry Hub average monthly spot price for natural gas, using a lagged-differenced model with
L = 36 lags. This table reports estimates for τ̂ , or the cumulative effects over L = 36 months. Figure
1.6.7 plots each lagged coefficient τ̂`, which reports the cumulative effect through ` months. Mj is in
units of $ per MMBTU of coal, and BTU content ranges from 14–30 MMBTU/ton. I control for shipping
costs using the 4-way interaction of rail distance, diesel price, tons shipped, and rail traffic density. Plant-
and delivery-specific controls are listed in panels A and B of Table 1.5.1, respectively. I also control for
the average annual coal price from the originating county, and baseload natural gas capacity in each
plant’s PCA. Matching criteria: up to k nearest neighbors within a 200-mile radius; exact matches on
coal rank; and removing non-utility and non-rail plants. Regressions apply nearest-neighbor weights, and
also weight each observation by the quantity of coal transacted. Balanced panels include plants receiving
at least 1 shipment in each sample year (2002–2015). I report means of the dependent variable for plants
with Mj = 0. Standard errors are clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Figure 1.6.7: Markup Changes – Cumulative Effects
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Notes: This figure plots 36 lag-differenced DD coefficient estimates (τ̂0, . . . , τ̂35) and τ̂ , from 6 separate
regressions of Equation (1.9) with L = 36 lags. Each panel corresponds to a column in Table 1.6.4,
which reports τ̂ only (i.e. the rightmost point in each graph). Each coefficient estimates the interaction
of Mj with the `-month lagged difference in natural gas prices (∆ZHHm−`), such that each dot represents
the cumulative effect through ` months. Whiskers denote 95 percent confidence intervals for each point
estimate, with standard errors clustered by plant. See the notes below Table 1.6.4 for further details on
the estimation.
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Table 1.6.5: Markup Changes – Contract Shipments, Split Samples

Split by Coal Grade Removing Plants in Region

Bituminous Sub-
bituminous West Midwest South/

East
(1) (2) (3) (4) (5)

( ̂∆Markup)j×(Gas Price)m 2.115∗∗∗ 0.921∗∗ 1.461∗∗∗ 1.775∗∗∗ 1.059∗∗∗

(0.305) (0.412) (0.271) (0.242) (0.338)

k nearest neighbors 3 3 3 3 3

Balanced panel Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes
Mean of dep var 48.89 22.02 40.49 30.40 28.98
Plants 76 69 85 65 94
Plant-county-months 18,693 10,910 23,182 17,640 18,872
Observations 31,595 27,215 44,501 35,329 38,614

Notes: Each regression estimates Equation (1.9) at the coal shipment level for contract shipments only,
with delivered coal price ($ per ton) as the dependent variable. Columns (1)–(2) include only shipments of
a given coal grade. I partition all plants into three regions, and Columns (3)–(5) each exclude plants from
a given region. The DD treatment variable interacts the empirical approximation Mj of the comparative
static dµ

dZ (from Equation (1.8)) with the Henry Hub average monthly spot price for natural gas, using a
lagged-differenced model with L = 36 lags. This table reports estimates for τ̂ , or the cumulative effects
over L = 36 months. Mj is in units of $ per MMBTU of coal, and BTU content ranges from 14–30
MMBTU/ton. I control for shipping costs using the 4-way interaction of rail distance, diesel price, tons
shipped, and rail traffic density. Delivery-specific controls are listed in panel B of Table 1.5.1. I omit plant-
specific controls (except for ISO and scrubber indicators), in order to reduce the number of covariates
to less than the number of plant clusters (pooled results in Table 1.6.4 are not sensitive to inclusion of
these controls). I also control for the average annual coal price from the originating county, and baseload
natural gas capacity in each plant’s PCA. Matching criteria: up to k nearest neighbors within a 200-mile
radius; exact matches on coal rank; and removing non-utility and non-rail plants. Regressions apply
nearest-neighbor weights, and also weight each observation by the quantity of coal transacted. Balanced
panels include plants receiving at least 1 shipment in each sample year (2002–2015). I report means of
the dependent variable for plants with Mj = 0. Standard errors are clustered by plant. Significance: ***
p < 0.01, ** p < 0.05, * p < 0.10.
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rate qualitative predictions, by capturing cross-sectional heterogeneity in both transport
market structure and coal demand.

To better capture how magnitudes vary across the full range of coal plants, I discretize
Mj into five indicator variables corresponding to the quintiles of its positive support.48

Table 1.6.6 reports results for quintiles 2–5, revealing magnitudes that increase monoton-
ically in Mj. The omitted category is the 41 percent of plants with Mj ≤ 0.22, most
of which are non-captive and located on navigable waterways. If I assume no markup
changes for these omitted plants, the point estimates in Table 1.6.6 represent the average
change in markups for plants in each quintile.49 I find statistically significant decreases
in contract markups, for the 43 percent of plants in quintiles 3–5 (i.e., Mj > 0.35). For
the 14 percent of plants in quintile 5 (i.e., Mj > 0.70), a $1/MMBTU gas price decrease
caused average markups to fall by $1.05–1.33/ton, and caused contract markups to fall by
$1.34–1.49/ton. Given that gas prices fell by $4/MMBTU during the fracking boom, and
that average markup levels were $2–5/ton, these magnitudes imply that rail carriers have
heterogeneously reoptimized markups, to eliminate most of the market power distortion
for a subset of plants.

My results demonstrate that market power exists in coal transportation, and that
rail carriers strategically reoptimize coal markups in a manner consistent with profit
maximization. Rail market power arises primarily from coal’s geographic specificity, as
the production and consumption of coal are both highly locationally constrained. This
affords rail intermediaries substantial bargaining power, and coal’s low value-to-weight
ratio increases the premium on transportation access. To identify market power, I exploit
price dispersion due to the lack of spatial arbitrage in coal deliveries. While this feature is
likely unique to coal markets, the features that generate market power in coal shipping—
geographic specificity and high freight costs—exist in many other commodity markets
(e.g., Covert and Kellogg (2017) on crude oil; Hortaçsu and Syverson (2007) on cement).

change in gas price, which may overstate markup changes if markups approach their lower bound of zero.
Measurement error in Mj may also attenuate my estimates of τ̂ , and I address this issue in Appendix
A.5.4.3.

48Each “quintile” includes 14–16 percent of plants, because Mj ≤ 0 for 28 percent of plants. Tables
1.6.4–1.6.6 omit 3 plants with extremely low/high Mj (i.e. |Mj |> 2), which almost certainly reflect errors
in estimating these plants’ demand parameters. Appendix A.5.4.3 reports results including these outliers,
and my point estimates attenuate slightly but largely retain statistically significance.

49Non-captive plants with a water delivery option benefit from the most competitive shipping regimes.
These plants likely faced markups close to zero, prior to the fracking boom. Hence, if gas price changes
caused any markup decreases for omitted plants, such changes should have been relatively small.
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Table 1.6.6: Markup Changes – Quantiles of ̂∆Markup

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

1

[
Mj∈(0.22, 0.35]

]
×(GasPrice)m 0.041 −0.026 0.243 0.274 −0.763 −1.269∗∗

(0.206) (0.180) (0.209) (0.175) (0.488) (0.627)

1

[
Mj∈(0.35, 0.52]

]
×(GasPrice)m 0.275 0.142 0.506∗∗ 0.476∗∗ −0.231 −0.940

(0.229) (0.201) (0.236) (0.209) (0.455) (0.578)

1

[
Mj∈(0.52, 0.70]

]
×(GasPrice)m 0.723∗∗∗ 0.561∗∗ 0.743∗∗∗ 0.684∗∗∗ 1.030 0.294

(0.271) (0.241) (0.246) (0.209) (0.825) (0.937)

1

[
Mj∈(0.70, 2.00]

]
×(GasPrice)m 1.334∗∗∗ 1.050∗∗∗ 1.492∗∗∗ 1.341∗∗∗ 1.367 0.098

(0.493) (0.376) (0.466) (0.367) (1.123) (0.981)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 31.46 35.03 30.84 34.88 33.55 35.54
Plants 94 124 92 122 85 115
Plant-county-months 26,060 35,651 22,000 29,806 6,796 9,630
Observations 56,219 75,089 44,651 59,178 11,487 15,797

Notes: Each regression estimates a modified Equation (1.9) at the coal shipment level, with delivered coal
price ($ per ton) as the dependent variable, and L = 36 lags. Instead of interacting the L-month lagged
gas price with a continuousMj to estimate the coefficient of interest τ̂ , I estimate four τ̂ ’s using indicator
variables for quintiles ofMj ’s positive support. The omitted group is the first quintile, plus all plants with
Mj ≤ 0. This table reports the average cumulative change in markups caused by a $1/MMBTU change
in gas price, for plants in a given quintile relative to the omitted group. Lag-differenced coefficients τ̂`
still use a continuous Mj interaction. The first 2 columns include long-term contracts and spot market
shipments, while the middle and right columns split the sample by transaction type. I control for shipping
costs using the 4-way interaction of rail distance, diesel price, tons shipped, and rail traffic density. Plant-
and delivery-specific controls are listed in panels A and B of Table 1.5.1, respectively. I also control for
the average annual coal price from the originating county, and baseload natural gas capacity in each
plant’s PCA. Matching criteria: up to k nearest neighbors within a 200-mile radius; exact matches on
coal rank; and removing non-utility and non-rail plants. Regressions apply nearest-neighbor weights, and
also weight each observation by the quantity of coal transacted. Balanced panels include plants receiving
at least 1 shipment in each sample year (2002–2015). I report means of the dependent variable for the
omitted group of plants, with Mj ≤ 0.22. Standard errors are clustered by plant. Significance: ***
p < 0.01, ** p < 0.05, * p < 0.10.
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1.7 Implications for Climate Policy

1.7.1 Markup Size vs. External Costs of Coal

Given that coal intermediaries exercise market power, a carbon tax has the potential to
restrict aggregate coal consumption below the social optimum. Buchanan (1969) demon-
strates that if a market power distortion is sufficiently large relative to external costs, a
Pigouvian tax could actually reduce welfare. Based on my estimates in Table 1.6.3, I can
reject differential coal markups greater than $7 per ton, relative to the “most-competitive”
omitted category (i.e. plants with multiple rail carriers and a coal-by-barge option). $7
per short ton of coal is roughly equivalent to $2–5 per metric ton of CO2, which is far
below recent social cost of carbon estimates of $50 per metric ton (Interagency Working
Group (2016); Revesz et al. (2017)). Hence, coal markups are an order of magnitude
smaller than the carbon externality.

This means that the welfare gains from Pigouvian taxation would likely dwarf any
welfare loss from exacerbating the market power distortion (echoing Oates and Strassmann
(1984)).50 However, real-world carbon prices typically range from $3–30 per metric ton
of CO2, which is far below estimated climate damages of $50 per metric ton (Carl and
Fedor (2016)). Under such a suboptimally low carbon tax, the presence of coal markups
should increase welfare by internalizing an additional fraction of marginal damages. Even
under a tax equal to marginal climate damages, markups could potentially still increase
welfare by internalizing local air pollution damages from coal combustion (Levy, Baxter,
and Schwartz (2009); Muller, Mendelsohn, and Nordhaus (2011)).

1.7.2 Pass-Through of Implicit Carbon Tax

A negative gas price shock makes coal plants less competitive in electricity supply, and a
tax on CO2 emissions similarly disadvantages coal, the more carbon-intensive fuel. Cullen
and Mansur (2017) argue that under reasonable assumptions, the coal-to-gas price ratio
is a sufficient statistic for CO2 emissions from the electricity sector under a counterfactual
carbon tax. If electricity demand is perfectly inelastic, and only coal or gas generators
can be marginal in electricity supply, then a short-run change in relative fuel prices should
yield the same emissions outcomes as the equivalent carbon tax.51

Using Cullen and Mansur’s framework, a gas price change ∆Z yields the same fuel
cost ratio (CR) as the carbon tax t (suppressing plant j subscripts):

CR =
MCcoal
MCgas

=
P

Z + ∆Z
=
P + t Ecoal
Z + t Egas

(1.10)

50By contrast, the distortion above marginal cost pricing is large relative to pollution externalities in
U.S. retail natural gas (Davis and Muehlegger (2010)), and cement markets (Fowlie, Reguant, and Ryan
(2016)).

51Appendix A.1.2 provides further detail on the assumptions underlying this section, along with deriva-
tions of implied pass-through rates.
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where P is the coal price paid by power plants, MCfuel are marginal costs per MMBTU,
and Efuel are fuel-specific CO2 emissions factors (in metric tons CO2/MMBTU). My
empirical results demonstrate that P is not fixed, and I can rewrite this expression to
allow coal markups (µ) to endogenously respond to ∆Z:

CR =
MCcoal
MCgas

=
P + ∆µ

Z + ∆Z
=
P + ρ tEcoal
Z + t Egas

(1.11)

ρ is the pass-through rate of the implicit tax t. If markups do not change (∆µ = 0), the
cost ratio reflects full pass-through of the carbon tax, or ρ = 1 as in Equation (1.10).
If markups decrease in response to a negative gas price shock (∆Z < 0 causing ∆µ <
0, consistent with Table 1.6.6), then pass-through of t is incomplete, and ρ < 1. By
reoptimizing markups during the fracking boom, rail carriers effectively lowered the coal-
to-gas cost ratio, which led to incomplete pass-through of the negative shock to coal
demand.

I can rearrange Equation (1.11) to translate my point estimates from Table 1.6.6 into
implied tax pass-through rates, setting ∆Z = 1 and using average fuel prices from the
start of the fracking boom. Table 1.7.7 reports pass-through rates for the five quintiles
of Mj, assuming full pass-through (ρj = 1) for the omitted group in Table 1.6.6. Panel
A reveals substantial heterogeneity both across and within plant groups. While most
plants experience full pass-through, the 14 percent of plants with the highest Mj have
pass-through ranging from ρj = 0.42 to ρj = 0.90, with an average rate of ρj = 0.81.
Isolating long-term contracts implies even lower pass-through rates, due to larger changes
in markups for contract shipments. Panel B calculates pass-through rates for a cost
ratio inclusive of marginal environmental costs, to account for marginal costs of pollution
abatement already incurred by coal and gas plants.52 While pre-existing environmental
policies reduce the size of the implicit carbon tax, implied pass-through rates increase only
slightly. To my knowledge, this is the first empirical evidence that predicts heterogeneous
and incomplete pass-through of a carbon tax in either U.S. coal markets or the U.S.
electricity sector.53

My results contribute to a growing body of research finding heterogeneous pass-
through of price-based climate policies. Previous work has shown that variation in mar-
ket structure either across industries (Ganapati, Shapiro, and Walker (2016)), or across
space within an industry (Pouliot, Smith, and Stock (2017)), can generate substantial
heterogeneity in pass-through rates.54 Similarly, I find that heterogeneous pass-through

52For plants covered by SO2, NOx, or CO2 allowance trading regimes, I monetize each generating
unit’s emissions rates using prevailing allowance prices. I also include variable costs of operating pollution
control devices, such as scrubbers.

53Chu, Holladay, and LaRiviere (forthcoming) estimate incomplete pass-through from coal spot prices
to delivered coal prices; the authors caution that their analysis is not predictive of long-term price changes
that would occur under a carbon tax. Kim, Chattopadhyay, and Park (2010) conceptually illustrate how
variation in power plants’ costs may lead to incomplete carbon tax pass-through.

54Ganapati, Shapiro, and Walker (2016) find heterogeneous energy cost pass-through for manufactur-
ing industries under imperfect competition. Pouliot, Smith, and Stock (2017) find lower pass-through
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Table 1.7.7: Heterogeneous Pass-Through of Implied Carbon Tax

Plant Group (Quintile of Mj)
(1) (2) (3) (4) (5)

̂∆Markup (Mj) (−2.00, 0.22] (0.22, 0.35] (0.35, 0.52] (0.52, 0.70] (0.70, 2.00]

Share of plants 0.41 0.16 0.14 0.15 0.14

A. Fuel prices only
ρj , all shipments 1.00 1.00 0.97 0.90 0.81

[1.00, 1.01] [0.91, 0.98] [0.82, 0.94] [0.42, 0.90]
(0.90, 1.11) (0.88, 1.06) (0.82, 0.99) (0.68, 0.94)

ρj , contracts only 1.00 0.93 0.89 0.87 0.75
[0.83, 0.96] [0.71, 0.94] [0.77, 0.92] [0.27, 0.87]
(0.82, 1.03) (0.80, 0.98) (0.80, 0.95) (0.62, 0.88)

B. Fuel + environmental costs
ρj , all shipments 1.00 1.00 0.97 0.91 0.83

[1.00, 1.01] [0.93, 0.99] [0.84, 0.96] [0.51, 0.91]
(0.91, 1.10) (0.89, 1.05) (0.84, 0.99) (0.72, 0.94)

ρj , contracts only 1.00 0.93 0.91 0.89 0.78
[0.85, 0.96] [0.75, 0.95] [0.79, 0.95] [0.39, 0.88]
(0.84, 1.02) (0.82, 0.99) (0.83, 0.96) (0.67, 0.89)

Notes: This table converts point estimates from Table 1.6.6 into pass-through rates of an implied carbon
tax, for k = 3 nearest neighbors. Average pass-through rates are in bold, and square brackets report the
minimum and maximum pass-through rates for plants in each group. I report the 95 percent confidence
intervals for the average (bolded) pass-through rates in parentheses and italics (calculated from the
confidence interval of each τ̂ estimate). I rearrange Equation (1.11) to solve for ρ as a function ∆µ; assign
P and Z their average prices from 2007–08, the beginning of the fracking boom; and set Ecoal = 0.095
and Egas = 0.053, their average emissions rates in metric tons CO2 per MMBTU. For a $1/MMBTU
change in gas price (i.e. ∆Z = 1) and assuming full pass-through (ρj = 1) in the omitted group, Table
1.6.6 estimates the average change in markups for each group (i.e. ∆µ, after converting from $/ton to
$/MMBTU of coal). Whereas Panel A follows Equation (1.11) by only including fuel prices, Panel B
includes environmental costs following Equation (A.21) in Appendix A.1.2.
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of a carbon tax in U.S. coal markets would arise largely from spatial variation in the
competitiveness of coal shipping. However, coal markups also adjust heterogeneously to
plant-specific demand shocks; I am able to detect incomplete pass-through only after
accounting for this second dimension of heterogeneity.

Muehlegger and Sweeney (2017) estimate incomplete pass-through of firm-specific cost
shocks in petroleum refining, but full pass-through of cost shocks that are common across
firms. Given that CO2 emissions rates vary substantially across refineries, this implies
that a carbon tax would likely lead to heterogeneous pass-through by inducing variation
in refinery-specific costs. Coal power plants exhibit similar variation in CO2 emissions
rates, and I likewise find incomplete pass-through resulting from plant-specific shocks.
My analysis is the first to show that pass-through of a carbon tax in the U.S. electricity
sector may be heterogeneous and incomplete, in part due to variation in plants’ sensitivity
to relative cost shocks. By contrast, Fabra and Reguant (2014) estimate full pass-through
of carbon prices in the Spanish wholesale electricity market, which they attribute to
highly correlated emissions cost shocks among marginal plants. My results demonstrate
that variation in upstream market power may weaken the correlation in cost shocks across
plants, potentially leading to heterogeneous pass-through despite an average pass-through
rate close to 1.55

1.7.3 Heterogeneous Tax Incidence

Weyl and Fabinger (2013) show how pass-through under imperfect competition is closely
linked to economic incidence. In fact, the pass-through rate (ρ), conduct parameter (θ),
and number of symmetric firms (N) are sufficient to characterize the incidence (I) of a
tax (t):

(1.12) I =
dCS/dt

dPS/dt
=

ρ

1− (1− θ/N) ρ

where CS and PS are consumer and producer surplus. Lower pass-through rates imply
that consumers (i.e. coal plants) bear relatively less of the tax burden than producers (i.e.
rail carriers). For a given pass-through rate ρ, a less competitive market structure (i.e.
greater θ/N) implies that rail oligopolists bear a relatively greater tax burden.

rates of renewable fuel credits in less integrated market regions (see also Knittel, Meiselman, and Stock
(2017); Li and Stock (2017)). Spatial and temporal variation in production capacity can also lead to
heterogeneous pass-through in petroleum refining (Marion and Muehlegger (2011)); however incomplete
pass-through caused by capacity constraints does not necessarily reflect market power (Borenstein and
Kellogg (2014)).

55Fabra and Reguant (2014) also attribute their finding of full pass-through to inelastic aggregate
electricity demand and high-frequency uniform-price auctions. Nazifi (2016) similarly predicts full pass-
through of a carbon tax in the Australian electricity market. Stolper (2016) shows how the jurisdictional
borders of energy taxes can also induce variation in firm-specific costs, resulting in heterogeneous pass-
through.
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Given the range of pass-through estimates in Table 1.7.7, the incidence of a carbon
tax would likely vary substantially across coal plants. During the fracking boom, plants
in the least competitive shipping regimes that were most sensitive to gas prices paid only
45 percent of the burden of low gas prices (i.e., ρj = 0.80, θj = 1, Nj = 1). By contrast,
plants with full pass-through and a water delivery option paid 100 percent of the lost
surplus in coal shipping (i.e., ρj = 1, θj = 0).56 The complete incidence calculation would
also include lost profits in electricity markets, which would depend in part on plants’
ability to pass marginal emissions costs through to wholesale electricity prices (Fabra and
Reguant (2014)).

My results add to a nascent body of evidence that the assumption of homogeneous
incidence can obscure the true distributional impacts of energy taxes. Stolper (2017)
uncovers heterogeneous tax incidence for Spanish transportation fuels, which renders a
seemingly regressive tax unambiguously progressive. Similarly, Ganapati, Shapiro, and
Walker (2016) show that a carbon tax appears less regressive after accounting for variation
in the competitiveness of intermediate product markets. In my setting, heterogeneous in-
cidence suggests that under a carbon tax, certain coal plants would stand to lose relatively
less than others.57 By shifting a share of the tax burden further upstream from electricity
consumers, market imperfections in coal shipping may also reduce the regressivity of a
carbon tax.

1.7.4 Counterfactuals

Figure 1.2.2 illustrates how U.S. electricity generation has shifted away from coal as gas
prices have fallen, and several previous studies have sought to quantify the environmental
benefits of coal-to-gas switching induced by the fracking boom. For example, Knittel,
Metaxoglou, and Trindade (2015) estimate that the 70-percent drop in gas prices between
2008 and 2012 caused CO2 emissions from electricity generation to fall by up to 19–33
percent.58 My analysis is the first to show that coal markups have adjusted to partially
offset this change in relative fuel prices. This suggests that if coal markups had not
changed, the fracking boom could have yielded even greater reductions in CO2 emissions
from electricity generation.

To quantify how decreasing coal markups may have limited coal-to-gas switching in
the short run, I first estimate a time series regression similar to Equation (1.6) for each

56The share of the burden borne by plant j is Ij
1+Ij

=
ρj

1+(θj/Nj)ρj
. Appendix A.1.3 contains a more

detailed discussion of implied carbon tax incidence as it pertains to my theoretical framework.
57All coal plants would likely see profits decrease under a carbon tax, yet some plants would likely

bear relatively less tax burden in the short run. Muehlegger and Sweeney (2017) find that a carbon tax
on petroleum refiners would imply heterogeneous firm-specific cost shocks, also creating relative winners
and losers.

58Holladay and LaRiviere (2017) estimate short-run changes in the marginal CO2 emissions rates that
vary substantially across electricity market regions. Fell and Kaffine (forthcoming) attribute the decline
in coal generation to a combination of low natural gas prices and increased wind generating capacity.
Wolak (2016) applies a general equilibrium framework to estimate the fracking boom’s impact on global
coal markets, and finds that increased U.S. coal exports have not led to increases in global CO2 emissions.
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coal generating unit. This calibrates a semi-parametric relationship between each unit’s
electricity generation and the coal-to-gas cost ratio. Next, I use this fitted model to infer
predicted generation under two counterfactual cost ratios: (1) if the fracking boom never
happened and gas prices had remained high; and (2) if the fracking boom did happen but
coal markups had remained fixed. Converting predicted generation into predicted CO2

emissions and summing across all coal units, I can calculate short-run CO2 abatement
from the fracking boom both with and without changes to coal markups.59

This exercise suggests that decreases in coal markups eroded roughly 8 percent of
the fracking boom’s short-run abatement potential. Based on these calculations, CO2

emissions fell by 4.5 percent during the fracking boom, as a result of short-run coal-to-gas
substitution alone. However, if coal markups had not changed, this would have been a
4.9-percent emissions reduction. These numbers capture only short-run changes on the
intensive margin of fossil generation, and several other margins have contributed to the
20–25 percent decrease in CO2 emissions from electricity.60 Even so, they suggest that
falling coal markups meaningfully reduced the environmental benefits of low natural gas
prices, with unrealized CO2 abatement equal to $2.3 billion in climate damages.61

Extrapolating to future climate policy, decreases in coal markups may similarly erode
the environmental benefits of a carbon tax. However, this countervailing effect would
likely disappear if the tax were sufficiently large, as markups should not decrease below
zero. This suggests that existing retrospective analyses may underestimate CO2 abate-
ment under future climate policy. By not accounting for incomplete pass-through in coal
markets, these studies likely understate the amount of coal displacement that would oc-
cur if a sufficiently stringent climate policy pushed delivered coal prices down to marginal
cost.

59This short-run exercise abstracts from changes to electric generating capacity. I assume that elec-
tricity demand is perfectly inelastic, with gas generation crowding out coal generation 1-for-1. Following
Cullen and Mansur (2017), I include a cubic spline in the average cost ratio across all fossil generators in
unit u’s PCA. Unlike in Equation (1.6), I use the average cost ratio because I now want to allow unit u’s
generation to respond to changes in other units’ coal prices. Appendix A.6 discusses these counterfactuals
in further detail.

60Many coal plants have invested in medium-run efficiency improvements (Linn, Mastrangelo, and
Burtraw (2014)). On the capacity margin, the fracking boom has spurred investment in new gas plants
(Brehm (2017)), while accelerating coal plant retirements (Meng (2016)). Increases in non-fossil genera-
tion have also crowded out conventional fossil generation. This counterfactual exercise also ignores the
long-run dynamic effects of relative fuel prices changes (Cullen and Reynolds (2016)).

61I monetize the difference between 4.5 and 4.9 percent abatement at $50 per metric ton CO2. Account-
ing for medium- and long-run margins would increase the value of unrealized abatement. Importantly,
these calculations only consider the electricity sector. Low gas prices have increased CO2 emissions from
other end uses (e.g. residential space heating) and methane leaks from gas drilling. These factors may
have combined to outweigh fracking-induced CO2 abatement from electricity generation (Hausman and
Kellogg (2015)).
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1.8 Conclusion
This paper demonstrates that decreases in natural gas prices have caused decreases in
coal markups. These effects vary substantially across coal-fired power plants, due to the
interaction of heterogeneous transportation market structure and plant-specific shocks to
coal demand. While previous studies have documented market power in coal shipping,
my analysis is the first to show that oligopolist rail carriers reoptimize markups due to
heterogeneous changes in plants’ coal demand. I also show that pass-through of a carbon
tax in the electricity sector may be heterogeneous and incomplete, as railroads would
likely reduce markups to effectively buffer a subset of coal plants against the tax. This
has the potential to significantly erode the environmental benefits of climate policy, and
incomplete pass-through would likely reduce welfare under a carbon tax smaller than
marginal climate damages.

My analysis highlights the need for further research estimating pass-through of en-
vironmental taxes under imperfect competition. Markets for energy or energy-intensive
products tend to be highly concentrated, and the assumption of perfect competition can
generate both misguided welfare estimates and biased policy counterfactuals. In order to
more fully characterize welfare under climate policy, future research should incorporate
market imperfections in both upstream fuel markets (Gillingham et al. (2016)) and down-
stream electricity markets (Bushnell, Mansur, and Saravia (2008)). My analysis also
underscores how heterogeneous market imperfections can generate heterogeneous pass-
through of environmental taxes. If pass-through varies across polluting firms, then a
uniform carbon price may not incentivize an efficient allocation of CO2 abatement (Mont-
gomery (1972)), and the optimal second-best climate policy may feature a non-uniform
carbon tax.

Future research should also investigate how coal-by-rail market power impacts climate
policy outcomes in the medium-to-long run. For example, a carbon tax may incentivize
investment in new coal transportation infrastructure, which would mitigate market power
and reduce dispersion in delivered coal prices. My analysis largely ignores the coal min-
ing sector, and it is important to consider how a carbon tax might disproportionately
hurt labor markets in coal communities (Lobao et al. (2016)). Finally, similar market
imperfections in coal transportation likely exist outside the U.S., due to coal’s geographic
specificity and high transportation costs. Hence, market power in coal shipping may im-
pact climate policy outcomes in the developing world, where coal consumption continues
to rise (Wolfram, Shelef, and Gertler (2012)).
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Chapter 2

Out of the Darkness and Into the
Light? Development Effects of Rural
Electrification1

2.1 Introduction
Approximately 1.1 billion people around the world still lack access to electricity. These
people are overwhelmingly rural, and live almost exclusively in Sub-Saharan Africa and
Asia. In recent years, developing countries have made large investments to extend the
electricity grid to the rural poor. The International Energy Agency estimates that ap-
proximately $9 billion was spent on electrification in 2009, which it expects to rise to $14
billion per year by 2030 (International Energy Agency (2011)). This is not surprising,
given that electrification is widely touted as an essential tool to help alleviate poverty
and spur economic progress; universal energy access is one of the UN’s Sustainable Devel-
opment Goals (UNDP (2015), World Bank (2015)). While access to electricity is highly
correlated with GDP at the national level, there exists limited evidence on the causal
effects of electricity access on rural economies.

1This chapter is coauthored with Fiona Burlig. The original version can be found online at
https://ei.haas.berkeley.edu/research/papers/WP268.pdf. We thank Michael Anderson, Maxi-
milian Auffhammer, Jie Bai, Kendon Bell, Susanna Berkouwer, Joshua Blonz, Fenella Carpena, Steve
Cicala, Lucas Davis, Meredith Fowlie, James Gillan, Michael Greenstone, Solomon Hsiang, Kelsey Jack,
Katrina Jessoe, Erin Kelley, Aprajit Mahajan, Shaun McRae, Edward Miguel, Brian Min, Paul Novosad,
Nicholas Ryan, Elisabeth Sadoulet, Jacob Shapiro, Andrew Stevens, Adam Storeygard, Matt Woerman,
Catherine Wolfram, and seminar participants at University of California, Berkeley, University of Michi-
gan, Colorado School of Mines, NEUDC 2015, PacDev 2016, the Energy Institute at Haas, University
of Chicago, and the 2017 NBER Summer Institute in Energy and Environmental Economics for valu-
able comments and suggestions. We benefited from conversations with officials at the Indian Ministry of
Power, the Rural Electrification Corporation, and the JVVNL Distribution Company in Jaipur. George
Fullerton and Puja Singhal assisted us in acquiring the data that made this project possible. All remaining
errors are ours.

https://ei.haas.berkeley.edu/research/papers/WP268.pdf
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Recovering causal estimates of the effects of electrification is challenging, since en-
ergy infrastructure projects target relatively wealthy or quickly-growing regions. Selec-
tion of this kind would bias econometric estimates of treatment effects toward finding
large economic impacts. Previous work has relied on instrumental variables strategies
to circumvent this problem, and has tended to find large positive effects of electrifica-
tion. Posited mechanisms for these gains include structural transformation, which in
turn changes employment opportunities (Rud (2012)); female empowerment (Dinkelman
(2011)); increased agricultural productivity (Chakravorty, Emerick, and Ravago (2016));
health improvements as households switch from kerosene and coal to electricity (Bar-
ron and Torero (2017)); and greater educational attainment (Lipscomb, Mobarak, and
Barham (2013)).

This paper documents that while large-scale rural electrification causes a substantial
increase in energy access and power consumption, it leads at best to small changes in
economic outcomes in the medium term. We exploit quasi-experimental variation in elec-
trification generated by a population-based eligibility cutoff in India’s massive national
rural electrification program, Rajiv Gandhi Grameen Vidyutikaran Yojana (RGGVY).
The “Prime Minister’s Rural Electrification Program” was launched in 2005 to expand
electricity access in over 400,000 rural Indian villages across 27 states. In order to cap
program costs, the Central Government introduced a population-based eligibility cutoff
based on the size of village neighborhoods (“habitations”).2 When the program was intro-
duced, only villages with constituent habitations larger than 300 people were eligible for
electrification under RGGVY.

We pair detailed geospatial information with rich administrative data on the universe
of Indian villages and use a regression discontinuity (RD) design to test for the village-
level effects of RGGVY eligibility on employment, asset ownership, household wealth,
village-wide outcomes, and education. This design relies on relatively weak identify-
ing assumptions, and we provide evidence that these assumptions are satisfied below.
We estimate effects using a main sample of nearly 30,000 villages across 22 states. We
demonstrate that RGGVY led to statistically significant and economically meaningful in-
creases in electric power availability and consumption that is visible from space. We then
show that despite these gains, electrification led to at most modest changes in economic
outcomes. More specifically, we are able to reject even small changes, of 0.26 of a stan-
dard deviation, across a range of outcomes, including employment, asset ownership, the
housing stock, village-wide outcomes, household wealth, and school enrollment. Taken
together, these results suggest that the causal impact of large-scale rural electrification
on economic development may be substantially smaller than previously thought.

We show that these small effects do not simply reflect issues with the timing or quality
of RGGVY project implementation. Our results are quantitatively similar for villages
electrified near the beginning and near the end of our sample period, meaning that any

2In the 2001 Indian Census, the village was the lowest-level administrative unit. Villages are composed
of habitations (or “hamlets”), which correspond to the inhabited areas of a village. South Asian villages
typically have one or more inhabited regions surrounded by agricultural land. India’s 600,000 villages
contain approximately 1.6 million unique habitations.
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confounding rollout effects are unlikely. Likewise, we find quantitatively similar results
for the subset of states with above-average power supply reliability, which suggests that
even in places with relatively infrequent power outages, the economic impacts remain
quite small. We also employ an alternative identification strategy, difference-in-differences
(DD), which reveals that our RD results appear to generalize to villages far from our
300-person population cutoff. Using this DD approach, we find treatment effects that
are broadly consistent with our RD strategy, across the full support of Indian village
populations. Our main RD results also stand up to a battery of placebo tests, falsification
exercises, and robustness checks.

This paper makes three key contributions to the existing literature. First, our re-
sults contrast starkly with the large economic impacts of electrification found in earlier
work. They apply directly to rural villages across 27 states in India, representing the
world’s largest unelectrified population. Perhaps more importantly, we use a regression
discontinuity design to quantify the effects of electrification; this necessitates substantially
weaker identifying assumptions than the instrumental variables approaches of the prior
literature. Second, we add to the knowledge on the economic effects of infrastructure
in developing countries. Existing work in this area has tended to find large positive im-
pacts of infrastructure investments.3 We provide evidence that electricity infrastructure
may not necessarily spur large-scale economic growth. Third, our results contribute to
a small but growing literature on energy use in the developing world.4 We demonstrate
that while electrified villages are consuming power, this energy use does not appear to be
transforming rural economies.

The remainder of the paper proceeds as follows: Sections 2.2, 2.3, and 2.4 describe
rural electrification in India, our empirical strategy, and the data used in our analysis. Sec-
tion 2.5 presents our main empirical results, which we discuss and interpret in Section 2.6.
Section 2.7 concludes.

2.2 RGGVY
At the time of its independence in 1947, only 1,500 of India’s villages had access to
electricity (Tsujita (2014)). By March 2014, that number had risen to 576,554 out of
597,464 total villages. This massive technological achievement is largely attributable
to a series of national electrification programs, the first of which began in the 1950s.
The flagship program of India’s modern electrification efforts was Rajiv Gandhi Grameen
Vidyutikaran Yojana (RGGVY), or the Prime Minister’s Rural Electrification Plan. Prior
to RGGVY, over 125,000 (21 percent) of rural villages had no access to power whatsoever.
Many of the remaining villages had extremely limited power access; 57 percent of all rural
households lacked access to electricity, with the majority of unelectrified households falling

3See, for example, Donaldson (2018) on the effects of railroads on trade costs and welfare in India
and Banerjee, Duflo, and Qian (2012) and Faber (2014) on roads in China.

4See Gertler et al. (2016) on income growth and energy demand, Allcott, Collard-Wexler, and
O’Connell (2016) on power outages, and McRae (2015) on energy infrastructure.
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below the poverty line. Substantial opportunities remained to expand electricity access
in rural communities.

RGGVY was launched in 2005 with the goal of extending power access to over 100,000
unelectrified rural villages in 27 Indian states. The program also set out to provide more
intensive electrification to over 300,000 “under-electrified” villages. RGGVY’s primary
mandate was to install and upgrade electricity infrastructure — specifically transmis-
sion lines, distribution lines, and transformers — in order to support electric irrigation
pumps, small-to-medium industries, cold chains, healthcare, schooling, and information
technology applications. Such infrastructure investments aimed to “facilitate overall ru-
ral development, employment generation, and poverty alleviation” (Ministry of Power
(2005)). RGGVY also extended electric connections to public places, including schools,
health clinics, and local government offices. While the program focused on providing
electricity infrastructure to support growing village economies, RGGVY was also charged
with extending household electricity access by offering free grid connections to all house-
holds below the poverty line.5 RGGVY investments occurred primarily on the intensive
margin, upgrading existing infrastructure to have the capability to power growing rural
economies. The majority of RGGVY works, including new grid connections, occurred in
villages with some degree of household electrification prior to 2005.

In order for a village to be electrified under RGGVY, its state government had to
submit an implementation proposal to the Rural Electrification Corporation (REC), a
public-private financial institution overseen by the national government’s Ministry of
Power. These district-specific proposals, or Detailed Project Reports (DPRs), were based
on village-level surveys carried out by local electric utilities, covering both unelectrified
villages and partially electrified villages in need of “intensive electrification.” Each DPR
proposed a village-by-village implementation plan, which included details on new electric-
ity infrastructure to be installed and the number of households and public places to be
connected. The REC reviewed DPR proposals, approved projects, and disbursed funds
to states.

Funding for RGGVY came from India’s 10th (2002–2007) and 11th (2007–2012) Five-
Year Plans.6 Districts were sorted into Plans on a first-come, first-serve basis: the first
group of approved DPRs were allocated funding under the 10th Plan, and the next group
were allocated funding under the 11th Plan. Under the 10th Plan, all villages with
habitation populations above 300 were eligible for RGGVY electrification. Under the
11th Plan, this threshold was decreased to 100. Approximately 164,000 (267,000) villages
in 229 (331) districts in 25 (25) states were slated for electrification under the 10th (11th)
Plan, which also targeted 7.5 million (14.6 million) below-poverty-line households for free

5Above poverty line households were able to purchase connections. All households were required to
pay for their own power consumption. The program did not subsidize the consumption of electricity for
any household, but Indian retail electricity tariffs are heavily subsidized, and average 2.4 rupees (4 U.S.
cents) per kilowatt-hour.

6Midway through the 12th Plan, RGGVY was subsumed into Deendayal Upadhyaya Gram Jyoti
Yojana (DDUGJY); the remaining projects are slated to be finished by the end of the 13th Plan. As of
2016, all villages are eligible for electrification under DDUGJY, regardless of size.
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Figure 2.2.1: Indian Districts by RGGVY Implementation Phase

Notes: This map shows 2001 district boundaries, shaded by RGGVY coverage status. Navy districts are
covered under the 10th Plan, light blue districts are covered under the 11th Plan, cross-hatched districts
were covered under both the 10th and 11th Plans, and white districts are not covered by RGGVY. As
of 2001, India had 584 districts across its 28 states and 7 Union Territories. RGGVY covered 530 total
districts in 27 states (neither Goa nor the Union Territories were eligible), with 30 districts split between
the 10th and 11th Plans.
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connections. Funding for the 10th Plan was disbursed between 2005 and 2010, with over
95 percent of funds released before 2008. The 11th Plan distributed funds between 2008
and 2011.7

Figure 2.2.1 shows the spatial distribution of RGGVY districts covered by the 10th
and 11th Plans, highlighting the program’s broad scope. The vast majority of eligible
districts received RGGVY funding under exactly one Five-Year Plan, and 23 out of 27
states contain both 10th- and 11th-Plan districts. We focus our empirical analysis on the
districts that received RGGVY funding under the 10th Plan, because electrification in
these districts was completed earlier, giving us a longer post-electrification sample period.

2.3 Empirical approach

2.3.1 Regression Discontinuity Design

In this paper, we aim to estimate the causal effect of rural electrification on develop-
ment. Because energy infrastructure programs are large-scale investments, and because
governments allocate funds to specific regions or groups of people in ways that are likely
correlated with economic outcomes of interest, it can be challenging to disentangle the
impact of electrification from other observed and unobserved factors that affect devel-
opment. Furthermore, since the electricity grid is spatially integrated, a national-scale
rollout of electrification is likely to have different effects than can be observed by a ran-
domized controlled trial that impacts a few hundred rural villages.8 To overcome these
challenges, we implement a regression discontinuity design, allowing us to identify the
causal effect of electrification at scale.

Under the RGGVY program rules, villages in 10th-Plan districts were eligible for
treatment if they contained habitations with populations of 300 or above. Our RD analysis
includes only villages whose districts received funding under the 10th Plan, and we restrict
our sample to villages with exactly one habitation. This allows us to use an RD to estimate
local average treatment effects for villages with habitation populations close to this 300-
person cutoff. In this sharp RD design, eligibility for treatment changes discontinuously
from 0 to 1 as village population (our running variable) crosses the 300-person threshold,
allowing us to identify the effects of eligibility for RGGVY on both observed changes in
electrification and on village-level economic outcomes.9

This design necessitates two main identifying assumptions. First, we must assume con-
tinuity across the RD threshold for all village covariates and unobservables that might be
correlated with our outcome variables. While this assumption is fundamentally untestable,

7We downloaded data on RGGVY implementation from http://www.rggvy.gov.in, since replaced
with http://www.ddugjy.gov.in. Appendix B.3 describes the RGGVY program in greater detail, along
with additional background on the history of rural electrification in India.

8Lee, Miguel, and Wolfram (2016) are implementing a randomized controlled trial of household elec-
trification in 150 rural communities in Western Kenya.

9See Imbens and Lemieux (2008) and Lee and Lemieux (2010) for further detail about the formal
assumptions underlying RD analysis, and practical issues in applying RD designs.

http://www.rggvy.gov.in
http://www.ddugjy.gov.in
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we support it with evidence from several key village characteristics.10 We know of no other
Indian social program with a 300-person eligibility threshold. Second, we assume that
our running variable, 2001 Census population, is not manipulable around the threshold.
Because our running variable predates the announcement of RGGVY in 2005, we are con-
fident that our population data were not influenced by the future existence of RGGVY.
Figure 2.4.3 shows no evidence of bunching of villages around this 300-person population
cutoff.

Given these assumptions, our RD design provides a consistent estimate of the effect
of eligibility for treatment on outcomes of interest for the set of single-habitation villages
located in districts that received RGGVY funding under the 10th Plan. Formally, we
estimate:

Y 2011
vs = β0 + β1Zvs + β2(Pvs − 300) + β3(Pvs − 300) · Zvs + β4Y

2001
vs + ηs + εvs

for 300− h ≤ Pvs ≤ 300 + h , where Zvs ≡ 1[Pvs ≥ 300] .(2.1)

Y 2011
vs represents the outcome of interest in village v in state s in 2011, Pvs is the 2001 vil-

lage population, Zvs is the RD indicator equal to one for villages above the cutoff, h is the
RD bandwidth, Y 2001

vs is the 2001 value of the outcome variable, ηs is a state fixed effect,
and εvs is an idiosyncratic error term.11 We cluster our standard errors at the district
level to allow for arbitrary dependence between the errors of villages within the same dis-
trict. This accommodates both implementer-specific correlations within a district’s DPR
(RGGVY’s unit of project implementation) and natural spatial autocorrelation between
nearby villages. We use a preferred RD bandwidth of 150 people on either side of the
300-person cutoff; this allows us to include a large sample of villages, while remaining
confident that villages away from the discontinuity are similar to those at the 300-person
cutoff.12

2.3.2 Economic Outcomes

Economic theory suggests that electrification could impact village economies through sev-
eral channels. First, as electricity becomes available, we should expect small firms to invest
in new capital equipment that uses power. This in turn would raise the marginal product
of labor in the non-agricultural sector, drawing workers to new employment opportunities
(Rud (2012)). On the other hand, electrification could spur agricultural mechanization,
which would improve farm productivity (Chakravorty, Emerick, and Ravago (2016)).13

10We find no evidence to suggest that pre-period covariates change discontinuously across the 300-
person cutoff. These results are available in Appendix B.2.4.5, as well as in Figure 2.5.5 below.

11Neither the 2001 value of the outcome variable nor the fixed effects are necessary for identification,
but they improve the precision of our estimates (see Lee and Lemieux (2010)).

12We perform bandwidth sensitivity checks in Appendix B.2.1.2, including calculating the Imbens and
Kalyanaraman (2012) optimal bandwidth; our results are not sensitive to bandwidth choice.

13In the Indian context, one potential use of electricity in agricultural production is to power irrigation
tubewells.
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This could either increase or decrease employment in agriculture.14 However, because
the marginal product of labor would unambiguously increase in both the agricultural and
non-agricultural sectors, this should increase wages, incomes, and expenditures.

Next, electricity access may lead to gains for women. New employment opportunities,
like those described above, could enable more women to work outside the home. Alter-
natively, newly-electrified households could invest in labor-saving devices, which could
decrease the time required for women to complete household duties. This could also
lead to increased female employment, either outside the home or in microenterprises.
Dinkelman (2011) uses an instrumental variables approach in South Africa, and finds
that electrification substantially raises female employment through this latter channel.

Rural electrification may also bring substantial health benefits. Kerosene is widely
used throughout the developing world as a fuel for both lighting and cooking, and Indian
households also commonly cook with coal and biomass. Combustion of these fuels pro-
duces harmful indoor air pollution, which is especially detrimental to young children and
infants in utero. Access to electricity may foster investment in electric lights and elec-
tric cookstoves, which would likely reduce indoor air pollution and improve child health
outcomes (Barron and Torero (2017)). Electrification may also indirectly improve health
outcomes, through higher incomes and improved access to health care.

Finally, electrification could impact educational attainment through several channels.
On the extensive margin, total school enrollment may increase if electrification leads to
income gains, making households less reliant on child labor earnings. On the other hand,
rising wages may draw students out of school and into the labor force. Alternatively, we
might expect electricity access to change the education production function. Lighting or
computing facilities in schools may improve learning in the classroom, and children in
homes with electric lighting will likely develop more effective study habits. If electrifica-
tion improves student performance, it could affect the intensive margin of schooling as
students tend to stay in school longer, causing enrollment in upper grades to increase.
Using instrumental variables, Lipscomb, Mobarak, and Barham (2013) find that rural
electrification increases the number of years that students attend school.

2.4 Data
Our empirical analysis uses data from four main sources. First, we link satellite images of
nighttime brightness to village boundary shapefiles, yielding a panel of village brightness.
Next, we use several large administrative datasets published by three different Indian
government entities, which contain village populations and a broad set of economic indi-
cators. Armed with a wealth of data on Indian villages, we can test the channels through
which we expect electrification under RGGVY to impact economic development.

14The potential for changes in agricultural employment depends on several factors, including the excess
supply of labor, the excess supply of farmland, the degree to which farm mechanization and agricultural
labor are complements or substitutes, and the effect of electricity access on agricultural commodity prices.
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2.4.1 Nighttime Lights Data

In order to understand the economic effects of electrification resulting from RGGVY, we
must first demonstrate that RGGVY led to a meaningful increase in electricity access
and consumption in rural Indian villages. A binary indicator of the presence of electricity
infrastructure would be insufficient, since it would mask heterogeneity in power quality,
electricity consumption, and connection density. There exists no comprehensive dataset
of power consumption at the village level across India, but we are able to construct a
measure of electricity consumption using remotely-sensed data.

As an indicator of electrification under RGGVY, we use changes in nighttime bright-
ness as observed from space. The National Oceanic and Atmospheric Administration’s
Defense Meteorological Satellite Program–Operational Line Scan (DMSP-OLS) program
collects images from U.S. Air Force satellites, which photograph the earth daily between
8:30pm and 10:00pm local time. After cleaning and processing these images, NOAA av-
erages them across each year and distributes annual composite images online.15 Each
yearly dataset reports light intensity for each 30 arc-second pixel (approximately 1 km2

at the equator) on a 0–63 scale, which is proportional to average observed luminosity.16

Figure 2.4.2 shows nighttime brightness in India in 2001 and 2011.
Economists frequently use these nighttime lights data as proxies for economic activ-

ity, as popularized by Chen and Nordhaus (2011) and Henderson, Storeygard, and Weil
(2012). Existing work demonstrates that nighttime brightness can also be used to detect
electrification, even at small spatial scales: Min et al. (2013) find evidence of a statisti-
cally detectable relationship between NOAA DMSP-OLS brightness and the electrification
status of rural villages in Senegal and Mali. Min and Gaba (2014) show that a similar
correlation between electrification and nighttime brightness also exists in rural Vietnam.
Chand et al. (2009) show a direct relationship between nighttime lights and electric power
consumption in India, while Min (2011) finds a strong correlation between brightness and
district-level electricity consumption in Uttar Pradesh. We build on this research by using
nighttime brightness to demonstrate that RGGVY successfully increased village electricity
access, where nighttime lights serve an objective measure of realized energy consumption
in these villages.

Importantly, these satellite images represent a lower bound on electricity consumption.
While nighttime brightness data record light output (including lighting from houses, pub-
lic spaces, and outdoor streetlights), they do not directly measure electricity consumed
for other purposes. Because all electricity end-uses rely on the same power grid, we
treat increases in nighttime brightness as necessary indicators of investments in electric-
ity infrastructure. Likewise, if total electricity consumption increases, we should expect

15This cleaning removes any sunlit hours, glare, cloud cover, forest fires, the aurora phenomena,
and other irregularities. Nighttime lights data are available for download at http://ngdc.noaa.gov/
eog/dmsp/downloadV4composites.html. We use the average lights product in our main analysis. See
Appendix B.1.3 for further discussion.

16Chen and Nordhaus (2011) detail the relationship between physical luminosity and brightness in the
nighttime lights images.

http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
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Figure 2.4.2: Nighttime Lights in India, 2001 and 2011

Notes: This figure shows the DMSP-OLS nighttime brightness data for India. The
top panel shows nighttime lights in 2001, and the bottom panel shows nighttime
lights for 2011. The ≈1km2 pixels in this image range in brightness from 0 to 63,
covering the full range of the DMSP-OLS data.
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nighttime brightness to increase as well, as more power reaches rural villages. A potential
concern with using nighttime lights to proxy for total electricity consumption is that we
could mistake new sources of outdoor lighting for increases in electricity access. How-
ever, RGGVY’s primary mandate was to expand and improve electricity infrastructure,
and there is no mention of streetlight installation in 10th-Plan program documentation.17

Hence, an observed increase in nighttime brightness as a result of RGGVY would very
likely be driven not by new streetlights alone, but rather by village-wide increases in
access to energy services.

We construct a village-level panel of nighttime brightness by overlaying annual NOAA
DMSP-OLS images with 2001 village shapefiles.18 Our preferred measure of a village’s
lighting is the maximum brightness of any pixel whose centroid lies within its borders.19

We use the brightest pixel because Indian villages are typically organized such that there
are centralized populated areas surrounded by fields. This targets our electrification mea-
sure at the populated parts of villages, while avoiding measurement error from brightness
averaged across unlit agricultural land.20 In performing this calculation, we are forced to
drop 10 states from our sample. We are missing shapefiles for five states, which repre-
sent fewer than 3 percent of the total villages covered by RGGVY. We also exclude five
states because we believe these shapefiles to be of extremely low quality: the correlation
between the village area implied by the shapefiles and village area recorded by the Indian
Census, the entity in charge of defining village boundaries, is below 0.35.21 We are left
with a nighttime lights sample of 370,689 villages across 15 states. We do not impose
these sample restrictions for any other outcome variables.

2.4.2 Census of India

We combine several village-level datasets published by the Census of India from the 2001
and 2011 decennial Censuses.22 The Primary Census Abstract (PCA) contains village

17RGGVY 11th-Plan documentation did discuss streetlights in the context of a small carve-out for
microgrids targeted at extremely remote villages. Because this carve-out did not exist under the 10th
Plan, the 300-person eligibility cutoff did not apply for these villages.

18Indian villages have official boundaries, which are recorded by the Census Organization of India.
Every square meter in India (excluding bodies of water and forests) is contained in a city, town, or
village. We use shapefiles of village boundaries published by ML InfoMap, Ltd.

19We calculate this level in ArcGIS, using the standard Zonal Statistics as Table operation. For
villages too small to contain a pixel’s centroid, we assign the brightness value of the pixel at the village
centroid.

20Our results remain largely unchanged if we use the mean lights value rather than the maximum
value. We also undertake a procedure to remove measurement error from the nightlights data via linear
projection. See Appendix B.1.3 for details.

21The five states with missing shapefiles are Arunachal Pradesh, Meghalaya, Mizoram, Nagaland,
and Sikkim. The five states with low-quality shapefiles and village areas are Assam, Himachal Pradesh,
Jammu and Kashmir, Uttar Pradesh, and Uttarakhand. The remaining states in the sample all have
correlations between datasets above 0.6. See Appendix B.1.2 for further discussion.

22These data are all publicly available at http://www.censusindia.gov.in. Because our research
design relies on observing a large number of villages with populations around 300, we are unable to use

http://www.censusindia.gov.in
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population data, and a detailed breakdown of labor allocation by gender and job type. In
particular, the PCA reports the number of men and women that are working in agriculture;
“household industry workers” (engaged in informal production of goods within the home);
and “other workers” that engage in all other types of work.23 Examples of “other workers”
include government servants, municipal employees, teachers, factory workers, and those
engaged in trade, commerce, or business. These data allow us to test for sectoral shifts
in employment due to RGGVY electrification, either away from agriculture (consistent
with structural transformation) or into agriculture (consistent with increased agricultural
productivity). We also test for effects on female employment. Because we observe the
share of women engaged in economic activity both outside and within the home, these
data are well-suited to capture potential impacts of electrification on female labor.

The Houselisting Primary Census Abstract (HPCA) provides extensive data on living
conditions, household size, physical household characteristics, and asset ownership. These
data report the fraction of households that own a variety of assets, including radios, mo-
bile phones, bicycles, motorcycles, and televisions. RGGVY may have contributed both
directly and indirectly to asset ownership, if households purchased electric appliances to
take advantage of improved power availability, or if potential income games from elec-
trification enabled increased household expenditures on durable goods. Physical housing
characteristics such as floor and roof materials are indicators of household wealth. If
RGGVY spurred increases in household expenditures, we expect to observe medium-run
investments to improve the housing stock. The HPCA also allows us to examine the health
channel, as this dataset reports the fraction of households that cook with electricity and
that use kerosene as a main source of lighting.

Finally, the Village Directory (VD), another Census dataset, contains detailed infor-
mation on village amenities.24 In particular, the VD includes data on the presence of
education and medical facilities; banking facilities and agricultural credit societies; the
existence and quality of road network connections and the presence of bus services; and
communications access, including postal services and mobile phone networks. We use
these data to test for the effects of RGGVY on village amenities. The VD also includes
information on village electrification, in the form of binary indicators of electric power
availability in each village, separately for the agricultural, domestic, and commercial sec-
tors. These indicators are coded as “1” if any electric power was available for a given
end use anywhere in the village, and as “0” otherwise. Two-thirds of RGGVY 10th-Plan
villages met this criterion at baseline (i.e. were coded as “1” for electric power availability),
making these variables particularly poorly suited to analyze the effects of RGGVY. The
main goals of RGGVY were to upgrade energy infrastructure and increase the penetra-

additional Indian survey datasets such as the NSS or ASI. These datasets do not include a sufficient
number of small villages to support our RD analysis, and are not designed to be representative below the
district level.

23The agriculture category is decomposed further into “cultivators” (on their own land) and “agricul-
tural laborers” (on others’ land).

24In 2001, the VD was a separate Census product. In 2011, it was bundled into the District Census
Handbook (DCHB).



54

tion of electricity access within each village. The VD data contain no information on the
intensity of electrification within a village, and therefore do not reflect the vast majority
of RGGVY works.25 We instead turn to the nighttime lights data, which allow us to track
intensive-margin changes in energy consumption.

We combine the PCA, HPCA, and VD data into a two-wave village-level panel. The
2001 PCA also reports the official 2001 population of each village, which was the popula-
tion of record for the RGGVY program, and which we use as our RD running variable.26

However, RGGVY implementing agencies were instructed to determine eligibility based
on 2001 habitation (sub-village neighborhood) populations. To the best of our knowl-
edge, the only nation-wide habitation census in existence was conducted by the National
Rural Drinking Water Program.27 We use a fuzzy matching algorithm, modified from
Asher and Novosad (2018), to link this habitation census to our village panel and iden-
tify the 50 percent of villages with exactly one habitation.28 For these single-habitation
villages, habitation populations are equivalent to village populations—meaning that 2001
village population should exactly correspond to the population that determined RGGVY
eligibility for these villages.

The main dataset for our analysis contains the 2001–2011 Census, nighttime bright-
ness, RGGVY program implementation details, and the number of habitations in each
village. The subsample of single-habitation, 10th-Plan villages comprises 20 percent of
Indian villages.29 After restricting this 20 percent sample to our preferred RD bandwidth
of 150 people above and below the 300-person threshold, we are left with 29,765 10th-
Plan single-habitation villages from 22 states.30 The top panel of Figure 2.4.3 displays
a histogram of village populations, showing that the modal village lies within our RD
window of 150–450 people. The bottom panel demonstrates how our two sample restric-
tions reduce the size of our RD sample, and shows that our running variable, 2001 village
population, is smooth across the RD threshold.

Table 2.4.1 reports 2001 summary statistics for three sets of villages with populations
between 150 and 450: all Indian villages, all villages in 10th-Plan districts, and all villages
in 10th-Plan districts that have only one habitation. On average, villages in 10th-Plan
districts are geographically smaller and less electrified than the national average, but

25The 2011 Village Directory also reports the average hours of electricity available per day, by sector.
Because electricity is distributed over an integrated grid, it is unlikely that RGGVY’s infrastructure
upgrades would have any effect on these measures of electricity access.

26RGGVY ledgers we observed in Rajasthan were pre-printed with 2001 Census populations.
27Administered by the Ministry of Drinking Water and Sanitation, this census of habitations was

collected in 2003 and 2009, and is available at http://indiawater.gov.in.
28We thank the authors for sharing their code. Appendix B.1.5 details our matching algorithm.
2950 percent of villages are in districts eligible under RGGVY’s 10th Plan, 86 percent of villages match

to the habitation census, and 52 percent of matched villages in 10th-Plan districts have one habitation.
Our analysis excludes villages that match to the habitation census but have populations that disagree
by over 20 percent across datasets, as these matches are likely erroneous. In Appendix B.2, we show
that including these villages slightly attenuates our RD point estimates as expected, yet they remain
statistically significant.

30Three small states with 10th-Plan districts (Manipur, Kerala, and Tripura) are excluded from our
final regression because they have no villages that meet these criteria.

http://indiawater.gov.in
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Figure 2.4.3: Density of RD Running Variable
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similar across a range of other covariates. 10th-Plan villages with only one habitation are
very similar on observables to average 10th-Plan villages.

2.4.3 Socioeconomic and Caste Census

We draw on individual-level microdata from the Socioeconomic and Caste Census (SECC)
for measures of income and alternative employment data. The SECC was collected be-
tween 2011 and 2012, with the goal of enumerating the full population of India. We
obtained a subset of these data from the Ministry of Petroleum and Natural Gas, whose
liquid petroleum gas subsidy program, Pradhan Mantri Ujjwala Yojana, uses SECC data
to determine eligibility.31 As a result, we observe the universe of rural individuals that
are eligible for this fuel subsidy program. This includes all individuals living in house-
holds that satisfied at least one of seven poverty indicators, and that did not meet any of
fourteen affluence criteria.32 This yields a dataset of data of 332 million individuals from
81 million households, representing roughly half of all households in rural India.

For this selected sample, we observe individual-level data on age, gender, employment,
caste, and marital status; and household-level data on the housing stock, land ownership,
asset ownership, and income sources. We use the SECC to test for the effects of RGGVY
on wealth, using three main indicators. First, we test for the fraction of households with
at least one poverty indicator (and no affluence indicators), as measured by the fraction
of 2011 Census households that appear in our SECC dataset. Next, the SECC contains
an indicator for whether the main income earner in each household earns at least 5,000
rupees per month.33 This represents the highest-resolution measure of household income
in a large-scale Indian dataset, enabling us to directly, albeit coarsely, test the effect of
electrification on income. We also use SECC data to test for the effects of RGGVY on the
fraction of households that own land or have at least one salaried laborer, two additional
wealth indicators. Finally, we construct SECC employment variables that are analogous
to the Census’s village-wide measures, allowing us to test for distributional employment
effects among the subset of households with poverty indicators.

2.4.4 District Information System on Education

In order to estimate the effects of electrification on education, we include data on the
universe of Indian primary and upper primary schools from the 2005–2006 school year

31The Ministry of Rural Development, who collected the SECC, are in the process of making the full
dataset publicly available. As of now, only district-level aggregates are posted at http://secc.gov.in/
welcome. We downloaded our data in Excel format from http://lpgdedupe.nic.in/secc/secc_data.
html.

32The sample also excludes the less than 1 percent of the population that met one of five destitution
indicators. See Appendix B.1.6 for more details on the inclusion and exclusion criteria. We are missing
data from six rural districts, which represent less than 1 percent of Indian villages.

33All households whose primary earner made over 10,000 rupees per month were ineligible for the fuel
subsidy program, and are not included in our SECC dataset.

http://secc.gov.in/welcome
http://secc.gov.in/welcome
http://lpgdedupe.nic.in/secc/secc_data.html
http://lpgdedupe.nic.in/secc/secc_data.html
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Table 2.4.1: Summary Statistics – Villages with Populations Between 150 and 450

2001 Village Characteristics All Districts 10th-Plan
Districts

10th-Plan Districts
Single-Habitation

Village area (hectares) 199.74 177.98 173.53
(462.39) (561.29) (661.57)

Share of area irrigated 0.23 0.30 0.35
(0.30) (0.33) (0.34)

Agricultural workers / all workers 0.39 0.37 0.37
(0.16) (0.16) (0.15)

Other workers / all workers 0.06 0.06 0.06
(0.08) (0.08) (0.08)

Employment rate 0.46 0.44 0.44
(0.14) (0.14) (0.14)

Literacy rate 0.45 0.44 0.45
(0.18) (0.17) (0.17)

Education facilities (0/1) 0.66 0.58 0.58
(0.47) (0.49) (0.49)

Medical facilities (0/1) 0.13 0.12 0.12
(0.34) (0.32) (0.32)

Banking facilities (0/1) 0.01 0.01 0.01
(0.11) (0.11) (0.10)

Agricultural credit societies (0/1) 0.03 0.03 0.03
(0.18) (0.16) (0.16)

Electric power (0/1) 0.68 0.62 0.64
(0.46) (0.49) (0.48)

Share households with indoor water 0.21 0.21 0.25
(0.17) (0.17) (0.19)

Share households with thatched roofs 0.27 0.27 0.28
(0.27) (0.24) (0.24)

Share households with mud floors 0.78 0.79 0.77
(0.17) (0.16) (0.17)

Average household size 5.36 5.53 5.56
(0.58) (0.61) (0.60)

Number of villages 129, 438 62, 638 29, 765

Notes: This table shows village-level summary statistics from the 2001 Census, for three sets of villages
with 2001 populations between 150 and 450: all villages, villages in 10th-Plan districts, and single-
habitation villages in 10th-Plan districts. This third group corresponds to the sample of villages used in
our RD analysis. We present workers by sector as the share of total workers in the village; “other” workers
are classified as non-agricultural, non-household workers. The employment rate divides the number of
workers by village population. Binary variables are labeled (0/1). Standard deviations in parentheses.
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through the 2014–2015 school year.34 These data come from the District Information
System on Education (DISE), which reports annual school-level snapshots on a variety
of student, teacher, and school building characteristics. We collected these data at the
school level and construct a 10-year panel dataset containing information from 1.68 mil-
lion unique schools.35 This panel is strongly unbalanced, and the average school appears
in 7 out of a possible 10 years. Given that the reporting of school characteristics varies
considerably across years, we focus our analysis on village-wide enrollment counts, which
are consistently reported by gender and grade level. We test for effects of RGGVY on
total enrollment, enrollment by gender, and enrollment by grade level, which allows us to
measure how electrification impacted both the extensive and intensive margins of school-
ing.

2.5 Regression Discontinuity Results

2.5.1 Electrification

In order to demonstrate that RGGVY had a meaningful effect on electrification in eligible
villages, we examine the effects of eligibility for RGGVY on nighttime brightness. Specif-
ically, we use Equation (2.1) to estimate the effect of having a 2001 population above
the RGGVY cutoff on village brightness in 2011. After removing states with low-quality
or missing shapefiles, we are left with a sample of 18,686 single-habitation villages, in
RGGVY 10th-Plan districts across 12 states, with populations in our RD bandwidth of
150–450 people.

Figure 2.5.4 presents the results from our preferred RD specification graphically, while
Table 2.5.2 reports the corresponding numerical results. We find that 2011 nighttime
brightness increased discontinuously at the 300-person threshold by 0.15 units of bright-
ness. This jump is statistically significant at the 5 percent level, with a p-value of 0.015.36

Appendix B.2.1 demonstrates that this is robust to a range of alternative bandwidths,
functional forms, and specifications.

Though this point estimate might seem small, these results in fact demonstrate that
RGGVY eligibility led to a substantial increase in brightness for barely-eligible villages
as compared to barely-ineligible villages. To interpret these effects, we turn to the remote

34While we use the full time series to match DISE schools to Census villages, we restrict our analysis
to the 2010–11 school year, for consistency with our other outcome variables.

35We downloaded these data from http://schoolreportcards.in/SRC-New/. See Appendix B.1.7
for details.

36These results include a control for 2001 nighttime brightness. Due to substantial cross-sectional
heterogeneity, conditioning on the pre-period level dramatically improves the signal-to-noise ratio. This
is common practice with remote sensing data (see also Jayachandran et al. (2017)). If we restrict the
RD sample to include only villages that had electric power availability, according to the 2001 Census,
we recover a nearly identical result (β̂1 = 0.16 with a p-value of 0.046). This suggests that the Census’s
1/0 indicator variable for electric power availability masks substantial changes in electricity access under
RGGVY, which we are able to detect using nighttime lights.

http://schoolreportcards.in/SRC-New/
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Figure 2.5.4: RD – 2011 Nighttime Brightness
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Notes: This figure shows RD results using maximum 2011 nighttime brightness as a
dependent variable, as reported in Table 2.5.2. Blue dots show average residuals from
regressing the 2011 maximum nighttime brightness on 2001 maximum nighttime
brightness and state fixed effects. Each dot contains approximately 1,600 villages,
averaged in 25-person population bins. Lines are estimated separately on each side
of the 300-person threshold, for 18,686 single-habitation villages between 150–450
people, in 10th-Plan districts. The point estimate on the level shift is 0.149, with a
p-value of 0.015. Neither slope coefficient is significant at conventional levels.
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Table 2.5.2: RD – Nighttime Brightness

2011 village brightness
1[2001 pop ≥ 300] 0.1493∗∗

(0.0603)

2001 population −0.0008
(0.0007)

1[2001 pop ≥ 300] × 2001 pop 0.0008
(0.0008)

2001 Control Yes
State FEs Yes
RD bandwidth 150
Number of observations 18,686
Number of districts 130
Mean of dependent variable 6.370
R2 0.766

Notes: This table shows results from estimating Equation (2.1), which
corresponds to Figure 2.5.4. We define village brightness based on the
brightest pixel contained within the village boundary. This regression
includes all single-habitation villages in 10th-Plan districts with 2001
populations in the RD bandwidth (a 150-person bandwidth includes
villages with 2001 populations between 150 and 450), for the 12 states
with available village shapefiles that match to Census village areas with
a correlation above 0.35. Standard errors are clustered at the district
level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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sensing literature. The magnitude of the effect we observe is consistent with ground-
truthed estimates by Min et al. (2013), who find that electrification is associated with
a 0.36-unit increase in nighttime brightness in rural villages in Senegal.37 Our point
estimate of 0.15 is on the same order of magnitude but smaller, which is to be expected,
given that villages in our RD bandwidth are significantly smaller than the villages studied
in Senegal. In a similar exercise, Min and Gaba (2014) find that a 1-unit increase in
brightness corresponds to 60 public streetlights or 240–270 electrified homes in Vietnamese
villages.38

Extrapolating these results to the Indian context, our estimated 0.15-unit increase
translates to roughly 9 additional streetlights per village. This represents a substantial
increase in nighttime luminosity, especially considering that RGGVY did not install street-
lights. Alternatively, if we extrapolate the (weaker) household relationship to our setting,
a 0.15-unit increase would translate to roughly 38 newly electrified homes, or 68 percent
of households in the average village in our RD sample. These estimates from Senegal and
Vietnam suggest that our effect size in India is consistent with a substantial increase in
village electrification under RGGVY, especially given that many electricity end-uses that
RGGVY sought to enable are not captured by the nighttime brightness proxy.39

We perform a series of validity tests in order to demonstrate that this increase in
brightness is, in fact, attributable to the RGGVY program. First, we estimate Equa-
tion (2.1) using 2005 nighttime brightness as the dependent variable. Because RGGVY
was announced in 2005 and nearly all project implementation began in subsequent years,
we should not expect to find an immediate effect of program eligibility on brightness.
The top-left panel of Figure 2.5.5 shows no visual evidence of a discontinuity in 2005
brightness at the 300-person threshold. The point estimate in this regression is 0.031,
with a standard error of 0.020, and is not statistically significant at conventional level.
This demonstrates that nighttime brightness was smooth at the 300-person cutoff prior
to RGGVY.40

Next, we conduct a placebo test using 801 placebo RD “thresholds” between 151
and 1000.41 For each threshold, we re-estimate Equation (2.1) and save β̂1. We plot
the distribution of these placebo coefficients in the top-right panel of Figure 2.5.5. We

37This result uses the same average annual DMSP–OLS product that we use, unlike many of the other
results reported in the paper, which rely on monthly composites that are not publicly available. We
exclude the Mali results described in Min et al. (2013) because the authors exclude them from their main
regression estimates.

38The relationship between nighttime brightness and streetlights is predictably stronger than the
relationship between nighttime brightness and electrified homes.

39While many factors could cause the relationship between household electrification and nighttime
brightness to differ between India and West Africa or Vietnam, Min et al. (2013) and Min and Gaba
(2014) provide evidence that the magnitude of our RD point estimate is consistent with what we might
expect from a substantial increase in electricity access in these small villages.

40We perform a variety of additional pre-period covariate smoothness checks in Appendix B.2.4.5, and
find no evidence of discontinuities prior to RGGVY. Appendix B.2.3 demonstrates that the discontinuity
in brightness steadily increases from 2006 onward.

41We test all 801 integer values in [151, 275] ∪ [325, 1000], which is asymptotically equivalent to sim-
ulating placebo draws across this discrete support. We omit thresholds between 275 and 325 to avoid
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Figure 2.5.5: Nighttime Brightness – Validity Tests
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Notes: This figure presents results from three RD validity checks. The left panel displays results from
estimating our main specification using 2005 brightness as the dependent variable; the point estimate is
0.031 with a standard error of 0.020. The center panel was generated by estimating Equation (2.1) on
801 placebo RD thresholds, representing all integer values in [151, 275] ∪ [325, 1000]. We omit placebo
thresholds within 25 people of the true 300-person threshold to ensure that placebo RDs do not detect the
true effects of RGGVY eligibility, and we exclude thresholds below 151 due to our 150-person bandwidth.
The right panel was generated by scrambling village brightness 10,000 times and re-estimating Equation
(2.1). The red lines represent the RD coefficient from the actual data at the correct 300-person threshold.
Our RD point estimate falls above the 99th percentile of the placebo distribution and above the 98th
percentile of the randomization distribution.
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Figure 2.5.6: Nighttime Brightness – Falsification Tests
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Notes: This figure presents three falsification tests for our RD on nighttime brightness. The top-left and
bottom panels include only villages with multiple habitations, for which the running variable of village
population did not determine village eligibility. The top-right and bottom panels include only villages in
districts that became eligible for RGGVY under the 11th Plan, for which the appropriate eligibility cutoff
was lowered from 300 to 100 people. Blue dots show average residuals from regressing 2011 nighttime
brightness on 2001 brightness and state fixed effects. Each dot contains approximately 900–1,600 villages,
averaged in 25-person population bins. Lines are estimated separately on each side of the 300-person
threshold, for villages within the 150–450 population bandwidth. Supplementary Table B.2.10 reports
the regression results that correspond to these figures.
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also perform a randomization inference exercise, by scrambling the relationship between
nighttime brightness and village population 10,000 times.42 For each iteration, we estimate
Equation (2.1), and the bottom panel of Figure 2.5.5 shows the resulting distribution of
RD point estimates. The red lines indicate our estimate of β̂1, which falls above the 99th
percentile of the placebo distribution and above the 98th percentile of the randomization
distribution. This provides evidence that our RD estimates do not simply reflect spurious
volatility in the relationship between nighttime lights and village population data.

We also perform a falsification exercise based on the implementation details of the
RGGVY program. Our RD sample includes only villages that were eligible for RGGVY
under the 10th Plan, for which the relevant eligibility cutoff was 300 people. It also
includes only those villages confirmed to have exactly one habitation, for which 2001
village population is the appropriate running variable. We should not find effects at
the 300-person cutoff on nighttime brightness for villages eligible under the 11th Plan, for
which the relevant eligibility cutoff was moved from 300 to 100 people. Similarly, we should
not find any RD effects for villages comprising multiple habitations, because these villages’
populations do not correspond to the habitation populations that determined RGGVY
eligibility. Figure 2.5.6 presents RD results estimated using these alternative samples: as
expected, none exhibits evidence of a discontinuity at the 300-person cutoff. This provides
strong evidence that RGGVY, rather than spurious effects or other programs, is causing
these effects.

2.5.2 Economic Outcomes

We now turn to the effects of RGGVY eligibility on village economies, and test for impacts
of electrification via each of the potential channels discussed in Section 2.3.2. We estimate
Equation (2.1) using outcome variables from six broad categories: employment, asset
ownership, housing stock characteristics, village-wide outcomes, household income, and
education. Each RD regression uses a dependent variable from 2011, while controlling
for 2001 population as the running variable, state fixed effects, and the 2001 level of the
dependent variable (unless otherwise noted).

First, we test for employment effects by estimating Equation (2.1) using the total
number of male (female) workers in a given category divided by the total male (female)
population of a village as the dependent variable.43 Figure 2.5.7 summarizes these work-
force results graphically for each gender and sector, and Panel B of Table 2.5.3 reports
them numerically. We find that eligibility for RGGVY caused a 0.7 percentage point
decrease in the share of men working in agriculture, on a mean of 42 percent. In con-
trast, the percentage of men in non-agricultural, non-household labor increased by 0.5
percentage points, on a mean of 10 percent. While these sectoral shifts are statistically

possible contamination of the placebo results with the real threshold. We also avoid placebo thresholds
below 151, to ensure positive values across the full 300-person RD window.

42We assign lights values to each village by sampling {Y 2001
v , Y 2011

v } pairs without replacement.
432011 population does not change discontinuously at the 300-person threshold. See Panel A of

Table 2.5.3, where we find that RGGVY caused no meaningful changes in village demographics.
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significant and in a direction consistent with the structural transformation hypothesis,
these effect sizes are very small: we can reject changes in male labor allocation larger
than 1.3 percentage points. We find no statistically significant effects of electrification on
the share of women working in any sector, and similarly narrow confidence intervals allow
us to reject changes in female employment larger than 1.3 percentage points.44

We next test for effects of RGGVY eligibility on the share of households with a variety
of different assets and housing stock characteristics. Figure 2.5.8 depicts RD results for
the percent of households that own a telephone, own a television, own a motorcycle, have
kerosene lighting, have mud floors, and are categorized as “dilapidated” by the Census.
We see no strong graphical evidence of discontinuous changes in any of these dependent
variables at the 300-person cutoff. Table 3 presents these results numerically in Panels C
and D, while also reporting on the share of households with radios, bicycles, and without
assets; the share of households cooking with electricity or gas; and the share of households
with thatched roofs. Consistent with the graphical evidence in Figure 2.5.8, these results
show that RGGVY did not lead to economically meaningful investments in electricity-
using assets, non-electricity-using assets, or the housing stock in the medium term. We can
reject increases larger than 1 percentage point in all cases. This suggests that RGGVY
is unlikely to have contributed to significant increases in household expenditures. The
program is also unlikely to have led to meaningful reductions in indoor air pollution,
since we see no effects on the share of households with kerosene lighting or electric/gas
cooking.

In Panel E of Table 2.5.3, we present RD results for village-level outcomes, including
mobile phone coverage, the presence of agricultural credit societies, and the presence of
irrigation tubewells, and the share of village area planted and irrigated.45 These results
are not statistically significant, and even the upper bounds on the 95 percent confidence
intervals represent economically insignificant changes (smaller than 2 percentage points) in
these outcomes. Taken together, these result imply that if RGGVY did lead to increases
in agricultural productivity, farmers did not respond by increasing either the scale of
irrigation or total farmland.

Next, we test for effects of RGGVY eligibility on economic outcomes among house-
holds with at least one poverty indicator. We estimate Equation (2.1) using the fraction
of households with at least one poverty indicator (and zero affluence indicators) as the
dependent variable. We also test for effects on the fraction of this subset of households
for which the main income earner earns at least 5,000 rupees per month. The top row of
Figure 2.5.9 presents these results graphically, revealing no evidence that RGGVY led to
changes in these outcomes. Panel A of Table 2.5.4 reports the corresponding regression
results, along with RD estimates for the fraction of households that report salaried em-

44These results focus on the extensive margin of employment (i.e., number of workers). We also test for
effects the intensive margin of employment in Appendix B.2.5 (i.e., share of workers working at least six
months of the year). We find no evidence of statistically significant or economically meaningful changes
on the intensive margin.

45Tubewells are deep wells used for groundwater extraction, which are a common means of irrigation
throughout rural India. Electric pumps improve the efficiency of tubewells.



66

Figure 2.5.7: RD – Labor Outcomes
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Notes: This figure shows the results from our preferred RD specification (Equation (2.1)), as reported nu-
merically in Panel B of Table 2.5.3. Blue dots show average residuals from regressing the 2011 percentage
of the male/female population classified in each labor category on the corresponding 2001 percentage and
state fixed effects. Each dot contains approximately 1,500 villages, averaged in 15-person population bins.
Lines are estimated separately on each side of the 300-person threshold, for all 29,765 single-habitation
villages between 150 and 450 people, in 10th-Plan districts.
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Figure 2.5.8: RD – Housing and Asset Ownership
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Notes: This figure shows the results from our preferred RD specification (Equation (2.1)), as reported
numerically in Panels C and D of Table 2.5.3. Blue dots show average residuals from regressing the
2011 percentage of households owning each asset (or with each characteristic) on the corresponding 2001
percentage and state fixed effects. Each dot contains approximately 1,500 villages, averaged in 15-person
population bins. Lines are estimated separately on each side of the 300-person threshold, for all 29,765
single-habitation villages between 150 and 450 people, in 10th-Plan districts.
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Table 2.5.3: RD – Census Outcomes

2011 Outcome Variable RD
Coeff

Std
Error

95 Percent
Confidence

Mean of
Outcome

A. Demographic outcomes
Total population −0.8647 (2.528) [−5.820, 4.091] 271.09
0–6 cohort / total population 0.0009 (0.001) [−0.001, 0.002] 0.14
Average household size −0.0051 (0.013) [−0.030, 0.020] 5.13
Literacy rate −0.0025 (0.002) [−0.007, 0.002] 0.57

B. Labor outcomes
Male agricultural workers / male pop −0.0071∗∗ (0.003) [−0.013,−0.002] 0.42
Female agri. workers / female pop −0.0049 (0.004) [−0.013, 0.003] 0.29
Male household workers / male pop −0.0009 (0.001) [−0.002, 0.000] 0.01
Female household workers / female pop −0.0014 (0.001) [−0.004, 0.001] 0.01
Male other workers / male pop 0.0046∗∗ (0.002) [0.001, 0.008] 0.10
Female other workers / female pop −0.0004 (0.002) [−0.004, 0.004] 0.05

C. Asset ownership
Share of households with telephone 0.0025 (0.006) [−0.008, 0.013] 0.54
Share of households with TV 0.0026 (0.004) [−0.005, 0.010] 0.26
Share of households with bicycle −0.0015 (0.004) [−0.010, 0.007] 0.50
Share of households with motorcycle −0.0008 (0.003) [−0.006, 0.004] 0.13
Share of households without assets 0.0039 (0.004) [−0.004, 0.012] 0.22

D. Housing stock
Share of households w/ elec/gas cooking 0.0005 (0.003) [−0.005, 0.006] 0.07
Share of households w/ kerosene lighting 0.0029 (0.006) [−0.009, 0.015] 0.48
Share of households with mud floors 0.0043 (0.004) [−0.003, 0.012] 0.73
Share of households with thatched roof −0.0034 (0.005) [−0.013, 0.007] 0.23
Share of households dilapidated −0.0031 (0.003) [−0.009, 0.002] 0.07

E. Village-wide outcomes
1/0 Mobile phone coverage in village −0.0008 (0.011) [−0.023, 0.021] 0.75
1/0 Post office in village 0.0018 (0.004) [−0.005, 0.009] 0.03
1/0 Ag credit societies in village 0.0013 (0.004) [−0.006, 0.009] 0.02
1/0 Water from tubewell in village −0.0023 (0.011) [−0.024, 0.019] 0.44
Share of village area irrigated −0.0057 (0.005) [−0.016, 0.004] 0.35
Share of village area planted 0.0015 (0.006) [−0.010, 0.013] 0.58

Notes: Each row represents a separate regression estimating Equation (2.1) on the outcome variable. The
RD bandwidth includes 29,765 villages with 2001 populations between 150 and 450, across 225 districts.
The second column shows the RD point estimate (β̂1) for each regression. All specifications control for
the 2001 level of the outcome variable, except for share of village area planted (where 2001 values are
not available) and 1/0 indicator variables. All specifications also include state fixed effects. Standard
errors are clustered at the district level, which we use to calculate 95 percent confidence intervals in the
fourth column. The fifth column reports the mean of the dependent variable for each RD regression.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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ployment and that own land. For each outcome, we can reject increases larger than 1.6
percentage points, at 95 percent confidence, suggesting that eligibility for RGGVY did
not have economically meaningful effects on household poverty or wealth.

Using the SECC dataset, we also can test whether RGGVY eligibility had different
employment impacts among individuals of lower socioeconomic status. We construct
sector-specific labor shares that are analogous to Panel B of Table 2.5.3, except that
they include only adults living in households with at least one poverty indicator.46 We
report these results graphically in the bottom row of Figure 2.5.9 and numerically in
Panel B of Table 2.5.4. While the SECC sample differs notably from the village averages
in the PCA, these results are broadly consistent with our main labor results, and visual
evidence suggests a small decrease (increase) in agricultural (other) employment for adult
men. We can reject 2 percentage point shifts across all six labor categories, which suggests
that the average employment effects of RGGVY were similar to the effects on less wealthy
households.

Finally, we test for the effects of RGGVY eligibility on education. We estimate Equa-
tion (2.1) using village-wide enrollment for grades 1–8, both pooled and separately by
gender, as the dependent variable. We also test for separate effects for primary (grades
1–5) and upper primary (grades 6–8) enrollment, where the latter reflects changes on the
intensive margin of schooling. We report these results in Figure 2.5.10 and Table 2.5.5,
which show no statistically significant changes in enrollment at the 300-person threshold.47

As with our other results, our 95 percent confidence intervals can reject even moderate
changes in enrollment on either the intensive or extensive margins.

Taking these results together, we conclude that while the provision and consump-
tion of electricity substantially increased as a result of RGGVY eligibility, we detect no
economically meaningful changes in labor outcomes, asset ownership, the housing stock,
village-level outcomes, household income, or school attendance. Our RD results are pre-
cisely estimated, enabling us to rule out even modest effect sizes for these outcomes. This
suggests that eligibility for RGGVY did not lead to structural transformation, increased
agricultural productivity, female empowerment, reductions in indoor air pollution, im-
proved education, or poverty reductions.

46See Appendix B.1.6 for further information on how we constructed these categories from the SECC
data.

47These regressions control for the 2005 level of the outcome variable, which is the earliest year of
enrollment data available. Also, we not that because these village-level enrollment regressions aggregate
enrollment across all schools in each village, they might confound changes in within-school attendance
with changes in enrollment due to new school construction over time. Appendix B.2.8 repeats these same
regressions using school-level enrollment observations, while conducting additional sensitivity analysis.



70

Figure 2.5.9: RD – SECC Village-Level Outcomes
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Notes: This figure shows the results from our preferred RD specification (Equation (2.1)), as reported
numerically in the first two rows of Table 2.5.4. The upper-left panel reports the proportion of total village
households with at least one poverty indicator in 2011, while the upper-right panel reports the proportion
of households with a poverty indicator that had a maximum monthly income over Rs 5,000 in 2011. The
lower panels report the share of adult men in households with a poverty indicator with occupations in
each category. Blue dots show average residuals from regressing the 2011 share of households on state
fixed effects. Each dot contains approximately 1,600 villages, averaged in 20-person population bins.
Lines are estimated separately on each side of the 300-person threshold for 25,942 villages, i.e. all 10th-
Plan single-habitation villages within our 150–450 population RD bandwidth, that match to the SECC
dataset.
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Table 2.5.4: RD – SECC Village-Level Outcomes

2011 Outcome RD
Coeff

Std
Error

95 Percent
Confidence

Mean of
Outcome

A. Share of households
At least one poverty indicator 0.0006 (0.006) [−0.011, 0.012] 0.48
Monthly income > Rs 5,000 0.0043 (0.004) [−0.004, 0.013] 0.08
One member holding salaried job 0.0030 (0.002) [−0.002, 0.008] 0.02
Owning any land −0.0005 (0.008) [−0.017, 0.016] 0.44

B. Adult employment
Male agricultural workers / adult men −0.0091∗ (0.005) [−0.019, 0.001] 0.29
Female agri. / adult women −0.0039 (0.005) [−0.013, 0.006] 0.08
Male household workers / adult men 0.0008 (0.001) [−0.002, 0.004] 0.01
Female household workers / adult women −0.0015 (0.008) [−0.016, 0.013] 0.51
Male other workers / adult men 0.0052 (0.006) [−0.007, 0.017] 0.42
Female other workers / adult women 0.0054 (0.005) [−0.005, 0.016] 0.16

Notes: Each row represents a separate regression estimating Equation (2.1) on a different SECC village-
level outcome. The first row of Panel A is coded as the share of total households in the village with at least
one poverty indicator. Other outcomes in Panel A are coded as the proportion of this subset of households
(with poverty indicators) that meet each criterion. Panel B outcomes are coded as the share of adult
men (women) with an occupation in each subcategory, for the sample of adults in households with at
least one poverty indicator. (We treat all invididuals over 16 years of age as adults.) The second column
shows the RD point estimate (β̂1) for each regression. All specifications include state fixed effects, but
they do not include any additional baseline control variables. The RD bandwidth includes 25,942 villages
with 2001 populations between 150 and 450. These regressions contain fewer villages than regressions in
Table 2.5.3 because only 87 percent of 10th-Plan, single-habitation, 150–450 villages match to the SECC
dataset. Standard errors are clustered at the district level with 222 clusters, which we use to calculate 95
percent confidence intervals in the fourth column. The fifth column reports the mean of the dependent
variable for each RD regression. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Figure 2.5.10: RD – School Enrollment

−10

−5

0

5

10

2
0

1
1

 E
n

ro
llm

e
n

t,
 r

e
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

2011 Total Enrollment, Grades 1−8

−10

−5

0

5

10

2
0

1
1

 U
p

p
e

r 
P

ri
m

a
ry

 E
n

ro
llm

e
n

t,
 r

e
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

2011 Total Enrollment, Grades 6−8

Notes: This figure shows the results from our preferred RD specification (Equation (2.1)), as reported
numerically in the first and last rows of Table 2.5.5. Blue dots show average residuals from regressing the
2011 number of (total, grades 6–8 only) students on the corresponding 2005 enrollment counts and state
fixed effects. Each dot contains approximately 1,000 villages, averaged in 25-person population bins.
Lines are estimated separately on each side of the 300-person threshold, for 12,251 single-habitation
villages between 150 and 450 people, in 10th-Plan districts, with school-village matches and nonmissing
2005 and 2011 enrollment data.

Table 2.5.5: RD – School Enrollment

2011 Outcome Variable RD
Coeff

Std
Error

95 Percent
Confidence

Mean of
Outcome

Total enrollment, grades 1–8 −0.472 (3.93) [−8.18, 7.24] 74.05
Male enrollment, grades 1–8 0.197 (2.00) [−3.72, 4.11] 37.60
Female enrollment, grades 1–8 −0.650 (2.02) [−4.61, 3.31] 36.45
Total enrollment, grades 1–5 −0.408 (2.95) [−6.19, 5.37] 60.58
Total enrollment, grades 6–8 0.051 (1.50) [−2.89, 2.99] 13.47

Notes: Each row represents a separate regression estimating Equation (2.1) on a differ-
ent enrollment count, aggregating schools enrollment up to village-level observations.
The second column shows the RD point estimate (β̂1) for each regression. All specifi-
cations control for the 2005 level of the outcome variable and state fixed effects. The
RD bandwidth includes 12,251 village observations with 2001 populations between
150 and 450, with a single habitation, in RGGVY 10th-Plan districts. These regres-
sions contain fewer villages than regressions in Table 2.5.3 because only 51 percent of
10th-Plan, single-habitation, 150–450 person villages match to a school, and only 76
percent of these matched villages contain schools that report nonmissing enrollment
values for 2011 and 2005. Standard errors are clustered at the district level, with
215 clusters, which we use to calculate 95 percent confidence intervals in the fourth
column. The fifth column reports the mean of the dependent variable for each RD
regression. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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2.6 Interpretations and Extensions

2.6.1 Scaling

The above regressions recover intent-to-treat estimates: they show the effect of being
eligible for RGGVY on our outcomes of interest. In order to compute average treatment
effects, we need to scale these estimates such that we recover the effect of electrification
on development.48

We propose several methods of scaling our estimates. First, we consider inflating
our outcomes based on the proportion of villages within our bandwidth that RGGVY
claims to have treated. This is akin to the scale factor we would apply with a traditional
instrumental variables estimator. RGGVY’s district-level aggregate data suggest that
between 56 and 82 percent of eligible villages were treated by the program.49 This implies
that our estimates should be inflated by approximately a factor of 1.5 in order to recover
the causal effects of treatment under RGGVY.

Alternatively, we can calibrate a scaling factor to the magnitude of the increase in
nighttime brightness, which we estimate to be 0.15 units of brightness. Min et al. (2013)
suggest that when villages in Senegal were electrified, they experienced increases of ap-
proximately 0.4 nighttime brightness points. If, alternatively, we apply Min and Gaba
(2014)’s estimates of a 1-unit increase in brightness corresponding to 240–270 electri-
fied households, then full electrification of the average village in our RD sample with 56
households would imply an increase of 0.2 brightness points.50 This suggests that our RD
estimates should be inflated by a factor of between 1.3 and 3 to recover the average effect
of RGGVY electrification.51

Scaling the point estimates reported in Tables 2.5.3–2.5.5 by a factor of 3 does not yield
adjusted estimates that are economically meaningful. For the vast majority of outcomes,
we see no visual evidence of a discontinuity, suggesting that these upper bounds are quite
conservative. Even after inflating the 95 percent confidence intervals by these factors, we
can still reject 4 percentage point changes in labor outcomes, 4 percentage point changes
in asset ownership, 5 percentage point changes in the housing stock, and 8 percentage
point changes in village-level outcomes. We can also reject 6 percentage point changes
in outcomes in Table 2.5.4, as well as 21 student (30 percent) increases in total school
enrollment. Scaling by a factor of 3, we can rule out effects larger than 0.26 of one
standard deviation in all outcomes presented in Tables 2.5.3–2.5.5.

48We do not scale via two-stage least squares because we do not have access to a binary “RGGVY
electrification” variable, nor would this variable capture different levels of energy access and consumption
across villages treated under RGGVY, as discussed above.

49RGGVY’s aggregate village counts in 10th-Plan districts sum to 56 percent of the total number of
villages in these districts, and 82 percent of villages with 2001 populations over 300.

50These increases of 0.4 and 0.2 are internally consistent; the average villages in Min et al. (2013) and
Min and Gaba (2014) are larger than the villages in our RD bandwidth.

51We do not propose a scale factor based on Min and Gaba (2014)’s streetlights estimate, since we do
not have data on the number of streetlights per village, and because RGGVY did not install streetlights.
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Even if we were to scale our estimates by an extremely conservative factor of 10, we can
still reject effect sizes consistent with the previous literature.52 Dinkelman (2011) finds
that electrification caused 9–9.5 percentage point increases in female employment; we can
reject 2 percentage point increases in total female employment.53 Lipscomb, Mobarak,
and Barham (2013) likewise find large effects of electrification on total employment rates;
we can reject 1 percentage point increases in the village-wide employment rate even after
applying a conservative scaling factor of 10.54 Chakravorty, Emerick, and Ravago (2016)
find that rural electrification leads to a 56 percent decrease in a deprivation index, and a
38 percent increase in household expenditures; scaling our Table 2.5.4 results by 10, we
can reject an 11 percentage point decrease in the share of households with at least one
poverty indicator, and a 13 percentage point increase in the share of households (with at
least one poverty indicator) with monthly incomes greater than 5,000 rupees.

2.6.2 Heterogeneous Effects

It is possible that our results mask heterogeneity in the quality of energy services expe-
rienced by RGGVY villages. In particular, India faces major electricity shortages, which
vary across locations (Allcott, Collard-Wexler, and O’Connell (2016)). If half of the vil-
lages in our sample experienced frequent power outages while the other half received
consistent power, our average intent-to-treat estimate across both groups would be small
even if RGGVY led to large economic effects in places with high-quality energy supply.
We test for this by re-estimating all of our RD results using the subset of states with
above-average power availability (Central Electricity Authority (2011)).55 In this sub-
sample, our estimated RD coefficient on nighttime brightness increases from 0.15 to 0.25,
statistically significant at the 1 percent level. However, the results for labor, asset owner-
ship, the housing stock, village-level outcomes, and household wealth are quantitatively
similar to those estimated using the full RD sample.56

This suggests that poor power quality in a subset of states is not attenuating our
estimate of the average effect across the full sample. Moreover, our main RD results

52In order to arrive at factor of 10, which we believe to be the most conservative interpretation of our
results, we assume that RGGVY only impacted household electricity end-uses. Our nighttime brightness
effect of 0.15 is comparable to the change in brightness associated with a 10 percentage point increase
in the share of households with electric lighting, a proxy for household power consumption, at the mean
of our RD sample. This suggests a scaling factor of 10 to translate this into an increase from 0 to 100
percent of households.

53We estimate Equation (1) pooling female employment across all three sectors, resulting in an RD
point estimate of −0.0067 with the upper end of our 95 percent confidence interval of 0.0015, which we
multiply by 10. We can similarly reject increases of 3 percentage points in female agricultural employment,
1 percentage point in female household employment, and 4 percentage points in female other employment.

54If we pool all six labor outcomes in Panel B of Table 2.5.3, the resulting RD point estimate is −0.0053
with an upper 95 percent confidence interval of 0.0002.

55These seven states are (in decreasing order of 2011 power quality): Chhattisgarh, Orissa, Karnataka,
West Bengal, Gujarat, Haryana, and Rajasthan.

56Appendix B.2.10 reports regression results for both split-sample exercises discussed in this section.
The schooling results are qualitatively similar, but somewhat less robust.
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reflect the realized implementation of a large-scale national rural electrification program
in the developing world. Even if we had found substantial positive effects for a subset of
states, the overall treatment effect would be indicative of the degree to which future rural
electrification programs might be limited by the supply reliability.

It is also possible that we do not detect large effects because the benefits of electrifica-
tion take many years to accrue. While we cannot rule this possibility out completely, our
2011 outcome data were collected between three and five years after 95 percent of villages
in our sample received RGGVY funding.57 Even if there were significant delays in imple-
mentation, this is much longer than the time span over which development interventions
are typically studied. Nevertheless, we recover quantitatively similar RD point estimates
when we restrict our RD sample to districts with early RGGVY funding. Therefore, it
is unlikely that our small results are driven by villages that failed to take advantage of
the full set of possible medium-run benefits of electric power before being surveyed by the
2011 Census.

2.6.3 Difference-in-differences

Finally, we might be concerned that villages close to the 300-person RD threshold stand
little to gain from electrification. Perhaps these small villages are simply too poor, too
credit-constrained, or too economically isolated to translate increased electricity access
into new employment or income-generating opportunities. We employ a second identifi-
cation strategy, difference-in-differences (DD), to test for the effects of RGGVY eligibility
on larger villages far from our RD threshold. Recall that there were two major phases of
RGGVY implementation: the 10th-Plan phase and the 11th-Plan phase. The majority
of 11th-Plan electrification projects had not been completed before the 2011 Census. We
can therefore use 10th-Plan districts as a “treated” group and 11th-Plan districts as a
“control” group in a DD framework.58 We estimate the following fixed effects specification
on our two-decade village panel:

Yvst = γ0 +
∑
b

γb11 [10th× Post]vt × 1 [Pv ∈ Binb] + δt + ηv + εvt(2.2)

where 1 [10th× Post]vt is an indicator equal to one if village v was eligible for RGGVY
under the 10th Plan and the year t is 2011, 1 [Pv ∈ Binb] are 2001 village population bins
along the full support of populations (shown in Figure 2.4.3), δt are year fixed effects,
and ηv are village fixed effects. This necessitates stronger identifying assumptions than
our RD specification, namely that villages in 10th-Plan districts were trending in parallel
to 11th-Plan villages prior to RGGVY. Village-level data are not available for the 1991
Census, therefore we are unable to directly test this assumption.59

57Over 70 percent of villages in our RD sample are in districts that received RGGVY funding before
the end of 2006. See Appendix Table B.2.26.

58Selection into the different plans was non-random. It is plausible that 10th-Plan districts were more
administratively capable than 11th-Plan districts, likely biasing our DD estimates upward.

59In Appendix B.2.11, we test for differential pre-trends using district-level data. These trends are not
statistically zero, suggesting that our DD results should be interpreted with some caution.
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Figure 2.6.11 compares our main RD results with DD results from estimating Equa-
tion (2.2) with 300-person population bins, for nighttime brightness and male agricultural
workers. For both outcomes, the RD point estimates lie within the DD confidence inter-
vals. Moreover, the DD effect of RGGVY on nighttime lights increases nearly monoton-
ically in population, while the DD effect for male agricultural labor is close to constant
as population increases. This suggests that our small RD results for male agricultural
employment are likely to be externally valid outside of our RD bandwidth. Other eco-
nomic outcome variables show similarly constant DD coefficients across small and large
villages.60

These DD results are broadly consistent with our RD results, despite using a much
larger population of villages (from 10th- and 11th-Plan districts, including multi-habitation
villages) and using 11th-Plan villages as counterfactuals (as opposed to barely ineligible
10th-Plan villages). Beyond allowing us to extend our RD results to larger villages, the
DD results are encouragingly similar to the RD. Relying on alternative identifying as-
sumptions on a different sample of villages, we again demonstrate that RGGVY caused
nighttime brightness to increase, but has not meaningfully improved the economic out-
comes that we observe.

2.6.4 Costs and Benefits

We do not have direct estimates of village-level program costs, incomes, or expenditures.61

However, we perform several back-of-the-envelope calculations based on our RD results.
This enables us to better understand the overall economics of RGGVY, while also quan-
tifying the costs and benefits of electrification.

First, we consider the per-village costs of RGGVY implementation. In 2005, RGGVY
was expected to cost 634.2 billion rupees, or approximately $17.2 billion.62 Given the
stated scope of the program detailed in Section 2.2, this suggests a cost per village of
approximately 1,470,000 rupees, or $36,000 in 2015 USD.63

We can apply average Indian rural wage rates to estimate the income differential that
might have resulted from the (small) sectoral shift from agricultural to non-agricultural
employment we observe under RGGVY. According to India’s National Sample Survey
Office, the average 2011 wage for male (female) non-agricultural workers was 196 (116)
rupees per day, which was 26 (0.9) percent higher than the average agricultural wage of
155 (115) rupees per day. To compute the average increase in village-level income, we
scale the lower bound of our confidence interval for male (female) agricultural labor from
Table 2.5.3, −0.013 (−0.013), by a factor of 3. This converts our intent-to-treat estimate

60We report additional DD results in Appendix B.2.11.
61The SECC income data indicate whether households’ main income earners earned more or less than

5,000 rupees per month, and comes from a selected subset of households. Hence, we exclude these data
from the subsequent cost-benefit analysis.

62We use the 2005 exchange rate of 44 rupees per dollar, and convert to 2015 USD.
63This is comparable to Chakravorty, Emerick, and Ravago (2016), who report average electrification

costs of $42,000 per village in the Philippines.
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Figure 2.6.11: Difference-in-Differences Results
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Notes: This figure compares the reduced form effects from our preferred RD specification
(Equation (2.1)) to the results from our DD specification (Equation (2.2)), using 300-
person population bins. Navy blue dots show the RD coefficients, with whiskers indicating
95 percent confidence intervals. Light blue dots and dashed lines show the binned DD
point estimates and 95 percent confidence intervals. The top panel shows the effects for
nighttime lights, as measured by maximum village brightness. The bottom panel shows
the effects for male agricultural workers. The RD results are statistically significant at
the 5 percent level and the 1 percent level, respectively. The pooled DD point estimates
are 0.45 and −0.008; both are statistically significant at the 10 percent level (Appendix
B.2.11 reports these results in a regression table). DD regressions for lights and labor
include 629,778 and 994,802 village-year observations, respectively.
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into an average treatment effect, and it implies a maximum shift out of male and female
agricultural employment of 3.9 percentage points.64 If all of these men (women) shifted
from agriculture into non-agriculture employment, then total daily male (female) village
wage earnings would have increased by approximately 293 (7) rupees. If each employed
person worked 365 days per year, this would translate into a total annual village income
increase of approximately 109,000 rupees, or an upper bound of 1.4 percent.

Alternatively, we can use our RD estimates on household asset ownership to infer
changes in expenditures resulting from electrification. Scaling the upper confidence in-
tervals in Panel C of Table 2.5.3 by 3, we can reject increases in asset ownership of
greater than 3.9 percent for mobile phones, 3.0 percent for televisions, 2.1 percent for bi-
cycles, and 1.2 percent for motorcycles. Monetizing these upper bounds using asset prices
from ICRISAT’s Village Dynamics in South Asia dataset, this implies a maximum average
household expenditure of 572 rupees.65 Supposing that only 10 percent of RGGVY-driven
expenditure increases were spent on these four durable goods implies a maximum increase
in per-household expenditure of 5,720 rupees, or a total village-wide increase of around
398,000 rupees. These asset purchases occurred during the 3–6 year period after electrifi-
cation; if we conservatively assume that they all occurred within 3 years of electrification,
this would represent at best a 2.1 percent increase in annual village expenditures.66

Our back-of-the-envelope estimates suggest that annual village income increased by
a maximum of 109,000 rupees, that annual village expenditures increased by a maxi-
mum of 133,000 rupees, and that RGGVY electrification came at a cost of approximately
1,470,000 rupees per village. These results are quite conservative: though we do not
measure all possible benefits from electrification, the benefits we do use in performing
this calculation come almost entirely from regression estimates where we cannot reject
zero; our assumptions in performing this calculation also make it biased towards finding
large effects. Using the larger expenditure estimate and applying a conservative 3 percent
discount rate, this translates into a payback period of approximately 12 years.67

At best, we find that RGGVY increased annual incomes by 1.4 percent and annual
expenditure by 2.1 percent, despite causing a substantial shift in nighttime lights. This
suggests exercising caution when using nighttime brightness as a proxy for income or
expenditures. The DMSP-OLS dataset measures light emissions. Because brightness
relates directly to energy consumption through lighting, it serves as a useful indicator
of electrification. Since electrification should lead to increased brightness even absent a
corresponding increase in incomes, we do not use the DMSP-OLS data as a proxy for

64In keeping with Section 2.6.1, we apply a scaling factor of 3 throughout this section.
65The average prices for durables commonly purchased after electrification are: Rs 2,796 for cell

phones, Rs 4,166 for televisions, Rs 1,259 for bicycles, and Rs 25,922 for motorcycles.
66India’s average rural monthly per capita expenditures were 1,430 rupees for 2011–2012.
67This starkly contrasts with Chakravorty, Emerick, and Ravago (2016), who find a payback period

of approximately 1 year; however, it is corroborated by evidence from Lee, Miguel, and Wolfram (2016),
who use revealed preference results to suggest that the costs of electrification are much larger than the
benefits.
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income/expenditures, and caution others against doing so when evaluating programs that
directly increase light emissions.

Importantly, our results do not speak directly to the effects of RGGVY on welfare. It
is quite possible that electrification has dramatically increased average quality of life for
rural Indians. Indeed, since villagers are using more power as a result of RGGVY, revealed
preference suggests that they benefit from the program. Even though we measure a wide
range of outcome variables which are typical of large-scale administrative datasets, there
may be important utility benefits that we cannot measure. Our results highlight the need
to incorporate additional non-market measures into future administrative data collection
efforts.

2.7 Conclusion
In this paper, we evaluate the medium-run effects of electrification on development using
a regression discontinuity (RD) design which exploits a population eligibility threshold
in India’s national rural electrification program, RGGVY. We find that eligibility for
RGGVY led to substantial changes in nighttime brightness and power availability. De-
spite this increase in energy access, we find that electrification did not have economically
meaningful impacts on a range of development outcomes.

These results hold when we rescale our reduced form estimates to account for the
proportion of eligible villages that underwent treatment. We see similar effects on devel-
opment among states with high and low average reliability of electricity supply. We also
find similar effects when we restrict our analysis to the earliest districts to obtain RGGVY
funding, suggesting that our results do not depend on the timing of our post-intervention
data. Finally, we apply a difference-in-differences strategy, which relies on alternative
identifying assumptions and includes a larger sample of villages well outside our RD
bandwidth. These results support the main conclusions from our RD analysis that while
nighttime lights, and therefore power consumption, increased substantially with RGGVY
electrification, other development outcomes that we observe did not. Our cost-benefit
calculations suggests a much longer payback period than previously estimated.

These results are the first to suggest that electrifying rural villages may not cause
sizable economic gains in the medium term. Our regression discontinuity strategy relies
on much less stringent identifying assumptions than the instrumental variables approaches
of previous work, allowing us to measure effects of a natural rollout of rural electrification,
at scale. In contrast to the existing literature, we find that electrification did not yield even
modest changes in labor, income, household wealth, asset ownership and expenditures,
village-level outcomes, and education. These null results come from the world’s largest
unelectrified population, and appear to generalize to over 400,000 villages across rural
India.

Nevertheless, electrification may lead to large economic benefits in certain contexts,
and may have important positive effects on human well-being that we are unable to quan-
tify. An important direction for future work will be to understand when, where, and after
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how long electricity access and power availability have the greatest economic impact. For
example, electrification may lead to substantial gains in economic productivity in urban
settings, or in regions with budding local industries. There may also be substantial long-
run effects of electrification, and more research is necessary to identify these benefits.
Finally, we encourage future research on quantifying the non-market benefits from elec-
trification that frequently go unmeasured.
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Chapter 3

Costs of Misallocation in Indian
Electricity Supply1

3.1 Introduction
Electricity is an essential input to modern economic activity, and energy consumption is
highly correlated with GDP in the global cross-section. Electricity demand in the develop-
ing world is projected to rise dramatically over the coming decades, as households move
out of poverty and purchase electric appliances (Wolfram, Shelef, and Gertler (2012);
Gertler et al. (2016)). Governments and development agencies invest billions of dollars
annually to expand access to cheap, reliable electricity in low- and middle-income coun-
tries (Burlig and Preonas (2016)). Meeting this key development goal will require these
countries to develop well-functioning electricity supply sectors.

At the same time, electricity supply is notoriously complicated due to the physical
requirements of producing and transporting electric power. Electricity generation has
sharply increasing returns to scale, and power plants incur extremely high upfront invest-
ment costs relative to the marginal value of electricity they produce. Because electricity
is extremely expensive to store and supply must instantaneously meet demand for mar-
kets to clear, regulators must allow generators to earn sufficient revenue to finance high
fixed costs while still incentivizing them to supply cheap, reliable power to consumers.2
Traditionally, regulators have allowed electric utilities to operate as vertically integrated

1This chapter is coauthored with Fiona Burlig and Akshaya Jha. We thank Severin Borenstein, Steve
Cicala, Michael Greenstone, Ryan Kellogg, Koichiro Ito, Nick Ryan, Matt Woerman, Catherine Wolfram,
and seminar participants at the University of Chicago, Columbia SIPA, Camp Resources, the Heartland
Environmental and Resource Economics Workshop, and the UC Berkeley Economics Department for
helpful comments and suggestions. Erin Kelley provided invaluable data acquisition support, and Jessica
Jiang and Xiner Xu served as excellent research assistants. All remaining errors are our own.

2This balancing act—simultaneously providing low cost electricity to consumers while still incentiviz-
ing investment in electricity generating capacity—is known as the “missing money” problem (see Joskow
(2006); Joskow (2008)).
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natural monopolists, while restricting electricity prices to be just high enough for utilities
to recover both fixed and variable costs of electricity generation and transmission.

In developing countries, electric utilities have historically tended to be state-owned
monopolies responsible for the generation, transmission, and distribution of electricity.
These government-run utilities have typically struggled to provide reliable power, often
facing frequent supply shortages and blackouts while operating on the edge of bankruptcy.
In response, more than 70 low- and middle-income countries have implemented electricity
market reforms since the early 1990s. A typical reform package has sought to establish
a competitive wholesale market for electricity, while encouraging private entry of electric
power plants and unbundling the generation of electricity from its transmission and dis-
tribution. Despite the importance of the power sector for economic growth, there remains
little empirical evidence on the economic efficiency of electricity markets in the developing
world (Jamasb, Nepal, and Timilsina (2015)).

The U.S. electricity sector underwent similar reforms in the 1990s, and the transition
towards wholesale electricity markets yielded large welfare gains (e.g., Fabrizio, Rose, and
Wolfram (2007); Davis and Wolfram (2012); Cicala (2017)). However, the California elec-
tricity crisis of 2000–2001 serves as a stark reminder that such reforms can also create
substantial welfare losses absent sufficient regulatory oversight (Borenstein, Bushnell, and
Wolak (2002); Borenstein (2002)). In low- and middle-income countries, relatively weaker
institutions and limited regulatory capacity have the potential to undermine the welfare
gains from electricity market reforms. As these countries continue to rapidly expand elec-
tricity supply, understanding the drivers of economic inefficiencies in electricity markets
is critical to supporting economic growth in the developing world.

In this paper, we quantify the costs of short-run misallocation in Indian electricity
supply. We begin by assembling a novel dataset on electricity production and marginal
costs of generation for each utility-scale power plant in the country, between 2013 and
2017. We use these data to estimate short-run supply misallocation by creating a least-
cost counterfactual. That is, we “dispatch” power plants in order of lowest to highest cost,
until there is enough aggregate supply to meet aggregate demand and clear the market.
We compute the total short-run cost under this “least-cost” counterfactual, and we also
calculate the total observed short-run costs of electricity generation based on each plant’s
actual production. By comparing the costs calculated under least-cost versus observed
dispatch scenarios, we are able to quantify the cost gap between factual and counterfactual
electricity supply. After accounting for transmission constraints, the remaining cost gap
represents the short-run misallocation wedge (Hsieh and Klenow (2009)).

Using administrative data on marginal costs, we find that least-cost dispatch has total
short-run variable costs of approximately $24 billion per year, while the observed dispatch
has costs of approximately $29 billion per year—more than $4.6 billion (16 percent)
higher. We also construct our own measure of marginal costs using detailed information
on plant efficiency and input prices; using these constructed cost data, we likewise find that
observed dispatch is over 17 percent more costly in the short run than least-cost dispatch.
In order to conservatively account for both interregional and intraregional transmission
constraints, we impose autarky within each subregion of the Indian electricity grid. The
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remaining cost gap is $3.2 billion per year (11 percent), which represents a lower bound
on the short-run misallocation wedge.

We investigate several potential drivers of this misallocation wedge: market power,
political economy, and market design. We find that market power plays at most a small
role in Indian electricity supply, consistent with the fact that the majority of plants face
rate-of-return regulation. We do find evidence that political factors impact misallocation,
using a regression discontinuity design around close election outcomes. Finally, we argue
that market design is an important driver of misallocation in the Indian market.

This paper makes three main contributions to the literature on electricity supply
in developing countries.3 First, we assemble a novel dataset on market operations and
marginal costs of electricity supply in India. Armed with these data, we provide among the
first estimates of the short-run cost of electricity supply in a developing country. Second,
we extend the U.S.-focused literature on deviations from first-best outcomes in electricity
markets, by quantifying the extent of misallocation in the second-largest electricity market
in the developing world. Finally, we contribute to the broader literature on electricity
markets by studying the mechanisms that generate misallocation in power supply.

This paper proceeds as follows. Section 3.2 describes the Indian electricity market.
Section 3.3 presents our data. Section 3.4 outlines our empirical approach to estimating
costs of generation in India, and Section 3.5 displays the results of this exercise. In
Section 3.6, we provide a discussion of mechanisms behind the deviation between actual
market operations and short-run cost minimization. Section 3.7 concludes.

3.2 The Indian Electricity Market
In this section, we provide an overview of the major features of the Indian electricity
market: power market reforms from 2003 to today, today’s generation mix, long-term
contracts, and transmission.

Power market reforms The majority of electricity generation capacity in India is
owned by the central or state governments. In 1948, the Electricity Supply Act gave rise
to State Electricity Boards (SEBs), responsible for electricity generation, transmission,
and distribution, as well as tariff-setting. The tariffs set by these SEBs were too low to
recover costs, leading to supply shortages, a lack of investment in generation capacity, and
bankruptcy among state electricity companies. In response, the Indian electricity sector
was charged with reform, beginning with the introduction of State Electricity Regulatory
Commissions, starting in 1996.

3There is a rapidly growing literature on electricity in the developing world. See for example Lee,
Miguel, and Wolfram (2016), Burlig and Preonas (2016), and Dinkelman (2011) on rural electrification;
Allcott, Collard-Wexler, and O’Connell (2016) and Abeberese (Forthcoming) on the impacts of power
shortages and electricity prices on firm performance; and Ryan (2017) on the role of transmission con-
straints in Indian electricity supply, among many others.



84

The most significant reform in recent history has been the 2003 Electricity Act, which
called for an overhaul of the Indian power market. The stated goal of the Act was to
facilitate competition in the supply of electricity through many different changes to the
industry, including opening up access to electricity transmission grids as well as electricity
distribution as well as removing the licensing requirement for the generation and distri-
bution of electricity. In the wake of the Act, private investment in generation increased
dramatically. Today, the Indian electricity sector includes over 330 GW of capacity,
roughly 56 percent of which is government owned.

Fuel The majority of electricity generation in India comes from coal-fired generation
sources. As of 2017, coal makes up 58.4 percent of this capacity, gas makes up 7.6 percent
of this capacity, hydro makes up 13.5 percent of this capacity, nuclear makes up 2.1 percent
of this capacity, and renewables makes up 18.2 percent of this capacity. Most coal- and
gas-fired power plants procure input fuels via long-term Fuel Supply Agreements (FSAs),
which are governed by fuel price regulations. Typically, fossil fuel plants are required
to sign an FSA before they are allowed to begin operations. The majority of coal-fired
power plants operate via linkages with Coal India, Ltd., the government-owned coal supply
monopoly.4 Recent shortages in coal and natural gas supply have been anecdotally linked
with rolling blackouts and intermittent power supply.

Long-term contracts In spite of recent market reforms, the short-term power market
comprised only 10 percent of the total electricity procured in India in 2016–17. The
vast majority of electricity in India is sold via medium- or long-term contracts between
generation companies and wholesale consumers (e.g. distribution companies). The Central
Electricity Regulatory Commission (CERC) approves the electricity tariffs received by
generators on these bilateral contracts; this approval process is based on each plant’s
fixed and variable costs.

Transmission As with any electricity market, transmission plays an important role in
the Indian electricity sector. India is split into five electricity transmission grids, with
inter-regional transmission lines between these five regions. The total interregional trans-
mission capacity has increased rapidly in recent years, from 14,050 MW in 2007 to 75,050
MW in 2017. Expansions in transmission, including integrating all of India’s transmission
regions into one grid under the One Nation, One Grid scheme has been a major goal of
the current government.

Transmission capacity is allocated by the National Load Despatch Centre in conjunc-
tion with regional and state Load Despatch Centres, using an administrative process
that prioritizes long-term contracts, medium-term contracts, and finally the short-term
electricity market (see Ryan (2017) for more details). Importantly, by prioritizing the

4After our sample period, the government introduced the “Scheme to Harness and Allocate Kolya
(Coal) Transparently in India” (a.k.a. Shakti) policy allocates new coal contracts to generation units
based on an auction mechanism; the first auction ran in September 2017.
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transmission rights of long-term contracts, this limits the ability of generators to arbi-
trage differences between contract prices and short-term trading prices. In other words,
a long-term contract serves as both a forward financial commitment between traders and
a de facto commitment to a physical allocation of electricity generation.

In this paper, we seek to estimate the costs of short-run misallocation in electricity
supply in India. We estimate both the total costs of observed electricity supply and the
costs associated with a least-cost counterfactual, in which we re-dispatch units according
to marginal cost. Importantly, we hold demand, transmission, costs, and generating
capacity fixed, such that our estimates reflect consequences of short run reallocation only.

3.3 Data
In order to quantify the costs of misallocation in power generation in India, we digitized
and assembled a novel dataset on the Indian electricity supply sector. Our empirical anal-
ysis draws on four main types of data. First, we use detailed daily plant-level generation
and operation data, reported for the majority of India’s utility-scale power plants by the
Central Electricity Authority (CEA). Second, we use data on plants’ reported operating
costs from India’s Ministry of Power. Third, we construct our own measure of power plant
operating costs based on plant-specific heat rates and fuel consumption published by the
CEA (a plant’s heat rate is the amount of thermal energy in kcal required to produce
one MWh of electricity). Fourth, we incorporate detailed data on fuel prices to convert
heat rates into marginal costs. These include fuel prices from the Ministry of Coal and
Ministry of Petroleum and Natural Gas, hand-geocoded plant coordinates, and geospatial
data on India’s coalfields from the USGS—which we combine to calculate the shortest
distance between each coal-fired power plant and the nearest coalfield.

Daily generation data The Central Electricity Authority (CEA) monitors the oper-
ations of all utility-scale (greater than 50 MW) fossil, hydroelectric, and nuclear power
plants in India.5 This include centrally owned, state-owned, and privately owned facilities.
We obtain the CEA’s Daily Generation Reports from January 1, 2013 (the earliest date
available) to March 23, 2017.6 Each report enumerates operational capacity, scheduled
generation, and actual generation for each plant in each day-of-sample. The 485 plants in
the CEA data make up 291 GW of India’s 330 GW of electric generating capacity, with
an average total generation of approximately 2.9 TWh per day (i.e. 2,900 GWh).

Panel A of Figure 3.3.1 shows daily total generation summed over the plants in our
sample while Panel B breaks this generation down by source. The vast majority of genera-
tion in the CEA data comes from the 196 coal-fired power plants, which average 2.2 TWh

5Wind and solar resources instead fall under the Ministry of Renewable Energy. To the best of our
knowledge, there exists no publicly available daily generation data from renewable sources. Non-hydro
renewables account for less than 20 percent of India’s electricity generation capacity. These technologies
are non dispatchable and have extremely low marginal cost.

6We expect our final analysis period to range from January 1, 2013 to December 31, 2017.
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Figure 3.3.1: Daily Electricity Generation in India
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Notes: This figure displays data from the Central Electricity Authority’s Daily Genera-
tion Reports. Panel A shows total electricity generation in GWh from January 1, 2013
through March 23, 2017. The 485 plants in these data average 2.9 TWh per day. Panel
B breaks these plants out by fuel type. The 196 coal-fired power plants generate by far
the most electricity, averaging 2.2 TWh per day. The remainder of generation comes
from 193 hydroelectric plants (336 GWh per day, but highly seasonal); 62 natural gas
plants (121 GWh per day); 7 nuclear plants (90 GWh per day); 9 lignite plants (75
GWh per day); and 18 liquid-fuel-based plants (4.8 GWh per day).
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per day. The remainder comes hydroelectric (193 plants, 336 GWh per day), natural gas
(62 plants, 121 GWh per day), nuclear (7 plants, 90 GWh per day), lignite (9 plants, 75
GWh per day), and liquid fuel-based generation (18 plants, 4.8 GWh per day).

Ministry of Power operating costs As part of a new transparency initiative, Merit
Order Dispatch of Electricity for Rejuvenation of Income and Transparency (“MERIT”),
the Ministry of Power began collecting and reporting power plant operating costs in
October 2017. We scraped these data from the MERIT website, and matched the plants in
these data to our main CEA sample. MERIT reports fixed and variable costs per kilowatt
hour, which it obtains from the State Load Despatch Centre (similar to a electricity
transmission company) in each of India’s states. Assuming constant marginal costs, as is
standard in the electricity literature, these reported variable costs are equivalent to the
marginal cost of operations at each plant. These variable costs include fuel costs, any
variable operations and maintenance, and within-state transmission charges. Because we
only observe these data for the end of 2017, we must assume that these costs are static
over time. We are able to match 273 plants in the CEA data with MERIT data, and
these plants constitute the majority of capacity (225 GW out of 291 GW) and generation
(2.4 TWh per day out of 2.9 TWh per day) in the CEA data. This matched sample of
MERIT data includes 133 coal plants, 87 hydroelectric plants, 36 gas plants, 7 nuclear
plants, 9 lignite plants, and 1 liquid fuel-based plant.

Constructed operating costs As an alternative to the Ministry of Power’s reported
variable cost, we construct our own measure of marginal operating costs using a variety
of data sources. The CEA provides more detailed information on plant operations in the
annual Review of Performance of Thermal Power Stations. In particular, each annual
Review contains data on operating heat rates, a standard measure of electric generator
efficiency measured in kilocalories per kilowatt-hour, for a large subset of coal-fired power
plants. We obtained the 1997–2009 data from Chan, Cropper, and Malik (2014), and
digitized the 2012–2014 Reviews, the most recent available at the CEA.7 Because our
analysis spans 2013 to 2017, we assign each plant its most recent heat rate that we observe.
There are just 16 plants appearing in the Reviews for which the most recent heat rate
was reported prior to 2012; for these plants, we obtained more recent heat rate data from
tariff petitions to the Central Electricity Regulatory Commission. Indian coal prices vary
by coal grade (i.e. coal’s gross calorific value in kcal per kilogram), and we compute plant-
specific coal grades by combining CEA heat rates with monthly coal consumption data
from the CEA’s Monthly Coal Reports. Ultimately, we have heat rate and coal grade
data for 84 coal-fired plants and 7 lignite-fired plants, representing approximately 50 and
80 percent of each fuel’s respective generating capacity from the CEA’s daily generation
data.8

7We thank the authors for sharing these data. We obtained access to hard copies of the the 2012–2014
Reviews on a recent trip to India.

8Centrally owned and state-owned plants face stricter reporting requirements than private power
producers (Chan, Cropper, and Malik (2014)). Hence, we observe heat rates for a non-random sample
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We require data on fuel prices to convert plant-specific heat rates in to plant-specific
marginal costs. Transportation costs contribute a substantial share of the total costs
of coal paid by power plants. In order to estimate these transportation costs, we geo-
coded every power plant in our CEA sample by hand using a combination of CEA data
and Google Maps. We also obtained a GIS map of the major coalfields in India from
the U.S. Geological Survey (USGS), and match each coal-fired power plant with the
closest coalfield. Then, we estimate the shortest as-the-crow-flies distance between each
plant and its closest coalfield. Since the majority of plants are either pit-head plants, or
transport coal via railway, we use coal-specific freight rates from the Freight Operations
Information System of the Ministry of Railways to compute approximate transportation
costs per kilogram of coal for each plant.9

Fuel prices are strictly regulated in India; state-owned coal suppliers set coal prices
by grade of coal, which must be approved by India’s Ministry of Coal. We digitized
pithead coal and lignite prices from the Ministry of Coal’s annual Coal Directory of India,
which contains coal-grade specific prices.10 We calculate coal costs as pithead prices plus
transportation costs as well as royalties and other taxes.

For natural gas-fired power plants, we use heat rate data from the CEA’s monthly gas
report. Each monthly report presents total generation and natural gas consumption. We
follow the Ministry of Natural Gas and Petroleum in assuming that the calorific content of
natural gas is 10,000 kCal per standard cubic meter.11 These data enable us to construct
heat rates for 58 of the 62 gas plants in our daily CEA sample. We digitized natural gas
prices from the Ministry of Petroleum and Natural Gas’ annual Petroleum and Natural
Gas Statistics, which yields a fuel price time series similar to our annual times series of
grade-specific coal prices.

Election data To investigate the extent to which political economy considerations im-
pact misallocation, we incorporate data on the outcomes of India’s state, or Legislative
Assembly, elections. These data are publicly available from the Election Commission of
India. We use Election Commission data from 2014–2017 on votes for each Legislative
Assembly election candidate to determine (i) which party holds the most seats in each
state legislature, and (ii) how the ruling party fares in each local election outcome.12 This

of power plants. In our empirical approach, we simply exclude plants for which do not have data from
the calculation of costs for both observed and least-cost scenarios; thus, to the extent that unobserved
plants are dispatched in the wrong order, we are under-stating the extent of the cost gap between these
two scenarios. We discuss this and other measurement error issues in Section 3.4.

9We are currently working to incorporate geospatial information on the rail network to calculate
transportation costs along the rail network. This will modestly inflate our rail costs relative to those
computed using as-the-crow-flies distances.

10Pithead (a.k.a. mine-mouth) prices are the commodity price of coal at (close to) the point of extrac-
tion.

11Monthly Gas Reports are available for 2012 and 2016–2017. We assign each plant its average observed
heat rate over this period.

12We focus on Legislative Assembly elections because they occur more frequently than general elections,
and because they occur on different dates in different states.
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also allows us estimate the impact of aligned state and local party control on misallocation
in electricity generation, using a close-election regression discontinuity design.

3.4 Empirical Approach
Our empirical analysis consists of three main steps. First, we construct the marginal
operating cost for each power plant in our sample. Second, we compute the costs of
marginal-cost-based—or “least-cost”—electricity dispatch. Next, we compute the costs of
observed dispatch, and compute the total short run costs of observed deviations from least-
cost dispatch. Finally, we conservatively account for both interregional and intraregional
transmission constraints, in order to isolate the remaining misallocation wedge between
least-cost and observed dispatch.

3.4.1 Marginal Costs

To quantify marginal costs, and eventually aggregate variable costs, we invoke several
standard assumptions in electricity markets. We assume that power plant i may generate
any feasible quantity of electricity at time t, such that its generation Qit falls between
0 and its binding capacity constraint Qi.13 We also assume that for any quantity of
generation Qit ∈ [0, Qi], plant i faces constant marginal costs MCit. This is a reasonable
approximation for plants’ true marginal costs, which are driven largely by (1) its costs of
purchasing fuel inputs P f

it (e.g., the price of coal inclusive of transportation costs, which
is independent of Qit); and (2) its heat rate HRit, or the calorific content of fuel needed
to produce 1 MWh of electricity.14

We can express plant i’s marginal costs per MWh at time t as:

(3.1) MCit = P f
it ·HRit + V OMit

V OMit represents variable operations and maintenance costs, including labor and non-
fuel materials, which are typically much smaller than fuel costs P f

it (Fabrizio, Rose, and
Wolfram (2007); Cicala (2017)).15 Nuclear plants face relatively lower fuel costs and
non-trivial costs of operations and maintenance, compared to conventional fossil fuel gen-

13We compute Qi as the 98th percentile of plant i’s observed generation in each year, following Davis
and Hausman (2016), to ensure that our capacity constraints are within the space of feasible plant
operations. As a robustness check, we also define Qi as the 80th percentile of plant i’s observed generation.

14Heat rates are the inverse of thermal efficiency, and plants with lower heat rates will tend to have
lower marginal costs, all else equal. Energy economists typically assume that heat rates are constant
across a plant’s feasible quantities of generation (e.g. Cicala (2017)).

15In the U.S. or Europe, plants may face (implicit or explicit) taxes on the emissions of sulfur dioxide
(SO2), nitrous oxides (NOx), or carbon dioxide (CO2). However, during our sample, Indian power plants
did not face emissions taxes, so we exclude them from our marginal cost measures here.
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erators. Hydroelectric plants typically incur close to zero marginal costs but face complex
dynamic operating constraints.16

Variable cost data from India’s Ministry of Power’s MERIT data include both fuel
costs and non-fuel variable costs. Our main results use these MERIT data for plants’
marginal operating costs. However, we also construct our own measures of marginal cost
using plant-specific heat rates and input fuel prices (including transportation costs), as
described in Section 3.3.

3.4.2 Least-cost and Observed Dispatch

Armed with a measure of each plant’s marginal cost, we leverage two additional features
of electricity markets in order to compute the costs of least-cost electricity dispatch. First,
electricity demand is extremely inelastic in the short run, and we assume perfectly inelas-
tic demand. This assumption is common in the literature and facilitates counterfactual
comparisons that hold total electricity generation fixed (Cullen and Mansur (2017)). Sec-
ond, electricity is a homogeneous commodity, and electrons move across the transmission
grid at close to the speed of light. This means that absent transmission constraints,
geographically dispersed power plants produce an identical product to sell into a single
geographically integrated market. We begin by abstracting away from transmission con-
straints, before incorporating interregional and intraregional constraints in an extension
to our main analysis.

We calculate the cost of least-cost dispatch by finding the cost-minimizing allocation
of electricity generation that could potentially meet observed market demand (or “load”):

(3.2) COSTLCt = min
Q∗

t

∑
i

MCit ·Q∗it s.t.
∑
i

Q∗it =
∑
i

Qit , 0 ≤ Q∗it ≤ Qi ∀i

Here, Qit denotes observed generation for plant i in time t, while Q∗t is an [I × 1] vector
of counterfactual least-cost generation Q∗it for each of the same I plants. The solution to
this constrained minimization problem simply sorts power plants from lowest-to-highest
MCit, and then “dispatches” each plant at its full capacity (i.e. Q∗it = Qi) until aggre-
gate idealized generation is equal to aggregate observed generation. We can calculate
COSTLCt at the daily level, for each day t in our dataset. We start by assuming a
fully unconstrained transmission grid, such that the idealized allocation of generation Q∗t
is not restricted by individual plant locations. Below, we describe how we incorporate
transmission constraints into our least-cost counterfactuals.

Equation (3.2) effectively calculates the area under an idealized electricity supply
curve, up to a given aggregate quantity

∑
iQit. Each level of

∑
iQit implies a unique cost-

minimizing vector Q∗t , which simply ranks plants in order of lowest-to-highest marginal
16Large hydroelectric dams often optimize multiple objectives, only one of which relates to electricity

production (e.g., other water uses, dam release limits). Nuclear, coal, and (to a lesser extent) natural
gas plants also face less extreme dynamic operating constraints, which we ignore in our analysis (Mansur
(2008); Reguant (2014)). Run-of-the-river plants store little to no water and provide non-dispatchable
electricity at (virtually) zero marginal cost.
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cost. This ranking, known as the “merit order”, serves as an efficient allocative benchmark
and implies a weakly monotonically upward-sloping supply curve for electricity genera-
tion. Deviations from this idealized merit order increase total variable costs of electricity
generation.

Calculating the cost of observed generation is more straight-forward, as we simply
multiply each plant’s observed generation (Qit) by its marginal costs:

(3.3) COSTOBSt =
∑
i

MCit ·Qit

Figure 3.4.2 illustrates the intuition behind calculating costs for both least-cost and
observed dispatch. Gray shaded areas show the total variable cost associated with each
blue dispatch curve. Observed dispatch meets market demand (vertical dashed lines) at
greater total variable costs than least-cost dispatch.

3.4.3 Cost Gaps

We calculate the difference between realized vs. idealized costs for each day in our sample
as:

(3.4) COSTDIFFt = COSTOBSt − COSTLCt =
∑
i

MCit · (Qit −Q∗it)

COSTDIFFt summarizes the economic cost of deviations from least-cost electricity supply,
or the potential decrease in total variable cost for day t. Importantly, the set of plants
i = {1, . . . , I} entering into each cost calculation is a subset of the full population of
electricity generating plants. We omit plants for which we do not observe data on marginal
costs, meaning that

∑
iQit is less than full market-wide electricity load for day t. By

excluding a subset of plants from COSTDIFFt , we implicitly assume that unobserved plants
are efficiently dispatched and offer no potential gains from reallocation (i.e. Q∗jt = Qjt

for any plant j /∈ {1, . . . , I}). We also omit hydroelectric plants from our preferred
cost calculations, due to the complex nature of characterizing theoretically “optimal”
hydroelectric generation.17 Hence, our calculations represent a lower bound on deviations
from least-cost dispatch, if there exist additional cost-reducing potential reallocations that
we do not observe.

3.4.4 Transmission Constraints

The above cost difference calculation assumes unconstrained electricity transmission, yet
physical transmission constraints may limit the flow of power between regions of the elec-

17If we included hydro plants, then the solution to Equation (3.2) would assume maximum hydro
generation in all time periods due to hydro’s extremely low marginal costs. In reality, dams cannot
generate at 100 percent capacity due to several dynamic constraints—most notably, a finite supply of
water.
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Figure 3.4.2: Costs of Observed vs. Least-cost Dispatch
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Notes: This figure illustrates the empirical approach underlying our main estimates using data from
March 12, 2015. In the “Observed dispatch” panel, we take all the plants that were observed to be
running on this date, and plot the quantity they generate in increasing order of marginal cost. The blue
line shows the “supply curve” of plants, as ordered by marginal cost. The gray area is our estimate of
total observed costs—in this case, $78.9 million. The dashed line shows the total load on this day, of
2.2 TWh. The “Least-cost dispatch” panel, by contrast, orders all plants from lowest to highest marginal
cost, and dispatches plants to their capacity in this order until we reach 2.2 TWh of generation. Again,
the gray area represents the total costs of meeting this load: $65.3 million, or $13.6 million lower than the
cost of observed dispatch. It is clear from this figure that total costs under least-cost dispatch are lower
than those under observed dispatch, and that this is because more low-cost plants are being dispatched
to meet load under the least-cost-dispatch scenario.
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tric grid. For example, consider two electricity market regions (A and B) separated by
a single transmission line with a finite flow capacity, but with otherwise unconstrained
intraregional transmission. The efficient allocation of generation will dispatch plants in
order of lowest-to-highest cost (ignoring plant regions) unless the AB transmission con-
straint binds. However, if the constraint binds and limits the interregional flow of elec-
tricity, then an efficient allocation of generation may force relatively high cost plants to
operate in region A (in order to satisfy region A’s demand) while relatively low cost plants
in region B sit idle. In reality, India has five major transmission regions: the Northern
Region, Western Region, Eastern Region, Southern Region, and North Eastern Region.
Figure 3.4.3 displays these regions, along with the locations of all major power plants.

To quantify the extent to which transmission constraints might explain the total cost
gap COSTDIFFt , we compute the costs of least-cost dispatch for each of India’s five major
electricity market regions (indexed by r):

(3.5) COSTLCrt = min
Q∗

rt

∑
i∈r

MCirt ·Q∗irt s.t.
∑
i∈r

Q∗irt =
∑
i∈r

Qirt , 0 ≤ Q∗irt ≤ Qir ∀i

Then, we sum across regions to calculate the total cost of least-cost dispatch:

(3.6) COSTLCR
t =

∑
r

COSTLCrt

This allows us to calculate the cost difference between observed dispatch and least-cost
dispatch under interregional autarky:

(3.7) COSTDIFFR
t = COSTOBSt − COSTLCR

t

Here, we make the extreme assumption that each region is a completely separate market,
or that there is zero interregional transmission capacity. We repeat this exercise using the
13 subregions of the Indian electric grid, which also accounts for intraregional transmis-
sion constraints by assuming interregional and intraregional autarky. The resulting cost
difference calculations represent a lower bound on the short-run misallocation wedge, as
trade between and within regions should only lower the cost of the idealized least-cost
benchmark.

3.4.5 Measurement Error

It is possible that our plant-specific marginal costs data are imperfect—particularly when
we construct our own marginal costs, rather than relying on MERIT costs reported by the
Ministry of Power. Measurement error in marginal costs will impact our total cost calcu-
lations: if our data understate (overstate) the marginal cost of some plants in our sample,
we will compute total costs that are too low (high). However, we are primarily interested
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Figure 3.4.3: Electricity Market Regions of India

Notes: This figure displays the locations of the 485 power plants that appear in the CEA’s Daily Gen-
eration Reports. The plant colors indicate the fuel type—coal, gas, hydroelectric, lignite, and nuclear.
States are shaded by their major transmission region—North, North East, East, West, and South.
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in calculating the cost of deviations from a least-cost dispatch order. The relative cost
differences between least-cost dispatch and observed dispatch will be largely insensitive
to classical and non-classical measurement error in plant-specific marginal costs, for two
reasons. First, we use the same cost numbers to calculate observed costs and least-cost
costs, meaning that inaccuracies will impact both estimates similarly. Second, and more
importantly, our calculations aggregate costs across many inframarginal plants up to a
single marginal plant. For measurement error to significantly impact our findings, it would
need to systematically overstate (understate) the operating costs of plants with low (high)
costs.

3.5 Results

3.5.1 Marginal Costs

We begin by constructing the marginal-cost-based merit order for the Indian power sec-
tor. Using the Ministry of Power data, we simply rank plants from lowest to highest
marginal cost. Figure 3.5.4 shows the results of this exercise, which effectively solves the
cost minimization problem in Equation (3.2). As expected, we find that hydroelectric
generation tends to have the lowest marginal cost. The Tarapur Atomic Power Station
is the cheapest operating nuclear plant, with a marginal cost of $19 per MWh; the most
expensive nuclear power plant, Kudankulam Atomic Power Station, has a reported cost
of $68 per MWh.18

Coal plants make up the bulk of the merit order, and range from $13 per MWh to $74
per MWh, with an average of $41 per MWh; lignite plants also average $41 per MWh. Gas
plants are more costly, ranging from $22 per MWh to $90 per MWh.19 These marginal
costs are broadly consistent with other estimates of the cost of generation in the United
States (Davis and Hausman (2016)) and in India (Ryan (2017)).

3.5.2 Least-cost Dispatch

Armed with these marginal costs, we can follow the procedure outlined in Section 3.4
to compute generating costs of least-cost dispatch for each day in the sample. We first
calculate total load on day t as

∑
iQit—that is, observed generation for each plant in our

sample, for which we have nonmissing data. As described above, we exclude hydroelectric
18Tarapur operates a light water reactor, while Kudankulam has a Russian heavy water re-

actor. It is somewhat surprising that most nuclear power plants have relatively high marginal
costs. It is possible that for nuclear power, this “marginal cost” variable is more akin to
a levelized cost, as marginal costs per MWh of nuclear generation are notoriously difficult to
obtain. At the same time, anecdotal evidence suggest that nuclear power plants may in-
deed incur substantial marginal operating costs: https://timesofindia.indiatimes.com/india/
Cost-of-nuclear-power-proving-high-DAE-in-a-fix/articleshow/27920490.cms.

19We exclude the single liquid-fuel-based power plant from Figure 3.5.4. This plant, Basin Bridge, has
a marginal cost of $270 per MWh.

https://timesofindia.indiatimes.com/india/Cost-of-nuclear-power-proving-high-DAE-in-a-fix/articleshow/27920490.cms
https://timesofindia.indiatimes.com/india/Cost-of-nuclear-power-proving-high-DAE-in-a-fix/articleshow/27920490.cms
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Figure 3.5.4: Marginal-Cost-Based Merit Order
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Notes: This figure shows the Indian electricity supply merit order, where we rank plants by their marginal
cost according to the Ministry of Power’s MERIT cost data. The top-left panel shows the full merit order,
combining all fuel types into one pseudo supply curve. The remaining five panels break this merit order
into its various component plants. In each panel, one dot represents 1 GW of capacity; larger plants
will be represented by multiple dots. Coal-fired plants make up the bulk of the merit order, followed by
hydroelectric, gas, nuclear, and lignite plants. We omit the one liquid-fuel plant for graphical purposes.
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plants from these results, because they face complex dynamic constraints. By dropping
hydro generation from the sample prior to constructing our measure of total load, we
essentially assume that they are always dispatched optimally.

To compute the cost of least-cost dispatch, we “dispatch” plants in order of least cost,
at full capacity, until we reach total observed generation. This creates a vector Q∗it where
for a given marginal cost MC∗t :

Q∗it = Qi if MCit < MC∗t
Q∗it ∈

[
0, Qi

]
if MCit = MC∗t

Q∗it = 0 if MCit > MC∗t∑
iQ
∗
it =

∑
iQit

This vector Q∗it solves the constrained minimization problem in Equation (3.2), and allows
us to calculate the cost of least-cost dispatch on day t as

∑
iMCit × Q∗it. Because we

only observe MERIT data for 2017, these calculations use MCit = MCi that is not
time-varying.20

Figure 3.5.5 displays the results of this exercise. Panel A shows the total costs of
least-cost dispatch over the course of our sample. The average daily cost is $66.6 million,
with a standard deviation of $7.9 million. The lowest cost we observe in the sample is
$42.1 million, and the highest is $87.9 million. Panel B displays the marginal cost of the
marginal plant (or MC∗t ). As expected, the cost of the marginal plant tracks closely with
the total cost, and with total daily load shown in Figure 3.3.1.21 On average, the marginal
plant’s marginal cost per MWh is $46.1, with a minimum value of $38.4 and a maximum
value of $50.4.

3.5.3 Least-cost versus Observed Dispatch

Next, we compute actual costs following Equation (3.3). We simply multiply each plant’s
observed generation by its marginal cost, and sum over all plants for each day in the
sample. This allows us to calculate the difference between the costs of observed and least-
cost dispatch, as in Equation (3.4). Figure 3.5.6 presents these cost differences. Panel
A shows a kernel density of the daily cost gap between observed and least-cost dispatch,
and Panel B plots the daily time series of cost difference per MWh.

Average daily observed costs of electricity generation in our sample are $79.4 million
per day, or around $29 billion per year. This translates to an average cost of $36.1 per
MWh. Observed daily costs range from $55.2 million per day to $99.3 million per day.
The gap between the cost of observed and least-cost dispatch is quite large: the average
cost gap is $12.8 million per day, or $5.9 per MWh. The first row of Table 3.5.1 presents
these results numerically.

20Costs in the MERIT data are reported in rupees. We convert to USD with an exchange rate of 60
rupees to 1 dollar.

21Note that total daily load from Figure 3.3.1 is not identical to total daily observed generation in
these calculations, as we only use plants with MERIT data (excluding hydroelectric generation) in the
results shown in Figure 3.5.5.
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Figure 3.5.5: Costs of Least-cost Dispatch
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Notes: This figure displays our estimates of the cost of least-cost generation in India, using
the Ministry of Power’s MERIT data on marginal costs. As described in Sections 3.4 and
3.5, we construct the least-cost-dispatch-based cost estimates by ranking plants from lowest
to highest marginal costs, “dispatching” each plant to generate up to its capacity, until we
meet total daily load. Panel A displays the total short-run costs of least-cost generation for
the plants in our sample, which averages $66.6 million per day, with a minimum of $42.1
million per day, and a maximum of $87.9 million per day. Panel B shows the marginal cost
of the marginal plant under least-cost dispatch. As expected, higher total cost days (which
correspond to higher overall load days, as shown in Figure 3.3.1) must rely on higher-cost
plants to be operating. The average marginal cost of the marginal plant in our sample is
$45.9 per MWh, and ranges from $38.4 to $50.4 across the sample period.
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Figure 3.5.6: Cost Difference between Observed and Least-cost Dispatch
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Notes: This figure shows the differences in cost between least-cost and observed dispatch in
the Indian electricity market, computed using marginal costs from the Ministry of Power’s
MERIT data. Panel A shows the distribution of the cost difference between least-cost dis-
patch and observed dispatch across the sample. This cost difference ranges from $7.4 million
per day to $18.3 million per day, with an average of $12.8 million per day. Panel B shows
the cost gap per MWh over the sample. On average, this cost difference is $5.9 per MWh,
compared to average observed costs of $36 per MWh—around 17 percent of observed costs.
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Table 3.5.1: Costs of Electricity Supply

Analysis Least-cost
(M USD/day)

Observed
(M USD/day)

Difference
(M USD/day) 100 ·

(
Diff
Obs

)
A. Main results
Unrestricted
transmission

66.6 79.4 12.8 16.3
[42.1, 87.9] [55.2, 99.3] [7.4, 18.3] [8.9, 25.7]

Interregional
autarky

69.0 79.4 10.4 13.2
[45.8, 88.7] [55.2, 99.3] [6.6, 14.0] [8.0, 19.4]

Intraregional
autarky

69.4 78.3 8.8 11.4
[46.3, 88.7] [54.3, 97.4] [5.8, 12.0] [6.9, 17.4]

B. Sensitivities
Constructed
cost data

23.3 28.0 4.7 16.8
[16.8, 28.8] [20.7, 33.5] [3.0, 6.4] [10.3, 24.1]

Capacity
80 percent

70.5 79.4 8.8 11.3
[44.8, 91.6] [55.2, 99.3] [2.4, 15.3] [3.1, 22.1]

No 90-percent
OOM plants

50.5 59.8 9.2 15.6
[31.7, 73.4] [40.6, 79.8] [5.0, 13.5] [8.1, 24.5]

Notes: This table reports our main results, calculated at the daily level across all 1,530 days in our sample.
Mean estimates are listed first, with the minimum and maximum values in brackets. As described in
Sections 3.4 and 3.5, we construct the cost of least-cost dispatch by ranking plants from lowest to highest
marginal costs, dispatching each plant to produce up to its capacity, until aggregate supply meets total
daily electricity demand. The total cost associated with this least-cost dispatch is the sum of each power
plant’s marginal cost times this plant’s electricity generation across all power plants. Observed costs sum
over plants of each plant’s observed electricity generation times its marginal cost. The third column simply
subtracts least-cost aggregate costs from observed aggregate costs. “Unrestricted transmission” allows for
reallocation across all plants in the electricity market. “Interregional autarky” allows for reallocation
across all plants within each grid region, but not between regions. “Intraregional autarky” allows for
reallocation across all plants within each grid subregion, but not between subregions or regions. (Region
A2 in the Northeast has too few plants to be effectively reallocated and is dropped from this analysis
only.) “Constructed cost data” uses our own constructed measure of each plant’s marginal costs over time.
“Capacity 80 percent” defines capacity as the 80th percentile (rather than 98th percentile) of each plant’s
maximum observed generation. “No 90-percent OOM plants” removes the 25 plants which we find to be
generating out-of-merit on more than 90 percent of sample days, to confirm they are not driving all of
our results (this effectively exclude plants near cities). We present the average daily estimates in the first
row for each analysis type, and the minimum and maximum across the sample in brackets. Sensitivities
in Panel B assume unrestricted transmission both across and within regions.
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Annually, this amounts to a cost gap of $4.7 billion per year. Put differently, the cost
difference between observed dispatch and least-cost dispatch amounts to over 16 percent
of realized variable costs. This suggests that there may be substantial short-run gains
from reallocation in the Indian electricity market.

We calculate a substantial cost gap between observed and least-cost dispatch, indicat-
ing that electricity generation departs markedly from the cost-based merit order. This cost
gap could reflect systematic departures, wherein many plants are frequently dispatched
by a rule of thumb that is imperfectly correlated with marginal cost. On the other hand,
a few large high-cost plants could regularly generate out of merit and be responsible for
most of the deviations we observe.

For each day in the sample, we classify a plant as “out of merit” if the plant generates
despite a least-cost generation of zero, or vice versa. In other words, we assign plant i to
be out of merit on day t if Qit > 0 and Q∗it = 0 or if Qit = 0 and Q∗it > 0. Panel A of
Figure 5 reports a histogram for the percent of days that plants generate out-of-merit, for
all plants in our sample. This reveals that the majority of plants rarely generate out of
merit, while a specific subset of plants frequently generate out of merit. In fact, roughly
25 plants generate out of merit on at least 90 percent of the days in our sample. This
suggests that reducing out-of-merit generation for these few plants could yield substantial
short-run cost reductions.

We then compute the level difference between observed generation and least-cost gener-
ation for each plant-day, or Qit−Q∗it. Panel B of Figure 3.5.7 plots each plant’s difference
between observed and least-cost generation against its marginal costs. Unsurprisingly,
departures from least-cost generation are strongly correlated with marginal costs of gen-
eration: plants with higher marginal costs are more likely to generate out-of-merit. In
particular, we find that while low-cost plants generate slightly too little on average, there
are a few higher-cost plants that generate substantially more than our least-cost bench-
mark.

3.5.4 Transmission Constraints

Whereas our results have thus far imposed a strong assumption of no transmission con-
straints, we now consider the opposite extreme by assuming autarky for both regions and
subregions of the Indian electric grid. Using Equation (3.5), we calculate the costs of
least-cost dispatch separately for plants in each of 5 regions (or 13 subregions), and ag-
gregate the total cost differences across regions (or subregions). Figure 3.5.8 reports two
distributions of daily cost gaps, assuming respectively: (i) unconstrained transmission (re-
produced from Panel A of Figure 3.5.6); and (ii) interregional autarky, with unconstrained
transmission within subregions.

Under interregional autarky, we find that the average cost difference between observed
and least-cost dispatch is $10.4 million per day, or 13 percent (reported in the second row
of Table 3.5.1). This is only $2.4 million per day (or 19 percent) less than the average cost
difference under fully unconstrained transmission. In other words, interregional transmis-
sion constraints appear to account for less than 20 percent of the cost difference between
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Figure 3.5.7: Out-of-merit Generation
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Notes: This figure explores out-of-merit generation in least-cost dispatch as compared
with observed dispatch. Panel A shows the percent of days that each plant generates out-
of-merit, or is observed to be operating in the CEA data when it should not be operating
according to our least-cost dispatch order. While most plants rarely generate out-of-merit,
around 20 percent of plants generate in the observed dispatch order but not in the least-
cost dispatch order more than 90 percent of the time. Panel B shows the average difference
between observed generation and generation under least-cost dispatch as compared with
marginal costs per MWh. There is a strong correlation between marginal costs and out
of merit generation: low-cost plants appear to be generating too little, while higher-cost
plants are generating too much. These figures use the Ministry of Power’s MERIT data
on marginal costs of generation, and both panels are weighted by capacity.
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Figure 3.5.8: Role of Interregional Transmission Constraints
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Notes: This figure displays the cost difference (in millions of dollars per day) between least-cost dispatch
and observed dispatch under two different scenarios. The dashed gray line shows the distribution of cost
differences when we create the least-cost dispatch order by ranking all plants by their marginal cost. This
essentially assumes that electricity from any plant can meet load anywhere in the system. By contrast,
the solid blue line displays cost differences from an exercise in which we treat India’s five transmission
regions—as shown in Figure 3.4.3—as five closed economies. That is, all demand in a given region can
be met by plants in that region only. This estimates an upper bound on the impact of interregional cost
differences on the total cost gap between least-cost and observed dispatch, under the extreme assumption
that there is no transmission capacity connecting regions. Even under this strong assumption, we find
that less than 20 percent of the cost gap is driven by interregional transmission constraints, suggesting
that more than 80 percent of the difference in cost between least-cost and observed dispatch remains
unaccounted for. This figure was constructed using marginal cost data from the Ministry of Power’s
MERIT database; the unit of observation in this figure is a day.
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observed and least-cost generation allocations. We see a similar result if we rescale cost
differences by total generation. The average cost gap is $4.8 per MWh under interregional
autarky, only 19 percent less than the $5.9/MWh average cost gap under unconstrained
transmission. This comparison is striking: even after accounting for interregional trans-
mission constraints, widely considered to be the most important physical limitation in
electricity markets, the vast majority of misallocation in electricity generation remains.

Under both interregional and intraregional autarky, we calculate an average cost gap of
$8.8 million per day, or 11 percent (reported in the third row of Table 3.5.1). This implies
that transmissions constraints between regions/subregions explain less than 31 percent
of the cost difference between observed and least-cost allocations. Having accounted for
the physical constraints of electricity transmission both across and within regions, the
remaining 11 percent cost gap—equivalent to $3.2 billion per year—represents a conser-
vative estimate of the short-run misallocation wedge in Indian electricity supply.

3.5.5 Robustness Checks

3.5.5.1 Constructed Marginal Cost Data

As an alternative to the MERIT data, we construct our own measures of marginal cost.
Here, we define marginal costs based on time-varying fuel prices and plant-specific heat
rates alone, as we lack data on other components of marginal cost:

(3.8) MCit = P fuel
it ·HRit

As a result, these constructed costs are less comprehensive than those reported by the
Ministry of Power. However, our constructed marginal cost variable should assuage con-
cerns about misreporting bias on the part of plants or State Load Despatch Centres.
Figure 3.5.9 shows our constructed marginal costs.

The resulting merit order is quite different from that based on the Ministry of Power
data. First, our calculations assume that hydroelectric generation has a marginal cost
of $0 per MWh, and we use fuel-only costs for nuclear power.22 Furthermore, our merit
order is sharply differentiated by fuel type: hydroelectric plants are cheapest, then low-
cost nuclear, then coal (with some nuclear mixed in), and then a mix of gas and lignite.
This is perhaps unsurprising, as coal is cheaper than gas, and lignite plants tend to be
less efficient. Given that Equation (3.8) includes only heat rates and fuel prices, most of
the variation in marginal costs comes from fuel prices alone (rather than a combination of
fuel prices and variation in operations and maintenance costs). Our constructed marginal
cost also tend to be significantly less than cost reported by the Ministry of Power. In our
constructed cost sample, the average coal plant has a marginal cost of $15.6 per MWh,
the average gas plant has a marginal cost of $36.5 per MWh, the average lignite plant’s

22Our nuclear costs are based on information from the Chairman of the Department of Atomic
Energy’s expert committee on nuclear tariffs, described in The Hindu: http://www.thehindu.com/
todays-paper/tp-opinion/Why-India-should-opt-for-nuclear-power/article14850892.ece.

http://www.thehindu.com/todays-paper/tp-opinion/Why-India-should-opt-for-nuclear-power/article14850892.ece
http://www.thehindu.com/todays-paper/tp-opinion/Why-India-should-opt-for-nuclear-power/article14850892.ece
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Figure 3.5.9: Marginal-Cost-Based Merit Order, Constructed Costs
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Notes: This figure shows the Indian electricity supply merit order, where we rank plants by their marginal
cost according to our own constructed marginal cost estimates. This figure shows all fuel types together,
with colors denoting fuel types. Each dot represents 1 GW of capacity; larger plants will be represented
by multiple dots. India has a large amount of hydroelectric generating capacity - though this is hamstrung
in reality by dynamic considerations, which we assume has a marginal cost of zero. The next entries in
the merit order are low-cost nuclear facilities; followed by coal-fired plants, interspersed with several other
nuclear power plants; more coal; and a mix of coal-, natural gas-, and lignite-based plants.
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marginal cost is $29.3 per MWh, and the nuclear plants range in cost from $4.2 per MWh
to $18.7 per MWh.

As with the Ministry of Power data, we can use these marginal costs measures to
compute the total variable costs of least-cost dispatch for each day in the sample. We find
an average cost of $23.3 million per day—about one third of costs of least-cost dispatch
that we compute using the Ministry of Power data—with a standard deviation of $1.9
million. This translates to an average variable cost of approximately $14.8 per MWh,
from dispatching in order of our constructed marginal costs.

We compute average observed costs of $28.0 million per day, or $17.6 per MWh,
using our constructed costs estimates. Combining these results, we find an average cost
difference between observed and least-cost-dispatch-based costs of $4.7 million per day
(ranging from $3.0–$6.4 million per day). This is a cost difference of $3.0 per MWh on
average, ranging from $1.7 per MWh to $4.5 per MWh. While these cost numbers are
substantially smaller in levels than those computed with the Ministry of Power data, the
relative sizes of the cost difference as a share of total observed costs are quite similar. Using
constructed cost data, the cost gap between observed vs. least-cost dispatch represents
approximately 17 percent of total observed costs, compared to 16 percent when using
Ministry of Power cost data. We report these results in the fourth row of Table 3.5.1,
which corroborate our main findings using MERIT cost data.

3.5.5.2 Plant Capacities

Thus far, we have set each plant’s annual capacity equal to the 98th percentile of its
distribution of daily electricity generation in that year. However, this could potentially
overstate the capacity that plants can realistically supply on a typical day. As a robust-
ness check, we instead assign capacity equal to the 80th percentile of this distribution. We
report these results in the fifth row of Table 3.5.1, and they are quite similar to our pre-
ferred method. This implies that our results are not sensitive to our method of assigning
plants’ generating capacities.

3.5.5.3 Plants Always Out-of-merit

Imposing intraregional autarky ignores any local transmission constraints that are com-
mon in high-population, high-demand regions of the grid. Transmission bottlenecks into
large urban areas likely necessitate that certain power plants always receive prioritized
dispatch, regardless of their marginal costs. We conduct a sensitivity analysis that recal-
culates the cost gap excluding the 25 plants that we find to be generating out of merit on
over 90 percent of days in our sample. We report these results in the last row of Table
3.5.1, and they are quite close (in percentage terms) to our preferred estimates.
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3.6 Discussion
This paper’s goal is to quantify departures from least-cost dispatch in India’s electricity
supply. We find that the observed dispatch of power plants in India results in annual total
variable costs that are $4.7 billion higher than the costs implied by least-cost dispatch.
As a point of comparison, Cicala (2017) estimates that a shift from traditional command-
and-control dispatch to market-based dispatch in the U.S. reduced electricity generating
costs by $3 billion per year. This suggests that the costs gaps we calculated for the Indian
electricity sector are neither unreasonably large nor economically insignificant.

In Section 3.5, we find that after accounting for physical transmission constraints, a
conservative estimate of the short-run misallocation wedge is $3.2 billion per year. Below,
we investigate three potential drivers that might explain the misallocation we observe: (1)
the exercise of market power by electricity suppliers; (2) political factors such as favoritism
or changes in political representation; and (3) long-term electricity supply contracts which
could lock in electricity production at certain plants while market conditions change.

3.6.1 Market Power

First, we consider the extent to which firms might be exercising market power, which is
common in wholesale electricity markets even when supply is not heavily concentrated
among a few firms (Borenstein (2002)). In the Indian context, Ryan (2017) estimates
average quantity-weighted markups of roughly 20 percent above marginal costs, for elec-
tricity sold on the short-run day-ahead market during 2009–2010.23 However, market
power is unlikely to explain a significant share of the short-run cost gap, for two rea-
sons. First, roughly 90 percent of electricity is sold on medium- and long-term contracts
with fixed tariffs, which preclude the exercise of short-run market power. Second, recent
transmission capacity expansions have likely decreased firms’ abilities to exercise market
power, by effectively increasing the number of plants able to supply electricity to a given
location of demand (Borenstein, Bushnell, and Stoft (2000); Ryan (2017)).

Figure 3.6.10 plots deviations from least-cost generation against plants’ marginal cost,
splitting plants by vintage (Panel A), total capacity of their owning entities (Panel B),
and ownership type (Panel C). If market power were a major driver of the cost gaps we
calculate, we would expect to see plants with above-median firm capacity to withhold
output from their relatively high-cost plants in order to drive up market prices and earn
greater inframarginal rents form their relatively low-cost plants. However, Panel B reveals
that out-of-merit generation for high-cost plants is comparable across large vs. small firms;
if anything, larger firms appear to operate their low-cost (inframarginal) plants relatively
less than small firms. This suggests that market power is unlikely to be driving the bulk
of the cost gap between observed and least-cost dispatch.

23In levels, Ryan (2017) estimates an average short-run price-cost markup of roughly $8.5/MWh.
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Figure 3.6.10: Out-of-merit Generation – Heterogeneity Analysis
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Notes: This figure shows the relationship between out-of-merit generation and marginal costs
in dollars per MWh, weighed by capacity (as in Figure 3.5.7). Here, we explore heterogeneity
in out-of-merit generation. Panel A shows heterogeneity by plant age. Blue dots show plants
below the median age, built after 2007; and gray dots show older plants, built in or before
2007. We use the age of the average unit in the plant to define plant age. We see no systematic
difference in the relationship between marginal cost and out-of-merit generation between older
and newer plants. Panel B demonstrates a preliminary test for market power: are (high-cost)
plants owned by larger firms (gray dots) more likely to generate out of merit than plants
owned by smaller firms (blue dots)? We again see no discernible patterns. Finally, Panel C
shows examines out-of-merit generation by firm type: government run (central and state, blue
dots) versus privately owned (gray dots). Ownership does not appear to predict out-of-merit
generation. The same is true if we split the state and central sector into their own categories.
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3.6.2 Political Economy Factors

Next, we consider political factors, which may induce departures from least-cost dis-
patch. Political influence might take many forms. For example, power plants with close
connections to politicians or political parties may benefit from preferential treatment in
electricity dispatch or receive lower-priced fuel supply agreements. This has the potential
to disproportionately advantage government-owned plants, compared to privately owned
plants. Alternatively, privately owned plants might be able to more easily purchase polit-
ical influence (e.g. with bribes). Panel C of Figure 3.6.10 reveals no systematic differences
between government-owned (state and central) and privately owned plants. Based on
this crude heuristic, it appears unlikely that out-of-merit generation persists due to any
structural advantages enjoyed by government-owned plants.

However, we may expect electoral outcomes to induce changes in out-of-merit dispatch,
as electricity provision is a channel through which politicians may garner support or impart
economic benefits. Baskaran, Min, and Uppal (2015) find that Indian state governments
appear to manipulate the flow of electricity to key constituencies around the time of
close elections. Using a close election regression discontinuity (RD) design, Asher and
Novosad (2017) demonstrate that Indian constituencies represented by a politician in the
ruling party benefit from political favoritism, as politicians weaken the implementation of
regulations faced by firms. We employ a similar RD strategy to test whether out-of-merit
generation increases for plants located in constituencies where the ruling party barely wins
an election, compared to plants located in constituencies where the ruling party barely
loses an election.

Following Asher and Novosad (2017), we construct the RD running variable as the
electoral margin from the most recent election, for constituency c in month m, as:

(3.9) margincm =
votesRULINGcm − votesOPPOSITIONcm

votesTOTALcm

Because Indian elections often comprise multiple parties, margincm > 0 does not guarantee
that the ruling party (at the state level) is also the winning party (at the local level).
Hence, we implement a fuzzy RD design:

Yicm = β0 + β1 margincm + β2 D̂icm + β3 margincm · 1[margincm > 0] + εicm(3.10)
Dicm = γ0 + γ1 margincm + γ2 1[margincm > 0] + . . .

+ γ3 margincm · 1[margincm > 0] + ωicm(3.11)

The treatment indicator Dicm equals 1 if the ruling party won the most recent election in
constituency c, which is home to power plant i. We restrict our estimation sample to the
three months m after an election in constituency c, in order to isolate effects immediately
after a close election victory. The outcome variable Yicm is plant i’s cumulative deviation
from least-cost dispatch across all days in month m, residualized to control for plant fixed
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effects and month-of-sample fixed effects.24 We estimate local linear polynomials in the
running variable on each side of the RD threshold (i.e. margincm = 0), using the robust
RD estimation procedure developed by Calonico, Cattaneo, and Titiunik (2014).

Figure 3.6.11 reports these RD results, with an optimal bandwidth of [−0.10, 0.10].
The left panel illustrates howDicm = 0 when the running variable is negative, as the ruling
party cannot win without a plurality of votes. When the running variable is positive, the
ruling party typically (but not always) wins the local election. The right panel plots
the reduced form results, where (residualized) out-of-merit generation appears to increase
discontinuously at the RD threshold. Table 3.6.2 reports these results numerically. The
first-stage point estimate is highly statistically significant, and the rescaled second-stage
point estimate is statistically significant with a p-value of 0.02. The magnitude of this
effect is quite large—248 GWh is equal to 1.71 (0.83) standard deviations of residualized
(raw) out-of-merit generation at the plant-month level. While these results do no persist
beyond 3–6 months after close elections, they provide suggestive evidence that political
economy factors such as favoritism or corruption might explain a substantial share of
India’s out-of-merit generation.

3.6.3 Long-term Contracts

Finally, we consider medium- and long-term contracts, which represent roughly 90 per-
cent of India’s electricity production during 2016–2017. If high-cost units are generating
out of merit in order to satisfy long-term contract obligations, then observed departures
from least-cost dispatch may not necessarily reflect allocative inefficiencies. Seemingly
inefficient long-term contracts may in fact be economically efficient—reflecting rational,
market-based preferences or hedging against market risk. Contracts resulting in out-
of-merit generation may also reflect regulatory inefficiencies in the dispatch or contract
approval processes. As we discuss in Section 3.2, the National Load Despatch Centre
(NLDC) favors long- and medium-term contracts over short-term electricity supply when
choosing the dispatch order. The Central Electricity Regulatory Commission (CERC)
must also approve electricity prices negotiated between state-owned generation compa-
nies and power purchasers. If plants were granted greater flexibility to arbitrage between
their long-term contract positions and the day-ahead electricity spot market, this would
likely yield substantial economic benefits by improving the short-run allocative efficiency
of physical generation outcomes.

24We residualize Yicm prior to estimating Equations (3.10)–(3.11) in order to utilize the full time series
of data for each plant (including months that do not immediately follow a close election in plant i’s
constituency), and the full cross-section of plants in each month (including plants that did not experience
a close election immediately prior to month m). This greatly improves the statistical power of our RD
estimates. We cluster standard errors by constituency, with corrects the degrees of freedom for the
purposes of inference.
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Figure 3.6.11: Out-of-merit Generation after Close Elections
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Notes: These figure reports RD results from estimating Equations (3.10)–(3.11), using the
running variable margincm defined in Equation (3.9), and including the 3 months m immedi-
ately following a close election in each constituency c. The left panel plots the first stage RD,
where the outcome variable is an indicator equal to 1 if the ruling party (at the state level)
won the most recent local election. The right panel plots the reduced-form RD, where the
outcome variable is the cumulative GWh of out-of-merit generation for plant i in constituency
c in month m, residualized to control for plant fixed effects and month-of-sample fixed effects.
We residualize these fixed effects prior to RD estimation in order to increase statistical power.
This allows us to utilize the full time series of data for each plant (including months that do
not immediately follow a close election in plant i’s constituency), and the full cross-section of
plants in each month (including plants that did not experience a close election immediately
prior to month m). We use the robust RD estimation procedure developed by Calonico, Catta-
neo, and Titiunik (2014) with a local linear polynomial for point estimation, a local quadratic
polynomial for bias correction, an optimal RD bandwidth of [−0.10, 0.10], weighting based on
distance from the RD threshold using a triangular kernel, and standard errors clustered by
legislative constituency. Table 3.6.2 reports these same results numerically.
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Table 3.6.2: Regression Discontinuity for Close Elections

GWh out of merit, residuals
Fuzzy RD estimate 247.68∗∗

(106.64)
[0.02]

First-stage RD estimate 0.63∗∗∗

(0.17)
[0.00]

Optimal RD bandwidth 0.10
Plant-month observations in bandwidth 666
RD scaled by within std dev 1.71
RD scaled by composite std dev 0.83

Notes: These table reports RD results from estimating Equations (3.10)–(3.11), using
the running variable margincm defined in Equation (3.9), and including the 3 months m
immediately following a close election in each constituency c. The treatment indicator
is equal to 1 if the ruling party (at the state level) won the most recent local election.
The outcome variable is the cumulative GWh of out-of-merit generation for plant i in
constituency c in month m, residualized to control for plant fixed effects and month-of-
sample fixed effects. We residualize these fixed effects prior to RD estimation in order
to increase statistical power. This allows us to utilize the full time series of data for
each plant (including months that do not immediately follow a close election in plant
i’s constituency), and the full cross-section of plants in each month (including plants
that did not experience a close election immediately prior to month m). We use the
robust RD estimation procedure developed by Calonico, Cattaneo, and Titiunik (2014)
with a local linear polynomial for point estimation, a local quadratic polynomial for bias
correction, an optimal RD bandwidth of [−0.10, 0.10], weighting based on distance from
the RD threshold using a triangular kernel, and standard errors clustered by legislative
constituency (with p-values in brackets). The 247.68 point estimate is scaled by the first
stage, while the bottom two rows compare this point estimate to the standard deviations
of the outcome variable and the unresidualized outcome variable (respectively). Figure
3.6.11 reports these same results graphically. Significance: *** p < 0.01, ** p < 0.05, *
p < 0.10.
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3.7 Conclusion
Economic development is strongly linked to increased energy consumption. Inefficient elec-
tricity market operations, particularly in low- and middle-income countries, may therefore
hamper economic growth and impose undue burdens on poor consumers. In this paper,
we assemble a novel dataset on daily electricity market operations in India, which we
use to quantify the cost of electricity supply in a major developing-country power mar-
ket. We calculate the total short-run variable costs of Indian electricity generation to be
approximately 29 billion U.S. dollars per year, or $36 per MWh, on average.

We compare these observed costs of electricity supply to a counterfactual where power
plants generate electricity in order of lowest-to-highest cost, and we find that this “least-
cost” dispatch would decrease variable costs of electricity generation by roughly 4.7 billion
U.S. dollars per year, or nearly 17 percent. After conservatively accounting for both
interregional and intraregional transmission constraints, the remaining cost gap between
observed vs. least-cost dispatch is 3.2 billion U.S. dollars per year, or over 11 percent.
This result is striking, as it suggests that contrary to both popular wisdom and existing
public policy, expanding interregional transmission capacity in India may not deliver
large reductions in the cost of electricity supply. It also represents a substantial short-run
misallocation wedge in Indian electricity supply.

We investigate three potential drivers of this misallocation: (1) market power; (2)
political economy factors; and (3) long-term contracts. We find little evidence of market
power, which is unsurprising given that rate-of-return regulated power plants cannot earn
inframarginal rents. We find evidence that power plants are more likely to generate out of
merit after the ruling political party wins a local election. Given that roughly 90 percent
of electricity generation occurs on long-term contracts, allowing power plants to more
flexibly arbitrage the day-ahead spot market would likely alleviate a substantial share of
the short-run misallocation we are finding.

In future work, we plan to utilize plant-level data on planned versus unplanned out-
ages in order to control for extended maintenance periods. This will facilitate more nu-
anced least-cost counterfactuals based on the subset of plants that could have generated
on a given day. We also plan to incorporate data on upstream fuel markets to investi-
gate whether upstream inefficiencies are contributing to misallocation in the downstream
electricity market. Finally, we hope to study power plant emissions and air pollution
concentrations, in order to quantify how misallocation impacts pollution concentrations
and their associated damages on human health and the environment.
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Appendix A

Appendix: Market Power in Coal
Shipping and Implications for U.S.
Climate Policy

A.1 Theory

A.1.1 Derivation of Comparative Statics

This section provides a full derivation of the comparative static dµoj
dZj

, reported in Equation
(1.3) of the main text. I start with rail carrier i’s profit function, reproduced here from
Equation (1.1):

(A.1) πioj(qioj) = qioj

[
Poj(Qoj;Zoj)− Co − S(Toj)

]
− Foj

The oligopolist rail carrier earns revenue qiojPoj from selling type-o coal to plant j, while
incurring commodity costs Coqioj, o-to-j shipping costs S(Toj)qioj, and a fixed cost of
entry Foj. Plant j’s inverse demand is a function of Qoj = Nojqioj, the total quantity of
coal purchased across all Noj symmetric oligopolists. It also depends on the parameter
vector Zoj, which includes Zj, the natural gas price of plant-j’s competitors in electricity
supply.

Firm i’s first-order condition is:

(A.2)
∂πioj
∂qioj

= Poj(Qoj;Zoj) + qioj
∂Poj
∂Qoj

∂Qoj

∂qioj
− Co − S(Toj)
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For simplicity, I assume that S(Toj) does not depend on qioj, which abstracts from rail
capacity constraints and increasing returns to scale in shipping.1 Totally differentiating
Equation (A.2) by qioj and Zj, and rearranging:2

(A.3)
dqioj
dZj

=

∂Poj
∂Zj

+
∂2Poj

∂Qoj∂Zj

∂Qoj

∂qioj
qioj

−

(
2
∂Poj
∂Qoj

∂Qoj

∂qioj
+
∂2Poj
∂Q2

oj

(
∂Qoj

∂qioj

)2

qioj +
∂Poj
∂Qoj

∂2Qoj

∂q2
ioj

qioj

)

Invoking symmetry across all Noj oligopolists, I can substitute qioj =
Qoj

Noj
. I also substitute

the “conduct parameter” θoj ≡ ∂Qoj

∂qioj
, which simplifies notation and serves as a heuristic

for distance from perfect competition.3 Rewriting (A.3):

(A.4)
dqioj
dZj

=

∂Poj
∂Zj

+
∂2Poj

∂Qoj∂Zj

Qojθoj
Noj

−
(

2
∂Poj
∂Qoj

θoj +
∂2Poj
∂Q2

oj

Qojθ
2
oj

Noj

+
∂Poj
∂Qoj

∂θoj
∂qioj︸ ︷︷ ︸

=0

Qoj

Noj

)

I assume ∂θoj
∂qioj

= 0, because small changes in qioj are unlikely to change the relationship
between carrier i’s quantity qioj and total demand Qoj.4

1My empirical analysis relaxes this assumption, by allowing rail transport costs to vary with shipment
size. Because power plants are small relative to the coal producing sector, I also assume that Co is
independent of qioj . Even if plant j consumes a large share of the coal produced by county o, coal is
substitutable across counties and Co depends more on coal mining costs and global commodity markets.

2This is a direct application of the Implicit Function Theorem, where ∂πioj

∂qioj
is a function of qioj and

Zj , and the level set is ∂πioj

∂qioj
= 0.

3These derivations assume θoj > 0. In my empirical approximation for dµj

dZj
, I assign θ̂j = 1 −Wj ,

where Wj = 1 if plant j has access to a more competitive waterborne option. I do not intend Equation
(1.8) to be an exact empirical analogue, as the comparative statics capture infinitesimal changes in Zj ,
rather than discrete changes in Zj . However, these derivations hold for extremely small values of θoj .

4In other words, a small change in qioj should not change whether firm i behaves as a Cournot
oligopolist (θoj ≈ 1) or as a dominant firm facing a competitive fringe of waterborne coal shipments
(θoj ≈ 0).
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Next, I derive the comparative static for Qoj =
∑

i qioj. Totally differentiating Qoj by
Zj, and invoking symmetry across all Noj rail carriers:

dQoj

dZj
=
∑
i

∂Qoj

∂qioj

dqioj
dZj

(A.5)

dQoj

dZj
= Nojθoj

dqioj
dZj

(A.6)

⇒ dQoj

dZj
=

∂Poj
∂Zj

Noj +
∂2Poj

∂Qoj∂Zj
Qojθoj

−
(

2
∂Poj
∂Qoj

+
∂2Poj
∂Q2

oj

Qojθoj
Noj

)(A.7)

The first term in the numerator, ∂Poj

∂Zj
Noj, captures the level-effect of the demand shift,

which should be weakly positive. Intuitively, an inward demand shift (i.e. dZj < 0)
should reduce plant j’s level of coal consumption Qoj. The second term in the numerator,
∂2Poj

∂Qoj∂Zj
Qojθoj, captures the extent to which the demand shift dZj changes the slope of

inverse demand. If demand becomes more elastic as gas prices fall (i.e. ∂2Poj

∂Qoj∂Zj
< 0),

rail carriers should increase their best-response quantities. This term is scaled by the
conduct parameter θoj, and it converges to zero as route oj becomes more competitive.
The denominator of Equation (A.7) must be positive by the second-order condition.

The final step is to convert this comparative static into the total derivative of price
Poj with respect to Zj:

dPoj
dZj

=
∂Poj
∂Qoj

dQoj

dZj
+
∂Poj
∂Zj

(A.8)

dPoj
dZj

=
∂Poj
∂Qoj


∂Poj
∂Zj

Noj +
∂2Poj

∂Qoj∂Zj
Qojθoj

−
(

2
∂Poj
∂Qoj

+
∂2Poj
∂Q2

oj

Qojθoj
Noj

)
+

∂Poj
∂Zj

(A.9)

dPoj
dZj

=


∂Poj
∂Zj

Noj +
∂2Poj

∂Qoj∂Zj
Qojθoj

−

(
2 +

∂2Poj
∂Q2

oj

(
∂Poj
∂Qoj

)−1
Qojθoj
Noj

)
+

∂Poj
∂Zj

(A.10)
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Let EDoj
≡
(
∂2Poj

∂Q2
oj

)(
∂Poj

∂Qoj

)−1

Qoj

(
θoj
Noj

)
, or the elasticity of the slope of inverse demand

scaled by θoj
Noj

(a heuristic for the degree of competitiveness). Making this substitution,
and simplifying:

dPoj
dZj

=

∂Poj
∂Zj

Noj +
∂2Poj

∂Qoj∂Zj
Qojθoj

−
(
2 + EDoj

) +
∂Poj
∂Zj

(
2 + EDoj

2 + EDoj

)
(A.11)

⇒ dPoj
dZj

=

∂Poj
∂Zj

(
2 + EDoj

−Noj

)
− ∂2Poj
∂Qoj∂Zj

Qojθoj

2 + EDoj

(A.12)

I define markups as µoj ≡ Poj − Co − S(Toj), assuming that Co and S(Toj) are each
independent of qioj and Zj.5 Hence, Equation (1.3) follows directly from (A.12):

⇒ dµoj
dZj

=

∂Poj
∂Zj

(
2 + EDoj

−Noj

)
− ∂2Poj
∂Qoj∂Zj

Qojθoj

2 + EDoj

I make several simplifying assumptions to arrive at this comparative static. I assume
that plant j cannot resell purchased coal to other plants, which effectively enables rail
carrier i to optimize each oj market independently. A less restrictive formulation of the
rail carrier’s problem would include [O × J ] arbitrage constraints, which would bind if
the Poj were sufficiently high/low to make coal resale cost-effective. This is the classic
representation of 3rd-degree price discrimination, as presented by Schmalensee (1981) and
others.

I also ignore dependencies in coal demand across plants and coal types. In reality,
plant j’s demand for type-o coal certainly depends on both the prices it faces for coal from
other counties and the prices faced by other plants (Varian (1985); Katz (1987)). I can
incorporate this vector of non-oj prices into the parameter vector Zoj, or use more straight-
forward notation and explicitly include this vector of prices as an argument entering
inverse demand: Poj(Qoj;P−(oj),Zoj).

My model ignores the potential for binding rail price regulation, which is obviously
unrealistic. Since 1996, the Surface Transportation Board has adjudicated 33 rate cases
disputing the “reasonableness” of coal-by-rail shipping rates, which likely represents only
a small fraction of rail rates constrained by the threat (or even the perceived threat) of a
regulatory challenge.

5During my sample period, U.S. natural gas prices were virtually uncorrelated with diesel prices, the
main component of Toj . Figure 1.2.2 shows that delivered coal prices do not respond to short-to-medium
run changes in the Henry Hub spot price.
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I can modify Equations (1.1) and (A.1) to explicitly account for each of these assump-
tions, in order to illustrate what the above derivation assumes away:

Πi(qi) = qi ·
[
P(Q;Z)−Ci − Si(T)

]
− Fi · 1

[
qi > 0

]
(A.13)

s.t. ∣∣∣Poj(Qoj;Q−(oj),Z)−P(Q;Z)
∣∣∣ ≤ Aj ∀ o, ∀ j(A.14)

P(Q;Z) ≤ Ri(A.15)

Here, rail carrier i jointly optimizes across all [O × J ] pairs, and qi is a vector of length
[O × J ] coal quantities on each route oj. P(Q;Z) is the [O × J ]-dimensional inverse
demand function, which depends on the [O× J ] vector of coal quantities Q and a matrix
of demand parameters Z with [O × J ] rows. Ci is an [O × J ] vector of mine-mouth coal
costs, as faced by carrier i. Si(T) is an [O × J ] vector of carrier i’s coal shipping costs.
Fi is an [O × J ] vector of carrier i’s fixed costs of maintaining each oj route, which is
multiplied by an [O×J ] vector of indicators for carrier i’s entry decision along each route.

The [O × J ] constraints in (A.14) prevent arbitrage across coal plants, and Aj is an
[O×J ] vector of the price wedges at which arbitrage becomes feasible (i.e. reflecting plant
j’s costs of shipping coal to/from all other plants).6 The constraint (A.15) introduces the
threat of regulatory intervention, where Ri is an [O × J ] vector of the maximum price
carrier i is willing to set on each oj route given the risk of a rate challenge. Assuming that
(A.14) and (A.15) never bind, and assuming that the first-derivative matrix of P(Q;Z)
is diagonal,7 this more general profit function collapses to Equations (1.1) and (A.1).

A.1.2 Derivation of Carbon Tax Pass-Through

In this section, I derive expressions for the carbon tax pass-through (ρ) implied by a
change in natural gas prices (∆Z) and a reoptimization of coal markups (∆µ). Consider
a single coal plant j in a market with many natural gas plants. The ratio of coal-to-
gas marginal costs governs the relative ordering of plants on the electricity supply curve,
which is the primary factor influencing plant j’s operating decisions (see Figure 1.3.3 in
the main text). Plant j’s cost ratio is (suppressing subscripts):

CR =
MCcoal

MCgas
=
HRcoal · (P +MCenv

coal)

HRgas · (Z +MCenv
gas )

(A.16)

6Aj is of length [O × J ] in order to conform with the dimension of P(Q;Z), meaning that there are
O null j-to-j no-arbitrage constraints within plant j’s set of arbitrage constraints. Vertical lines denote
the absolute value operator, applied element-wise to the difference between the scalar Poj(Qoj ;Q−(oj),Z)
and the vector P(Q;Z). Busse and Keohane (2007) note that in order to arbitrage around the railroads,
plants would need to transfer coal from their on-site storage piles onto trucks, a more costly mode of
transportation. While coal resale is quite rare in practice, the threat of arbitrage may limit railroads’
willingness to price discriminate.

7That is, ∂Poj

∂Qnk
= 0 for k 6= j or n 6= o; and ∂Poj

∂Znk
= 0 for k 6= j or n 6= o, for any element of Z Z.
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HRfuel is the heat rate in units of MMBTU/MWh, or the rate at which each plant
converts fuel into electricity. P denotes the coal price, while Z denote the gas price, both
in $/MMBTU. Finally,MCenv

fuel represents the marginal costs of environmental compliance
per MMBTU of fuel, which is positive for plants that operate pollution control devices or
participate in allowance trading programs for SO2, NOx, or CO2.8

Let ∆Z denote a change in the gas price Z, which implies a new cost ratio:

CR′ =
HRcoal · (P +MCenv

coal)

HRgas · (Z + ∆Z +MCenv
gas )

(A.17)

Note that a hypothetical carbon tax t would yield an identical change in the cost ratio,
holding gas prices constant:

CR′ =
HRcoal · (P +MCenv

coal)

HRgas · (Z + ∆Z +MCenv
gas )

=
HRcoal · (P +MCenv

coal + tEcoal)

HRgas · (Z +MCenv
gas + tEgas)

(A.18)

The tax t is denominated in $ per metric ton CO2, and Efuel is the CO2 emissions rate for
each fuel, in metric tons CO2 per MMBTU. Because Ecoal > Egas, t exists for any feasible
change in gas prices ∆Z.9

Solving Equation (A.18) for t:

P +MCenv
coal

Z + ∆Z +MCenv
gas

=
P +MCenv

coal + tEcoal
Z +MCenv

gas + tEgas

(P +MCenv
coal)(Z +MCenv

gas + t · Egas) = (Z + ∆Z +MCenv
gas )(P +MCenv

coal + tEcoal)

(P +MCenv
coal)tEgas = (Z + ∆Z +MCenv

gas )tEcoal + ∆Z(P +MCenv
coal)

t
[
(P +MCenv

coal)Egas − (Z + ∆Z +MCenv
gas )Ecoal

]
= ∆Z(P +MCenv

coal)

⇒ t(∆Z) =
∆Z(P +MCenv

coal)

(P +MCenv
coal)Egas − (Z + ∆Z +MCenv

gas )Ecoal
(A.19)

For a change in gas prices ∆Z, t(∆Z) represents the equivalent carbon tax implied by
this gas price change.

8HRgas and MCenvgas are weight-averaged across all gas plants that compete with plant j in electricity
dispatch. This abstracts from non-fuel variable costs, such as labor, plant maintenance, and other inputs.
I make this simplifying assumption for two reasons. First, electricity production is Leontieff in fuel inputs
(Fabrizio, Rose, and Wolfram (2007)), and non-fuel inputs are of second-order importance to marginal
operating decisions of fossil generators (Cicala (2017)). Second, reliable data on non-fuel variable costs
are unavailable, as I discuss in Appendix A.2.2.3 below. Hence, I omit non-fuel inputs from marginal
costs to be consistent with my coal demand estimation algorithm in Appendix A.4.

9I adapt this framework from Cullen and Mansur (2017), who illustrate this conceptual mapping
between relative fuel prices and carbon tax very nicely in Figure 4 of their paper. Natural gas combustion
has a homogeneous emssions rate of 0.053 metric tons CO2 per MMBTU (https://www.eia.gov/tools/
faqs/faq.php?id=73&t=1). While coal’s carbon content does vary slightly by grade, its average CO2

emissions rate of 0.095 metric tons CO2 per MMBTU is relatively homogeneous, compared to its SO2,
NOx, or Hg emissions rates.

https://www.eia.gov/tools/faqs/faq.php?id=73&t=1
https://www.eia.gov/tools/faqs/faq.php?id=73&t=1
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However, rail carriers may reoptimize coal markups in response to ∆Z. If markups
change by ∆µ, I can rewrite Equation (A.17):

(A.20) CR′ =
HRcoal · (P + ∆µ+MCenv

coal)

HRgas · (Z + ∆Z +MCenv
coal)

Pass-through of the implicit tax t(∆Z) is a function of ∆µ. If ∆µ = 0, then the pass-
through rate is ρ = 1: the coal plant faces the full implicit tax t(∆Z), without any changes
in markups that weaken or strengthen this price signal. If sign(∆µ) = sign(∆Z), then
∆µ weakens the effect of ∆Z on CR′, translating to a incomplete pass-through (ρ < 1).
If sign(∆µ) = −sign(∆Z), then ∆µ strengthens the effect of ∆Z on CR′, translating to
overshifting (ρ > 1).

Modifying Equation (A.18) to allow for changes in markups (∆µ) and incomplete
pass-through (ρ 6= 1) for coal plants only:

HRcoal · (P + ∆µ+MCenv
coal)

HRgas · (Z + ∆Z +MCenv
gas )

=
HRcoal · (P +MCenv

coal + ρ t(∆Z)Ecoal)

HRgas · (Z +MCenv
gas + t(∆Z)Egas)

(A.21)

Here, t(∆Z) is the carbon tax implied by ∆Z under full pass-through (i.e. ∆µ = 0, ρ = 1).
If markups adjust (i.e. ∆µ 6= 0), this causes coal plants to face a different proportion (i.e.
ρ 6= 1) of this implicit tax. Note that ρ appears only in the numerator, as I assume that
full tax pass-through of the tax for natural gas prices.

Solving Equation (A.21) for ρ:

P + ∆µ+MCenv
coal

Z + ∆Z +MCenv
gas

=
P +MCenv

coal + ρ t(∆Z)Ecoal
Z +MCenv

gas + t(∆Z)Egas[
P+MCenv

coal+ρt(∆Z)Ecoal

][
Z+∆Z+MCenv

gas

]
=
[
P+∆µ+MCenv

coal

][
Z+MCenv

gas+t(∆Z)Egas

]
ρ =

[
P + ∆µ+MCenv

coal

][
Z +MCenv

gas + t(∆Z)Egas

]
−
[
P +MCenv

coal

][
Z + ∆Z +MCenv

gas

]
t(∆Z)

[
Z + ∆Z +MCenv

gas

]
Ecoal

ρ =
∆µ
[
Z +MCenv

gas

]
+ t(∆Z)

[
P + ∆µ+MCenv

coal

]
Egas −∆Z

[
P +MCenv

coal

]
t(∆Z)

[
Z + ∆Z +MCenv

gas

]
Ecoal

ρ =
(P + ∆µ+MCenv

coal)Egas
(Z + ∆Z +MCenv

gas )Ecoal
+

∆µ(Z +MCenv
gas )−∆Z(P +MCenv

coal)

(Z + ∆Z +MCenv
gas )Ecoal

[
1

t(∆Z)

]
Substituting t(∆Z) from Equation (A.19), and rearranging:

ρ =
(P + ∆µ+MCenv

coal)Egas
(Z + ∆Z +MCenv

gas )Ecoal
+

∆µ(Z +MCenv
gas )−∆Z(P +MCenv

coal)

(Z + ∆Z +MCenv
gas )Ecoal

[
(P +MCenv

coal)Egas − (Z + ∆Z +MCenv
gas )Ecoal

∆Z(P +MCenv
coal)

]
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ρ =
(P + ∆µ+MCenv

coal)Egas
(Z + ∆Z +MCenv

gas )Ecoal
+

∆µ(Z +MCenv
gas )Egas

∆Z(Z + ∆Z +MCenv
gas )Ecoal

−
∆µ(Z +MCenv

gas )

∆Z(P +MCenv
coal)

+ 1 − (P +MCenv
coal)Egas

(Z + ∆Z +MCenv
gas )Ecoal

ρ = 1 +
∆µEgas

(Z + ∆Z +MCenv
gas )Ecoal

+
∆µ(Z +MCenv

gas )Egas

∆Z(Z + ∆Z +MCenv
gas )Ecoal

−
∆µ(Z +MCenv

gas )

∆Z(P +MCenv
coal)

⇒ ρ(∆µ,∆Z) = 1 +
∆µ

∆Z

(
Egas
Ecoal

−
Z +MCenv

gas

P +MCenv
coal

)
(A.22)

This expression shows that ∆µ leads to incomplete pass-through via two channels. The
first fraction in parentheses adjusts for the wedge in emissions factors, while the second
fraction rescales for the baseline difference in marginal costs.

For expositional clarity, I simplify this derivation in the main text by removing heat
rates and setting non-fuel costs to zero. My pass-through estimates in Table 1.7.7 directly
apply Equation (A.22), setting ∆Z = 1 and plugging in coefficient estimates for ∆µ
(setting MCenv

coal = MCenv
gas = 0 in Panel A). Note that because ∆µ represents a change

in plant j’s markup, ρ(∆µ,∆Z) should really be ρj(∆µj,∆Zj), where Pj and MCenv
coal,j

denote plant-specific costs, and Zj and MCenv
gas,j denote the costs of plant j’s gas-fired

competitors. Variation in delivered coal price Pj drives most of the heterogeneity in
pass-through rates across plants within each column of Table 1.7.7.

Cullen and Mansur (2017) note that the mapping between the cost ratio (CR) and
an implicit carbon tax (t) relies on several key assumptions. Most importantly, electricity
demand must be perfectly inelastic; in reality, demand in wholesale electricity markets is
close to perfectly inelastic, as there is extremely limited technical capacity for demand
response. It also assumes that only coal and natural gas may be marginal in electricity
markets; in reality, other technologies (e.g. diesel or hydroelectric generators) are rarely
on the margin in regions of the U.S. that also feature non-trivial coal generating capac-
ity. Given these two reasonable assumptions, electricity generation depends only on the
ordering of plants along the supply curve. The “equivalent” carbon tax would produce
the same ordering of marginal costs, but the tax would shift all plants’ marginal costs
upward, yielding the same generation outcomes at higher electricity prices. Figure A.1.1
illustrates how a gas price decrease can yield the same allocation of generation as a carbon
tax, comparing the top-left vs. bottom-left panels. Comparing the top-right vs. bottom-
right panels, a decrease in coal markups (∆µ < 0) can increase the allocation of coal-fired
electricity generation in a manner that mimics incomplete pass-through of a carbon tax
to coal generators (ρ < 1).

Mapping the fuel price ratio to a carbon tax also assumes that higher electricity prices
would not alter plants’ bidding strategies, due to either dynamic operating constraints
(which Cullen (2015) finds to be second-order), exercise of market power (Mansur (2013)),
or differential pass-through of shocks to fuel vs. carbon prices (Fabra and Reguant (2014)).



135

Finally, this mapping only holds in the short-run, where both the stock of generators and
their CO2 emissions rates are fixed.

Figure A.1.1: Electricity Supply with Gas Price Decrease or Carbon Tax

Notes: This figure illustrates how a gas price decrease mimics a carbon tax on the electricity sector in
the short-run, using the same stylized electricity market as Figure 1.3.3 in the main text. The top-left
panel reproduces the top-left panel of Figure 1.3.3. My empirical results find that coal markups decrease
due to a decrease in gas prices, and I illustrate this decrease in markups (∆µ < 0) in the top-right panel.
In the absence of a gas price decrease, there exists a carbon tax (t) that would have yielded the same
supply curve as the top-left panel, except vertically shifted upwards (i.e. bottom-left panel). Incomplete
pass-through of that carbon tax (i.e. ρ < 1 in the bottom-right panel) can result in the same generation
allocation under a (counterfactual) carbon tax as decreasing coal markups after a (factual) gas price drop.
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A.1.3 Incidence

Weyl and Fabinger (2013) derive the following expression for the incidence (I) of a tax
(t) — or the ratio of changes in consumer surplus (CS) vs. producer surplus (PS) — in
a symmetric oligopoly:

(A.23) I =
dCS/dt

dPS/dt
=

ρ

1− (1− θ/N) ρ

Here, ρ is the pass-through rate of the tax, θ is the conduct parameter, and N is the
number of symmetric firms in the market.10 As pass-through becomes more incomplete
(i.e., as ρ decreases from 1), incidence decreases and consumers pay proportionately less of
the tax burden. For a given pass-through rate ρ, a less competitive market structure (i.e.,
greater θ/N) also implies lower incidence, because producers stand to lose more under a
tax if they are already extracting more oligopoly rents.11

In my setting, I assume a symmetric oligopoly where all plants face either an effective
rail monopoly (i.e. captive, Nj = 1) or an effective rail duopoly (i.e. non-captive, Nj = 2).
I also assume that plants’ proximity to a navigable waterway governs their rail market
structure, where coal shipping is Cournot (i.e. θj = 1) for plants without a water delivery
option, and competitive (i.e. θj = 0) for plants with water as an outside option. These
assumptions reduce Equation (A.23) to four possible mappings between pass-through an
incidence:

(A.24) Ij =



ρj if θj = 1 , Nj = 1
ρj

1− ρj/2
if θj = 1 , Nj = 2

ρj
1− ρj

if θj = 0 , ρj < 1

∞ if θj = 0 , ρj = 1

If pass-through is incomplete (i.e. ρj < 1), then for a given pass-through rate, a less
competitive market (i.e. higher θj or lower Nj) reduces the share of the tax borne by
coal plants (i.e. consumers) relative to rail carriers (i.e. producers). For example, suppose
the pass-through rate is ρj = 0.8 for three plants: a captive plants with no water option
(θj = 1, Nj = 1), a non-captive plant with no water option (θj = 1, Nj = 2), and a plant
with a water option (θj = 0). This would imply incidences of 0.8, 1.3, and 4, respectively.
Infinite incidence occurs under perfect competition if supply is perfectly elastic, causing
ρj = 1 and dPS/dt = 0.

10See Weyl and Fabinger (2013), p. 547. Note that using my notation, θ/N corresponds to θ in the
notation of Weyl and Fabinger.

11That is, ∂I/∂ρ > 0; and ∂I/∂(θ/N) < 0, unless I < 0, which can only occur if ρ > 1.
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I can reformulate incidence to summarize the proportion of the tax burden in the
coal-by-rail market that is borne by coal plants (i.e. consumers):

(A.25)
Ij

1 + Ij
=

(
dCS
dt

)
j(

dCS
dt

)
j

+
(
dPS
dt

)
j

=
ρj

1 + (θj/Nj) ρj
=


ρj

1 + ρj
if θj = 1 , Nj = 1

ρj
1 + ρj/2

if θj = 1 , Nj = 2

ρj if θj = 0

For a pass-through rate of ρj = 0.8, a plant could bear 44 percent (if θj = 1, Nj = 1),
57 percent (if θj = 1, Nj = 2), or 80 percent (if θj = 0) of the lost surplus in coal
markets. Importantly, the full tax burden would depend on the extent to which coal
plants could pass on marginal emissions costs via higher wholesale electricity prices. If
emissions tax pass-through in wholesale electricity markets is 1 (consistent with Fabra and
Reguant (2014)), then a carbon tax could increase profits for coal plants that are relatively
clean/efficient and have low pass-through rates in coal markets. While the fracking boom
simulated the effect of a carbon tax on the relative costs of coal vs. gas plants, it had the
opposite effect on electricity prices, as low gas prices caused electricity prices to fall (Linn
and Muehlenbachs (forthcoming)). Lower electricity prices meant that coal plants were
very unlikely to be “winners” in the fracking boom, though incomplete pass-through in
coal shipping likely caused certain coal plants to be “smaller losers”.

My theoretical framework assumes that rail carriers purchase coal from a perfectly
competitive mining sector. While this greatly simplifies the mathematical derivations in
Appendix A.1.1, this assumption is not crucial for evaluating markups for coal deliveries.12

However, the market structure at the mine-mouth does impact how mines and railroads
share the tax burden. Given that coal is both spatially and physically heterogeneous, the
fundamental assumptions of perfect competition likely do not hold.

I assume that Co in Equations (1.1) and (A.1) is exogenous, which implies that rail
carriers face perfectly elastic coal supply (a standard assumption for homogeneous com-
modity markets). This assumes that coal mines earn zero economic rents, and hence incur
no lost profits due to a downstream carbon tax. However coal mines would face non-zero
tax burden under any of three alternative market structures.

First, suppose that coal mines and rail carriers coordinate, behaving as vertically in-
tegrated monopolists. This may occur without formal profit-sharing, as geographically
isolated mines in Wyoming’s Powder River Basin depend heavily on rail carriers to trans-
port their coal to market, while Western rail carriers with sunk investments in railroad
tracks stand to gain considerable profits by cooperating with mines in a repeated game.
In this case, I could rewrite the rail carrier’s profit function replacing coal quantity (qioj)
with the mine’s production function, and replacing constant marginal cost (Co) with to-
tal mining input costs. This would cause coal mines and rail carriers to jointly share the
burden of a carbon tax.

12My regression specifications control for the average equilibrium coal price by county-year, without
restricting the market structure of the mining sector.
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Second, suppose that coal mines can exert market power at the mine-mouth when
selling to rail carriers. This may occur if a few large firms dominate mining operations (as
in the Powder River Basin), if multiple rail carriers compete to purchase coal from a single
mining firm, or if mines can elect to sell to non-rail intermediaries (e.g. river barges). In
this case, double marginalization would shift delivered coal prices even further from the
competitive benchmark (ignoring externalities).13 This would create a second opportunity
for incomplete pass-through of a cost shock (or a carbon tax), but adjustments in markups
would not be coordinated along the coal supply chain. If mines responded by reducing
mine-mouth markups, this would reduce the tax burden borne by rail carriers. Mines
earning market power rents would also stand to lose under a carbon tax.

Third, suppose that rail carriers can exert monopsony power at the mine-mouth.
This may occur if coal mines are captive to a single rail carrier with strong bargaining
power: whereas these mines depend on revenue from selling a single product, diversified
rail carriers may divert resources (e.g. locomotives, labor) to other profitable shipping
opportunities. In this case, rail carriers could adjust prices both at the mine-mouth and
at the power plant, and they would likely bear an even greater tax burden for having
extracted rents on both sides of the market. If a downstream carbon tax caused rail
carriers to raise mine-mouth prices (i.e. incomplete pass-through at the mine-mouth),
the effects on profits in the mining sector would be theoretically ambiguous, and would
depend on whether mine-mouth prices increased by enough to offset the reduction in coal
quantity.

A.2 Data

A.2.1 Coal Transaction and Production Data

A.2.1.1 Coal Shipment Data

The core dataset in my analysis is the Energy Information Administration (EIA) database
of monthly fossil fuel deliveries to power plants. These survey data are at the monthly
“order” level, and power plants are required to report each purchase order or supplier con-
tract separately. According to EIA’s official documentation, “aggregation of coal receipt
data into a single line item is allowed if the coal is received under the same purchase
order or contract and the purchase type, fuel, mine type [i.e., surface vs. underground],
state of origin, county of origin, and supplier are identical for each delivery.” Throughout
my analysis, I refer to observations in this dataset as “shipments” (indexed by s); this
short-hand aggregates multiple physical shipments into a single “shipment” observation
(e.g., daily train deliveries on the same long-term contract).14

13Alexandrov, Pittman, and Ukhaneva (2017) find no empirical evidence of double marginalization
between railroads, in cases where multiple rail carriers own segments along the same shipping route.

14See https://www.eia.gov/electricity/monthly/pdf/technotes.pdf for detailed descriptions of
EIA’s fossil fuel delivery data.

https://www.eia.gov/electricity/monthly/pdf/technotes.pdf
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Since 2008, EIA has collected fossil fuel delivery data on Form 923, with monthly
reporting required for all fossil plants larger than 50 MW in total generating capacity.
Form 923 also reports monthly data on a sample of smaller plants (1–50 MW capacity),
and all plants larger than 1 MW are required to report fossil fuel receipts annually. Prior
to 2008, monthly data were collected on two separate forms, each with a 50 MW minimum
reporting requirement: the Federal Energy Regulatory Commission’s (FERC) Form 423
(for utility-owned plants between 1983–2007); and EIA Form 423 (for non-utility-owned
plants between 2002–2007).15 Given that my analysis period spans the 2008 changeover,
I restrict my sample to include coal plants larger than 50 MW; this represents over 99
percent of U.S. coal-fired electricity generation. Prior to 2002, non-utility-owned plants
were not required to report fuel deliveries, and the vast majority of such plants were
divested by utilities between 1997 and 2002.

My sample period starts in 2002 and extends through 2015, the most recent year with
available data across all key data sources. Beginning my analysis in 2002 affords five years
of data prior to the beginning of the fracking boom in 2007 (Hausman and Kellogg (2015)).
This also minimizes the potential for any confounding effects from electricity market
deregulation and coal plant divestments, as most of these changes occurred prior to 2002,
due to the 1998–2000 California Electricity Crisis (Fabrizio, Rose, and Wolfram (2007);
Borenstein (2002)). Linn and Muehlenbachs (forthcoming) also document substantial
data irregularities in coal deliveries prior to 2001, which is another reason I start my
sample period in 2002.

The 423/923 data report average prices, total quantities, and average attributes for
each fuel “shipment”. Average prices are reported in dollars per ton (for coal), dollars
per barrel (for oil), and dollars per thousand cubic feet (for gas). They are inclusive of
commodity costs, shipping costs, and markups, equivalent to Pojms from my theoretical
framework. EIA withholds price data for deliveries to non-utility plants; hence, my anal-
ysis focuses on utility plants only, as I do not observe these prices. The data also identify
the fuel type of each shipment—for example, bituminous vs. sub-bituminous coal; fuel oil
vs. kerosene for oil; natural gas vs. liquefied petroleum gas for gas. Total quantities are
reported in tons, barrels, and thousand cubic feet, and I can covert these physical quan-
tities into units of energy content by multiplying by the average MMBTU content for
each shipment (i.e. MMBTU per physical unit). The data report two additional physical
attributes for each shipment: average sulfur content and average ash content. Each of
these physical attributes (BTU, sulfur, ash) affects the price of coal deliveries, as plants
tend to value coal with relatively high BTU content, and relatively low sulfur and ash
content. Each of my markup regressions includes BTU, sulfur, and ash content as coal
commodity controls in the matrix Cojms.

Each fossil fuel shipment is classified by purchase type, as either spot market or long-
term contract. Most contract shipments have reported expiration dates, however this

15EIA Form 923 data are available at https://www.eia.gov/electricity/data/eia923/, which
contain annual/monthly fossil fuel receipts data beginning in 2008. FERC Form 423 and EIA Form 423
are each available at https://www.eia.gov/electricity/data/eia423/.

https://www.eia.gov/electricity/data/eia923/
https://www.eia.gov/electricity/data/eia423/
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variable is not consistently coded across years. Hence, I control for a coarser (but more
consistently coded) measure of contract length as a part of Cojms: an indicator for con-
tracts expiring within 2 years. Longer coal contracts (i.e. for which this indicator is zero)
are likely to have higher coal prices, because plants trade off higher costs for lower vari-
ance in coal prices and more reliable deliveries (Jha (2017)). For the same reason, I also
include a spot market indicator as a part of Cojms, as spot shipments tend to have lower
delivered prices than contract shipments. Finally, contract shipments tend to be relatively
less flexible, and my analysis of markup changes treats these two transaction types both
pooled and separately.

The 423/923 data report the originating county of each coal shipment (reported since
1990), coal supplier names (reported since 2002 with markedly incomplete coverage in ear-
lier years), and originating mine names and identifiers (reported since 2008). Given that
supplier names and mine names are not (precisely) reported through my 2002–2015 sample
period, I elect to treat the originating county as the unit of origin for each coal shipment.
Two last variables are key for my analysis: each delivery’s primary and secondary mode of
transportation. Given that I estimate a model of rail shipping costs, mistakenly including
barge shipments or truck shipments would induce misspecification. These variables are
only reported for 2008–2015 sample years, however I am able to extrapolate backwards
to assign transportation modes for 2002–2007 shipments using observed modes within
each origin-destination pair.16 I exclude all non-rail shipments from my main regression
analysis on coal markups.

Besides using the 423/923 dataset as the backbone of my markup regressions, I use
monthly average delivered fuel prices to construct the cost ratio CRud in my coal demand
estimation. For coal prices, I use the BTU-weighted average monthly price received by
each utility-owned coal plant, linearly interpolating prices for any missing months (Pjm
in Equation (A.26)). For gas prices, I similarly calculate BTU-weighted average monthly
delivered prices for utility-owned gas plants. However, these prices obscure day-to-day
variation in gas prices. I leverage time series from natural gas trading hubs to assign daily
average gas prices, comparing monthly average hub prices with monthly average 423/923
prices to add retail distribution costs into Zgd in Equation (A.27). (See Appendix A.2.5
below.)

A.2.1.2 Aggregated Coal Prices

I supplement EIA coal delivery data with two data sources of aggregate coal prices. First,
I use average mine-mouth sales prices at the county-year level, which EIA publishes in its
Annual Coal Report (ACR).17 EIA discloses the average annual price for open market coal

16For example, supposed that 99 percent of tons shipped from origin o to destination j between 2008–
2015 were rail shipments. I can assign the missing 2002–2007 transportation modes for the same oj pair
as “rail” with a high degree of confidence. This backwards extrapolation is reasonably unambiguous for
the vast majority of oj pairs.

17I extract average coal sales prices from the data tables published in EIA Annual Coal Report PDFs,
which are available for download at https://www.eia.gov/coal/annual/.

https://www.eia.gov/coal/annual/
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sales for counties with a sufficient number of mining firms to disclose aggregate prices,
which corresponds to 62 percent of coal production. The ACR also reports average prices
at the state-year level, separately for surface and underground mines, which I combine with
coal production data (described below) to algebraically infer average prices for withheld
counties. These prices correspond to Co in my theoretical framework, or the average
coal commodity cost per ton. I control for these county-by-year average prices in Cojms

in Equations (1.5) and (1.9), allowing me to better isolate delivered coal markups by
capturing within-county changes in coal price.18

I use monthly average prices for coal delivered to electric power plants, as published
in EIA’s Electric Power Monthly (EPM). These prices are state-by-month aggregates,
and EIA reports separate average prices for utility owned vs. non-utility plants (a.k.a.
independent power producers).19 This allows me to assign average delivered coal prices
for non-utility plants, for which I do not observe prices at the purchase-order level. EPM
withholds prices for state-months with too few firms, and I assign average prices for
withheld cells by algebaically inferring missing prices from aggregate quantities (where
possible), or by assigning region-by-month average prices. These prices only enter my
analysis through the fuel cost ratio in my counterfactual estimation (CRud in Equation
(A.45)), as I allow utility plants’ generation to depend on the average monthly coal price
across all (utility and non-utility) generators in each plant’s PCA.20 I also use average
EPM prices for natural gas deliveries (constructed analogously) for a sensitivity analysis
in Table A.5.26 and Figure A.5.30.

A.2.1.3 Coal Production and Mine Characteristics

I use several publicly available datasets on coal mining and production, published by the
Mine Safety and Health Administration (MSHA), an agency with the U.S. Department
of Labor.21 The “Mines” dataset reports numerous mine-specific characteristics, all linked
to a unique longitudinal mine identifier. For each mine, these data report its name;

18Month fixed effects control for changes in the global commodity price, while coal county fixed effects
control for each county’s average mine-mouth price. Cojms also controls for the BTU content, sulfur
content, and ash content of each coal shipment. Hence, the main reason to include county-year average
prices as an additional control is to capture (otherwise unobserved) changes in cross-county differences
in coal price.

19Electric Power Monthly data tables are available at https://www.eia.gov/electricity/monthly/
backissues.html for 2003–2016, or by modifying the following link for each monthYYYY combination
from 2011 to the present: https://www.eia.gov/electricity/monthly/current_year/march2017.
zip. Tables 4.10.A and 4.10.B report average delivered coal prices, while Tables 4.6.A and 4.6.B report
average delivered coal quantities.

20In both my demand estimates and counterfactual estimates, I estimate generation for utility plants
only (i.e. those plants with publicly disclosed prices in EIA coal delivery data). While my demand
estimates condition on the average coal price for each plant-month, my counterfactual estimates condition
on the average coal price for each PCA-month—weight averaging across utility plants (using EIA 423/923
prices) and non-utility plants (using EIA EPM prices).

21These data are available for download at http://www.msha.gov/OpenGovernmentData/OGIMSHA.
asp.

https://www.eia.gov/electricity/monthly/backissues.html
https://www.eia.gov/electricity/monthly/backissues.html
https://www.eia.gov/electricity/monthly/current_year/march2017.zip
https://www.eia.gov/electricity/monthly/current_year/march2017.zip
http://www.msha.gov/OpenGovernmentData/OGIMSHA.asp
http://www.msha.gov/OpenGovernmentData/OGIMSHA.asp
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type (i.e., coal, metal); status (e.g., active, abandoned); county of location; latitude and
longitude; and the average thickness (or height) of mine seams.22 The “Quarterly Mine
Employment and Coal Production Report” dataset (MSHA Form 7000-2) reports coal
production, average number of employees, and total employee-hours worked, as reported
by each mine operator for each quarter in a calendar year, and disaggregated by mine
subunit (i.e. underground operations, surface operations, office work).

Using MSHA mine identifiers, I merge these two datasets with EIA’s Form 7A, or “An-
nual Survey of Coal Production and Preparation”.23 These data allow me to cross-validate
mine-specific production and employment for each year. EIA also classifies each mine as
either “surface” or “underground”—categories that are consistent with the definitions used
to report aggregate prices in the Annual Coal Report. EIA splits mines into 8 distinct
mining regions, or basins: Appalachia Central, Appalachia Northern, Appalachia South-
ern, Illinois Basin, Powder River Basin, Uinta Region (in Utah, Colorado, and southern
Wyoming), Interior (i.e., mines west of Illinois and East of Wyoming/Colorado), and
Western (i.e., non-Powder River Basin, non-Uinta).

Following Cicala (2015), I use stratigraphic data from the U.S. Geological Survey
(USGS) to calculate the depth of mine seams, as coal closer to the surface tends to be less
expensive to extract. I use both the USTRAT and COALQUAL databases, which together
include over 200,000 geocoded core sample collected by federal and state authorities to
map U.S. coal deposits.24 I convert these data into a raster, in order to assign each coal
mine a time-invariant depth, basic on its geographic coordinates.25

I use mine coordinates and production data to determine the time-invariant production-
weighted latitude and longitude for each coal producing county. This serves as an input
into my graph algorithm that calculates shortest rail shipping distance and defines rail
captiveness. I also use annual coal production by county to algebraically infer withheld
ACR coal prices. Finally, I use the above datasets to construct several time-varying con-
trols, in order to conduct sensitivity analysis on the components of Cojms (in Table A.5.11
and A.5.29 below). These controls, all production-weighted averages at the quarter-year
level, include: mine age, seam thickness, seam depth, the share of coal produced from
(more expensive) underground mines, the share of mine employees working underground
(which increases labor costs), hours worked per ton of coal produced.

22Thicker mine seams, or coal strata, are associated with less expensive coal extraction costs.
23EIA Form 7A datasets are available at http://www.eia.gov/coal/data.cfm#production.
24The USTRAT data are located at https://ncrdspublic.er.usgs.gov/ncrds_data/, while the

COALQUAL data are located at https://ncrdspublic.er.usgs.gov/coalqual/.
25I use R’s sp package to convert USGS coordinates into a gridded spatial dataset. Then, I apply

inverse distance weights to spatially interpolate between coordinates, using the function idw in R’s gstat
package. Finally, using R’s raster package, I rasterize the interpolated grid and extract the seam depth
corresponding to each pair of coal mine coordinates.

http://www.eia.gov/coal/data.cfm#production
https://ncrdspublic.er.usgs.gov/ncrds_data/
https://ncrdspublic.er.usgs.gov/coalqual/
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A.2.2 Power Plant Data

A.2.2.1 Plant Characteristics and Operations

EIA’s Form 860, also known as the “Annual Electric Generator Report,” is an annual
survey of all U.S. electric power plants with greater than 1 MW in total generating
capacity. I use these data to establish the universe of electric power plants for each year
between 1990 and 2015.26 For each plant-year, these data report the plant name and
identifier; county of location; parent utility name and identifiers; regulatory status; an
indicator for cogeneration; and the plant’s primary purpose (i.e., to sell electricity to
the electric power sector, for all plants in my sample). In addition, each annual data
file reports characteristics for each plants constituent generating units, including each
generator’s type (e.g., steam turbine, combined-cycle, combustion turbine); status (e.g.,
operating, retired); year constructed; nameplate capacity (i.e., the maximum megawatts
of electricity the generator is built to produce at any point in time); and primary fuel
consumed (e.g., natural gas, bituminous coal).

I use data on power plant operations, collected by the following EIA forms, in reverse
chronological order: 923, 906/920, 906, and 759.27 My primary variables of interest
are monthly heat input by fuel (i.e. fuel consumption in MMBTUs), and net electricity
generated from each fuel (i.e. MWh sold to the electricity grid), which are both reported
at the plant-month level. The data also report monthly fuel consumption disaggregated to
the boiler level, and monthly net generation disaggregated to the generator level. These
sub-plant units often map 1-to-1, where a single unit boils water and generates electricity;
however, in many cases, multiple boilers map to a single generator or vice versa.28 These
operations data allow me to calculate plants’ utilization rates and heat rates, or inverse
thermal efficiency in units of MMBTU/MWh.

EIA Forms 767, 860, and 923 collect detailed data on plants’ pollution abatement
costs and pollution control devices.29 At the plant level, these forms report annual capital
expenditures on pollution abatement, and annual operation and maintenance costs of
pollution control devices such as scrubbers (flue gas desulfurization units) and flue gas
particulate collectors. They also report revenues from selling plant byproducts, most
notably gypsum byproduct from flue gas desulfurization. At the boiler level, they report
detailed data on scrubber characteristics and operations, while providing a crosswalk to
match boiler identifiers with generator identifiers. I use these environmental compliance

26EIA Form 860 data are available for download at http://www.eia.gov/electricity/data/
eia860/.

27Since 2008, Form 923 has collected data on both fuel receipts and plant operations. For 2001–2007,
EIA collected plant-specific generation data on Forms 906 and 920. Prior to 2001, these data were
collected separately for utility plants (Form 759) and non-utility plants (Form 906). All years of data are
available at http://www.eia.gov/electricity/data/eia423/, https://www.eia.gov/electricity/
data/eia923/, or https://www.eia.gov/electricity/data/eia923/eia906u.html.

28Form 906/920 boiler and generator data are both missing for 2006–2007.
29Prior to 2005, EIA collected these data on Form 767 (available at http://www.eia.gov/

electricity/data/eia767/). Data collection appears to have lapsed in 2006 and resumed in 2007,
with Forms 860 and 923 collecting most of the information formerly collected on Form 767.

http://www.eia.gov/electricity/data/eia860/
http://www.eia.gov/electricity/data/eia860/
http://www.eia.gov/electricity/data/eia423/
https://www.eia.gov/electricity/data/eia923/
https://www.eia.gov/electricity/data/eia923/
https://www.eia.gov/electricity/data/eia923/eia906u.html
http://www.eia.gov/electricity/data/eia767/
http://www.eia.gov/electricity/data/eia767/
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data to control for the presence of a scrubber, the main pollution control technology that
influences plants’ coal purchases.30 I also use variable environmental costs (O&M net of
byproduct revenues) in constructing unit-specific marginal costs (i.e.MCenv in Equations
(A.26) and (A.27)).

Finally, I use the Environmental Protection Agency’s (EPA) Emissions & Generation
Resource Integrated Database (eGRID) to assign plant geographic coordinates and elec-
tricity markets regions.31 EPA assigns plants to regions of the electricity grid based at
three distinct hierarchies. First, North American Electric Reliability Corporation (NERC)
regions define 8 contiguous reliability regions of the transmission grid; there is substantial
trade of electricity within but not across NERC regions. Second, many plants partici-
pate in wholesale electricity markets, and eGRID data assign these plants to a particular
market, or Independent System Operator (ISO). I combine these two definitions for my
demand estimation, giving preference to the ISO market regions while using NERC regions
for plants that do not sell to an ISO.32

Third, eGRID assigns the majority of plants to a power control area (PCA), or the
region on the electricity transmission grid in which the plant resides and over which a
single Balancing Authority dispatches plants to instantaneously meet electricity demand.
Applying a consistent PCA definition across plants is not trivial, as PCA boundaries
evolve over time. Cicala (2017) identifies 98 major PCAs in the U.S., excluding Alaska
and Hawaii. I perform a multistep PCA matching procedure to ensure that PCA defini-
tions are both consistent across plants and across sample years, similar to the procedure
used by Linn and Muehlenbachs (forthcoming). I cross-verify these definitions with two
additional data sources: (i) Federal Energy Regulatory Commission (FERC) Form 714,
“Annual Electric Balancing Authority and Planning Area Report”; and (ii) electricity mar-
ket supply curves from SNL Financial.33 I construct marginal cost ratios by averaging
marginal costs across plants within each PCA.

30Plants with scrubbers tend to purchase high-sulfur bituminous coal, while plants who have not
invested in this capital-intensive SO2 abatement technology tend to purchase low-sulfur sub-bituminous
coal.

31EPA’s eGRID data are available at http://www.epa.gov/energy/egrid/, however these data only
exist for the following years: 1996–2000, 2004, 2005, 2007, 2009, 2010, 2012, and 2014.

32The 7 ISOs are California ISO (CAISO); Electric Reliability Council of Texas (ERCOT); ISO New
England (ISONE); Midcontentent ISO (MISO, formerly Midwest ISO); New York ISO (NYISO); PJM
(formerly Pennsylvania-New Jersey-Maryland); and Southwest Power Pool (SPP). I define two market
regions as North American Electric Reliability Corporation’s (NERC) regions: Florida Reliability Co-
ordinating Council (FRCC); and SERC Reliability Corporation (formerly Southeast Electric Reliability
Council). The remaining two non-ISO market regions are subsets of NERC’s Western region that exclude
California: Northwest Power Pool (NWPP); and the Southwest Reserve Sharing Group (SRSG). Follow-
ing Callaway, Fowlie, and McCormick (2018), I include smaller California PCAs in the CAISO region.
I define market regions to be time-invariant. Following Linn and Muehlenbachs (forthcoming), I make
minor adjustments to ISO/NERC boundaries such that all PCAs lie within a single market region.

33FERC Form 714 data are available at https://www.ferc.gov/docs-filing/forms/form-714/
data.asp and report the name of all power plants residing in each Balancing Authority (in many cases,
Balancing Authorities are close to isomorphic with PCAs). SNL data are proprietary, and available at
http://www.snl.com under the tab “Generation Supply Curve”.

http://www.epa.gov/energy/egrid/
https://www.ferc.gov/docs-filing/forms/form-714/data.asp
https://www.ferc.gov/docs-filing/forms/form-714/data.asp
http://www.snl.com
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A.2.2.2 EPA Air Markets Program Data

My demand estimation leverages high-frequency Continuous Emissions Monitoring Sys-
tems (CEMS) data on power plant operations, which are available for download through
the EPA’s Air Markets Program Data portal.34 CEMS data include all fossil generating
units that are either larger than 25 MW in capacity, or whose emissions are regulated un-
der an EPA program. For each unit, for every hour since 2000, the data report fuel input
(in MMBTUs), gross generation (in MWh), and emissions of SO2, NOx, and CO2 (in tons
of each pollutant). I use hourly CEMS generation for each unit in my demand estimation
(Equation (A.29)) and total daily CEMS generation for each unit in my counterfactual
regressions (Equation (A.45)).

CEMS data report the primary fuel for each unit (i.e. coal, natural gas, oil), and I use
this primary fuel variable to determine which units are coal vs. gas units in my demand
estimation.35 The data also classify units into (primarily) three broad categories: boilers,
combined cycle plants, and combustion turbines. I take these definitions as given and treat
the CEMS unit identifier as the main sub-plant unit throughout my analysis. For most
coal plants, CEMS units correspond to boilers rather than generators, and I can match
over 96 percent of CEMS units to an EIA boiler identifier. I restrict my main estimation
sample to the subset of plants that meet all of the following criteria: (1) plants that
appear in CEMS data; (2) plants with at least one constituent CEMS unit with coal as a
primary fuel; (3) plants categorized by CEMS as an “electric utility”; (4) plants that also
appear as coal-consuming plants in EIA’s 860 data; (5) plants that receive coal deliveries
in EIA’s 423/923 data; (6) plants larger than 50 MW in total generating capacity.

CEMS data report gross electricity generation, or the total amount of electricity gen-
erated in each unit-hour. However, a power plant’s relevant unit of economic output is
net electricity generation, which subtracts electricity that is generated but not sold to
the electric grid.36 Fortunately, EIA data report net generation at the unit-month level,
and EIA’s boiler-to-generator crosswalk enables me to compare net generation and gross
generation for most unit-months. I calculate average net-to-gross ratios, which allow me
to rescale hourly CEMS generation to more precisely measure electricity sold onto the

34See http://ampd.epa.gov/ampd/. These data files are available for bulk download at both daily
and hourly temporal resolutions, at ftp://ftp.epa.gov/dmdnload/emissions/daily/ and ftp://ftp.
epa.gov/dmdnload/emissions/hourly/. For a detailed (archived) factsheet on CEMS data proto-
cols, see https://web.archive.org/web/20090211082920/http://epa.gov/airmarkets/emissions/
continuous-factsheet.html.

35For units whose primary fuel that alternates between coal and gas, I assume that they are 100
percent coal units when their primary fuel is listed as coal, and 0 percent coal units when their primary
fuel is listed as natural gas. My demand estimation omit the portions of these units’ time series during
which their primary fuel is gas.

36Power plants use a small percentage of their electricity generation on-site, both as an input to
electricity production (e.g., to power coal conveyor belts and the circulation of cooling water) and as a
means of operating pollution control devices (e.g., to power scrubbers). Net generation is the unit of
the electricity supply curve. Because the purpose of CEMS is to monitor pollution, CEMS data report
gross generation inclusive of generation that is not sold to the grid (as this generation still contributes
pollution).

http://ampd.epa.gov/ampd/
ftp://ftp.epa.gov/dmdnload/emissions/daily/
ftp://ftp.epa.gov/dmdnload/emissions/hourly/
ftp://ftp.epa.gov/dmdnload/emissions/hourly/
https://web.archive.org/web/20090211082920/http://epa.gov/airmarkets/emissions/continuous-factsheet.html
https://web.archive.org/web/20090211082920/http://epa.gov/airmarkets/emissions/continuous-factsheet.html


146

Figure A.2.2: Kernel Densities: Net-to-gross Ratios and Heat Rates
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Notes: This figure plots kernel densities for net-to-gross ratios and heat rates, where each CEMS gen-
erating unit has a separate monthly observation. I plot separate densities for unit-months where coal
vs. gas is the primary fuel. The left panel reveals greater dispersion in net-to-gross ratios for gas plants,
and that coal plants tend to expend more electricity on site (i.e. a lower average net-to-gross ratio).
The right panel show how virtually all heat rates are between 6–20 MMBTU/MWh, with natural gas
combined-cycle plants surpassing coal plants in terms of efficiency (i.e. lower heat rates, which is the
inverse of thermal efficiency).

grid. In cases where I cannot merge across EIA-CEMS data, I use a linear projection to
fill in missing unit-months. I drop extreme outliers with net-to-gross ratios less than 0.2
or greater than 2, following Cicala (2017).37 The distribution of my assigned net-to-gross
ratios is almost entirely concentrated between 0.91 and 0.94, meaning that the median
plant sells (on average) 93 percent of its total generated electricity onto the grid. The left
panel of Figure A.2.2 plots kernel densities of the net-to-gross ratio, separately for coal-
vs. gas-fired units.

I also assign heat rates at the month-unit level, by dividing each unit’s MMBTU of
fuel consumed per month (from EIA boiler-level data) by the unit’s monthly net MWh
of electricity generated (from EIA generator-level data).38 As with net-to-gross ratios, I
follow Cicala (2017) and remove outliers with heat rates less than 6 MMBTU/MWh and

37Natural gas combined-cycle plants frequently have net-to-gross ratios as large as 1.4, meaning that
they sell 140 percent of the electricity that they produce (according to CEMS) onto the grid. This
reflects the fact the only the steam portion of the combined-cycle unit is included in CEMS, while the
(combined) turbine cycle, which both generates electricity and contributes residual residual heat to the
steam boiler, does not report to CEMS. My demand estimation strategy abstracts from power plants’
startup and shutdown periods (as do Davis and Hausman (2016); and Cicala (2017)), and this net-to-gross
calculation smooths generation expended (but not sold) during startup and shutdown periods across each
unit-month.

38Heat rates summarize the thermal efficiency of power plants, allowing me to convert MMBTUs of
fuel in to MWh of electricity out. I use EIA’s reported fuel consumption rather than CEMS reported
fuel input, because the latter appear to be less precisely measured than CEMS generation and emissions
data.
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Table A.2.1: Allowance Trading Programs for SO2, NOx, and CO2

Program Years
in place

Geographic
coverage

Pollutants
traded

Acid Rain Program (ARP) 1995–present 48 states + DC SO2

Ozone Transport Commission
(OTC) NOx Budget Program 1999–2002 10 eastern states NOx (May–Sept)

State Implementation Plan (SIP)
NOx Budget Trading Program (NBP) 2003–2008 23 eastern states NOx (May–Sept)

Clean Air Interstate Rule (CAIR) 2009–2015
26 eastern states SO2

26 eastern states NOx (May–Sept)
26 eastern states NOx (annual)

Cross-State Air
Pollution Rule (CSAPR) 2015–present

23 eastern states SO2

25 eastern states NOx (May–Sept)
28 eastern states NOx (annual)

Regional Greenhouse
Gas Initiative (RGGI) 2009–present 10 eastern states CO2

California Cap and Trade Program 2013–present California CO2

Notes: This table includes the five major allowance trading programs implemented by the EPA during
my 2002–2015 sample period (ARP, OTC, NBP, CAIR, CSAPR). It also includes one regional program
(RGGI) and one state-level program (CA cap and trade). My demand estimation incorporates par-
ticipation of each program into marginal costs (i.e. through MCenv in Equations (A.26) and (A.27)),
multiplying plant-specific program participation indicators by prevailing allowance prices and by unit-
specific emissions factors. Many plants must purchase two separate allowances for NOx emissions: one
allowance to comply with the annual NOx requirement; and one allowance to comply with the more
stringent ozone season NOx requirement (for NOx emitted between May an September).

greater than 100 MMBTU/MWh. I also use linear projection to populate missing monthly
heat rates within each plant. For both net-to-gross ratios and heat rates, a substantial
share of CEMS units do not match to EIA generator-level data (due to incompleteness in
the boiler-to-generator crosswalk). For these units, I assign net-to-gross ratios and heat
rates first by plant-unit-type-month and then by plant-month, using linear projections to
predict missing values between each step. The right panel of Figure A.2.2 plots kernel
densities of heat rates, separately for coal- vs. gas-fired units; virtually all heat rates fall
between 6–20 MMBTU/MWh.

The dependent variable in my demand estimation is CEMS hourly generation divided
by each unit’s capacity, or its capacity factor (CFuh in Equations (1.6) and (A.29)). Rather
than use each unit’s nameplate capacity, which is inconsistently reported in EIA unit-
level data, I assign monthly capacity equal to the maximum observed hourly generation
for each unit in each month. This approach accommodates seasonal differences in plant
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capacity due to temperature variation, along with additional operational constraints. It
also ensures that the capacity factor is between 0 and 1, by construction.39

I construct marginal costs for each fossil generating unit by multiplying unit-specific
heat rates by monthly plant-specific fuel prices—from monthly EIA coal delivery data for
coal units (as described above in Appendix A.2.1.1), and from daily hub-specific prices
for gas units (as described below in Appendix A.2.5). I add marginal environmental costs
using EIA data on variable environmental costs, net of revenues from selling byproducts
(merged at the unit-level where possible, see Appendix A.2.2.1). I also add the implied
marginal costs of SO2, NOx, and CO2 emissions, for units that are covered by allowance
trading programs. I use EPA Air Markets Program Data to assign monthly participation
dummies for the 7 major allowance trading programs listed in Table A.2.1.40 To monetize
the implied costs of emissions under each of these programs, I multiply these unit-month-
specific participation dummies by unit-month-specific emissions rates for each relevant
pollutant (in units of tons per net MWh, as calculated from CEMS SO2, NOx, and CO2

emissions), and by the average monthly allowance prices for each program (see Appendix
A.2.6 for a discussion of allowance price data).

A.2.2.3 Non-Fuel Variable Costs

Both coal- and gas-fired electricity production are Leontief in fuel inputs. However, power
plants use a variety of additional inputs that vary in the short and medium run, including
coolants, maintenance, and repairs (Fabrizio, Rose, andWolfram (2007)). I do not account
for these additional variable costs in my coal demand estimation, mainly because reliable
data on non-fuel, non-environmental operating costs are not widely available. In my
application, I am less concerned with characterizing plants’ production functions than with
predicting generation conditional on the cost of one input to that production function (i.e.
fuel). If I were able to credibly control for variation in these non-fuel, non-environmental
costs (as a part of CRud in Equation (1.6)), this would potentially improve the precision
of my coal demand estimates. At the same time, ignoring this variation is unlikely to
induce bias, as it is unlikely to be correlated with a price-taking plant’s fuel costs.

Cicala (2017) also omits non-fuel, non-environmental costs from his electricity dispatch
estimation, arguing that these costs are second-order. By contrast, Davis and Hausman
(2016) include time-invariant, technology-specific estimates of plants’ variable operations

39Note this this ratio is identical for both gross and net generation, as applying a monthly net-to-gross
conversion factor rescales both the numerator and denominator of CFuh.

40For additional background information on these programs, see (in the order presented in Table
A.2.1):
https://www.epa.gov/airmarkets/acid-rain-program
https://www.epa.gov/airmarkets/ozone-transport-commission-nox-budget-program
https://www.epa.gov/airmarkets/nox-budget-trading-program
https://archive.epa.gov/airmarkets/programs/cair/web/html/index.html
https://www.epa.gov/csapr
https://www.rggi.org/
https://www.arb.ca.gov/cc/capandtrade/capandtrade.htm

https://www.epa.gov/airmarkets/acid-rain-program
https://www.epa.gov/airmarkets/ozone-transport-commission-nox-budget-program
https://www.epa.gov/airmarkets/nox-budget-trading-program
https://archive.epa.gov/airmarkets/programs/cair/web/html/index.html
https://www.epa.gov/csapr
https://www.rggi.org/
https://www.arb.ca.gov/cc/capandtrade/capandtrade.htm
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and maintenance costs. I conduct sensitivity analysis in Appendix A.4.2 that similarly
incorporates technology-specific non-fuel cost estimates. I use SNL default cost assump-
tions to assign a time-invariant cost adder for each of four CEMS unit types: coal boilers
($2.67/MWh), gas boilers ($3.04/MWh), gas combined cycle plants ($1.26/MWh), and
gas turbines ($6.81/MWh).41

A.2.3 Rail Data

A.2.3.1 GIS Rail Data

My analysis leverages detailed GIS data on the U.S. rail network published by the Bureau
of Transportation Statistics (BTS), an agency within the U.S. Department of Transporta-
tion. I use four BTS shapefiles of the rail network, published in 2014, 2012, 2011, and
2006.42 Each shapefile includes an accompanying dataset of rail line-specific attributes,
including: identifiers for each line’s two terminal nodes; the length of each line in miles;
each line’s type (e.g. mainline, non-mainline, abandoned); an indicator for passenger
(as opposed to freight) lines; each line’s primary, secondary, and tertiary owners (where
applicable); and a list of rail carriers with trackage rights on each line.

I focus exclusively on Class I rail carriers, or rail carriers with annual operating rev-
enues greater than $453 million. This revenue threshold associated with the Class I des-
ignation has increased gradually over time, and is defined by the Surface Transportation
Board (STB). Currently there are 7 Class I rail carriers operating in the U.S.: BNSF and
Union Pacific (UP) in the West; CSX (CSXT) and Norfolk Southern (NS) in the East;
and Canadian National (CN), Canadian Pacific (CP), Kansas City Southern (KCS), three
carriers with smaller geographic footprints. Figure A.2.3 maps the rail networks of each of
these carriers separately, as a companion to the bottom panel of Figure 1.2.1 in the main
text. Red lines are owned by their respective carriers, and are represented in Figure 1.2.1.
Figure A.2.3 also includes rail lines for which each Class I carrier has primary trackage
rights, but does not own (in blue).

I merge node and line identifiers across annual shapefiles, which reveals that the rail
network was almost completely static between 2006 and 2014. 98 percent of mainline rail

41These defaults are averaged across 2009–2015 from SNL supply curves, available at http://www.
snl.com (“Power” Menu → “Generation Supply Curve”; subscription required). SNL reports yearly
non-fuel, non-environmental cost data for a subset of unit-years, reportedly taken from FERC Form
1. However, SNL data are only moderately correlated with FERC Form 1 data (available at https:
//www.ferc.gov/docs-filing/forms/form-1/data.asp), and each dataset covers only a fraction of
CEMS units. Hence, I choose to assign default values consistently across all units.

42BTS GIS datasets for 2014, 2012, and 2011 are available at https://www.rita.dot.gov/
bts/sites/rita.dot.gov.bts/files/publications/national_transportation_atlas_database/
index.html; and the 2006 shapefile is available at https://catalog.data.gov/dataset/
national-rail-network-1-100000-line-geographic-wgs84-bts-2006-us-rail-network-100k
-lin-bts-2006. The U.S. Geological Survey (USGS) has also published shapefiles of the U.S. rail
network (available at https://nationalmap.gov/small_scale/mld/1rails.html); however, these
datasets have less complete coverage and USGS node identifiers are not consistent across years. Shapefiles
prior to 2005 are not publicly available online.

http://www.snl.com
http://www.snl.com
https://www.ferc.gov/docs-filing/forms/form-1/data.asp
https://www.ferc.gov/docs-filing/forms/form-1/data.asp
https://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_atlas_database/index.html
https://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_atlas_database/index.html
https://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_atlas_database/index.html
https://catalog.data.gov/dataset/national-rail-network-1-100000-line-geographic-wgs84-bts-2006-us-rail-network-100k
https://catalog.data.gov/dataset/national-rail-network-1-100000-line-geographic-wgs84-bts-2006-us-rail-network-100k
-lin-bts-2006
https://nationalmap.gov/small_scale/mld/1rails.html
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Figure A.2.3: Seven Class I Rail Networks

Notes: This figure maps the rail networks of the 7 Class I rail carriers. Red rail lines are owned and
operated by each respective carrier, while carriers have primary trackage rights on blue lines (but do not
own blue lines).
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lines merge across all four shapefile years, with identical latitudes and longitudes of termi-
nal nodes. Moreover, 99 percent of Class I track mileage maintained constant ownership
between 2006 and 2014. This allows me to treat the rail network as time-invariant. A
similar analysis in the 1980s or 1990s would need to account for the consolidation of Class
I (and non-Class I) carriers; fortunately for my application, the last major Class I merger
was in 1999.43

I use these GIS data to calculate the shortest rail distance between each originating
coal county and each coal power plant. I also apply a remove-one-carrier algorithm to
define rail captiveness, as detailed in Appendix A.3 below. As an additional shipping
cost control, I proxy for rail network congestion using the reported rail traffic density
of each line. BTS measures traffic density in million gross tons (MGT), and the 2014
(2011) shapefile reports densities for 2011 (2009) in discretized categories. I construct an
indicator variable for high-density lines equal to 1 if a rail line has density greater than 50
MGT in 2011 or greater than 40 MGT in 2009, and equal to 0 otherwise. This classifies
11 percent of total track-miles as “high-density”, and 18 percent of mainline track-miles
as “high-density”. I integrate this indicator variable across all track-miles on each oj
shortest route to control for the fraction of each shipping route on high-density lines (as
a component of Tojms in my main regression specifications).

A.2.3.2 Rail Shipping Costs

I use the Association of American Railroads (AAR) fuel price index to control for changes
in the cost of coal-by-rail shipping along each oj route. This index summarizes the
change in the average price per gallon of No. 2 diesel fuel paid by the largest rail carri-
ers, based on data from monthly surveys of rail operators. It is a single industry-wide
number published monthly, which is inclusive of federal excise taxes, transportation, and
handling expenses. The AAR constructs the fuel price index as a sub-component of the
Surface Transportation Board’s (STB) Rail Cost Adjustment Factor (RCAF). The RCAF
is published quarterly (not monthly), and combines 7 different prices indices into a sin-
gle number summarizing changes to rail freight costs: diesel fuel; labor; materials and
supplies; equipment rents; depreciation; interest; and other expenses. The STB uses the
RCAF as a basis for adjudicating rail rate cases.44

I construct a monthly fuel price index time series by from publicly available data
from the U.S. Department of Transportation and from the AAR website.45 I similarly

43For a comprehensive timeline of mergers between Class I railroads, see https://en.wikipedia.
org/wiki/Timeline_of_Class_I_railroads_(1977-present).

44Details on the RCAF and fuel price index are available at https://www.aar.org/Documents/Rail%
20Cost%20Indexes/Rail%20Cost%20Adjustment%20Factor%20RCAF/Index_RCAFDescription.pdf.

45I use a spreadsheet of historic fuel price index values (2003–2012) from the Department of Trans-
portation, available at https://www.rita.dot.gov/bts/publications/multimodal_transportation_
indicators/2013_02/fuel_prices/railroad_fuel. For 2013–2015 months, I digitize PDFs published
by AAR (e.g., https://www.aar.org/Documents/Rail%20Cost%20Indexes/Index%20of%20Monthly%
20Railroad%20Fuel%20Prices/MRF201409.pdf). For 2002, I uses average monthly U.S. diesel prices
to help extrapolate backwards (see next paragraph).

https://en.wikipedia.org/wiki/Timeline_of_Class_I_railroads_(1977-present)
https://en.wikipedia.org/wiki/Timeline_of_Class_I_railroads_(1977-present)
https://www.aar.org/Documents/Rail%20Cost%20Indexes/Rail%20Cost%20Adjustment%20Factor%20RCAF/Index_RCAFDescription.pdf
https://www.aar.org/Documents/Rail%20Cost%20Indexes/Rail%20Cost%20Adjustment%20Factor%20RCAF/Index_RCAFDescription.pdf
https://www.rita.dot.gov/bts/publications/multimodal_transportation_indicators/2013_02/fuel_prices/railroad_fuel
https://www.rita.dot.gov/bts/publications/multimodal_transportation_indicators/2013_02/fuel_prices/railroad_fuel
https://www.aar.org/Documents/Rail%20Cost%20Indexes/Index%20of%20Monthly%20Railroad%20Fuel%20Prices/MRF201409.pdf
https://www.aar.org/Documents/Rail%20Cost%20Indexes/Index%20of%20Monthly%20Railroad%20Fuel%20Prices/MRF201409.pdf
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Figure A.2.4: AAR Fuel Price Index and Diesel Prices
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region-specific diesel prices for the 5 PADD regions, revealing virtually no cross-sectional variation in
diesel prices.

construct a quarterly RCAF time series from several historic documents published on both
the STB and AAR websites.46 In each case, I harmonize indices across years to construct
a single apples-to-apples time series. I use the AAR fuel price index in my preferred
regression specifications (i.e. as a component of Tojms) rather than the RCAF, because
the RCAF provides only quarterly variation. Tables A.5.12 and A.5.30 demonstrate that
my empirical results are not sensitive to this choice.

The left panel of Figure A.2.4 shows that the AAR survey-based price index closely
tracks U.S. monthly average diesel prices, and the correlation between the two series
is 0.99.47 Regionally differentiated diesel prices offer the potential for capturing cross-
sectional variation in rail shipping costs. However, PADD-specific price series are highly
correlated, with all pairwise correlations greater than 0.99 (see the right panel of Figure
A.2.4).48 Hence, the AAR time series does not obsucre important cross-sectional variation
in diesel prices.

462005–2015 RCAF indices is available at https://www.aar.org/data-center/rail-cost-indexes.
For remaining years, I digitize PDFs from three locations: (i) https://www.aar.org/Pages/
RCAF-Quarterly-Filings.aspx; (ii) https://www.stb.gov/stb/industry/econ_rateindex.html;
and (iii) https://www.stb.gov/Decisions/ (query “quarterly rail cost adjustment factor”).

47Specifically, I use monthly No. 2 diesel retail price time series, which are available for download at
https://www.eia.gov/dnav/pet/PET_PRI_GND_A_EPD2D_PTE_DPGAL_M.htm.

48During World War II, the U.S. created five Petroleum Administration for Defense Districts (PADDs)
to manage the allocation of gasoline and diesel supply. These regions still exist for data-collection pur-
poses. The five regions are defined as East Coast (PADD 1), Midwest (PADD 2), Gulf Coast (PADD 3),
Rocky Mountains (PADD 4), and West Coast (PADD 5).

https://www.aar.org/data-center/rail-cost-indexes
https://www.aar.org/Pages/RCAF-Quarterly-Filings.aspx
https://www.aar.org/Pages/RCAF-Quarterly-Filings.aspx
https://www.stb.gov/stb/industry/econ_rateindex.html
https://www.stb.gov/Decisions/
https://www.eia.gov/dnav/pet/PET_PRI_GND_A_EPD2D_PTE_DPGAL_M.htm
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Figure A.2.5: Coal Plants with Access to Waterborne Shipments

Notes: This map plots all 430 coal power plants in my unrestricted sample, split into groups with/without
access to coal-by-barge shipments. Red triangles indicate plants with a water option (i.e., Wj = 1), while
grey circles denote plants without a water option (i.e., Wj = 0). Blue lines map all navigable U.S. rivers
and the Gulf Intracoastal Waterway.

A.2.4 Distance to Navigable Waterway

I use GIS data to identify the subset of coal plants with access to waterborne coal ship-
ments. These data come from three separate sources. First, I use the U.S. Army Corps of
Engineers Waterway Mile Marker Database, which reports the locations of all navigable
inland waterways in the U.S. (i.e., rivers and the Gulf Intracoastal Waterway).49 Second,
I use a shapefile of the Great Lakes from Natural Earth.50 Third, I use a shapefile of
U.S. coastlines, also from Natural Earth.51 I calculate the distance of all coal plants to
the nearest navigable river, Great Lake, and coastline, using the minimum of these three
distances to determine plants’ water access.

I construct a water access (or “water option”) indicator (i.e. Wj from the main text)
equal to 1 for all plants with a minimum distance to water of less than 1.5 miles. I
choose this threshold because the vast majority of waterborne coal deliveries are to plants

49These data are available at http://www.navigationdatacenter.us/data/datamile.htm.
50These data are a subset of a global lakes shapefile, available at http://www.naturalearthdata.

com/http//www.naturalearthdata.com/download/10m/physical/ne_10m_lakes.zip.
51These data are a subset of a global coastlines shapefile, available at http://www.naturalearthdata.

com/http//www.naturalearthdata.com/download/10m/physical/ne_10m_coastline.zip.

http://www.navigationdatacenter.us/data/datamile.htm
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/physical/ne_10m_lakes.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/physical/ne_10m_lakes.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/physical/ne_10m_coastline.zip
http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/physical/ne_10m_coastline.zip
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within 1.5 miles of a navigable river, Great Lake, or coastline. At first pass, a threshold
of 0 miles might seem appropriate, as barge deliveries typically go to plants physically
adjacent to a river. However, the Army Corp of Engineers data record navigable rivers
at 1-mile intervals, so this discreteness necessitates a non-zero threshold. I find that
a 1.5-mile threshold correctly assigns several plants that receive exclusively waterborne
deliveries despite being non-adjacent to navigable water—these plants have constructed
long conveyor belts to carry coal overland from river barge offloading points to their coal
stockpiles.

I cross-check this GIS-derived indicator with coal transportation modes listed in EIA’s
423/923 delivery data. This reveals that 15 coal plants receiving a substantial share of coal
deliveries by water are not located within 1.5 miles of a river, Great Lake, or coastline.
After manually checking each of these plants in Google Earth, I find that they are all
located a few miles from a Great Lake or coastline on small inlets (which do not appear
in my GIS data). I correct each of these plants’ indicators for water access, setting them
equal to 1. Figure A.2.5 maps the full sample of 430 coal plants, split into water-access
and non-water-access groups. I also map navigable inland waterways, which (importantly)
represent only the largest U.S. rivers.52

A.2.5 Natural Gas Prices

I use natural gas price data from SNL, which reports prices for 104 trading hubs at various
locations throughout the U.S. gas pipeline network.53 The primary trading hub is Henry
Hub in Erath, Louisiana, which represents the standard commodity price for U.S. natural
gas markets. I use the Henry Hub average monthly gas price as the time series component
of my difference-and-differences regressions (ZHH

m in Equation (1.9)).
Compared to coal, natural gas behave much more like a uniform-price commodity

market—at least within the continental U.S. where there exists an extensive pipeline
distribution network. However, regional variation in gas prices does exist due to variation
in pipeline operating costs. For example, a plant far from gas producing regions will likely
pay higher pipeline fees than a plant relatively close to gas production. More importantly,
pipeline capacity constraints generate substantial dispersion in gas prices faced by power
plants in different U.S. regions. This occurs frequently during winter months in New
England, where sustained cold temperatures increase demand for natural gas heating
beyond what the pipeline network can continuously supply.

52Water is a key input to thermal electricity generation—fossil fuel combustion creates heat, which
boils water to create steam, and this pressurized steam rotates a turbine which drives an electrical
generator. Hence, most coal power plants are located adjacent to some water source, such as a river or
lake. Figure A.2.5 shows that many such water sources are not navigable, and could not feasibly convey
coal barges.

53These data are available for download at http://www.snl.com, under the “Market Prices” menu
(Advanced Search → Commodity), and require a subscription to access. The Henry Hub dail spot price
series is widely available on line (e.g., at http://www.eia.gov/dnav/ng/hist/rngwhhdd.htm).

http://www.snl.com
http://www.eia.gov/dnav/ng/hist/rngwhhdd.htm
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Figure A.2.6: Natural Gas Trading Hubs and Gas Plants

Notes: This map plots all natural gas trading hubs with available daily price time series from SNL (in
red). It also plots all power plants with a CEMS gas-fired generating unit that is active during my sample
period (in gray).

In my coal demand estimation, I incorporate both cross-sectional and time-series vari-
ation in gas prices. For each of SNL’s 104 trading hubs, I manually assign geographic
coordinates using SNL’s mapping interface. Then, I match each gas-fired generating
CEMS unit to its nearest trading hub (based on straight-line distance). SNL does not
report complete daily time series for all 104 hubs, and I populate missing values in each
series via linear projection.54 Figure A.2.6 maps gas trading hubs and CEMS gas-fired
generating units, which illustrates how I am able to assign very localized prices in some
regions (i.e. Oklahoma) but not others (i.e. Florida). Figure A.2.7 illustrates how daily
gas prices can wildly diverge across trading hubs.

While SNL reports hub-specific wholesale gas prices, power plants pay retail gas prices
that reflect additional pipeline fees for the final portion of the gas distribution (i.e., the
smaller pipelines that connect hubs to power plants). Electricity regulators and utilities
also fund gas pipeline construction and investment cost recovery by increasing power
plants’ marginal fuel prices. I compare SNL monthly average hub prices to EIA 423/923

54Hubs that are geographically proximate tend to have highly correlated prices. In fact, using roughly
20 gas trading hubs (representing different regions of the pipeline network) would be sufficient to charac-
terize nearly all of the cross-sectional dispersion in daily gas prices. My demand estimation would likely
be quite similar if I matched gas plants only to trading hubs with complete daily time series in SNL.
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Figure A.2.7: Natural Gas Daily Hub-Specific Prices (Example)
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Notes: This figure plots daily SNL prices for two natural gas trading hubs: Henry Hub (in navy), and
Transco Z 6 trading hub in New York (in orange). This illustrates how gas prices faced by power plants
in the Mid-Atlantic region may diverge markedly (by over $100/MMBTU) from gas prices faced by gas
power plants in Louisiana, at the same point in time. The spikes in Transco Z 6 occur mostly in winter
months, due to local gas supply shortages. For perspective, this Henry Hub price is the daily version of
the monthly Henry Hub price series in Figure 1.2.2 from the main text (with a different vertical axis).

monthly average delivered gas prices, which allows me to estimate wholesale-to-retail price
adjustment factors. I estimate price adjustment factors at the plant-month level (where
possible) and then at the state-year level, using linear interpolation to populate missing
plant-months. I then add each plant-month-specific adjustment factor to each plant’s
matched daily hub price to arrive at Zgd in Equation (A.27), or the gas price paid by gas
unit g on day d.

A.2.6 Allowance Prices for SO2, NOx, and CO2

I construct time series of monthly allowance prices in order to monetize each fossil gener-
ating unit’s marginal environmental costs. My primary data source for allowance prices
is SNL, which reports average monthly prices for each of the emissions trading programs
listed in Table A.2.1.55 However, these data are incomplete and do not cover all months
in my 2002–2015 sample. I supplement SNL allowance prices with several additional data
sources, in order to arrive at full monthly time series:

55Allowance price data can be downloaded at http://www.snl.com from the “Market Prices” menu
(SNL subscription required).

http://www.snl.com
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• ARP SO2 allowance prices for 2002–2005 from BGC Environmental Consulting.56

• OTC seasonal NOx allowance prices for 2002 from BGC Environmental Consult-
ing.57

• NBP seasonal NOx allowance prices for 2003–2005 from EPA annual progress re-
ports.58

• CAIR annual NOx allowance prices for 2009–2011 from EPA annual progress re-
ports.59

• CSAPR prices for all three allowance types for 2015 from Evolution Markets.60

• RGGI quarterly CO2 allowance auction results for 2008–2012 from RGGI.61

I use linear interpolation to populate months that are still missing. The resulting allowance
price time series are obviously imperfect. Allowance markets were very thin during parts
of my sample period, and low trading volumes likely explain many of the data gaps I en-
counter. In using prevailing allowance prices to monetize plants’ marginal pollution costs,
my goal is to approximate the contemporaneous allowance price signal to which plants
optimized generation decisions. Even if SNL time series were complete across all sample
months, these prices would likely still mismeasure plants’ own (interpretation of their)
shadow costs of SO2, NOx, and CO2 emissions. Figure A.2.8 plots allowance price time
series for SO2, CO2, seasonal NOx, and annual NOx. There has been tremendous varia-
tion in SO2 and NOx prices, and large spikes/drops reflect adjustments in expectations
immediately following (announced) policy changes (Schmalensee and Stavins (2013)).

A.2.7 Temperature Data

Finally, I use PRISM weather data to assign the daily maximum temperature at each
power plant location. The PRISM Climate Group at Oregon State University maintains
daily (and monthly) spatial datasets of temperature, precipitation, dew point, and vapor
pressure, for the conterminous United States. Each daily dataset incorporates readings

56http://www.bgcebs.com/registered/aphistory.htm
57http://www.bgcebs.com/registered/apnx0623.htm
58https://www.epa.gov/sites/production/files/2015-08/documents/noxreport03.pdf;

https://www.epa.gov/sites/production/files/2015-08/documents/ozonenbp-2004.pdf;
https://www.epa.gov/sites/production/files/2015-08/documents/2006-nbp-report.pdf

59https://www.epa.gov/sites/production/files/2015-08/documents/cair09_ecm_analyses.
pdf;
https://www.epa.gov/sites/production/files/2015-08/documents/arpcair10_analyses.pdf;
https://www.epa.gov/sites/production/files/2015-08/documents/arpcair11_analyses_0.pdf

60http://www.evomarkets.com/content/news/reports_10_report_file.pdf;
http://www.evomarkets.com/content/news/reports_12_report_file.pdf

61http://www.rggi.org/market/co2_auctions/results

http://www.bgcebs.com/registered/aphistory.htm
http://www.bgcebs.com/registered/apnx0623.htm
https://www.epa.gov/sites/production/files/2015-08/documents/noxreport03.pdf
https://www.epa.gov/sites/production/files/2015-08/documents/ozonenbp-2004.pdf
https://www.epa.gov/sites/production/files/2015-08/documents/2006-nbp-report.pdf
https://www.epa.gov/sites/production/files/2015-08/documents/cair09_ecm_analyses.pdf
https://www.epa.gov/sites/production/files/2015-08/documents/cair09_ecm_analyses.pdf
https://www.epa.gov/sites/production/files/2015-08/documents/arpcair10_analyses.pdf
https://www.epa.gov/sites/production/files/2015-08/documents/arpcair11_analyses_0.pdf
http://www.evomarkets.com/content/news/reports_10_report_file.pdf
http://www.evomarkets.com/content/news/reports_12_report_file.pdf
http://www.rggi.org/market/co2_auctions/results


158

across 20 separate networks of weather stations, and applies a spatial interpolation algo-
rithm to produce gridded rasters at 4km resolution.62 I project power plant coordinates
onto each day’s maximum temperature raster to construct a panel of daily maximum
temperature at each plant location.

Figure A.2.8: Allowance Price Time Series
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Notes: This figure plots allowance price time series for the four tradable allowance types. Orange lines
in the top-left panel plot SO2 allowance price for two groups of plants under CSAPR. The orange line in
the top-right panel plots California cap-and-trade allowance prices (in $ per metric ton), while the blue
line plots RGGI allowance prices (in $ per short ton). For both type of NOx allowance price series, I plot
a single prevailing allowance price series that spans 2–4 distinct policy periods. All prices are nominal.

62I use PRISM’s “AN81d” product, which exists at two resolutions: 4km (for free) and 800m (for a fee).
PRISM data are available for download at http://www.prism.oregonstate.edu, along with extensive
documentation.

http://www.prism.oregonstate.edu
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A.3 Rail Graph Algorithm
In this section, I describe my algorithm estimating the shortest distance along the rail
network between each coal-producing county and each coal power plant, and to construct
an indicator for rail captiveness. I begin with a time-invariant GIS dataset of all active
rail lines and rail terminal nodes in the contiguous U.S., which I describe in Appendix
A.2.3 above. Next, I overlay a map with the coordinates of all coal power plants, and an
additional map with the coordinates of the production-weighted centroids of each coal-
producing county.63 Then, I calculate the geographically closest (as the crow flies) rail
node to each coal plant, and to each coal county’s production-weighted centroid.64

I apply a graph algorithm to calculate the shortest distance along the rail network
between each pairwise combination of origin nodes (i.e. rail nodes matched to county
coordinates) and destination nodes (i.e. rail nodes matched to plant coordinates). I begin
by converting the rail network from a GIS dataset into a graph object defined by three
elements: (i) a list of nodes (i.e. rail nodes); (ii) a list of edges (i.e. rail lines), where each
edge is defined by the two nodes that it connects; and (iii) a weight corresponding to each
edge, equal to the distance corresponding to that edge (i.e. GIS-derived mileage of each
rail line).65 Using Dijkstra’s algorithm, I calculate the shortest path along all possible
edges that connect each pair of origin and destination nodes, weighting edges by their
distance.66 This shortest distance for each route oj is the variable that enters all of my
markup regressions in Tojms, to control for the distance component of rail shipping costs.

Importantly, my strategy for calculating shortest rail shipping distance does not ac-
count for ownership of rail lines. This means that my algorithm may calculate a shortest
route that is owned or operated by multiple Class I carriers. In practice, rail carriers
have track-sharing agreements, and the Surface Transportation Board prevents carriers
from extracting excessive rents for usage of short, pivotal segments of track. For example,

63I calculate the average geographic coordinates of all coal mines in a given county, weighted by total
mine production during my sample period (using MSHA production and mines datasets). This yields
one pair of coordinates for each coal county that is time-invariant, which more accurately approximates
the location of coal production than a geographic county centroid. In principle, I could match rail nodes
to individual coal mines, which I could then match to coal shipments based on their originating mines.
Unfortunately, EIA data do not report mine identifiers prior to 2008, which would lead to measurement
error that varied systematically across years of shipment data.

64I use the SpatialPoints function in R’s sp package; and the distGeo function in R’s geosphere
package, which calculates distances between geographic coordinates using the WGS84 reference ellipsoid.

65I use the readshpnw function from R’s shp2graph package to convert the three-element GIS dataset
of rail lines into a SpatialLinesDataFrame object, with indexed nodes and edges. Then, I apply the
nel2igraph function (also from R’s shp2graph package) to convert this SpatialLinesDataFrame object
into an igraph object.

66I use the distance function from R’s igraph package to calculate the length of each shortest paths,
and the shortest_paths function (also from R’s igraph package) to extract an ordered list of edge
identifiers along each shortest path. Hughes (2011) applies a similar algorithm to calculate the shortest
rail distance for U.S. ethanol shipments. The author compares the estimated shortest-distance paths
along BNSF’s network to BNSF’s own reported distances, and finds that the distribution of the ratio of
estimated-to-actual distances has a mean of 0.96 and a standard deviation of 0.03. This suggests that
GIS-derived shortest distances closely approximate (yet slightly understate) actual rail shipping distances.
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consider a shipping route with 5 rail nodes, ordered A-B-C-D-E, where Carrier 1 owns
segments AB, BC, and CD, but Carrier 2 owns segment DE. Regulators would prevent
Carrier 2 from charging Carrier 1 excessive rents for the right to access segment DE on
an ABCDE shipment, if DE is relatively short (U.S. Government Accountability Office
(2006)). Even in the absence of regulatory oversight, Carrier 1 would likely have the abil-
ity to hold up Carrier 2 along a different shipping route, and track-sharing agreements
would be the likely equilibrium outcome of this cooperative multiple-route repeated game.
An alternative graph algorithm would force each shortest path to have uniform Class I
ownership across all connecting segments; given that carriers share tracks in practice, this
strategy would impose excessive (unrealistic) structure on the rail network.

To derive rail captiveness, I iterate the above algorithm 7 times, for 7 restricted rail net-
works. Each restricted network removes all rail nodes and lines that are owned or operated
by 1 of the 7 Class I carriers. I define two concepts by comparing the unrestricted net-
work to the 7 restricted networks: “node unconnectedness” and “route unconnectedness”.
A plant becomes “node-unconnected” if the removal of any single Class I carrier renders
that plant unconnected from the rail network. A plant becomes “route-unconnected” if
it becomes unconnected from all observed trading partners (i.e. origin counties) after re-
moval of the dominant Class I carrier along each (unrestricted) shortest route. I define
the set of captive as the union of the set of plants that become node-unconnected and the
set of plants that become route-unconnected.

A.3.1 Node Unconnectedness

Conceptually, a plant becomes node-unconnected if a single Class I carrier controls all rail
nodes from which it can potentially receive coal. In practice, I must establish a threshold
beyond which a node is sufficiently far from a plant to be a feasible coal delivery point. I
set a threshold of 6.6 miles for node unconnectedness, based on the 95th percentile of the
distribution of plants’ distance to the nearest node on the unrestricted network. In other
words, using the full network of active rail lines, 95 percent of coal plants have a rail node
that is within a 6.6 mile radius.67

This 6.6-mile threshold is exceedingly conservative in terms of geographic measure-
ment error. It is possible that for a power plant with a large geographic footprint, the
coordinates of the plant’s flue gas stack (which corresponds to EPA’s reported latitude
and longitude) are far from the plant’s physical stock pile of coal. However, it is extremely
unlikely that a plant’s coal pile is 6.6 miles away from its boilers. It is also possible, albeit
highly unlikely, that the location of a plant’s rail node is actually over 7 miles away from
its physical coal offloading point.68 In such cases, BTS shapefiles would be inadequate for

67In many cases, this nearest node is controlled by a smaller rail carrier, rather than one of 7 Class
I carriers. Such a plant cannot become node-unconnected, since the 7 restricted networks only remove
Class I nodes.

68A few plants have constructed small rail lines to ferry coal from the rail carrier’s node directly to
their coal offloading points, and these “driveways” are too small to appear in BTS shapefiles. However,
rail nodes are virtually always closer to plants than 6.6 miles. (“Driveway” is not part of standard railroad
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Figure A.3.9: Distance to Nearest Rail Node
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Notes: The left panel reports a histogram of plants’ distances to the nearest rail node on the unrestricted
rail network. The red line denotes the 95th percentile of this distribution, which is 6.6 miles. The
right panel reports the histogram of the plants’ maximum distances to the nearest rail node across all 7
restricted rail networks (because the nearest unrestricted node can only be controlled by 1 of the 7 Class
I rail carriers, I plot maximum across all 7 restricted networks). Both histograms are top-coded at 20
miles. For plants in the “captive” region of the right panel, all rail nodes within a 6.6-mile radius are
controlled by the same Class I carrier.

determining rail captiveness. Apart from geographic measurement error, 6.6 miles is an
extremely conservative distance buffer. It would almost certainly be cost prohibitive to
regularly transport multi-ton carloads of coal 6.6 miles over land by a mode other than
rail.

Figure A.3.9 shows histograms of plants’ distance to the nearest rail node, along with
vertical lines marking my 6.6-mile threshold. The left panel shows how virtually all plants
are within 3 miles of the nearest node, on the unrestricted rail network. The right panel
shows the maximum distance to the nearest rail node, across all 7 restricted rail networks.
This illustrates how for many plants, removing a single rail carrier can render the plant
infeasibly far from the nearest rail node. I consider plants to the right of the 6.6-mile
threshold in the right panel to be “captive” to a single rail carrier.69 In Tables A.5.10
and A.5.28, I show that my econometric results are robust to a node unconnectedness
threshold of 5 or 10 miles. Figure A.3.10 shows an example of how I determine node
unconnectedness.

parlance, and I merely use this term as an analogy—coal plants may not be physically adjacent to the
rail network just as a residence may be connected to its nearest roadway via a long driveway.)

69There are 13 plants in the left panel of Figure A.3.9, which are “node-unconnected” even in the
unrestricted network. This likely reflects errors in my rail graph algorithm, and I classify these plants as
“non-captive” throughout my analysis. In other words, I assume that plants are non-captive unless they
are shown to be captive.
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Figure A.3.10: Example of Node Unconnectedness

Notes: This figure illustrates how I calculate the shortest path along the rail network between originating
coal counties and coal plants. It also applies my definition of route unconnectedness. The top-left panel
shows two coal plants in North Carolina that are 85 miles apart (approximately the median distance
between nearest-neighbor matched pairs). The top-right panel overlays the full (unrestricted) rail network.
The bottom-left panel applies Dijkstra’s algorithm to calculate each plant’s shortest rail shipping path
to the coal production-weighted centroid for Perry County, Kentucky (a county from which each plant
purchases coal via rail). For both shortest routes (in black), the dominant Class I rail carrier is CSX.
The bottom-right panel removes CSX rail lines and calculates the new shortest path to Perry County
for the orange plant (in orange), which increases by only 24 miles compared to the unrestricted shortest
path. However, after removing CSX rail lines, the blue plant is now 6.8 miles from its nearest rail node;
this is past my threshold for node unconnectedness and renders the blue plant unconnected from the
(restricted) rail network. Hence, I classify the blue plant as “captive”.
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A.3.2 Route Unconnectedness

Conceptually, a plant becomes route-unconnected if each of its coal shipping routes is
controlled by a dominant Class I rail carrier. This need not the same rail carrier for each
route, and the dominant carrier on a given route may not control 100 percent of the rail
lines along the (shortest) route. In practice, I must evaluate the extent to which coal
shipments between a given origin and destination are controlled by a single railroad.

I define route unconnectedness by comparing the lengths of the shortest oj-connecting
paths calculated on unrestricted vs. restricted rail networks. For each oj pair, I compare
the length of its unrestricted shortest path to the length on the restricted network that
removes the route’s dominant carrier (i.e. the Class I carrier that controls the most miles of
track along the unrestricted shortest path). For example, suppose the shortest o-to-j path
has 5 rail nodes, ordered A-B-C-D-E, where Carrier 1 owns segments AB, BC, and CD,
but Carrier 2 owns segment DE. If the length of AB+BC+CD is greater than the length
of DE, then I would compare length of the unrestricted path (i.e. AB+BC+CD+DE) to
the length of a shortest path on the restricted network that removes Carrier 1. On the
other hand, if the length of DE is greater than the length of AB+BC+CD, then I would
compare the length of the unrestricted path (i.e. AB+BC+CD+DE) to the length of a
shortest path on the restricted network that removes Carrier 2.

I base this comparison on each route’s dominant (i.e. modal) Class I carrier, as this
carrier is most likely be the firm that transacts coal deliveries. An alternative strategy
would consider how shortest distance changes after removing any Class I carrier along
an o-to-j shortest route. However, this would increase the dimensionality of route un-
connectedness, while potentially overweighting very short rail segments. Using the above
A-B-C-D-E example, suppose that removing Carrier 1 would increase the length of the
shortest route by 50 miles, while removing Carrier 2 would increase the length of the
shortest route by 500 miles. Under this alternative strategy, I would need to trade-off the
50- vs. 500-mile increases against the relative importance of Carrier 1 vs. Carrier 2 along
the unrestricted shortest path. For this reason, I use the more straight-forward approach
that limits route unconnectedness to a single unrestricted-vs.-restricted comparison per
route.70

I apply a 300-mile threshold to determine route unconnectedness. That is, an origin-
destination pair becomes route-unconnected if the length of its shortest connecting path
increases by at least 300 miles after removing the dominant carrier along its unrestricted
shortest path. This threshold is essentially arbitrary, and I choose 300 miles because a
300-mile increase in rail shipping distance would imply roughly a 20 percent increase

70As an artifact of my decision to not consider rail line ownership in calculating shortest paths, my
algorithm often returns a shortest path with lines from multiple carriers, even though a similar slightly
longer path also exists where a single carrier controls all lines. Using the same A-B-C-D-E example, there
may exist a slightly longer route A-B-C-D-F-E in which all segments are owned by Carrier 1 (i.e. the
combined lengths of DF+FE is slightly longer than segment DE). In this case, removing Carrier 2 from
the network would only increase the shortest route slightly, and the route would not become unconnected.
If my measure of route unconnectedness considered the removal of Carrier 2 as well as the removal of
Carrier 1, it would overweight the importance of segment DE.
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in the median delivered coal price in my sample.71 However, in many cases, route-
unconnectedness is not sensitive to a particular mileage threshold, because removal of
the dominant carrier eliminates all paths connecting connecting origin o and destination
j—rendering the restricted shortest path infinitely long.72

I consider plant j to be rail captive if it becomes route-unconnected from all ob-
served trading partners, or every county from which it purchased coal between 2002 and
2015. The top panel of Figure A.3.11 reports a histogram of the minimum increase in
mileage for each coal plant, or the route-specific component of my definition of rail cap-
tiveness. This reveals that route unconnectedness is relatively less important than node
unconnectedness in my definition of rail captiveness. The bottom-left panel weakens the
definition of captiveness, based on route-unconenctness of the average coal shipment to
plant j; this prevents relatively underutilized coal routes from preventing an otherwise
captive plant from being categorized as non-captive. On the other hand, the bottom-right
panel strengthens the definition of captiveness, bassed on route-unconnectedness across
all of plant j’s potential trading partners; this allows for an un-utilized route that does
not become unconnected to render a seemingly captive plant non-captive. Figure A.3.11
reveals that my choice of routes has little effect on which plants meet the definition of
“captive”. In Tables A.5.9 and A.5.27, I show that my econometric results are robust to
a halving/doubling of the 300-mile threshold for route-unconnectedness, as well as to my
choice of which routes to use to determine captiveness. Figure A.3.12 shows an example
of how I determine route unconnectedness.

71During my sample period, the median rail shipping rate reported by EIA is $0.025 per ton-mile.
Given this rate, a 300-mile increase in rail shipping distance implies an increase in $7.50 per ton, which
is 20 percent of the the median delivered coal price of $38/ton.

72The elimination of all connecting routes could result from a plant’s nearest node becoming uncon-
nected from a portion of the rail network, or from the removal of a plant’s nearest node. I incorporate
my threshold for node unconnectedness (discussed above) in determining whether plants j’s closest node
in the restricted network is indeed close enough to be a feasible coal delivery point. I also use a similar
concept to define “origin-node-unconnectedness”, whereby a coal-producing county becomes unconnected
from the rail network. I apply an extremely conservative threshold of 42 miles, which is the 99th percentile
of unrestricted nearest-node distance and greater than diameter of of virtually all coal counties.
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Figure A.3.11: Distance to Nearest Rail Node
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Notes: The top panel reports a histogram of plants’ minimum increase in shortest shipping path, across
all observed trading partners, where the red line denotes the 300-mile threshold. I consider the few plants
to the right of this 300-mile threshold to be rail captive. The bottom panels show alternative captiveness
definitions, either based on the average increase in the length of the shortest path (weight-averaged across
all observed coal deliveries) or the minimum increase across all potential shortest paths (i.e. counties that
produce coal with similar attributes to plant j’s purchased coal, but which are not observed trading
partners).
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Figure A.3.12: Example of Route Unconnectedness

Notes: This figure shows an example of rail captiveness, for two plants that are 12 miles apart, near
Omaha, Nebraska. Each plant purchases coal exclusively from the same county in Wyoming’s Powder
River Basin. The top-left panel maps the shortest path from this county to each plant, as calculated
by applying my graph algorithm to the unrestricted rail network. The top-right panel zooms in, to
illustrate how this shortest route bifurcates close to each plant. The blue (northern) plant is 3 miles from
the nearest rail node, and I assign this closest node because it is within a 6.6-mile radius. (This plant
receives 100 percent of its coal shipments by rail, and it would obviously be incorrect to consider this
plant unconnected from the rail network. Google Earth images confirm that this plant is connected to
the highlighted rail route via a small set of rail tracks, which are not included in BTS shapefiles.) Union
Pacific is the dominant carrier along this shortest unrestricted route, and the bottom panels show the new
shortest routes after restricting the network to exclude Union Pacific rail lines. The orange (southern)
plant sees its new shortest route (in orange) increase by 40 miles. However, the blue (northern) plants
sees its new shortest route (in blue) increase by 700 miles. This disparity arises because the blue plant
must now be approached from the north, while the orange plant may be approached from the south.
Because its increase in mileage is greater than 300 miles, I consider the blue plant to be captive.
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A.4 Coal Demand Estimation
Here, I provide a more thorough treatment of my algorithm for estimating coal demand
at the power plant level. Appendix A.4.1 describes each step in this estimation procedure
in detail. Appendix A.4.2 provides additional results to supplement Figure 1.5.6 in the
main text, while also reporting sensitivity analysis on Equation (1.6).

A.4.1 Demand Estimation Algorithm

In this section, I walk through my strategy for estimating plant-specific coal demand pa-
rameters as a function of the price of natural gas. First, I estimate a semi-parametric
model of each coal generating unit’s operations in each hour, conditional on the relative
marginal costs of coal vs. natural gas generation. Next, I construct a distribution of coun-
terfactual coal prices at which each unit would have been exactly marginal in electricity
dispatch. Then, I transform and aggregate these distributions into quantity-price map-
pings, yielding plant-month-specific coal demand curves. Finally, I estimate how changes
in natural gas prices affect both the level and the slope of each plant’s inverse coal demand.

Step 1: I construct a coal-to-gas cost ratio by dividing each coal unit’s marginal cost
of generation by the generation-weighted average marginal cost of gas-fired units in its
PCA. For both coal and gas units, I multiply unit-specific fuel prices (P for coal, Z for
gas) by unit-specific heat rates (HR), and add the unit’s marginal costs of environmental
compliance (MCenv).73 Gas plants typically have limited capacity to store fuel on site,
meaning that short-run price changes can impact plant operating decisions. Hence, I
assign each gas unit the daily spot price of its closest natural gas trading hub, in order
to capture the effect of day-to-day price fluctuations.74 By contrast, coal plants can
cheaply store fuel on site, causing their opportunity cost of coal to respond more slowly
to price changes. I use the average delivered coal price at the plant-month level, which

73MCenvum captures unit u’s opportunity cost of SO2, NOx, and CO2 emissions in month m, scaled
by average monthly allowance prices (Azm) and unit-specific emissions rates per MMBTU (Ezum), for
each pollutant z. It also includes the non-energy operating costs of scrubbers (i.e. flue gas desulfuriza-
tion to reduce SO2 emissions), net of the marginal revenues from selling the gypsum byproduct of the
desulfurization process:

MCenvum =
∑

z∈{SO2,NOx,CO2}

AzmE
z
um · 1[in z trading program]um +MCscrubberum

I abstract from non-fuel, non-environmental variable operating costs, because these data are generally
thought to be unreliable across all years and units.

74I use daily natural gas prices from SNL for 104 trading hubs, as described in Appendix A.2.5.
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is the finest temporal resolution that EIA reports publicly.75 I also assign heat rates and
environmental costs at the monthly level, for each unit.

Indexing coal units by u, gas units by g, months by m, and days by d, the daily cost
ratio is:

MCcoal
um ≡ HRum · (Pjm +MCenv

um )(A.26)

MCgas
ud ≡

∑
g∈PCAu

(
Qelec
gm ·HRgm · (Zgd +MCenv

gm )∑
g∈PCAu

Qelec
gm

)
(A.27)

⇒ CRud =
MCcoal

um

MCgas
ud

(A.28)

Steps 1–3 of this estimation strategy treat the coal unit as the relevant unit of analysis,
rather than the coal plant. This is because a single power plant may comprise both coal
and gas generating units, and because individual coal units within the same plant have
different heat rates and environmental costs, implying different marginal costs for a given
fuel price.

Step 2: For each coal unit u, I estimate the following binned time series regression, for
all hours h, from 2002 to 2015 (Equation (1.6) in the main text):

(A.29) CFuh =
∑
b

αub1[Guh ∈ b] +
∑
b

γub1[Guh ∈ b] · CRud + ζuCRud + ξuGuh + ωuh

CFuh ∈ [0, 1] is unit u’s operating capacity factor in hour h, where CFuh = 0 when the
unit is off and CFuh = 1 when the unit is generating at full capacity. Guh is aggregate net
generation in hour h, summed across all CEMS electric generating units in unit u’s market
region.76 This is not equivalent to aggregate electricity “load”, which includes non-CEMS
generation such as nuclear, hydro, renewables. However, these other technologies typically

75Even if I had access to sub-monthly coal prices, coal’s storability allows plants to arbitrage short-run
fuel price fluctuations, and the relevant coal price for this application is plant j’s opportunity cost of coal
purchases. While other studies have characterized this opportunity cost based on spot market purchases
only (e.g. Cicala (2017); Chu, Holladay, and LaRiviere (forthcoming)), I average Pjm across both contract
and spot transactions. Many plants purchase coal exclusively on long-term contracts, and restricting Pjm
to spot shipments would necessitate estimating unobserved spot prices for many plant-months. Given
that my analysis hinges on plant-specific delivered coal prices, I choose to pool all observed coal prices
and apply a standard definition for Pjm for all coal plants. I conduct sensitivity analysis using alternative
coal price variables in Appendix A.4.2.

76Here, I aggregate generation across “market regions” (i.e. ISOs or NERC regions) rather than PCAs,
because there is a substantial amount of trading between PCAs. This implies that in a given hour, the
marginal CEMS unit, which predicts unit u’s operating decision, is less likely to reside u’s PCA than in
u’s broader market region. (There is comparatively much less trading across market regions, as I define
them.) However, I follow Linn and Muehlenbachs (forthcoming) in defining average marginal costs at
the PCA-level, because within-PCA comparisons more accurately exploit cross-sectional differences in
natural gas prices that occur due to local pipeline constraints.
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precede CEMS units in the dispatch order, meaning that the marginal operating unit will
almost always be a CEMS unit when Guh > 0.77 Generation bins b allow me to flexibly es-
timate unit u’s generation, both un-interacted (α̂ub, following Davis and Hausman (2016))
and interacted with the cost ratio (γ̂ub). Because electricity demand is nearly perfectly
inelastic, Equation (A.29) is unlikely to suffer from simultaneity bias between CFuh and
Guh.

The matrix Guh includes several time-varying factors that affect unit u’s probability
of operating conditional on Guh and CRud. Guh includes the daily sum, daily maxi-
mum, daily minimum, and daily standard deviation of Guh to control for within-day
dynamic operating constraints, because coal-fired boilers cannot instantaneously turn on
or off (Cullen and Mansur (2017)). I also control for the daily maximum temperature at
each power plant, because outdoor temperature directly impacts the thermal efficiency
of coal boilers. Guh includes hour-of-day fixed effects, to control for diurnal operating
patterns; quarter-of-year fixed effects, to control for seasonality in electricity demand,
relative fuel prices, and plant maintenance schedules; and year fixed effects, to capture
long-run changes in unit u’s operations. Finally, Guh includes the interaction of year fixed
effects with the daily sum of Guh, to control for changes in electric generating capacity
and unit u’s position in the dispatch order. Because each time series regression includes
multiple years of data at the hourly level, I am able to cluster standard errors by month,
which accommodates arbitrary within-unit-month serial correlation.78

Step 3: After estimating a model of unit-specific operations as a function of both aggre-
gate CEMS generation Guh and the coal-to-gas marginal cost ratio CRud, I can predict
the distribution of counterfactual coal prices at which unit u would have been exactly
marginal. Let P̃uh denote the coal price at which unit u would have had a 50 percent
probability of operating at full capacity in hour h, or ĈF uh = 0.5. Then, rearranging
Equation (A.29) post-estimation:

HRum ·
(
P̃uh +MCenv

um

)
=

(
0.5− α̂ub,h − ξ̂uGuh

)
·MCgas

ud

γ̂ub,h + δ̂u
(A.30)

77Nuclear, wind, and solar generation are (virtually) always inframarginal in hours when a CEMS
unit is also operating (i.e. Guh > 0). Hydroelectric plants are subject to complex dynamic operating
constraints, and in certain regions hydro has the potential to be marginal in electricity dispatch. However,
these same regions have virtually no coal generation: from 2002–2015, six states (Washington, Oregon,
California, New York, Montana, and Idaho) contributed 70 percent of U.S. hydro generation and only
2.5 percent of coal generation.

78Month is also the unit of variation in average coal price data, as I assign a single average coal
price across all hours in each month. Clustering by plant-month (to accommodate correlated errors
between units u within a single plant j) produces virtually identical standard errors, but is far more
computationally intensive.
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⇒ P̃uh =


(

0.5− α̂ub,h − ξ̂uGuh

)
·MCgas

ud

γ̂ub,h + ζ̂u

/HRum −MCenv
um(A.31)

Here α̂ub,h and γ̂ub,h denote the binned coefficients associated with each hourly realization
of Guh. I assign a standard error to each predicted value of P̃uh by applying the delta
method to the variance-covariance matrix from estimating Equation (A.29).

Step 4: Armed with a distribution of estimated P̃uh’s for each coal unit, I construct
a mapping between coal price and plant j’s monthly coal demand. Summing across all
hours of month m, and across each of plant j’s constituent coal units, I define plant j’s
monthly coal demand function Fjm as:

(A.32) Fjm(P ) =
∑
u∈j

∑
h∈m

1
[
P < P̃uh

]
· Q̄coal

um

where Q̄coal
um is unit u’s hourly coal consumption when operating at maximum capacity in

month m. This simply assumes that for a given coal price P , plant j will demand the
amount of coal required to operate each of its units at full capacity, in inframarginal hours
only. Figure 1.5.5 in the main text plots two Fjm( · ) curves, for a representative plant j,
for two months m.

Step 5: I apply a kernel mean-smoothing algorithm to each Fjm( · ) function, and define
its smoothed inverse F−1

jm ( · ). I then calculate local approximations of the first and second
derivatives of F−1

jm ( · ), which I denote as ∆F−1
jm ( · ) and ∆2F−1

jm ( · ), respectively. This
lets me estimate empirical analogues of the three components of Equation (1.3): ∂Poj

∂Zj
,

∂2Poj

∂Qoj∂Zj
Qoj, and EDoj

.
As each of these terms is a partial derivative, I estimate their empirical analogues based

on realized coal prices for each plant-month. For each month m̈, the value Fjm̈(Pjm̈) is the
quantity that corresponds with month m̈’s observed coal price Pjm̈, given that month’s
estimated demand function. Plugging this quantity into the functions F−1

jm ( · ), ∆F−1
jm ( · ),

and ∆2F−1
jm ( · ), for all months m, I construct the dependent variables for three plant-

specific OLS regressions: {
F−1
jm (Fjm̈(Pjm̈))

}
jm̈m

= λ0jZjm + δjm̈m + νjm̈m(A.33) {
∆F−1

jm (Fjm̈(Pjm̈))× Fjm̈(Pjm̈)
}
jm̈m

= λ1jZjm + δjm̈m + νjm̈m(A.34)

{
∆2F−1

jm̈ (Fjm̈(Pjm̈))÷∆F−1
jm̈ (Fjm̈(Pjm̈))× Fjm̈(Pjm̈)

}
jm̈

= λ2j + νjm̈

(A.35)
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Zjm is plant j’s PCA-weighted natural gas price, averaged for month m, and δjm̈m are
two sets of month fixed effects (for months m̈ and m).79 The coefficient λ0j recovers how
changes in Zjm affect the level of plant j’s inverse demand; λ1j recovers how changes in Zjm
affect the slope of plant j’s inverse demand; and λ2j summarizes plant j’s average elasticity
of the slope of inverse demand. These map directly to the three terms in Equation (1.3):

(A.36) λ̂0j ∼
∂Poj
∂Zj

λ̂1j ∼
∂2Poj

∂Qoj∂Zj
Qj λ̂2j

θoj
Noj

∼ EDoj

The strength of this demand estimation strategy is that it avoids making any as-
sumptions on coal plants’ objective functions. The parameters λ̂0j, λ̂1j, and λ̂2j are the
outcomes of a semi-parametric linear regression, and I make no functional form assump-
tions on coal demand to estimate λ̂0j, λ̂1j, and λ̂2j.80 A weakness is my assumption that
counterfactual coal prices (P̃uh) hold the rest of the electricity market constant, includ-
ing prices faced by other coal plants. In reality, plant-specific markups make up only a
small portion of delivered coal prices, and large changes to plant j’s coal price (e.g. due
to a global coal price shock, or a regional shortage in diesel) likely affect many plants
simultaneously. This means that my demand estimates will likely only be informative for
small changes in plant-specific coal prices. If rail carriers jointly reoptimize coal markups
across multiple plants (i.e. plant j’s markups move in the same direction as the markups
of rival coal plants), then my estimated demand functions Fjm(·) may be too large (small)
at low (high) coal prices. I also assume that coal plants operate their constituent units
independently, that coal demand is either zero or at maximum capacity for each hour (yet
summing over all hours in each month smooths this discreteness),81 and that Equation
(A.29) is not misspecified.

A.4.2 Results and Sensitivities

Figure 1.5.6 in the main text reports demand estimation results, after adjusting the sample
of plants by k = 3 nearest-neighbor weights. I present the same four histograms weighted
for k = 1 nearest neighbors (in Figure A.4.13), and unweighted (in Figure A.4.14). These
results are broadly consistent, demonstrating that sample weights are not meaningfully
influencing the the distributions of λ̂0j, λ̂1j, λ̂2j, or Mj. Figure A.4.15 maps coal plants

79Month m fixed effects control for month-on-month changes to plants j’s coal demand, as well as
month-specific estimation error in each Fjm( · ) function. Month m̈ fixed effects control for errors in
calibrating Fjm̈(Pjm̈) to plant j’s actual coal consumption in month m̈.

80Binned linear predictions of power plant operations have become the state-of-the-art in estimating
electricity market dispatch (Davis and Hausman (2016); Cicala (2017)). This is because (i) regulated
electric utilities do not necessarily operate as profit-maximizing agents, (ii) electric generating units
face complex operational constraints, and (iii) a combination of transmission constraints and real-time
balancing requirements dictate when/where electricity must be generated to meet demand.

81Coal plants often operate at capacity factors between 0.5 and 1, and the median operating capacity
factor is 0.91. While I effectively assume capacity factors of 0 or 1 at counterfactual coal prices, summing
across all hours in each month smooths this discreteness in coal demand.
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Figure A.4.13: Coal Demand Estimation Results (k = 1 Nearest Neighbors)
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Notes: These histograms are identical to those in Figure 1.5.6 from the main text, except that I weight
plants in my matched sample with k = 1 nearest neighbors.

color-coded by Mj, revealing that high/low Mj plants are not concentrated in a single
region.

I conduct several sensitivity analyses on my demand estimation algorithm, which I
report in Table A.4.2 and Figure A.4.16. For each sensitivity, I iterate Steps 1–3 above and
store values of P̃uh for each coal unit u. Next, I calculate correlation coefficients between
each unit’s alternative P̃uh’s and the same unit’s P̃uh’s from my preferred specification.
Then, I construct a distribution of each unit’s correlation coefficient, and report percentiles
of this distribution in Table A.4.2 and histogram of correlation coefficients in Figure
A.4.16. In calculating these correlation coefficients, I bottom-code at P̃uh = 0, because
Step 4 above uses a lower bound of P = 0 and effectively treats negative values of P̃uh as
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Figure A.4.14: Coal Demand Estimation Results (Unweighted)
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Notes: These histograms are identical to those in Figure 1.5.6 from the main text, except that I use the
full sample of utility-owned coal plants, without applying weighting restrictions.

if they were 0. I also top-code at P̃uh = 35, which is greater than the highest coal price
ever observed in my data.82

First, I test for robustness to alternative definitions of unit u’s marginal cost in Equa-
tion (A.26). My preferred specification uses each plant’s average monthly coal price Pjm;
however, this average price may not accurately characterize the plant’s opportunity cost
of coal. For example, suppose a plant purchases 75 percent of its coal on a (relatively
expensive) long-term contract, and 25 percent of its coal on the (cheaper) spot market.
For this plant, the relevant coal price influencing marginal operating decisions may be
the cheaper spot price, which would be less than its average monthly price Pjm. I replace
Pjm with each plant’s minimum monthly delivered coal price, and report results in the
first row of Table A.4.2. This reveals that my demand estimates are not sensitive to the

82P̃uh is often extremely small or extremely large. Extreme negative values of P̃uh imply that even at
a coal price of P = 0, unit u would not generate in hour h. Extreme positive values of P̃uh imply that
no feasible coal price would be sufficient to incentivize unit u to generate in hour h.
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Figure A.4.15: Coal Plants by Mj

Notes: This map plots 430 coal plants, color-coded by their value of Mj (calculated from Equation 1.8
based on my demand parameter estimates). I top-code (bottom-code) the color scale at 2.0 (0.0) for ease
of presentation.

average vs. minimum price distinction: for the median coal unit, P̃uh’s estimated using
minimum prices have a correlation of 0.99 with P̃uh’s from my preferred specification. For
a coal unit in the 5th percentile, using the minimum price does yields slightly different
values of P̃uh.

Storage represents another way in which Pjm might mischaracterize plants’ opportu-
nity costs of coal. If plants have abundant coal stockpiles, then this true opportunity cost
may in fact be close to zero. However, plants understand that coal price changes may
persist, and they also value a buffer stock of coal to hedge against potential supply dis-
ruptions (Jha (2017)). As I lack detailed data on coal inventories to test this hypothesis,
I test for dynamic coal price effects using one-month-lagged Pjm, reported in second row
of Table A.4.2. My demand estimates are slightly more sensitive to lagged coal prices
than to minimum coal prices, yet over half of coal units have P̃uh correlations of at least
0.90.83

My main specification includes marginal environmental costs (for which I have data)
and excludes non-fuel variable costs (for which I do not). The third row of Table A.4.2
reports results after I removeMCenv from Equations (A.26)–(A.27); the fourth row reports

83This may simply reflect autocorrelation in coal prices across months.
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Table A.4.2: Demand Estimation – Specification Sensitivities

Correlation of P̃uh with Preferred Specification
5th pctile 25th pctile 50th pctile 75th pctile 95th pctile

Minimum monthly coal prices 0.24 0.79 0.99 1.00 1.00

1-month lagged coal prices 0.11 0.62 0.90 0.99 1.00

No environmental costs 0.03 0.59 0.90 0.99 1.00

Adding non-fuel variable costs 0.47 0.90 1.00 1.00 1.00

Twice as many bins b 0.46 0.73 0.87 0.97 1.00

Half as many bins b 0.46 0.76 0.90 0.98 1.00

Month-of-year fixed effects 0.16 0.64 0.87 0.97 0.99

Removing year × load controls 0.06 0.43 0.70 0.90 0.98

Notes: This table reports sensitivity analysis on my demand estimation algorithm. Each row conducts
a separate sensitivity, for which I iterate Steps 1–3 of the algorithm from Section A.4.1. I calculate
unit-wise correlations between these new values of P̃uh and the values from my preferred specification,
and report percentiles of this distribution of correlations. For example the fourth column reports the
75th percentile of unit-specific correlation coefficients between preferred P̃uh’s and alternative P̃uh’s. If
this value is 0.97 for a given sensitivity, then 25 percent of coal units have P̃uh correlations greater than
0.97. Figure A.4.16 reports histograms of these unit-specific correlations, with each panel corresponding
to a row of this table. I describe each sensitivity in detail in the surrounding text.

results after adding technology-specific defaults for non-fuel variable costs to Equations
(A.26)–(A.27), as described in Appendix A.2.2.3. These two sensitivities reveal, not
surprisingly, that non-fuel costs are second-order relative to fuel costs and heat rates.
Removing environmental costs does affect P̃uh for a small share of coal units, and the
0.03 P̃uh correlation for the 5th percentile suggests that MCenv is closer to first-order for
1 in 20 units.84 Adding (assumed) non-fuel variable costs (e.g„ labor, maintenance) has
virtually no effect on P̃uh’s for the vast majority of coal units.

Next, I test for sensitivity to the number of generation bins b in Equations (1.6) and
(A.29). I use a preferred bin size of 1000 MWh for the six largest electricity market regions,
in decreasing order of size (average CEMS hourly generation): SERC (54,072 MW), PJM
(53,869 MW), MISO (51,930 MW), SPP (23,832 MW), ERCOT (23,236 MW), FRCC
(17,148 MW). For the five smallest market regions, I reduce the bin sizes such that at
least 90 percent of hours in each year have at least 10 bins: NWPP (14,787 MW), SRSG
(11,785 MW), CAISO (9,520 MW), NEISO (6,086 MW), NYISO (5,881 MW). I conduct

84This implies that measurement error in MCenv is unlikely to be seriously influencing my demand
estimation results.
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two sensitivities on bin size, where I double and halve the number of bins, respectively.
The resulting P̃uh distributions are very highly correlated across the majority of coal units,
for both sets of alternative bin sizes.

Finally, I conduct two sensitivities on the fixed effects that enter Equations (1.6)
and (A.29) through Guh. My preferred specification controls for seasonal variation using
quarter-of-year fixed effects. I prefer quarter fixed effects to month fixed effects, as the
latter remove much of the variation in coal prices. However, P̃uh’s estimated with month
fixed effects are still quite highly correlated with my preferred P̃uh estimates, as reported
in the seventh row of Table A.4.2. Guh also includes both year fixed effects (to control
for changes in each unit’s average operations over time) and the interaction of year fixed
effects with total daily generation (to control for changes over time in the relationship
between each unit’s operations and aggregate market generation). I include year-by-load
interactions because electricity markets are not static throughout my sample period, and
the 10 GW generation bin may imply dramatically different electricity prices in 2005
vs. 2015—and hence, dramatically difference probabilities that unit u decides to gener-
ate. The eighth row of Table A.4.2 shows that removing these year-by-load interactions
substantially changes P̃uh’s for a large number of coal units.
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Figure A.4.16: Demand Sensitivities – Histograms of Correlations
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Notes: Each panel displays a histogram of unit-specific correlations for each sensitivity listed in Table
A.4.2. Each histogram contains 1,097 coal units and reports the correlation between a unit’s preferred
P̃uh’s and its P̃uh’s for each sensitivity. Table A.4.2 reports percentiles of these distributions of correla-
tions. For the few cases were these correlations are negative, I bottom-code at 0 to present consistent
horizontal axes.
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A.5 Sensitivity Analysis

A.5.1 Nearest-Neighbor Matching

I match captive plants to the k non-captive plants with the closest geographic proximity,
and I enforce a maximum distance of 200 miles between matched plants. I force exact
matches on the preferred (modal) coal rank that each plant consumed between 2002–2006,
which ensures that matched plants do not purchase coal from predominantly opposite sides
of the country (i.e. bituminous coal from the East vs. sub-bituminous coal from the West).
I also exclude the few plants with covariates that do not overlap with the opposite group.

Formally, let Dj = 1 if plant j is captive and Dj = 0 if plant j is non-captive. For
each number of matches k, I assign nearest-neighbor weights wj(k) for non-captive plants
by summing the inverse of the number of matches n`(k) across all captive plants `:

(A.37) wj(k) =



1 if Dj = 1 , nj(k) ∈ {1, . . . , k}
0 if Dj = 1 , nj(k) = 0∑

` |D`=1,
j∈n`(k)

1

n`(k)
if Dj = 0 , j ∈ n`(k) for some ` |D` = 1

0 if Dj = 0 , j /∈ n`(k) for all ` |D` = 1

That is, all matched captive plants receive weights of wj(k) = 1, and all unmatched plants
receive weights of wj(k) = 0. Matched non-captive plants receive weights that adjust the
share of non-captive plants to equal the number of matched captive plants. For example,
suppose a non-captive plant is one of 3 matches for captive plant A and one of 2 matches
for captive plant B, for k = 3. This plant would receive a weight of wj(3) = 1

3
+ 1

2
= 5

6
.

In the main text, I map nearest-neighbor matches and report summary statistics for
k = 3 matches (Figure 1.5.4 and Table 1.5.1). Figure A.5.17 is an analogous map for
k = 1, and I present the summary statistics for the k = 1 matched sample in Table
A.5.3. This reveals that geographic overlap and covariate balance are not sensitive to
the my choice of the number of nearest neighbors. Table A.5.4 reports sensitivity on the
distance cutoff of 200, restricting all match to be within 100 miles. This yields nearly
identical results, while reducing the sample size from 86 to 71 matched plants. Figure
A.5.18 demonstrates that even with a 200-mile distance cutoff, the majority of matches
are within 100 miles in geographic proximity.

Table A.5.5 demonstrates that covariate balance does not depend on my definition of
“route unconnectedness”, as defined in Appendix A.3. My preferred threshold for route
unconnectedness is 300 miles, or the increase in rail shipping distance after removing a
dominant rail carrier that renders a coal plant “captive”. Table A.5.5 redefines captive-
ness based on either a 150- or 600-mile threshold for route unconnectedness, and this
has little effect on the composition of my matched sample. Table A.5.6 likewise shows
that covariate balance does not depend on my definition of “node unconnectedness”. My
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preferred threshold is 6.6 miles, which is the 95th percentile of the distribution of plants’
distance to their closest rail node. Table A.5.6 redefines captiveness based on either a 5-
or 10-mile threshold for node unconnectedness, with little effect on the average covariates
across captive vs. non-captive groups.

Finally, Tables A.5.7–A.5.8 reported summary statistics for a “balanced” panel of coal
plants, or the subset of coal plants receiving at least one coal delivery in each year between
2002 and 2015. These matched samples correspond to the estimation samples in Tables
1.6.4–1.7.7 in the main text, and there are no detectable differences between captive vs.
non-captive plants after nearest-neighbor matching this balanced sample. Table 1.6.6 also
illustrates why I slightly prefer estimates with k = 3 nearest neighbor matches: with k = 1
match per captive plant, 60 captive plants have just 36 unique non-captive matches.

Figure A.5.17: Nearest Neighbor Matching (k = 1)

Notes: This map is identical to Figure 1.5.4 from the main text, except that captive plants have only
k = 1 nearest neighbors. Matches have a maximum distance of 200 miles; exact matches on coal rank;
and omit non-utility and non-rail plants.
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Figure A.5.18: Distance to Nearest k Neighbors
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Notes: Each panel displays a histogram of the distances to
each captive plant’s k nearest neighbors, with exact matches
on coal rank, and removing non-utility and non-rail plants. My
analysis restricts matched distances to be within 200 miles.
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Table A.5.3: Summary Statistics, k = 1 Nearest Neighbors

Full sample Matched sample (k = 1)

A. Plant characteristics Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Total plant capacity (MW) 908.19 865.73 42.46 900.89 964.85 −63.96
(780.72) (742.77) [0.57] (69.32) (147.14) [0.69]

Coal-fired capacity (MW) 806.13 760.84 45.29 815.64 858.49 −42.85
(738.72) (703.91) [0.52] (66.58) (140.80) [0.78]

Number of coal units 2.36 2.62 −0.26 2.59 2.65 −0.06
(1.32) (1.64) [0.08]∗ (0.15) (0.23) [0.82]

Coal unit vintage (year) 1968.85 1962.88 5.97 1966.25 1961.22 5.03
(13.90) (13.34) [0.00]∗∗∗ (1.39) (1.79) [0.03]∗∗

Annual capacity factor 0.63 0.60 0.03 0.63 0.63 −0.00
(0.17) (0.17) [0.04]∗∗ (0.01) (0.02) [0.97]

Heat rate (MMBTU/MWh) 11.09 11.06 0.03 10.97 10.90 0.06
(1.40) (1.52) [0.86] (0.14) (0.22) [0.81]

Scrubber installed 0.36 0.29 0.07 0.28 0.28 0.00
(0.48) (0.45) [0.12] (0.05) (0.07) [1.00]

Market participant 0.49 0.71 −0.22 0.46 0.51 −0.05
(0.50) (0.46) [0.00]∗∗∗ (0.05) (0.08) [0.64]

Full sample Matched sample (k = 1)

B. Coal deliveries Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Deliveries (million MMBTU/year) 48.82 44.00 4.82 47.44 47.14 0.30
(47.90) (43.70) [0.29] (4.10) (8.00) [0.97]

Sulfur content (lbs/MMBTU) 0.87 1.02 −0.15 0.79 0.86 −0.07
(0.61) (0.79) [0.03]∗∗ (0.06) (0.10) [0.55]

Ash content (lbs/MMBTU) 8.46 8.96 −0.50 8.08 8.19 −0.11
(4.21) (8.24) [0.46] (0.37) (0.68) [0.89]

Share spot market 0.19 0.19 −0.00 0.18 0.14 0.03
(0.29) (0.25) [0.87] (0.03) (0.03) [0.40]

Share contracts expiring ≤ 2 years 0.22 0.24 −0.01 0.19 0.19 −0.00
(0.25) (0.26) [0.61] (0.02) (0.03) [0.99]

Share sub-bituminous 0.41 0.31 0.10 0.43 0.41 0.01
(0.47) (0.42) [0.03]∗∗ (0.05) (0.08) [0.88]

Average rail distance (miles) 554.91 620.34 −65.43 565.67 595.15 −29.48
(385.90) (417.90) [0.12] (40.37) (60.55) [0.69]

Full sample Matched sample (k = 1)

C. Number of plants Rail
Captive

Not Rail
Captive Total Rail

Captive
Not Rail
Captive Total

Preferred coal rank: bituminous 94 149 243 49 34 83

Preferred coal rank: sub-bituminous 77 76 153 36 19 55

Non-rail plants 17 14 31 0 0 0

Utility plants 148 176 324 87 54 141

Total plants 190 240 430 87 54 141

Notes: This table is identical to Table 1.5.1 from the main text, except it uses k = 1 nearest-neighbor matches.
Standard deviations are in parentheses, and p-values [in brackets] are clustered at the plant level. Significance:
*** p < 0.01, ** p < 0.05, * p < 0.10.
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Table A.5.4: Summary Statistics, 100-Mile Distance Cutoff

Matched sample (k = 1) Matched sample (k = 3)

A. Plant characteristics Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Total plant capacity (MW) 882.27 932.56 −50.28 882.27 939.63 −57.36
(77.57) (157.71) [0.77] (77.57) (110.79) [0.67]

Coal-fired capacity (MW) 790.25 835.23 −44.98 790.25 827.71 −37.46
(75.12) (149.19) [0.79] (75.12) (104.20) [0.77]

Number of coal units 2.55 2.67 −0.12 2.55 2.58 −0.03
(0.16) (0.25) [0.69] (0.16) (0.16) [0.90]

Coal unit vintage (year) 1966.21 1960.06 6.15 1966.21 1961.92 4.29
(1.56) (1.80) [0.01]∗∗ (1.56) (1.55) [0.05]∗

Annual capacity factor 0.62 0.62 0.00 0.62 0.62 0.00
(0.02) (0.02) [0.88] (0.02) (0.01) [0.93]

Heat rate (MMBTU/MWh) 11.02 10.98 0.04 11.02 10.78 0.25
(0.16) (0.25) [0.89] (0.16) (0.18) [0.30]

Scrubber installed 0.27 0.23 0.04 0.27 0.23 0.04
(0.05) (0.06) [0.60] (0.05) (0.05) [0.56]

Market participant 0.51 0.56 −0.06 0.51 0.57 −0.06
(0.06) (0.09) [0.59] (0.06) (0.07) [0.49]

Matched sample (k = 1) Matched sample (k = 3)

B. Coal deliveries Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Deliveries (million MMBTU/year) 45.66 44.97 0.69 45.66 43.76 1.91
(4.59) (8.02) [0.94] (4.59) (5.46) [0.79]

Sulfur content (lbs/MMBTU) 0.85 0.90 −0.05 0.85 0.91 −0.06
(0.07) (0.11) [0.70] (0.07) (0.08) [0.55]

Ash content (lbs/MMBTU) 8.12 7.90 0.23 8.12 7.82 0.30
(0.42) (0.42) [0.70] (0.42) (0.30) [0.56]

Share spot market 0.17 0.15 0.02 0.17 0.16 0.02
(0.03) (0.03) [0.64] (0.03) (0.02) [0.66]

Share contracts expiring ≤ 2 years 0.20 0.20 −0.00 0.20 0.20 −0.01
(0.02) (0.03) [0.90] (0.02) (0.02) [0.85]

Share sub-bituminous 0.40 0.38 0.02 0.40 0.33 0.07
(0.06) (0.08) [0.85] (0.06) (0.06) [0.41]

Average rail distance (miles) 561.54 595.26 −33.71 561.54 576.60 −15.06
(45.23) (58.95) [0.65] (45.23) (49.66) [0.82]

Matched sample (k = 1) Matched sample (k = 3)

C. Number of plants Rail
Captive

Not Rail
Captive Total Rail

Captive
Not Rail
Captive Total

Preferred coal rank: bituminous 42 31 73 42 53 95

Preferred coal rank: sub-bituminous 27 17 44 27 31 58

Non-rail plants 0 0 0 0 0 0

Utility plants 71 49 120 71 85 156

Total plants 71 49 120 71 85 156

Notes: This table is identical to Table 1.5.1 from the main text, except it restricts the maximum match distance
to 100 miles. The left three columns use k = 1 nearest neighbors, and the right three colums use k = 3 nearest
neighbors. Standard deviations are in parentheses, and p-values [in brackets] are clustered at the plant level.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table A.5.5: Summary Statistics, Alternative Captiveness Thresholds (Routes)

≥ 150-mile increase ≥ 600-mile increase

A. Plant characteristics Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Total plant capacity (MW) 888.67 927.57 −38.89 900.89 943.67 −42.77
(68.55) (91.55) [0.73] (69.32) (93.60) [0.71]

Coal-fired capacity (MW) 797.96 821.40 −23.44 815.64 824.40 −8.77
(66.22) (87.99) [0.83] (66.58) (90.44) [0.94]

Number of coal units 2.53 2.66 −0.13 2.59 2.60 −0.01
(0.15) (0.15) [0.54] (0.15) (0.15) [0.94]

Coal unit vintage (year) 1965.91 1962.28 3.63 1966.25 1962.27 3.98
(1.37) (1.38) [0.06]∗ (1.39) (1.44) [0.05]∗

Annual capacity factor 0.63 0.63 0.01 0.63 0.63 −0.00
(0.01) (0.01) [0.80] (0.01) (0.01) [0.94]

Heat rate (MMBTU/MWh) 10.89 10.76 0.14 10.97 10.76 0.21
(0.12) (0.12) [0.42] (0.14) (0.13) [0.28]

Scrubber installed 0.27 0.27 −0.00 0.28 0.26 0.01
(0.05) (0.06) [0.95] (0.05) (0.06) [0.84]

Market participant 0.46 0.50 −0.04 0.46 0.50 −0.04
(0.05) (0.06) [0.59] (0.05) (0.06) [0.65]

≥ 150-mile increase ≥ 600-mile increase

B. Coal deliveries Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Deliveries (million MMBTU/year) 46.37 44.62 1.75 47.44 45.74 1.70
(4.07) (5.15) [0.79] (4.10) (5.22) [0.80]

Sulfur content (lbs/MMBTU) 0.81 0.84 −0.04 0.79 0.84 −0.05
(0.06) (0.06) [0.66] (0.06) (0.07) [0.58]

Ash content (lbs/MMBTU) 8.04 7.91 0.13 8.08 7.99 0.09
(0.36) (0.41) [0.81] (0.37) (0.42) [0.87]

Share spot market 0.18 0.18 0.00 0.18 0.16 0.02
(0.03) (0.03) [0.97] (0.03) (0.02) [0.63]

Share contracts expiring ≤ 2 years 0.19 0.20 −0.01 0.19 0.19 −0.00
(0.02) (0.02) [0.74] (0.02) (0.02) [0.91]

Share sub-bituminous 0.42 0.39 0.02 0.43 0.40 0.02
(0.05) (0.06) [0.77] (0.05) (0.06) [0.77]

Average rail distance (miles) 563.19 579.39 −16.20 565.67 582.89 −17.22
(39.79) (41.21) [0.78] (40.37) (42.69) [0.77]

≥ 150-mile increase ≥ 600-mile increase

C. Number of plants Rail
Captive

Not Rail
Captive Total Rail

Captive
Not Rail
Captive Total

Preferred coal rank: bituminous 51 64 115 49 59 108

Preferred coal rank: sub-bituminous 36 36 72 36 35 71

Non-rail plants 0 0 0 0 0 0

Utility plants 89 101 190 87 95 182

Total plants 89 101 190 87 95 182

Notes: This table is identical to Table 1.5.1 from the main text, except both sets of columns are nearest-neighbor
matched using alternative distnace thresholds to define (as defined in Appendix A.3). The left (right) three
columns consider a plant to be captive if removing the dominant rail carrier along along each origin-destination
route increases the shortest path by at least 150 (600) miles. My preferred threshold is an increase of 300 miles,
which implies roughly a 20 percent increase in median rail shipping costs. Matching criteria: up to k nearest
neighbors (k = 3), with a maximum distance of 200 miles; exact matches on preferred coal rank; and removing
non-utility and non-rail plants. Standard deviations are in parentheses, and p-values [in brackets] are clustered
at the plant level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table A.5.6: Summary Statistics, Alternative Captiveness Thresholds (Nodes)

5-mile threshold 10-mile threshold

A. Plant characteristics Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Total plant capacity (MW) 919.62 932.77 −13.15 844.63 900.34 −55.71
(66.97) (93.40) [0.91] (81.50) (90.83) [0.65]

Coal-fired capacity (MW) 820.42 827.53 −7.11 757.64 825.29 −67.64
(64.12) (91.81) [0.95] (77.82) (89.54) [0.57]

Number of coal units 2.59 2.58 0.01 2.39 2.48 −0.09
(0.15) (0.15) [0.96] (0.14) (0.16) [0.68]

Coal unit vintage (year) 1966.20 1963.26 2.94 1967.12 1963.55 3.57
(1.36) (1.42) [0.14] (1.62) (1.50) [0.11]

Annual capacity factor 0.63 0.64 −0.01 0.63 0.62 0.01
(0.01) (0.02) [0.78] (0.02) (0.01) [0.76]

Heat rate (MMBTU/MWh) 10.88 10.68 0.21 11.10 10.81 0.30
(0.13) (0.12) [0.24] (0.17) (0.13) [0.16]

Scrubber installed 0.27 0.28 −0.01 0.33 0.27 0.06
(0.05) (0.06) [0.89] (0.06) (0.06) [0.47]

Market participant 0.44 0.47 −0.03 0.48 0.49 −0.01
(0.05) (0.06) [0.66] (0.06) (0.06) [0.86]

5-mile threshold 10-mile threshold

B. Coal deliveries Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Deliveries (million MMBTU/year) 46.87 45.44 1.43 45.10 45.72 −0.62
(4.05) (5.09) [0.83] (4.87) (5.30) [0.93]

Sulfur content (lbs/MMBTU) 0.83 0.88 −0.05 0.85 0.85 −0.00
(0.07) (0.08) [0.63] (0.08) (0.07) [0.99]

Ash content (lbs/MMBTU) 8.07 7.88 0.20 8.21 8.12 0.09
(0.36) (0.40) [0.72] (0.46) (0.50) [0.90]

Share spot market 0.19 0.16 0.03 0.14 0.16 −0.02
(0.03) (0.02) [0.43] (0.03) (0.03) [0.53]

Share contracts expiring ≤ 2 years 0.19 0.18 0.01 0.18 0.20 −0.03
(0.02) (0.02) [0.60] (0.02) (0.02) [0.36]

Share sub-bituminous 0.41 0.40 0.01 0.44 0.42 0.02
(0.05) (0.06) [0.87] (0.06) (0.06) [0.81]

Average rail distance (miles) 572.89 570.12 2.76 542.55 560.74 −18.19
(38.85) (45.58) [0.96] (46.34) (42.66) [0.77]

5-mile threshold 10-mile threshold

C. Number of plants Rail
Captive

Not Rail
Captive Total Rail

Captive
Not Rail
Captive Total

Preferred coal rank: bituminous 54 57 111 36 59 95

Preferred coal rank: sub-bituminous 37 35 72 29 37 66

Non-rail plants 0 0 0 0 0 0

Utility plants 91 92 183 67 97 164

Total plants 91 92 183 67 97 164

Notes: This table is identical to Table 1.5.1 from the main text, except both sets of columns are nearest-neighbor
matched using alternative distnace thresholds to define (as defined in Appendix A.3). The left (right) three
columns consider a plant to be captive if all rail terminal nodes within a 5-mile (10-mile) radius are controlled
by a single Class I carrier. My preferred threshold is 6.6 miles, which is the 95th percentile of the the distance to
each plant’s (unrestricted) nearest node. Matching criteria: up to k nearest neighbors (k = 3), with a maximum
distance of 200 miles; exact matches on preferred coal rank; and removing non-utility and non-rail plants. Standard
deviations are in parentheses, and p-values [in brackets] are clustered at the plant level. Significance: *** p < 0.01,
** p < 0.05, * p < 0.10.
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Table A.5.7: Summary Statistics, k = 3 Nearest Neighbors, Balanced Panel

Full sample Matched sample (k = 3)

A. Plant characteristics Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Total plant capacity (MW) 1137.98 1097.62 40.36 1116.89 1183.58 −66.68
(734.98) (741.99) [0.67] (77.07) (115.68) [0.63]

Coal-fired capacity (MW) 1058.79 1008.70 50.09 1028.73 1057.03 −28.29
(726.28) (734.03) [0.59] (76.02) (116.50) [0.84]

Number of coal units 2.45 2.79 −0.33 2.61 2.64 −0.04
(1.29) (1.68) [0.09]∗ (0.18) (0.19) [0.89]

Coal unit vintage (year) 1971.84 1966.32 5.52 1968.95 1965.62 3.33
(12.22) (12.26) [0.00]∗∗∗ (1.52) (1.65) [0.14]

Annual capacity factor 0.69 0.65 0.04 0.67 0.67 0.00
(0.12) (0.12) [0.01]∗∗ (0.01) (0.02) [0.89]

Heat rate (MMBTU/MWh) 10.54 10.57 −0.03 10.50 10.38 0.12
(0.79) (0.91) [0.81] (0.08) (0.12) [0.43]

Scrubber installed 0.41 0.36 0.05 0.31 0.38 −0.07
(0.49) (0.48) [0.45] (0.06) (0.08) [0.48]

Market participant 0.42 0.68 −0.25 0.44 0.50 −0.06
(0.50) (0.47) [0.00]∗∗∗ (0.06) (0.08) [0.56]

Full sample Matched sample (k = 3)

B. Coal deliveries Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Deliveries (million MMBTU/year) 65.65 59.61 6.04 60.97 60.29 0.68
(46.06) (45.22) [0.30] (4.73) (6.60) [0.93]

Sulfur content (lbs/MMBTU) 0.80 1.04 −0.24 0.73 0.95 −0.22
(0.59) (0.82) [0.01]∗∗ (0.07) (0.09) [0.06]∗

Ash content (lbs/MMBTU) 8.50 8.63 −0.13 7.82 8.14 −0.32
(4.20) (4.90) [0.82] (0.35) (0.58) [0.64]

Share spot market 0.15 0.14 0.01 0.17 0.13 0.04
(0.25) (0.16) [0.72] (0.03) (0.02) [0.32]

Share contracts expiring ≤ 2 years 0.17 0.20 −0.03 0.16 0.15 0.01
(0.20) (0.24) [0.24] (0.02) (0.02) [0.71]

Share sub-bituminous 0.51 0.35 0.16 0.54 0.43 0.11
(0.48) (0.42) [0.01]∗∗ (0.06) (0.07) [0.27]

Average rail distance (miles) 579.52 633.65 −54.13 611.75 567.36 44.40
(413.91) (421.50) [0.33] (49.38) (55.36) [0.55]

Full sample Matched sample (k = 3)

C. Number of plants Rail
Captive

Not Rail
Captive Total Rail

Captive
Not Rail
Captive Total

Preferred coal rank: bituminous 45 78 123 28 40 68

Preferred coal rank: sub-bituminous 57 51 108 32 26 58

Non-rail plants 7 8 15 0 0 0

Utility plants 97 107 204 61 66 127

Total plants 113 136 249 61 66 127

Notes: This table is identical to Table 1.5.1 from the main text, except it includes only plants that receive at
least 1 coal delivery in each year, from 2002 to 2015. Standard deviations are in parentheses, and p-values [in
brackets] are clustered at the plant level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.



186

Table A.5.8: Summary Statistics, k = 1 Nearest Neighbors, Balanced Panel

Full sample Matched sample (k = 1)

A. Plant characteristics Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Total plant capacity (MW) 1137.98 1097.62 40.36 1116.89 1342.17 −225.27
(734.98) (741.99) [0.67] (77.07) (171.47) [0.23]

Coal-fired capacity (MW) 1058.79 1008.70 50.09 1028.73 1224.72 −195.98
(726.28) (734.03) [0.59] (76.02) (168.41) [0.29]

Number of coal units 2.45 2.79 −0.33 2.61 2.92 −0.31
(1.29) (1.68) [0.09]∗ (0.18) (0.30) [0.38]

Coal unit vintage (year) 1971.84 1966.32 5.52 1968.95 1965.43 3.52
(12.22) (12.26) [0.00]∗∗∗ (1.52) (2.02) [0.17]

Annual capacity factor 0.69 0.65 0.04 0.67 0.67 0.00
(0.12) (0.12) [0.01]∗∗ (0.01) (0.02) [0.89]

Heat rate (MMBTU/MWh) 10.54 10.57 −0.03 10.50 10.36 0.14
(0.79) (0.91) [0.81] (0.08) (0.15) [0.41]

Scrubber installed 0.41 0.36 0.05 0.31 0.37 −0.06
(0.49) (0.48) [0.45] (0.06) (0.09) [0.58]

Market participant 0.42 0.68 −0.25 0.44 0.52 −0.08
(0.50) (0.47) [0.00]∗∗∗ (0.06) (0.09) [0.50]

Full sample Matched sample (k = 1)

B. Coal deliveries Rail
Captive

Not Rail
Captive

Difference
in means

Rail
Captive

Not Rail
Captive

Difference
in means

Deliveries (million MMBTU/year) 65.65 59.61 6.04 60.97 69.29 −8.32
(46.06) (45.22) [0.30] (4.73) (9.48) [0.43]

Sulfur content (lbs/MMBTU) 0.80 1.04 −0.24 0.73 1.03 −0.30
(0.59) (0.82) [0.01]∗∗ (0.07) (0.14) [0.06]∗

Ash content (lbs/MMBTU) 8.50 8.63 −0.13 7.82 8.80 −0.98
(4.20) (4.90) [0.82] (0.35) (0.98) [0.35]

Share spot market 0.15 0.14 0.01 0.17 0.11 0.05
(0.25) (0.16) [0.72] (0.03) (0.03) [0.18]

Share contracts expiring ≤ 2 years 0.17 0.20 −0.03 0.16 0.15 0.01
(0.20) (0.24) [0.24] (0.02) (0.04) [0.81]

Share sub-bituminous 0.51 0.35 0.16 0.54 0.37 0.16
(0.48) (0.42) [0.01]∗∗ (0.06) (0.09) [0.14]

Average rail distance (miles) 579.52 633.65 −54.13 611.75 558.05 53.71
(413.91) (421.50) [0.33] (49.38) (80.51) [0.57]

Full sample Matched sample (k = 1)

C. Number of plants Rail
Captive

Not Rail
Captive Total Rail

Captive
Not Rail
Captive Total

Preferred coal rank: bituminous 45 78 123 28 23 51

Preferred coal rank: sub-bituminous 57 51 108 32 13 45

Non-rail plants 7 8 15 0 0 0

Utility plants 97 107 204 61 36 97

Total plants 113 136 249 61 36 97

Notes: This table is identical to Table 1.5.1 from the main text, except it uses k = 1 nearest-neighbor matches,
and includes only plants that receive at least 1 coal delivery in each year, from 2002 to 2015. Standard deviations
are in parentheses, and p-values [in brackets] are clustered at the plant level. Significance: *** p < 0.01, **
p < 0.05, * p < 0.10.
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A.5.2 Markup Levels

In this section, I conduct sensitivity analysis for my estimates of markup levels, which I
report in Section 1.6.1 of the main text. Each sensitivity analysis alters a single element
of Equation (1.5). I report results only for a balanced panel of coal plants, using k = 3
nearest neighbors; these results are broadly consistent for k = 1 nearest neighbors or for
an unbalanced sample.85

I begin by estimating Equation (1.5) using alternative definitions of Dj, the indicator
for rail captiveness. Appendix A.3 describes my method for constructing this variable,
which necessitates imposing an arbitrary cutoff of 300 miles for “route unconnectedness”,
or the distance a plant’s shortest route must increase for the route to become “uncon-
nected”, after removing the dominant carrier along the route. I classify a plant as captive
if it becomes route-unconnected (after removing each route’s dominant carrier one-by-
one) from all observed trading partners. Table A.5.9 shows that my markup estimates
are robust to halving or doubling this 300-mile route unconnectedness threshold, compar-
ing Columns (2)–(3) to my preferred specification in Column (1). Column (4) weakens
my definition of captiveness, such that only the average shipment of coal need become
route-unconnected. This prevents largely un-utilized routes (i.e. for singleton coal ship-
ments) from influencing a plant’s captiveness designation, yet has little effect my results.
By contrast, Column (5) strengthens the definition of captiveness to include routes to all
potential originating coal counties with similar coal attributes to a plant’s observed pur-
chases. The prevents a plant from being designated as captive if it could have purchased
coal from a county from which it does not become route-unconnected.86 This likewise has
little effect on my results. Finally, Column (6) defines captiveness based only on “node
unconnectedness”, which is a more straightforward (though less nuanced) distinction that
ignores coal routes. Here, a plant is captive if removing any single Class I rail carrier ren-
ders that plant unconnected to any rail node. This captiveness definition yields similar
results.

Table A.5.10 conducts an analogous sensitivity analysis for my threshold for “node
unconnectedness”. My preferred cutoff is 6.6 miles, which is the 95th percentile of the
distribution of plants’ distance to their nearest terminal rail node; I define a plant as
captive is all rail nodes within a 6.6-mile radius are controlled by a single Class I rail
carrier. Column (1) of Table A.5.10 strengthens my definition my captiveness by reducing
this threshold to 5 miles, while Column (2) weakens my definition of captiveness by
increasing this threshold to 10 miles. In both cases, my results are largely unchanged
and retain statistical significance. Columns (3)–(4) perform the same sensitivities on the

85Recall that my “balanced” sample is not fully balanced, because not every coal plant records a coal
purchase in each month that it operates. I “balance” this panel by keep only those plants that report at
least 1 coal delivery in each calendar year from 2002 to 2015, to remove coal plants that retired during
my sample period.

86In other words, one might worry that my preferred definition of captiveness would result in many
false positives. If a coal plant only purchases coal from county A (from which it becomes route-
unconnected), but it could have purchased identical coal from county B (from which it does not become
route-unconnected), then I would want to classify this plant as non-captive.
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Table A.5.9: Markup Levels – Sensitvity to Definition of Captiveness

Unconnected across
all observed routes

Average
route

All
potential
routes

Only node
connected-

ness
(1) (2) (3) (4) (5) (6)

1[Captive]j 2.301∗∗∗ 2.163∗∗∗ 2.265∗∗∗ 1.907∗∗∗ 2.374∗∗∗ 2.004∗∗∗

(0.655) (0.641) (0.641) (0.616) (0.666) (0.619)

k nearest neighbors 3 3 3 3 3 3

Balanced panel Yes Yes Yes Yes Yes Yes
Route unc. cutoff (miles) 300 150 600 300 300
Mean of dep var 36.85 37.37 36.45 36.05 37.05 39.05
Plants 127 129 127 132 127 119
Captive plants 61 61 61 84 60 54
Observations 77,115 78,997 77,420 74,390 77,094 72,398

Notes: This table is identical to Table 1.6.2 from the main text, except that it uses alternative definitions
for rail captiveness. Column (1) uses my preferred definition described in Appendix A.3, reported in
Column (5) of Table 1.6.2. Columns (2)–(3) halve and double my preferred 300-mile threshold for route
unconnectedness. Column (4) weakens the definition of captiveness such that only the plant’s average
route need be unconnected (rather than all observed routes). Column (5) strengthens the definition of
captiveness to include all potential routes with observationally similar coal, even if I do not observe any
deliveries along such routes. Column (6) defines captiveness based on node (un)connectedness only. Each
column re-constructs nearest-neighbor weights consistent with its respective definition of captiveness.
Standard errors are clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

threshold for node-unconnectedness, making this the the only determinant of captiveness
(i.e., ignoring coal routes as in Column (6) of Table A.5.9). This has little effect on my
results.

Table A.5.11 conducts sensitivity analysis on coal commodity controls (i.e. Cojms in
Equation (1.5)). Column (2) forces the coefficient on the county-year average mine-mouth
price to be equal to 1, while Column (3) interacts this price with a spot market indicator
to allow the mine-mouth sales price to vary for contract vs. spot sales. Neither has a
meaningful effect on my results. Because sulfur content is a major driver of dispersion in
coal prices, Column (4) adds an interaction between the county-year average mine-mouth
price and each shipment’s average sulfur content. Column (5) allows a different coefficient
on sulfur content for each calendar year, to accommodate for changes to the shadow price
of SO2 emissions due to SO2 allowance markets. Neither has any effect on my results.
Finally, while Equation (1.5) includes coal county fixed effects, it is possible that time-
varying factors relating to county-specific coal production have caused me to misspecify
Cojms. Column (6) tests for this possibility by adding several time-varying controls for
coal production in each county, but my results change very little.87

87These county-by-year controls include mine age, seam thickness and depth (which influence extrac-
tion costs), the share of coal produced from (more expensive) underground mines, the share of mine
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Table A.5.10: Markup Levels – Sensitvity to Definition of Captiveness

Unconnected across
all observed routes

Only node
connectedness

(1) (2) (3) (4)

1[Captive]j 1.585∗∗ 2.496∗∗∗ 1.560∗∗ 1.574∗∗

(0.718) (0.700) (0.653) (0.705)

k nearest neighbors 3 3 3 3

Balanced panel Yes Yes Yes Yes
Route unc. cutoff (miles) 300 300
Node unc. cutoff (miles) 5 10 5 10
Mean of dep var 39.78 36.60 40.55 39.52
Plants 129 115 130 87
Captive plants 64 43 60 33
Observations 78,927 68,105 77,140 52,576

Notes: This table is identical to Table 1.6.2 from the main text, except that it uses
alternative definitions for rail captiveness (see description in Appendix A.3). My pre-
ferred definition for node unconnectedness is 6.6 miles, the 95th percentile of plants’
distance to nearest nodes. Columns (1) and (3) apply a 5-mile threshold for node
unconnectedness, while Columns (2) and (4) apply a 10-mile threshold for node un-
connectedness. Columns (3)–(4) define captiveness based on node (un)connectedness
only, as in Column (6) of Table A.5.9. Each column re-constructs nearest-neighbor
weights consistent with its respective definition of captiveness. Standard errors are
clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

Table A.5.12 conducts sensitivity on shipping cost controls (i.e. S(Tojms) in Equation
(1.5)). My preferred specification (Column (1)) controls flexibly controls for shipping
costs using the 4-way interaction of: (i) shortest rail shipping distance (an outcome of my
rail graph algorithm in Appendix A.3), (ii) monthly diesel fuel cost index (to control for
time series variation in shipping costs), (iii) the log of the quantity of coal shipped (to
all for increasing returns to scale in rail freight), and (iv) the share of route-miles along
rail lines reporting high traffic density (to account for higher costs due to rail network
congestion). Assuming increasing returns to scale ignores the potential for rail capacity
constraints, whereby adding a marginal rail car may increase average costs. To test for
robustness to this assumption, Column (2) replaces the log of shipment size with shipment
size in levels. Column (3) replaces the AAR diesel cost index with the STB’s Rail Cost
Adjustment Factor (RCAF), which incorporates changes in non-fuel variable cost of rail

employees working underground (which increases labor costs), and hours worked per ton of coal pro-
duced. I weight-average each variable for each quarter, based on quarterly production across all mines in
each county. As the composition of coal production shifts across mines, this will cause even time invariant
controls (e.g. seam depth) to become time-varying.
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Table A.5.11: Markup Levels – Sensitvity to Commoditiy Controls

Preferred
commod.
controls

Force avg
orig price
β = 1

Interact
orig price
× 1[spot]

Interact
orig price
× sulfur

Interact
sulfur ×
year FEs

Adding
mine

controls
(1) (2) (3) (4) (5) (6)

1[Captive]j 2.301∗∗∗ 2.124∗∗∗ 2.304∗∗∗ 2.305∗∗∗ 2.270∗∗∗ 2.300∗∗∗

(0.655) (0.649) (0.662) (0.658) (0.653) (0.654)

k nearest
neighbors 3 3 3 3 3 3

Balanced panel Yes Yes Yes Yes Yes Yes
Mean of dep var 36.85 36.85 36.85 36.85 36.85 36.99
Plants 127 127 127 127 127 127
Captive plants 61 61 61 61 61 61
Observations 77,115 77,115 77,115 77,115 77,115 76,634

Notes: This table is identical to Table 1.6.2 from the main text, except that it conducts sensitivity
on commodity controls (Cojms in Equation (1.5)). Column (1) reproduces my preferred specification
(Column (5) of Table 1.6.2), which uses the following uninteracted linear controls: BTU content, sulfur
content, ash content, a dummy for spot shipments, a dummy for contracts expiring within 2 years,
a dummy for bituminous coal, and the average annual mine-mouth price in each originating county.
Column (2) forces the coefficient on average mine-mouth price to be 1. Column (3) allows separate
coefficients on average mine-mouth price for spot vs. contract shipments. Column (4) interacts the
average mine-mouth price with each shipment’s average sulfur content. Column (5) allows year-specific
coefficients on sulfur content, which accommodates changes in the shadow price of SO2 emissions. Column
(6) controls for time-varying characteristics in each coal mining county, weight-averaged by monthly
coal production: mine age, seam thickness, seam depth, share of coal mined underground, share of
mine employees working underground, and hours worked per ton of coal produced. Standard errors are
clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

shipping.88 Column (4) removes rail traffic density from the interaction, as this variable
may serve as a poor proxy of rail network congestion costs. Finally, Column (5) allows all
shipping cost coefficeints to vary by coal rank, which effectively eliminates any potentially
confounding differences between western vs. eastern rail shipping costs. My results are
quite robust to each of these alternative versions of S(Tojms).

Taken together, Tables A.5.11–A.5.12 demonstrate that the cost controls in Equation
(1.5) are unlikely to be misspecified in a way that biases my estimates of average markups.
Because my estimates are not sensitive to changes in either Cojms or S(Tojms), this sup-
ports my interpretation of the estimated coefficient τ̂ as the average difference in markups,
rather than simply the average difference in conditional coal price.

Table A.5.13 includes additional fixed effects, beyond the county and month-of-sample
fixed effects in Equation (1.5). This reveals that my results are robust to county-specific

88Busse and Keohane (2007) use RCAF to control for time series variation in shipping costs, which
uses the AAR fuel price index as an input. However, the RCAF is only published quarterly, and does
not provide monthly variation.
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Table A.5.12: Markup Levels – Sensitvity to Shipping Cost Controls

4-way
interaction
(preferred)

Replace
ln(quantity)
w/ quantity

Replace
diesel index
w/ RCAF

Remove
traffic
density

5-way
interaction w/
1[sub-bitum.]

(1) (2) (3) (4) (5)

1[Captive]j 2.301∗∗∗ 2.063∗∗∗ 2.286∗∗∗ 2.711∗∗∗ 1.823∗∗∗

(0.655) (0.621) (0.657) (0.745) (0.615)

k nearest neighbors 3 3 3 3 3

Balanced panel Yes Yes Yes Yes Yes
Mean of dep var 36.85 36.85 36.85 36.85 36.85
Plants 127 127 127 127 127
Captive plants 61 61 61 61 61
Observations 77,115 77,115 77,115 77,115 77,115

Notes: This table is identical to Table 1.6.2 from the main text, except that it conducts sensitivity on
shipping cost controls (S(Tojms) in Equation (1.5)). Column (1) reproduces my preferred specification
(Column (5) of Table 1.6.2), which uses a four-way linear interaction of: shorest-route shipping distance,
AAR fuel price index, log of shipment size, and the proportion of each shortest route on rail lines with
high traffic density. Column (2) replaces ln(shipment size) with shipment size in levels. Column (3)
replaces the AAR diesel fuel price index with the quarterly Rail Cost Adjustment Factor. Column (4)
removes controls for rail traffic density along each route, and uses only a 3-way interaction. Column
(5) allows shipping costs to vary across a fifth interacted variable: a dummmy for sub-bituminous coal
shipments. Standard errors are clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

time tends, county-by-plant-region fixed effects, month-by-shipment type fixed effects,
and month-by-coal rank fixed effects. Table A.5.14 estimates Equation (1.5) for each coal
rank, and removing coal plants from each region. Average differential markup estimates
are larger for bituminous shipments than for sub-bituminous shipments, scaling with
their difference in average delivered coal price ($53.92 for bituminous vs. $23.45 for sub-
bituminous). My results are largely consistent and retain statistical significance across all
five split samples.

Table A.5.15 estimates four additional sensitivities which relate to my identifying as-
sumptions for Equation (1.5). Column (2) restricts the nearest-neighbor matching thresh-
old from 200 miles to 100 miles. This removes the 10 matched captive plants with the
greatest distance to their non-captive counterparts, and the resulting point estimate is
slightly attenuated but still statistically significant. Column (3) restricts to sample to
plants built before 1980, the year that the Staggers Act loosened railroad price regula-
tion, which effectively legalized price discrimination. My point estimate increases slightly
for this subset of plants that could not have influenced their rail captiveness; had this
coefficient attenuated and lost significance, that would have indicated a likely violation
of my identifying assumption for τ̂ . Finally Columns (4)–(5) perform sensitivity analysis
on my (interacted) regression weights. Column (4) uses only nearest-neighbor weights
and treats large and small coal shipments equally; Column (5) uses only shipment-size
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weights and includes all 190 coal plants from Figure 1.5.4. In both cases, my point esti-
mate change only slightly.

Table A.5.13: Markup Levels – Sensitvity to Alternative Fixed Effects

(1) (2) (3) (4) (5) (6)

1[Captive]j 2.301∗∗∗ 2.135∗∗∗ 1.652∗∗∗ 2.220∗∗∗ 2.224∗∗∗ 1.558∗∗

(0.655) (0.666) (0.628) (0.663) (0.656) (0.630)

k nearest neighbors 3 3 3 3 3 3

Balanced panel Yes Yes Yes Yes Yes Yes
Coal county FEs Yes Yes Yes Yes
County time trends Yes
County × plant region FEs Yes Yes
Month-of-sample FEs Yes Yes Yes
Month × shipment type FEs Yes
Month × coal rank FEs Yes Yes
Mean of dep var 36.85 36.85 36.85 36.85 36.85 36.85
Plants 127 127 127 127 127 127
Captive plants 61 61 61 61 61 61
Observations 77,115 77,115 77,105 77,115 77,115 77,105

Notes: This table is identical to Table 1.6.2 from the main text, except that it uses alternative fixed
effects. Column (1) reproduces my preferred specification (Column (5) of Table 1.6.2), which uses orig-
inating county fixed effects and month-of-sample fixed effects. County-by-plant region fixed effects sub-
sume county fixed effects. Likewise, month-by-shipment type (i.e. contract vs. spot) and month-by-coal
rank fixed effects each subsume month-of-sample fixed effects. Standard errors are clustered by plant.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table A.5.14: Markup Levels – Sensitvity to Split Samples

Split by Coal Grade Removing Plants in Region
Bituminous Sub-bituminous West Midwest South/East

(1) (2) (3) (4) (5)

1[Captive]j 3.866∗∗∗ 1.450∗∗ 1.690∗∗ 1.564∗∗ 2.125∗∗∗

(0.784) (0.690) (0.780) (0.682) (0.682)

k nearest neighbors 3 3 3 3 3

Balanced panel Yes Yes Yes Yes Yes
Mean of dep var 54.12 23.43 49.55 37.57 28.48
Plants 87 73 89 68 97
Captive plants 32 37 39 39 44
Observations 43,703 32,807 58,376 46,949 48,896

Notes: This table is identical to Table 1.6.2 from the main text, except that it splits the sample by
coal rank and plant region. Column (1) includes only shipments of bituminous coal, while Column (2)
includes only sub-bituminous coal. Columns (3)-(5) each remove plants from a given coal region, using
the same regional definitions as in Table 1.6.5. Standard errors are clustered by plant. Significance: ***
p < 0.01, ** p < 0.05, * p < 0.10.

Table A.5.15: Markup Levels – Additional Sensitivities

Preferred
specification

Matching
≤ 100 miles

Pre-1980
plants

No shipment
size weights

No nearest
neighbor wts

(1) (2) (3) (4) (5)

1[Captive]j 2.301∗∗∗ 1.548∗∗ 2.483∗∗∗ 2.218∗∗∗ 2.398∗∗∗

(0.655) (0.671) (0.710) (0.682) (0.707)

k nearest
neighbors 3 3 3 3

Balanced panel Yes Yes Yes Yes Yes
Mean of dep var 36.85 43.24 36.67 45.46 39.17
Plants 127 109 105 127 190
Captive plants 61 50 49 61 91
Observations 77,115 67,610 66,913 78,487 116,477

Notes: This table is identical to Table 1.6.2 from the main text, except that it conducts four sensitivities.
Column (1) reproduces my preferred specification (Column (5) of Table 1.6.2). Column (2) restricts the
sample of nearest-neighbor matches to be less than 100 miles apart. Column (3) restricts the sample to
plants build prior to the 1980 Staggers Act, which loosened railroad price regulation. While my preferred
specification weights by the product of nearest-neighbor weights and shipment size, Columns (4)-(5) each
remove one of those weights. Column (4) uses nearest-neighbor weights but counts each observation
equally, regardless of shipment size. Column (5) weights by shipment size but ignores nearest-neighbor
weights (i.e., including all filled and hollow plants represented in Figure 1.5.4). Standard errors are
clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.



194

A.5.3 Markup Changes, Captiveness Only

I estimate markup changes by interacting the Henry Hub natural gas price (ZHH
m ) with

Mj, a theoretically informed predictor of how plant j’s markups should change with the
gas price. However, given that markup levels are higher for captive plants, it is natural
to ask how markups change differentially for captive vs. non-captive plants. I estimate
the following lag difference-in-differences specification:

Pojms = τDj · ZHH
m−L +

L−1∑
`=0

τ`Dj ·∆ZHH
m−` . . .

+ βCCojms + S(Tojms ; βT ) + βXXjm + ηoj + δm + εojms(A.38)

This specification is identical to Equation (1.9) from the main text, after replacing the
continuous predictor Mj with the binary captiveness indicator Dj.

Table A.5.16 reports results for the cumulative effect of gas price changes on coal
markups, from estimating Equation (A.38) with L = 36 lags. This reveals no statistically
detectable changes in markups for captive plants relative to non-captive plants. Figure
A.5.19 plots lagged coefficients τ̂` for each regression in Table A.5.16, where τ̂` represents
the cumulative effect through ` months. The results are mostly imprecise across all 36
lags. While results with k = 1 nearest neighbors are sometimes negative and statistically
significant, they lose significance with additional lags and are not robust to k = 3 nearest
neighbors.89

The bottom-right histogram in Figure 1.5.6 illustrates the main reason why I fail to
detect differential markup changes between captive vs. non-captive plants. Markups have
changed for both groups of plants — there are many non-captive plants who likely also
experience markup changes. This means that the Dj = 0 group is not “uncontaminated”
by market power, and Equation (A.38) compares plants facing effective rail monopolies
(Dj = 1) to plants facing effective rail duopolies (Dj = 0).90 Based solely on the distribu-
tion ofMj, many captive plants should have seen only small markup changes, while many
non-captive plants should have experienced relatively large markup changes. Hence, my
preferred difference-in-difference specification uses Mj as the cross-sectional component,
which incorporates for variation in plants’ demand sensitivity, aligns more closely with
my oligopoly model.

89Negative point estimates would suggest that rail carriers responded to a negative demand shock
by raising markups to increase profits in coal shipping, which theory predicts should occur only if coal
demand is very convex or if the fracking boom decreased the elasticity of coal demand. My demand
estimates in Figure 1.5.6 reveal that neither of these conditions is likely to hold.

90In principle, I could use non-captive plants with a water delivery option as a comparison group, as
these plants enjoy the most competitive shipping regimes. Unfortunately, this regression would be under-
powered: too few captive plants have matchable non-captive plants that are also located on navigable
waterways.
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Table A.5.16: Markup Difference in Differences – Captiveness Interacted with Gas Price

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

1[Captive]j × (Gas Price)m −0.174 0.162 −0.141 0.276 −1.035 −0.799

(0.439) (0.289) (0.422) (0.291) (0.995) (0.757)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 39.86 36.83 39.34 36.30 44.25 40.64
Plants 97 127 95 125 87 117
Plant-county-months 27,392 36,980 23,010 30,813 7,272 10,105
Observations 58,062 76,927 45,883 60,406 12,090 16,399

Notes: Each regression estimates Equation (A.38) at the coal shipment level, with delivered coal price ($
per short ton) as the dependent variable. These regressions are identical to Table 1.6.4, except that they
replaceMj with the binary captiveness indicator Dj . This table reports estimates for τ̂ , or the cumulative
effects over L = 36 months. Figure A.5.19 plots each lagged coefficient τ̂`, which reports the cumulative
effect through ` months. Matching criteria: up to k nearest neighbors within a 200-mile radius; exact
matches on coal rank; and removing non-utility and non-rail plants. Regressions apply nearest-neighbor
weights, and also weight each observation by the quantity of coal transacted. Balanced panels include
plants receiving at least 1 shipment in each sample year (2002–2015). I report means of the dependent
variable for non-captive plants only. Standard errors are clustered by plant. Significance: *** p < 0.01,
** p < 0.05, * p < 0.10.
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Figure A.5.19: Markup Changes – Cumulative Effects, Captiveness Only
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Notes: Each panel corresponds to a column in Table A.5.16, which reports τ̂ only (i.e. the rightmost point
in each graph). Each coefficient estimates the interaction of the rail captiveness indicator (Dj) with the
`-month lagged difference in natural gas prices (∆ZHHm−`), such that each dot represents the cumulative
effect through ` months. Whiskers denote 95 percent confidence intervals for each point estimate, with
standard errors clustered by plant.
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A.5.4 Markup Changes

A.5.4.1 Additional Results

Here, I present results omitted from the main text for the sake of brevity. Figure A.5.20
plots the lagged coefficients τ̂` for each split sample regression in Table 1.6.5. These
plots confirm that bituminous coal and plants in the South/East contribute most of my
estimated markups changes. While the sub-bituminous coal estimates in the top-right
panel only gain significance after 36 months, the steady upward trend in cumulative
effects suggests that the cumulative effects may continue to grow with additional lags.91

Two factors likely explain why sub-bituminous markups change less than bituminous
markups due to gas price changes. First, sub-bituminous coal prices are much lower on
average ($22/ton in my sample, compared to $48/ton for bituminous coal), and I estimate
small markup levels for sub-bituminous coal (see Table A.5.14). Hence, lower delivered
prices and lower markups should translate to small changes in markup levels. Second,
the western rail network is relatively sparse, and sub-bituminous shipping routes from
Wyoming’s Powder River Basin may be more likely to face binding rate regulation, which
would limit Mj’s predictive power.

In Section 1.6.2 of the main text, I report results for balanced panels only.92 Table
A.5.17, Figure A.5.21, and Table A.5.18 report the same results as Table 1.6.4, Figure
1.6.7, and Table 1.6.6, respectively. This reveals that my estimates for markup changes
are not sensitive to the removal of retiring coal plants. However, my preferred estimates
(from the main text) exclude these plants, as they are no longer relevant for future policy
projections.

Finally, Tables A.5.19–A.5.20 report results that are analogous to Table 1.6.4, except
that the dependent variable is in units of $/MMBTU rather than $/ton. As expected,
these point estimates are roughly 1/20 the magnitude of those in Table 1.6.4, reflecting the
average MMBTU-to-ton conversion rate. Tables A.5.19–A.5.20 use consistent units across
Pojms andMj, and these point estimates serve as inputs into my pass-through estimates in
Table 1.7.7 (and Tables A.5.37–A.5.39 below). However, these estimates may misspecify
transportation costs, which depend on coal’s weight rather than its energy content. Hence,
my preferred specifications use an outcome variable in units of $/ton.

91Indeed, cumulative effects for sub-bituminous coal increase in magnitude and remain statistically
significant, for L = 48 lags.

92Recall that what I refer to as a “balanced” panel is not fully balanced, because not every plant
purchases coal every month.
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‘

Figure A.5.20: Contract Shipments & Split Samples, Cumulative Effects
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Notes: This figure plots 36 lag-differenced DD coefficient estimates (τ̂0, . . . , τ̂35) and τ̂ , from 5 separate
regressions of Equation (1.9) with L = 36 lags. Each panel corresponds to a column in Table 1.6.5 in the
main text, which reports τ̂ only (i.e. the rightmost point in each graph). Each coefficient estimates the
interaction of Mj with the `-month lagged difference in natural gas prices (∆ZHHm−`), such that each dot
represents the cumulative effect through ` months. Whiskers denote 95 percent confidence intervals for
each point estimate, with standard errors clustered by plant. See the notes below Table 1.6.5 for further
details on the estimation.
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Table A.5.17: Markup Changes – Sensitivity to Unbalanced Panel

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

( ̂∆Markup)j × (Gas Price)m 1.284∗∗∗ 1.031∗∗ 1.450∗∗∗ 1.351∗∗∗ 1.348 0.301
(0.422) (0.398) (0.315) (0.301) (1.040) (0.807)

k nearest neighbors 1 3 1 3 1 3

Balanced panel
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 33.70 34.51 32.45 33.36 42.11 41.88
Plants 135 177 131 173 120 160
Plant-county-months 31,159 42,774 25,997 35,533 8,153 11,367
Observations 64,022 85,788 50,392 67,368 13,513 18,262

Notes: This table is identical to Table 1.6.4, except that each regression uses the full (unbalanced) panel
of coal plants. I report estimates for τ̂ , or the cumulative effects over L = 36 months. Figure A.5.21
plots each lagged coefficient τ̂`, which reports the cumulative effect through ` months. I report means of
the dependent variable for plants with Mj = 0. Standard errors are clustered by plant. Significance: ***
p < 0.01, ** p < 0.05, * p < 0.10.
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Figure A.5.21: Markup Changes – Cumulative Effects, Sensitivity to Unbalanced Panel
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Notes: This figure plots 36 lag-differenced DD coefficient estimates (τ̂0, . . . , τ̂35) and τ̂ , for each regression
in Table A.5.17. It is analogous to Figure 1.6.7 from the main text.
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Table A.5.18: Markup Changes – Quantiles of ̂∆Markup, Unbalanced Panel

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

1

[
Mj∈(0.22, 0.35]

]
×(GasPrice)m 0.010 −0.082 0.201 0.198 −0.844∗ −1.363∗∗

(0.206) (0.181) (0.207) (0.178) (0.488) (0.623)

1

[
Mj∈(0.35, 0.52]

]
×(GasPrice)m 0.236 0.081 0.458∗ 0.393∗ −0.328 −1.046∗

(0.231) (0.200) (0.236) (0.209) (0.443) (0.564)

1

[
Mj∈(0.52, 0.70]

]
×(GasPrice)m 0.667∗∗ 0.474∗∗ 0.692∗∗∗ 0.589∗∗∗ 0.864 0.121

(0.270) (0.238) (0.249) (0.212) (0.791) (0.905)

1

[
Mj∈(0.70, 2.00]

]
×(GasPrice)m 1.203∗∗ 0.914∗∗ 1.362∗∗∗ 1.190∗∗∗ 1.074 −0.128

(0.492) (0.366) (0.462) (0.358) (1.054) (0.920)

k nearest neighbors 1 3 1 3 1 3

Balanced panel
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 31.84 35.18 31.07 34.88 34.46 36.26
Plants 135 177 131 173 120 160
Plant-county-months 31,159 42,774 25,997 35,533 8,153 11,367
Observations 64,022 85,788 50,392 67,368 13,513 18,262

Notes: This table is identical to Table 1.6.6, except that each regression uses the full (unbalanced) panel
of coal plants. I report estimates for τ̂ , or the cumulative effects over L = 36 months. I report means of
the dependent variable for the omitted group of plants, with Mj ≤ 0.22. Standard errors are clustered
by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table A.5.19: Markup Changes – Quantiles of ̂∆Markup, $/MMBTU, Balanced Panel

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

1

[
Mj∈(0.22, 0.35]

]
×(GasPrice)m 0.002 −0.001 0.013 0.014 −0.041 −0.060∗

(0.011) (0.010) (0.011) (0.009) (0.027) (0.031)

1

[
Mj∈(0.35, 0.52]

]
×(GasPrice)m 0.013 0.007 0.026∗∗ 0.023∗∗ −0.017 −0.044∗

(0.011) (0.010) (0.011) (0.010) (0.022) (0.026)

1

[
Mj∈(0.52, 0.70]

]
×(GasPrice)m 0.033∗∗ 0.026∗∗ 0.036∗∗∗ 0.033∗∗∗ 0.042 0.015

(0.013) (0.011) (0.011) (0.010) (0.036) (0.040)

1

[
Mj∈(0.70, 2.00]

]
×(GasPrice)m 0.062∗∗∗ 0.049∗∗∗ 0.071∗∗∗ 0.063∗∗∗ 0.061 0.010

(0.021) (0.017) (0.021) (0.016) (0.049) (0.043)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 1.58 1.69 1.53 1.67 1.74 1.77
Plants 94 124 92 122 85 115
Plant-county-months 26,060 35,651 22,000 29,806 6,796 9,630
Observations 56,219 75,089 44,651 59,178 11,487 15,797

Notes: This table is identical to Table 1.6.6, except that it uses coal prices in dollars per MMBTU (i.e.
coal’s value to power plants as a fuel), rather than dollars per ton (i.e. coal’s value to freight shippers). I
report estimates for τ̂ , or the cumulative effects over L = 36 months, and I use these point estimates to
construct pass-through rates in Tables 1.7.7 and A.5.37. I report means of the dependent variable for the
omitted group of plants, with Mj ≤ 0.22. Balanced panels include plants receiving at least 1 shipment
in each sample year (2002–2015). Standard errors are clustered by plant. Significance: *** p < 0.01, **
p < 0.05, * p < 0.10.
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Table A.5.20: Markup Changes – Quantiles of ̂∆Markup, $/MMBTU, Unbalanced

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

1

[
Mj∈(0.22, 0.35]

]
×(GasPrice)m −0.000 −0.004 0.010 0.010 −0.044∗ −0.065∗∗

(0.011) (0.010) (0.011) (0.010) (0.027) (0.031)

1

[
Mj∈(0.35, 0.52]

]
×(GasPrice)m 0.011 0.004 0.023∗∗ 0.019∗ −0.021 −0.049∗

(0.011) (0.010) (0.011) (0.010) (0.022) (0.025)

1

[
Mj∈(0.52, 0.70]

]
×(GasPrice)m 0.029∗∗ 0.021∗ 0.032∗∗∗ 0.027∗∗∗ 0.034 0.006

(0.013) (0.011) (0.012) (0.010) (0.035) (0.039)

1

[
Mj∈(0.70, 2.00]

]
×(GasPrice)m 0.055∗∗ 0.042∗∗∗ 0.064∗∗∗ 0.056∗∗∗ 0.046 −0.002

(0.022) (0.016) (0.020) (0.016) (0.047) (0.041)

k nearest neighbors 1 3 1 3 1 3

Balanced panel
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 1.59 1.70 1.54 1.67 1.76 1.79
Plants 135 177 131 173 120 160
Plant-county-months 31,159 42,774 25,997 35,533 8,153 11,367
Observations 64,022 85,788 50,392 67,368 13,513 18,262

Notes: This table is identical to Table A.5.18, except that it uses coal prices in dollars per MMBTU (i.e.
coal’s value to power plants as a fuel), rather than dollars per ton (i.e. coal’s value to freight shippers). I
report estimates for τ̂ , or the cumulative effects over L = 36 months, and I use these point estimates to
construct pass-through rates in Tables A.5.38 and A.5.39. I report means of the dependent variable for
the omitted group of plants, with Mj ≤ 0.22. Standard errors are clustered by plant. Significance: ***
p < 0.01, ** p < 0.05, * p < 0.10.
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A.5.4.2 Specification Robustness

In this section, I test my difference-in-differences results for sensitivity to the specification
of Equation (1.9). I report sensitivities for the pooled estimates in Table 1.6.4, and
sensitivity results are similar for estimates that discretize Mj into quintiles (as in Table
1.6.6).

My main specification estimates markup changes using L = 36 monthly lags. However,
this number is arbitrary, as I have no reason to believe that railroads should adjust
markups in three-year intervals. Here, I show that my results are consistent if I use
L = 24 lags (Table A.5.21 and Figure A.5.22) or L = 48 lags (Table A.5.22 and Figure
A.5.23). Allowing for effects to accumulate into a fourth year increases my effect sizes,
while demonstrating that decreases to markups are quite persistent.

Figure A.5.24 converts my main specification into the style of an event study. Rather
than control for lagged changes to the gas price, these estimates interactMj with quarter-
of-sample dummies in the following specification (indexing quarters by q):

Pojms =
∑
q

τqMj · 1[m ∈ q] . . .

+ βCCojms + S(Tojms ; βT ) + βXXjm + ηoj + δm + εojms(A.39)

These plots reveal a level shift in point estimates after 2010 which parallels the decrease
in gas prices (in light blue)—as gas prices fell, markups differentially fell for plant with
higher Mj. High point estimates in the 6 months following the 2008 gas price spike are
consistent with the 6-month lag in markup changes from Figure 1.6.7. The vertical height
of the dark blue point estimates is not meaningful in these event study figures, as they
are calibrated to an arbitrary omitted bin; the purpose of these plots is illustrate how
changes in these point estimates align with variation in the gas price time series.

Equation (1.9) controls for origin-by-destination fixed effects, which subsume coal
country fixed effects and plant fixed effects. However, by controlling for the average price
within each route, my estimates cannot capture changes to the composition of plant routes.
It is possible that the average markup on a given oj route has changed, but the prices
that plant j receives have not changed (if plant j now purchases coal from a different
county o). Table A.5.23 and Figure A.5.25 report results from estimating Equation (1.9)
with separate (uninteracted) county and plant fixed effects. These point estimates are
slightly larger in magnitude, which suggests that in addition to decreasing coal markups
along individual oj routes, low gas prices may have incentivized coal plants to seek out
less expensive coal shipments from other counties.
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Table A.5.21: Markup Changes – Sensitivity to L = 24 Lags

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

( ̂∆Markup)j × (Gas Price)m 1.414∗∗∗ 1.203∗∗∗ 1.541∗∗∗ 1.471∗∗∗ 1.669∗ 0.690
(0.425) (0.418) (0.353) (0.346) (0.986) (0.799)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 33.27 34.20 32.07 33.04 41.76 41.39
Plants 94 124 92 122 85 115
Plant-county-months 26,060 35,651 22,000 29,806 6,796 9,630
Observations 56,219 75,089 44,651 59,178 11,487 15,797

Notes: This table is identical to Table 1.6.4, except that each regression uses L = 24 monthly lags rather
than L = 36 monthly lags. Figure A.5.22 plots each lagged coefficient τ̂`, which reports the cumulative
effect through ` months. I report means of the dependent variable for plants with Mj = 0. Standard
errors are clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

Table A.5.22: Markup Changes – Sensitivity to L = 48 Lags

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

( ̂∆Markup)j × (Gas Price)m 1.599∗∗∗ 1.263∗∗∗ 1.877∗∗∗ 1.730∗∗∗ 1.429 0.362
(0.481) (0.470) (0.331) (0.309) (1.010) (0.908)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 33.27 34.20 32.07 33.04 41.76 41.39
Plants 94 124 92 122 85 115
Plant-county-months 26,060 35,651 22,000 29,806 6,796 9,630
Observations 56,219 75,089 44,651 59,178 11,487 15,797

Notes: This table is identical to Table 1.6.4, except that each regression uses L = 48 monthly lags rather
than L = 36 monthly lags. Figure A.5.23 plots each lagged coefficient τ̂`, which reports the cumulative
effect through ` months. I report means of the dependent variable for plants with Mj = 0. Standard
errors are clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.



206

‘

Figure A.5.22: Markup Changes – Cumulative Effects, Sensitivity to L = 24 Lags
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Notes: This figure plots 24 lag-differenced DD coefficient estimates (τ̂0, . . . , τ̂23) and τ̂ , for each regression
in Table A.5.21. It is analogous to Figure 1.6.7 from the main text.



207

‘

Figure A.5.23: Markup Changes – Cumulative Effects, Sensitivity to L = 48 Lags
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Notes: This figure plots 48 lag-differenced DD coefficient estimates (τ̂0, . . . , τ̂47) and τ̂ , for each regression
in Table A.5.22. It is analogous to Figure 1.6.7 from the main text.
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Figure A.5.24: Markup Changes – Event-Study Style Plot
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Notes: This figure converts Equation (1.9) from a lagged difference-in-differences specification into an
event-study style specification (Equation (A.39)). Instead of including monthly lags of the gas price,
I interact Mj with quarter-of-sample dummies, and plot these coefficients against the gas price time
series (in light blue). The vertical height of the dark blue point estimates is not meaningful, as they are
calibrated to an arbitrary omitted bin (quarter 3 of 2008, the last quarter of high gas prices). Panels
correspond to Columns (1)–(4) of Table 1.6.4, using a balanced panel of plants. Standard errors are
clustered by plant, and whiskers denote 95 percent confidence intervals.

As with any panel fixed effects regression, time-varying unobservables have the po-
tential to bias my estimates of τ̂ in Equation (1.9). Table A.5.24 and Figure A.5.26
interact month-of-sample fixed effects with coal basin fixed effects, which has little effect
on my results.93 This suggests that time-varying unobservables related to differences in
regional coal markets are unlikely to bias my point estimates. Table A.5.25 and Figure
A.5.27 interact month-of-sample fixed effects with fixed effects for each plant’s electricity
market region, which also has little effect on my results. This shows that time-varying
confounders related to differences in regional electricity markets are similarly unlikely.

93I define 8 coal basins, following EIA’s coal mine datasets: Northern Appalachia, Central Appalachia,
Southern Appalachia, Illinois Basin, Interior, Powder River Basin, Uinta Region, and Western.
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Figures A.5.28 –A.5.29 plots pre-fracking trends in delivered coal prices, revealing that
my assumption of parallel trends broadly holds across different quintiles of Mj.

‘

Figure A.5.25: Markup Changes – Cumulative Effects, Sensitivity to County + Plant FEs
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Notes: This figure plots 36 lag-differenced DD coefficient estimates (τ̂0, . . . , τ̂35) and τ̂ , for each regression
in Table A.5.23. It is analogous to Figure 1.6.7 from the main text.
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Table A.5.23: Markup Changes – Sensitivity to Separate County + Plant Fixed Effects

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

( ̂∆Markup)j × (Gas Price)m 1.460∗∗∗ 1.182∗∗∗ 1.603∗∗∗ 1.518∗∗∗ 2.141∗∗ 1.086
(0.404) (0.434) (0.307) (0.325) (1.001) (0.932)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant FEs Yes Yes Yes Yes Yes Yes
Coal county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 33.31 34.25 32.11 33.08 41.89 41.47
Plants 94 124 92 122 86 116
Plant-county-months 26,185 35,834 22,083 29,933 6,903 9,785
Observations 56,344 75,272 44,734 59,305 11,594 15,952

Notes: This table is identical to Table 1.6.4, except that it uses separate uninteracted county and plant
fixed effects, rather than interacted county-by-plant fixed effects. I report estimates for τ̂ , or the cu-
mulative effects over L = 36 months. Figure A.5.25 plots each lagged coefficient τ̂`, which reports the
cumulative effect through ` months. I report means of the dependent variable for plants with Mj = 0.
Standard errors are clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

Table A.5.24: Markup Changes – Sensitivity to Basin-by-Month Fixed Effects

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

( ̂∆Markup)j × (Gas Price)m 0.987∗∗∗ 1.072∗∗∗ 1.498∗∗∗ 1.677∗∗∗ −0.461 −0.991
(0.308) (0.332) (0.276) (0.306) (0.759) (0.673)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month × basin FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 33.26 34.19 32.07 33.03 41.13 41.21
Plants 94 124 92 122 85 115
Plant-county-months 25,996 35,587 21,925 29,732 6,644 9,497
Observations 56,155 75,025 44,576 59,104 11,335 15,664

Notes: This table is identical to Table 1.6.4, except that it interacts month-of-sample fixed effects with coal
basin fixed effects. I report estimates for τ̂ , or the cumulative effects over L = 36 months. Figure A.5.26
plots each lagged coefficient τ̂`, which reports the cumulative effect through ` months. I report means of
the dependent variable for plants with Mj = 0. Standard errors are clustered by plant. Significance: ***
p < 0.01, ** p < 0.05, * p < 0.10.
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Figure A.5.26: Markup Changes – Cumulative Effects, Sensitivity to Basin-by-Month FEs
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Notes: This figure plots 36 lag-differenced DD coefficient estimates (τ̂0, . . . , τ̂35) and τ̂ , for each regression
in Table A.5.24. It is analogous to Figure 1.6.7 from the main text.
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Table A.5.25: Markup Changes – Sensitivity to Market Region-by-Month Fixed Effects

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

( ̂∆Markup)j × (Gas Price)m 1.260∗∗∗ 1.238∗∗∗ 1.435∗∗∗ 1.533∗∗∗ 0.530 −0.400
(0.369) (0.339) (0.327) (0.331) (0.965) (0.818)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month × plant region FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 33.27 34.20 32.07 33.04 41.20 40.91
Plants 94 124 92 122 85 115
Plant-county-months 26,018 35,609 21,958 29,764 6,693 9,530
Observations 56,177 75,047 44,609 59,136 11,384 15,697

Notes: This table is identical to Table 1.6.4, except that it interacts month-of-sample fixed effects with
fixed effects for each electricity market region (i.e. ISO or NERC region). I report estimates for τ̂ , or the
cumulative effects over L = 36 months. Figure A.5.27 plots each lagged coefficient τ̂`, which reports the
cumulative effect through ` months. I report means of the dependent variable for plants with Mj = 0.
Standard errors are clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Figure A.5.27: Markup Changes – Cumulative Effects, Region-by-Month FEs
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Notes: This figure plots 36 lag-differenced DD coefficient estimates (τ̂0, . . . , τ̂35) and τ̂ , for each regression
in Table A.5.25. It is analogous to Figure 1.6.7 from the main text.
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Figure A.5.28: Pre-Trends in Delivered Coal Prices (Raw Coal Prices)
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Notes: This figures reports annual average delivered coal prices for 1994–2002, for six groups of coal
plants: the five quintiles of the positive support of Mj (four of which are reported in Table 1.6.6); and
a sixth group of plants with Mj ≤ 0 (the omitted comparison group in Table 1.6.6, along with the
quintile 1). The outcome variable is raw average annual coal prices for plants in each group. The left
column uses an unbalanced panel of plants, while the right column includes only the 2002–2015 balanced
panel. I impose no additional sample restrictions to account for missing plant-years prior to 2002. Some
group-years contain very few observations (most notably for the Mj ≤ 0 group in 2000), which generate
yearly deviations from trend that are not persistent. The top row does not weight plants; the middle and
bottom rows apply nearest-neighbor weights.
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Figure A.5.29: Pre-Trends in Delivered Coal Prices (Residualized Prices)
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Notes: This figures reports annual average delivered coal prices for 1994–2002, for six groups of coal
plants: the five quintiles of the positive support of Mj (four of which are reported in Table 1.6.6); and a
sixth group of plants with Mj ≤ 0 (the omitted comparison group in Table 1.6.6, along with the quintile
1). The outcome variable is average annual prices after partialing out all right-hand-side variables in
Equation (1.9) other than theMj interactions. The left column uses an unbalanced panel of plants, while
the right column includes only the 2002–2015 balanced panel. I impose no additional sample restrictions
to account for missing plant-years prior to 2002. Some group-years contain very few observations (most
notably for theMj ≤ 0 group in 2000), which generate yearly deviations from trend that are not persistent.
The top row does not weight plants; the middle and bottom rows apply nearest-neighbor weights.
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My preferred difference-in-differences specification (Equation (1.9)) interacts the cross-
sectional predictor Mj with the time series of Henry Hub natural gas spot price ZHH

m−`.
However, natural gas prices vary cross-sectionally due to regional heterogeneity in both
proximity to gas production and pipeline capacity (see Appendix A.2.5). I prefer a pure
time series of gas prices for econometric identification—localized changes in the gas price
could reflect differential competitiveness of coal across regions, which could introduce a
time-varying confounder in a manner similar to bad controls.94 Table A.5.26 and Figure
A.5.30 replace ZHH

m−` with state-specific average monthly gas prices for the electric power
sector (from EIA’s Electric Power Monthly). This has little effect on my results.

Table A.5.26: Markup Changes – Sensitivity to State-Specific Gas Prices

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

( ̂∆Markup)j × (Gas Price)m 1.185∗∗∗ 1.150∗∗∗ 1.243∗∗∗ 1.443∗∗∗ 1.771 0.656
(0.367) (0.437) (0.268) (0.324) (1.341) (1.224)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 35.50 37.05 34.12 35.47 46.72 48.90
Plants 91 121 90 120 79 106
Plant-county-months 19,926 26,924 16,856 22,743 4,922 6,773
Observations 42,012 55,337 33,874 44,552 8,066 10,683

Notes: This table is identical to Table 1.6.4, except that it replaces the pure time series of Henry Hub
natural gas spot prices (ZHHm−` from Equation (1.9)) with state-specific average monthly gas prices. These
are state-by-month average prices of natural gas delivered to the Electric Power Sector, from EIA’s
Electric Power Monthly (see Appendix A.2.1.2). I report estimates for τ̂ , or the cumulative effects over
L = 36 months. Figure A.5.30 plots each lagged coefficient τ̂`, which reports the cumulative effect through
` months. I report means of the dependent variable for plants withMj = 0. Standard errors are clustered
by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

94For example, consider two electricity market regions with both coal and gas generation. In Region A,
coal generators are extremely efficient and would face little competitive pressure from low gas prices; in
Region B, coal generators are less efficient and are likely to become marginal as gas prices fall. A negative
shock to the Henry Hub gas price could increase gas demand in Region B and weaken the effect on of
the negative shock on localized gas prices in that region. In this scenario, using regionally differentiated
gas prices could introduce positive correlation between τ̂ and the error term.
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Figure A.5.30: Markup Changes – Cumulative Effects, State-Specific Gas Prices
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Notes: This figure plots 36 lag-differenced DD coefficient estimates (τ̂0, . . . , τ̂35) and τ̂ , for each regression
in Table A.5.26. It is analogous to Figure 1.6.7 from the main text.
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Tables A.5.27–A.5.31 conduct sensitivities analogous to those reported above in Ap-
pendix A.5.2.95 Table A.5.27 shows that my estimates for markup changes are not sensitive
to the definition of “route unconnectedness” or the subset of shipping routes that I use to
define rail captiveness. Likewise, Columns (1)–(2) of Table A.5.28 show that my estimates
are not sensitive to my 6.6-mile threshold for “node unconnectedness”. However, a cap-
tiveness definition based solely on proximity to rail nodes cannot capture the full effect of
heterogeneous railroad market power (see Column (6) of Table A.5.27, and Columns (3)–
(4) of Table A.5.28). Table A.5.29 shows that my estimates are not sensitive to controls
for coal commodity costs in Cojms, while Table A.5.30 shows that they are not sensitive
to shipping cost controls in S(Tojms). Finally, Table A.5.31 shows that my results are
robust to: a stricter nearest-neighbor distance threshold (Column (2)); restricting the
sample to plants built prior to the 1980 Staggers Act (Column (3)); removing shipment
size weights and treating each observation (rather than each coal ton) equally (Column
(4)); and removing nearest-neighbor weights to include all plants represented in Figure
1.5.4 (Column (5), albeit with slightly attenuated magnitudes).

Table A.5.27: Markup Changes – Sensitivity to Definition of Captiveness

Unconnected across
all observed routes

Average
route

All
potential
routes

Only node
connected-

ness
(1) (2) (3) (4) (5) (6)

( ̂∆Markup)j×(GasPrice)m 1.187∗∗∗ 1.170∗∗∗ 1.191∗∗∗ 0.941∗∗ 1.190∗∗∗ 0.836∗

(0.408) (0.403) (0.404) (0.420) (0.407) (0.481)

k nearest neighbors 3 3 3 3 3 3

Balanced panel Yes Yes Yes Yes Yes Yes
Route unc. cutoff (miles) 300 150 600 300 300
Mean of dep var 34.20 34.25 33.73 32.95 34.26 36.12
Plants 124 126 124 129 123 117
Plant-county-months 35,651 36,890 35,714 35,343 35,613 34,131
Observations 75,089 76,966 75,396 72,339 75,062 70,444

Notes: This table is identical to Table 1.6.4, except that it uses alternative definitions for rail captiveness
to construct Mj . Column (1) uses my preferred definition described in Appendix A.3, reported in
Column (2) of Table 1.6.4. Columns (2)–(3) halve and double my preferred 300-mile threshold for route
unconnectedness. Column (4) weakens the definition of captiveness such that only a plant’s average
route need be unconnected (rather than all observed routes). Column (5) strengthens the definition of
captiveness to include all potential routes with observationally similar coal, even if I do not observe any
deliveries along such routes. Column (6) defines captiveness based on node (un)connectedness only. I
report means of the dependent variable for plants with Mj = 0, and regressions pool contract and spot
shipments. Standard errors are clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

95I report results only for the balanced panel with k = 3 nearest-neighbor matches; results are similar
for k = 1 nearest neighbors and for unbalanced panels. Please see Appendix A.5.2 for detailed descriptions
of how I modify my main specification for each of these sensitivity regressions.
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Table A.5.28: Markup Changes – Sensitivity to Definition of Captiveness

Unconnected across
all observed routes

Only node
connectedness

(1) (2) (3) (4)

( ̂∆Markup)j × (Gas Price)m 1.230∗∗∗ 0.889∗∗ 0.894∗ 0.594
(0.390) (0.341) (0.455) (0.392)

k nearest neighbors 3 3 3 3

Balanced panel Yes Yes Yes Yes
Route unc. cutoff (miles) 300 300
Node unc. cutoff (miles) 5 10 5 10
Mean of dep var 35.20 34.64 35.54 36.59
Plants 125 112 128 85
Plant-county-months 36,704 31,364 36,999 23,902
Observations 76,897 66,101 75,175 50,675

Notes: This table is identical to Table 1.6.4, except that it uses alternative definitions for
rail captiveness to constructMj (see description in Appendix A.3). My preferred definition
for node unconnecteness is 6.6 miles, which is the 95th percentile of plants’ distance to
nearest nodes. Columns (1) and (3) apply a 5-mile threshold for node unconnectedness,
while Columns (2) and (4) apply a 10-mile threshold for node unconnectedness. Columns
(3)–(4) define captiveness based on node (un)connectedness only, as in Column (6) of
Table A.5.27. I report means of the dependent variable for plants with Mj = 0, and each
regression pools both contract and spot shipments. Standard errors are clustered by plant.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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A.5.4.3 Estimation Error in Mj

My estimates for markup changes rely on Mj, which I construct using λ̂0j, λ̂1j and λ̂2j

estimates from my demand estimation algorithm. These means that measurement error
due to estimation error inMj may bias my empirical results. Classical measurement error
of this right-hand-side variable should bias my point estimates of τ̂ towards zero, making
it more difficult to detect differential changes in coal markups. I have no reason to suspect
that measurement error in Mj is non-classical.

My preferred estimates of markup changes exclude three coal plants with extremely low
or high values of Mj (specifically, two plants with Mj > 2 and one plant with Mj < −2).
These outliers almost certainly reflect estimation error in λ̂0j, λ̂1j and λ̂2j, as it is not plau-
sible that a $1/MMBTU change in gas prices will cause a change in coal markups greater
than $2/MMBTU—or $40 per ton of coal.96 If I reestimate Equation (1.9) including these
three plants, my point estimates for τ̂ attenuate and lose statistical significance. This is
not surprising, given that these Mj outliers have a strong influence over the (parametric)
linear relationship between Mj and Pojms. I report these results in Table A.5.32, which is
otherwise identical to Table 1.6.4 from the main text.

Table A.5.32: Markup Changes – Sensitivity to Extremely High/Low Mj

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

( ̂∆Markup)j × (Gas Price)m 0.413 0.482 0.430 0.584∗ 0.840 0.321
(0.442) (0.349) (0.437) (0.348) (0.808) (0.699)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 33.27 34.20 32.07 33.04 41.76 41.39
Plants 97 127 95 125 87 117
Plant-county-months 27,392 36,980 23,010 30,813 7,272 10,105
Observations 58,062 76,927 45,883 60,406 12,090 16,399

Notes: This table is identical to Table 1.6.4 from the main text, except that it includes 3 plants with
extreme values of Mj (i.e. |Mj |> 2). Balanced panels include plants receiving at least 1 shipment in each
sample year (2002–2015). I report means of the dependent variable for plants with Mj = 0. Standard
errors are clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

96These three plants are top-coded and bottom-coded in the bottom-right histogram of Figure 1.5.6.
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Figures A.5.31 and A.5.32 illustrate how including these three outlier plants attenuates
τ̂ . Residual plots in Figure A.5.31 correspond to Columns (1)–(4) in Table 1.6.4, excluding
the three outlier plants; black regression lines plot my point estimates for τ̂ , which are
each positive and statistically significant. Residual plots in Figure A.5.32 correspond to
Columns (1)–(4) in Table A.5.32, including the three outlier plants; these residuals are
color-coded such that blue circles denote observations that appear in Figure A.5.31, while
orange circles denote observations for the three outlier plants (less than 2 percent of total
weighted observations in each regression).97 Including plants with extreme values of Mj

doubles the support of right-hand-side residuals, and the horizontal axes in Figure A.5.32
extend from −8 to 8, rather than from −4 to 4.

Figure A.5.31: Residual Plots, Main Specification (Table 1.6.4)

Notes: This figure presents residual plots for Columns (1)–(4) in Table 1.6.4. Blue circles plot residuals
from Pojms and Mj × ZHHm−36, after partialing out all right-hand-side variables in Equation (1.9) except
Mj × ZHHm−36. Black lines plot the regression coefficients from Table 1.6.4. Each circle’s size scales with
its regression weight.

97The blue circles in Figures A.5.31 and A.5.32 are not identical, as they are residuals from differ-
ent Frisch-Waugh regressions. They represent an identical sample of observations across two sets of
regressions.
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Figure A.5.32: Residual Plots, Including Extremely High/Low Mj (Table A.5.32)

Notes: This figure presents residual plots for Columns (1)–(4) in Table A.5.32. Blue and orange circles
plot residuals from Pojms and Mj ×ZHHm−36, after partialing out all right-hand-side variables in Equation
(1.9) except Mj × ZHHm−36. Blue circles denote observations for plants with Mj ∈ [ − 2, 2], or the same
sample of observations that appear in Table 1.6.4 and Figure A.5.31. Orange circles denote observations
for the 3 plants with |Mj |> 2, which are included in Table A.5.32 only, representing less than 2 percent
of total observations. Gray lines plot regression coefficients from Table 1.6.4 and Figure A.5.32. Black
lines plot regression coefficients from Table A.5.32, illustrating how a few extreme values of Mj pull the
slopes of the regression lines toward zero. Each circle’s size scales with its regression weight.

Figure A.5.32 plots two sets of regression lines. Gray lines exclude the three outlier
plants, and are identical to the regression lines in Figure A.5.31; black lines include
the three outlier plants, and plot the coefficients in Table A.5.32. This illustrates how
extreme, high-leverage values of the orange residuals pull the slopes of the gray regression
lines towards zero.

I discretize the support of Mj into five indicator variables in Table 1.6.6 of the main
text, in order to recover more easily interpretable point estimates. This strategy also has
the advantage of releasing the parametric assumptions on Mj that attenuate my point
estimates in Table A.5.32 and Figue A.5.32. I apply the same strategy to the sample of
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plants including extreme values of Mj, and I report these results in Table A.5.33. While
these point estimates are attenuated, they retain (weak) statistical significance for the
4th and 5th quintiles. In other words, by treating plants with Mj = 5 and Mj = 0.8
equally (using an indicator variable), I reduce the leverage of extreme values of Mj and
recover point estimates that are consistent with my main results (albeit attenuated due
to additional measurement error). Table A.5.34 repeats this exercise with 48 lags (rather
than 36 lags), finding slightly larger (and more statistically significant) cumulative effects
including extreme values of Mj. Table A.5.35 adds two outer bins for extreme values of
Mj, which further increases the magnitude and significance of my estimated cumulative
effects with 48 lags.

Table A.5.33: Markup Changes – Quantiles of ̂∆Markup, Extremely Low/High Mj

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

1

[
Mj ∈ (0.22, 0.35]

]
×(Gas Price)m 0.021 −0.115 0.254 0.186 −0.870∗ −1.321∗∗

(0.220) (0.186) (0.212) (0.172) (0.489) (0.607)

1

[
Mj ∈ (0.35, 0.52]

]
×(Gas Price)m 0.132 −0.035 0.378∗ 0.285 −0.396 −1.017∗

(0.230) (0.200) (0.226) (0.197) (0.442) (0.534)

1

[
Mj ∈ (0.52, 0.70]

]
×(Gas Price)m 0.462∗ 0.268 0.486∗ 0.362∗ 0.819 0.186

(0.276) (0.238) (0.250) (0.199) (0.810) (0.887)

1

[
Mj ∈ (0.70, 5.07]

]
×(Gas Price)m 0.781∗ 0.585∗ 0.923∗∗ 0.819∗∗∗ 1.035 −0.017

(0.403) (0.298) (0.377) (0.279) (1.055) (0.928)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 30.47 34.35 29.70 34.04 33.55 35.54
Plants 97 127 95 125 87 117
Plant-county-months 27,392 36,980 23,010 30,813 7,272 10,105
Observations 58,062 76,927 45,883 60,406 12,090 16,399

Notes: This table is identical to Table 1.6.6, except that each regression includes plants with very
small/large values of Mj (i.e. |Mj |> 2). I report means of the dependent variable for the omitted group
of plants, withMj ≤ 0.22. Standard errors are clustered by plant. Significance: *** p < 0.01, ** p < 0.05,
* p < 0.10.
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Table A.5.34: Markup Changes – Quantiles of ̂∆Markup, Low/High Mj, 48 Lags

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

1

[
Mj ∈ (0.22, 0.35]

]
×(Gas Price)m 0.082 −0.032 0.206 0.097 0.302 0.117

(0.261) (0.209) (0.226) (0.185) (0.251) (0.275)

1

[
Mj ∈ (0.35, 0.52]

]
×(Gas Price)m −0.121 −0.216 0.082 −0.012 0.243 −0.236

(0.247) (0.217) (0.227) (0.204) (0.418) (0.424)

1

[
Mj ∈ (0.52, 0.70]

]
×(Gas Price)m 0.581∗ 0.443 0.676∗∗ 0.552∗ 1.190∗∗ 0.573

(0.342) (0.305) (0.333) (0.296) (0.496) (0.571)

1

[
Mj ∈ (0.70, 5.07]

]
×(Gas Price)m 0.908∗ 0.674∗ 1.079∗∗ 0.856∗∗ 1.017 0.104

(0.461) (0.350) (0.448) (0.345) (0.877) (0.727)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 30.47 34.35 29.70 34.04 33.55 35.54
Plants 97 127 95 125 87 117
Plant-county-months 27,392 36,980 23,010 30,813 7,272 10,105
Observations 58,062 76,927 45,883 60,406 12,090 16,399

Notes: This table is identical to Table A.5.33, except that each regression estimates cumulative effects
over 48 lags. Regressions include plants with very small/large values ofMj (i.e. |Mj |> 2). I report means
of the dependent variable for the omitted group of plants, with Mj ≤ 0.22. Standard errors are clustered
by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table A.5.35: Markup Changes – Quantiles of ̂∆Markup, 48 Lags, Outer Mj Bins

Both Types Contracts Spot Market
(1) (2) (3) (4) (5) (6)

1

[
Mj ∈ [−2.72,−2.00]

]
×(Gas Price)m −0.555 −0.592 −0.402 −0.677 0.000 0.000

(0.634) (0.443) (0.700) (0.459) (0.000) (0.000)

1

[
Mj ∈ (0.22, 0.35]

]
×(Gas Price)m 0.081 −0.018 0.211 0.115 0.276 0.084

(0.263) (0.211) (0.228) (0.185) (0.269) (0.287)

1

[
Mj ∈ (0.35, 0.52]

]
×(Gas Price)m −0.117 −0.192 0.094 0.020 0.215 −0.276

(0.253) (0.220) (0.230) (0.205) (0.441) (0.440)

1

[
Mj ∈ (0.52, 0.70]

]
×(Gas Price)m 0.602∗ 0.489 0.707∗∗ 0.611∗∗ 1.151∗∗ 0.517

(0.361) (0.316) (0.346) (0.301) (0.531) (0.599)

1

[
Mj ∈ (0.70, 2.00]

]
×(Gas Price)m 0.950∗ 0.727∗ 1.114∗∗ 0.924∗∗ 1.018 0.098

(0.498) (0.373) (0.487) (0.365) (0.871) (0.731)

1

[
Mj ∈ (2.00, 5.07]

]
×(Gas Price)m 1.167 1.310 1.588 1.760∗∗ 0.496 −0.990

(1.256) (0.840) (1.257) (0.826) (1.503) (1.549)

k nearest neighbors 1 3 1 3 1 3

Balanced panel Yes Yes Yes Yes Yes Yes
Plant × county FEs Yes Yes Yes Yes Yes Yes
Month-of-sample FEs Yes Yes Yes Yes Yes Yes
Mean of dep var 30.47 34.35 29.70 34.04 33.55 35.54
Plants 97 127 95 125 87 117
Plant-county-months 27,392 36,980 23,010 30,813 7,272 10,105
Observations 58,062 76,927 45,883 60,406 12,090 16,399

Notes: This table is identical to Table A.5.34, except that it includes extra bins for plants with very
small/large values of Mj . Each regression reports cumulative effects through 48 months. I report means
of the dependent variable for the omitted group of plants, with Mj ∈ (−2.00, 0.22]. Standard errors are
clustered by plant. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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I conduct a randomization inference test to estimate the likelihood of recovering the
same coefficient estimates if Mj were randomly assigned to plants. I scramble the vector
of Mj values across all plants in the balanced sample, reestimate Columns (3)–(4) of
Tables A.5.33–A.5.34 given these randomized values of Mj, and iterate these steps 1,000
times. Figures A.5.33–A.5.34 plot the resulting histograms of randomized coefficients for
quintiles 4–5 (i.e. Mj ∈ (0.52, 0.70] and Mj ∈ (0.70.5.07]). Red lines denote my actual
point estimates, for which Mj is correctly assigned to plant j. For all four quintile 5
(4) coefficients, the actual point estimates fall above the 99th (90th) percentiles of their
respective randomized distributions. This shows that it would be extremely unlikely to
recover statistically significant differential changes in markups by chance, and that Mj

carries a high degree of predictive power in spite of measurement error.

Figure A.5.33: Randomization Test – Contract Shipments, 36 Lags, Quintiles 4–5 of Mj
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Notes: This figure presents the results of a randomization test, where I reestimate Columns (3)–(4) in
Table A.5.33 after randomly scrambling the vector ofMj values across plants. I perform 1,000 independent
draws, where each iteration randomly assigns 190 values of Mj to the 190 utility-owned coal plants with
coal deliveries in each sample year (i.e. the 190 plants out of the 324 plants appearing in Figure 1.5.4, both
filled and hollow, that do not retire or go idle). Each iteration then estimates the identical regressions from
Columns (3)–(4), applying non-scrambled nearest-neighbor weights and including either 94 of 124 coal
plants, and storing the point estimates for quintiles 4 and 5 (i.e. Mj ∈ (0.52, 0.70] and Mj ∈ (0.70.5.07],
respectively). Red lines mark actual (non-randomized) point estimates from Table A.5.33 (i.e. 0.486,
0.923, 0.362, 0.819). Point estimates in the left column both fall above the 90th percentiles of their
respective randomized distributions. Point estimates in the both fall above the 99th percentiles of their
respective randomized distributions.
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Figure A.5.34: Randomization Test – Contract Shipments, 48 Lags, Quintiles 4–5 of Mj
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Notes: This figure presents the results of a randomization test, where I reestimate Columns (3)–(4) in
Table A.5.34 after randomly scrambling the vector ofMj values across plants. I perform 1,000 independent
draws, where each iteration randomly assigns 190 values of Mj to the 190 utility-owned coal plants
with coal deliveries in each sample year (i.e. the 190 plants out of the 324 plants appearing in Figure
1.5.4, both filled and hollow, that do not retire or go idle). Each iteration then estimates the identical
regressions from Columns (3)–(4), applying non-scrambled nearest-neighbor weights and including either
94 of 124 coal plants, and storing the point estimates for quintiles 4 and 5 (i.e. Mj ∈ (0.52, 0.70] and
Mj ∈ (0.70.5.07], respectively). Red lines mark actual (non-randomized) point estimates from Table
A.5.34 (i.e. 0.676, 1.079, 0.552, 0.856). Both point estimates in the left column are at the 95th percentiles
of their respective randomized distributions. Point estimates in the right column both both fall above
the 99th percentiles of their respective randomized distributions.
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Finally, I estimate two sets of alternative standard errors for Table A.5.33, in order to
account for estimation error in Mj. First, I block-bootstrap coal plants with replacement,
using 100 bootstrap iterations. Second, I estimate Equation (1.9) by simulating random
draws of Mj for each plant. I construct simulated distributions of Mj by iterating all
post-estimation steps of my demand estimation procedure, introducing random noise to
account for the prediction error from estimating P̃uh. I report these alternative standard
errors in Table A.5.36: parentheses denote standard errors clustered by plant (identical
to Table A.5.33); square brackets denote standard errors that are block-bootstrapped
by plant, treating Mj as fixed; curly braces denote bootstrapped standard errors from
simulating Mj independently for each plant, for each bootstrap iteration. These three
sets of standard errors are quite close, especially for contract shipments in quintiles 4 and
5. My results largely retain statistical significance, even after accounting for estimation
error in Mj.

To be precise, I construct the standard errors in curly braces using the following steps:

1. For 100 simulations, indexed by S:

a) Take one independent random normal draw for each plant j, in each month m.

b) Inflate each random normal draw by the hourly mean and standard error of
each P̃uh estimate, from Step 3 of my demand estimation procedure. This
introduces a correlated random disturbance into P̃uh for each unit u within
plant j, and for each hour h within month m (consistent with having clustered
by month in Equation (A.29)). It also scales the disturbance for each unit-
hour by the standard error from the nonlinear prediction of each P̃uh. Let P̃ S

uh

denote the simulate values of P̃uh.

c) Iterate Steps 4 and 5 of my demand estimation procedure for the vector of
simulated P̃ S

uh’s, to arrive a simulated values of λ̂S0j, λ̂S1j, and λ̂S2j.

2. For 1000 bootstrap iterations, indexed by B:

a) Construct a [J × 1] vector of bootstrapped Mj values (denoted MB
j ), by in-

dependently drawing triples {λ̂S0j, λ̂S1j, λ̂S2j} from the simulated distributions of
each plant j. (S is the same for each simulated λ̂S within each plant j, but S
is independent across plants.)

b) Estimate each regression in Table A.5.33, replacing Mj with MB
j .

c) Store the resulting τ̂B point estimates for quintiles 2–5.

3. Assign standard errors equal to the standard deviations of the distributions of stored
τ̂B estimates.
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A.5.5 Pass-Through Estimates

In Table 1.7.7 in the main text, I report implied carbon tax pass-through rates based on
my derivations from Appendix A.1.2 and my point estimates from Table A.5.19, for a
balanced panel of coal plants and k = 3 nearest-neighbor matches. Here, I report three
additional sets of pass-through estimates: (i) Table A.5.37 uses point estimates from a
balanced panel with k = 1 nearest neighbors (from Table A.5.19); (ii) Table A.5.38 uses
point estimates from an unbalanced panel with k = 3 nearest nearest neighbors (from
Table A.5.20); and (iii) Table A.5.39 uses point estimates from an unbalanced panel with
k = 1 nearest neighbors (from Table A.5.20). Pass-through rates are broadly consistent
across all four sets of estimates.

Table A.5.37: Pass-Through of Implied Carbon Tax (k = 1 Nearest Neighbors)

Plant Group (Quintile of Mj)
(1) (2) (3) (4) (5)

̂∆Markup (Mj) (−2.00, 0.22] (0.22, 0.35] (0.35, 0.52] (0.52, 0.70] (0.70, 2.00]

Share of plants 0.33 0.15 0.13 0.17 0.15

A. Fuel prices only
ρj , all shipments 1.00 0.99 0.94 0.87 0.76

[0.98, 1.00] [0.84, 0.97] [0.77, 0.93] [0.27, 0.87]
(0.87, 1.11) (0.85, 1.04) (0.78, 0.97) (0.60, 0.93)

ρj , contracts only 1.00 0.93 0.89 0.86 0.73
[0.84, 0.96] [0.67, 0.94] [0.75, 0.92] [0.18, 0.85]
(0.81, 1.05) (0.79, 0.98) (0.77, 0.95) (0.57, 0.88)

B. Fuel + environmental costs
ρj , all shipments 1.00 0.99 0.95 0.89 0.79

[0.98, 1.00] [0.86, 0.98] [0.79, 0.95] [0.39, 0.89]
(0.88, 1.10) (0.87, 1.03) (0.80, 0.97) (0.65, 0.94)

ρj , contracts only 1.00 0.94 0.90 0.88 0.76
[0.86, 0.97] [0.72, 0.95] [0.77, 0.95] [0.31, 0.87]
(0.83, 1.04) (0.81, 0.99) (0.80, 0.95) (0.63, 0.90)

Notes: This table is identical to Table 1.7.7 from the main text, except that I convert results from
Table A.5.19 using k = 1 nearest neighbors. Average pass-through rates are in bold, and square brackets
report the minimum and maximum pass-through rates for plants in each group. I report the 95 percent
confidence intervals for the average (bolded) pass-through rates in parentheses and italics (calculated from
the confidence interval of each τ̂ estimate). Whereas Panel A follows Equation (1.11) by only including
fuel prices, Panel B includes environmental costs following Equation (A.21).
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Table A.5.38: Pass-Through of Implied Carbon Tax (k = 3, Unbalanced Panel)

Plant Group (Quintile of Mj)
(1) (2) (3) (4) (5)

̂∆Markup (Mj) (−2.00, 0.22] (0.22, 0.35] (0.35, 0.52] (0.52, 0.70] (0.70, 2.00]

Share of plants 0.43 0.15 0.14 0.13 0.16

A. Fuel prices only
ρj , all shipments 1.00 1.02 0.98 0.92 0.84

[1.01, 1.05] [0.95, 0.99] [0.85, 0.95] [0.50, 0.91]
(0.92, 1.11) (0.91, 1.06) (0.84, 1.00) (0.71, 0.96)

ρj , contracts only 1.00 0.95 0.92 0.90 0.78
[0.88, 0.98] [0.76, 0.96] [0.81, 0.94] [0.35, 0.88]
(0.86, 1.04) (0.84, 1.00) (0.83, 0.97) (0.66, 0.90)

B. Fuel + environmental costs
ρj , all shipments 1.00 1.02 0.99 0.93 0.86

[1.01, 1.04] [0.96, 0.99] [0.87, 0.97] [0.58, 0.92]
(0.93, 1.10) (0.92, 1.06) (0.86, 1.00) (0.75, 0.96)

ρj , contracts only 1.00 0.96 0.93 0.91 0.81
[0.90, 0.99] [0.80, 0.96] [0.83, 0.96] [0.46, 0.90]
(0.88, 1.04) (0.86, 1.00) (0.85, 0.98) (0.70, 0.92)

Notes: This table is identical to Table 1.7.7 from the main text, except that I convert results from Table
A.5.20 using k = 3 nearest neighbors and a full (unbalanced) panel of coal plants. Average pass-through
rates are in bold, and square brackets report the minimum and maximum pass-through rates for plants
in each group. I report the 95 percent confidence intervals for the average (bolded) pass-through rates
in parentheses and italics (calculated from the confidence interval of each τ̂ estimate). Whereas Panel
A follows Equation (1.11) by only including fuel prices, Panel B includes environmental costs following
Equation (A.21).
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Table A.5.39: Pass-Through of Implied Carbon Tax (k = 1, Unbalanced Panel)

Plant Group (Quintile of Mj)
(1) (2) (3) (4) (5)

̂∆Markup (Mj) (−2.00, 0.22] (0.22, 0.35] (0.35, 0.52] (0.52, 0.70] (0.70, 2.00]

Share of plants 0.38 0.17 0.12 0.16 0.15

A. Fuel prices only
ρj , all shipments 1.00 1.00 0.96 0.89 0.78

[1.00, 1.00] [0.86, 0.98] [0.79, 0.93] [0.35, 0.89]
(0.90, 1.11) (0.87, 1.04) (0.80, 0.98) (0.62, 0.95)

ρj , contracts only 1.00 0.95 0.91 0.88 0.74
[0.87, 0.98] [0.71, 0.95] [0.77, 0.92] [0.25, 0.86]
(0.85, 1.05) (0.82, 1.00) (0.79, 0.96) (0.58, 0.91)

B. Fuel + environmental costs
ρj , all shipments 1.00 1.00 0.96 0.90 0.81

[1.00, 1.00] [0.88, 0.98] [0.82, 0.95] [0.45, 0.90]
(0.91, 1.09) (0.89, 1.04) (0.82, 0.99) (0.66, 0.96)

ρj , contracts only 1.00 0.96 0.92 0.89 0.77
[0.89, 0.98] [0.75, 0.96] [0.80, 0.95] [0.37, 0.88]
(0.87, 1.05) (0.84, 1.00) (0.81, 0.97) (0.63, 0.92)

Notes: This table is identical to Table 1.7.7 from the main text, except that I convert results from Table
A.5.20 using k = 1 nearest neighbors and a full (unbalanced) panel of coal plants. Average pass-through
rates are in bold, and square brackets report the minimum and maximum pass-through rates for plants
in each group. I report the 95 percent confidence intervals for the average (bolded) pass-through rates
in parentheses and italics (calculated from the confidence interval of each τ̂ estimate). Whereas Panel
A follows Equation (1.11) by only including fuel prices, Panel B includes environmental costs following
Equation (A.21).
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A.6 CO2 Emissions Counterfactuals
This section describes my method for estimating CO2 emissions counterfactuals, which I
report in Section 1.7.4 of the main text. I begin by estimating the relationship between
relative fuel costs and CO2 emissions, for each CEMS coal generating unit. Then, I
use each plant’s fitted model to estimate generation under two counterfactual fuel cost
ratios. First, I consider a scenario where the fracking boom did not happen, and gas
prices remained high. Second, I consider a scenario where the fracking boom did happen,
but coal markups remained fixed (i.e., full pass-through of relative fuel price shocks). In
each counterfactual scenario, coal markups did not decrease, meaning that counterfactual
coal prices would have been slightly higher than observed coal prices. Comparing across
these counterfactual estimates, I am able to calculate CO2 abatement due to short-run
coal-to-gas substitution, both with and without changes to coal markups.

A.6.1 Counterfactuals Algorithm

Step 1: I construct a time-series of counterfactual gas prices in the absence of the frack-
ing boom, using historic NYMEX monthly futures prices as of December 2008. This
follows Holladay and LaRiviere (2017), who estimate a structural break in the time-series
of Henry Hub gas spot prices on December 5, 2008. The top panel of Figure A.6.35
compares these futures prices to actual natural gas prices. Visually, these prices are close
to pre-Recession levels, and would be roughly constant if I removed seasonal variation.98

Given that natural gas plants also pay pipeline and distribution charges on top of the
commodity spot price, I add the average difference between Henry Hub prices and deliv-
ered prices to construct counterfactual prices for each gas plant g on each day d, or ZCF

gd .99

Step 2: Using these counterfactual gas prices, I predict counterfactual coal prices if
markups had not changed. My empirical analysis demonstrates that the fracking boom
caused coal prices to fall; hence, counterfactual coal prices in the absence of the fracking
boom would have been higher. The bottom panel of Figure A.6.35 illustrates what average
coal prices may have looked like if the fracking boom did not happen, or if coal markets
had not changed.

I estimate Equation (1.9) using indicator variables for quintiles of Mj (as in Table
1.6.6), and converting the dependent variable (Pojms) from $/ton to $/MMBTU (i.e., the
relevant units for coal factor demand). Then, I predict counterfactual coal prices using
this fitted regression model, replacing factual with counterfactual gas prices for all lagged
difference-in-differences coefficients. I denote these counterfactual coal prices as PCF

jm ,
averaging across all of plant j’s shipments in month m.

98U.S. natural gas prices tend to rise in the winter, due to increased demand for space heating. I
include this expected seasonal variation in counterfactual gas prices. Importantly, my counterfactual
analysis begins after the Recession-related price spike.

99See Appendix A.2.5 for further detail on my method for converting Henry Hub prices to plant-specific
delivered gas prices.
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Figure A.6.35: Counterfactual Fuel Prices
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Notes: The top panel shows factual gas and coal prices (as in Figure 1.2.2),
and counterfactual gas prices in the absence of the fracking boom. These
counterfactual gas prices are Henry Hub future prices as of December
2008, which reflected market expectations of gas prices in the month before
the historic drop in gas prices. The bottom panel adds illustrative coal
price counterfactuals, as coal markups would not have fallen if the fracking
boom had not happened.
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While my main analysis includes only a subset of coal plants with nearest-neighbor
matches, I now want to calculate CO2 abatement by summing across all coal plants. I
regress counterfactual coal prices on the interaction of actual delivered coal prices (Pojms)
and predicted markup changes (Mj), estimating a separate coefficient for each sample
month. I also include commodity controls (Cojms), shipment controls (Tojms), plant con-
trols (Xjm), coal county fixed effects (ηo), month fixed effects (δm), as in Equation (1.5).
Taking predicted values from this regression, I am able to populate PCF

jm for the 55 percent
of plants that do not appear in my main regression analysis. For non-rail plants and non-
utility plants (with withheld prices), I set PCF

jm = P̄jm, which assumes no fracking-induced
markup changes.100

Step 3: I construct factual and counterfactual coal-to-gas cost ratios via Step 1 of my
demand estimation algorithm (see Appendix A.4.1 above). However, I now average both
coal and gas marginal costs across all generating units of each fuel type, within each PCA,
to consider a counterfactual where many plants’ coal prices change:

MCcoal
um ≡

∑
j∈PCAu

(
Qelec
jm ·HRjm · (Pjm +MCenv

jm )∑
j∈PCAu

Qelec
jm

)
(A.40)

MCgas
ud ≡

∑
g∈PCAu

(
Qelec
gm ·HRgm · (Zgd +MCenv

gm )∑
g∈PCAu

Qelec
gm

)
(A.41)

Replacing factual with counterfactual prices:

MCcoal,CF
um ≡

∑
j∈PCAu

(
Qelec
jm ·HRjm · (PCF

jm +MCenv
jm )∑

j∈PCAu
Qelec
jm

)
(A.42)

MCgas,CF
ud ≡

∑
g∈PCAu

(
Qelec
gm ·HRgm · (ZCF

gd +MCenv
gm )∑

g∈PCAu
Qelec
gm

)
(A.43)

Then, I construct three cost ratios:

(A.44) CRud =
MCcoal

um

MCgas
ud

, CRNO∆Z
ud =

MCcoal,CF
um

MCgas,CF
ud

, CRNO∆µ
ud =

MCcoal,CF
um

MCgas
ud

100Table 1.6.6 uses a balanced sample of coal plants, to account the potentially confounding effects of
coal plant retirements. This 55 percent of plants includes both plants without nearest-neighbor matches
and plants dropped from Table 1.6.6 for not appearing in each sample year. If coal markups similarly
decreased for non-utility plants during the fracking boom, then this counterfactual exercise would under-
state the full extent to which reductions in coal markups eroded the potential environmental benefits of
the fracking boom. I use P̄jm to denote the BTU-weighted average delivered price (for non-rail plants
with reported prices), and average delivered coal prices at the state-month level (for non-utility plants,
which EIA publishes in its Electric Power Monthly reports). These (mis-measured) aggregate prices are
more suited for estimating that conditional probability of a coal unit operating in a given hour, than they
would be for estimating coal markups at the shipment level.
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CRud uses factual gas prices and factual coal prices. CRNO∆Z
ud assumes that the frack-

ing boom did not happen, using both counterfactual gas prices and counterfactual coal
prices. Given that the difference between Pjm and PCF

jm is the response to changes in gas
prices, PCF

jm are the appropriate coal prices for the “no-fracking” counterfactual. Finally,
CRNO∆µ

ud assumes that the fracking boom did happen, but coal markups did not adjust to
changes in gas price. This “full-pass-through” counterfactual uses factual gas prices but
counterfactual coal prices.

Step 4: For each coal unit u, I estimate the following time-series regression, for each day
d, from 2002 to 2015:

(A.45)
MWHud =

∑
b

αub1[Gud ∈ b] +
∑
b

γub1[Gud ∈ b] · CRud + SP(CRud; ζu) + ξuGud + ωud

This specification is similar to Equations (1.6) and (A.29) from my demand estimation
algorithm, but it differs in a several key ways:

• I estimate Equation (A.45) at the daily (d) level, rather than at the hourly level,
because I no longer need to convert hourly generation into hourly coal consump-
tion.101

• For the same reason, I now use total daily net generation (MWHud) as the dependent
variable, instead of unit u’s capacity factor. This is largely a normalization, as
the mapping between capacity factor and electricity production is fixed (to a first
approximation) within each unit-month and largely static for most units across
months.

• I use a cost ratio (CRud) that averages across all coal units in unit u’s PCA, because
I now want to accommodate changes in coal price across many plants (as opposed
to idiosyncratic changes to each plants’ markups).

• Following Cullen and Mansur (2017), I include a cubic spline of the cost ratio,
SP(CRud; ζu). This allows me to more flexibly model the effect of relative fuel price
changes on each unit’s generation.102

• Instead of using year and quarter-of-year fixed effects, I control for only month-of-
year fixed effects. This avoids removing year-on-year variation in fuel prices, which
is important for characterizing the effects of counterfactual fuel prices.

101For estimating coal demand, hourly observations allow me to more accurately discretize each unit’s
capacity factor — there is less within-hour variation in plant operations than within-day variation in plant
operations. For counterfactuals, estimating Equation (A.45) at the daily level reduces computation time
without meaningfully changing the relationship between fuel prices and unit u’s predicted generation.

102I use cubic splines with 6 knots, however the number of knots does not affect the estimation results.
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Step 5: I store predicted values (M̂WHud) from Equation (A.45), estimated using CRud.
Then, I predicted counterfactual generation (M̂WH

NO∆Z

ud , M̂WH
NO∆µ

ud ), by plugging two
counterfactual cost ratios (CRNO∆Z

ud , CRNO∆µ
ud ) into this fitted model.103

Step 6: I convert M̂WHud, M̂WH
NO∆Z

ud , and M̂WH
NO∆µ

ud into ĈO2ud, ĈO2
NO∆Z

ud , and
ĈO2

NO∆µ

ud , multiplying by unit u’s monthly CO2 emissions rate.

Step 7: I sum factual and counterfactual coal generation and coal emissions across all
units in each month, for all months between December 2008 and December 2015:

(A.46) M̂WH
coal

m ≡
∑
d∈m

∑
u

M̂WHud , ĈO2
coal

m ≡
∑
d∈m

∑
u

ĈO2ud

(A.47)

M̂WH
coal,NO∆Z

m ≡
∑
d∈m

∑
u

M̂WH
NO∆Z

ud , ĈO2
coal,NO∆Z

m ≡
∑
d∈m

∑
u

ĈO2
NO∆Z

ud

(A.48)

M̂WH
coal,NO∆µ

m ≡
∑
d∈m

∑
u

M̂WH
NO∆µ

ud , ĈO2
coal,NO∆µ

m ≡
∑
d∈m

∑
u

ĈO2
NO∆µ

ud

Step 8: I sum total monthly natural gas generation and emissions, across all CEMS gas
generating units, for all months between December 2008 and December 2015 (MWHgas

m ,
CO2gasm ) . I calculate the average CO2 emissions rate per MWh for each month:

(A.49) Egas
m =

CO2gasm

MWHgas
m

Step 9: I calculate counterfactual natural gas emissions in each month by replacing
changes in coal generation with gas generation on a 1-for-1 basis, and multiplying by the
average natural gas emissions rate:

(A.50) ĈO2
gas,NO∆Z

m ≡ Egas
m ×

[
MWHgas

m −
(
M̂WH

coal

m − M̂WH
coal,NO∆Z

m

)]

(A.51) ĈO2
gas,NO∆µ

m ≡ Egas
m ×

[
MWHgas

m −
(
M̂WH

coal

m − M̂WH
coal,NO∆µ

m

)]
103I generate cubic splines for each counterfactual cost ratio, forcing the same 6 knot points as the

cubic spline for the factual cost ratio in Equation (A.45).
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Step 10: I sum total CO2 emissions for both coal and gas, across all months between
December 2008 and December 2015:

ĈO2 ≡
∑
m

[
ĈO2

coal

m + CO2gasm

]
(A.52)

ĈO2
NO∆Z

≡
∑
m

[
ĈO2

coal,NO∆Z

m + ĈO2
gas,NO∆Z

m

]
(A.53)

ĈO2
NO∆µ

≡
∑
m

[
ĈO2

coal,NO∆µ

m + ĈO2
gas,NO∆µ

m

]
(A.54)

Step 11: I calculate realized abatement under the fracking boom as the percent reduction
in realized CO2 emissions, compared to the no-fracking counterfactual:

(A.55) ABATEREALIZED =
ĈO2

NO∆Z
− ĈO2

ĈO2
NO∆Z

≈ 0.045

I similarly calculate potential abatement as the percent reduction in full-pass-through
counterfactual CO2 emissions, compared to the no-fracking counterfactual:

(A.56) ABATEPOTENTIAL =
ĈO2

NO∆Z
− ĈO2

NO∆µ

ĈO2
NO∆Z

≈ 0.049

Based on these calculations, decreasing coal markups eroded roughly 8 percent of the
potential CO2 abatement of the fracking boom:

(A.57) 1− ABATEREALIZED

ABATEPOTENTIAL
≈ 1− 0.045

0.049
≈ 0.075

A.6.2 Sensitivities and Interpretation

I estimate several alternative specifications, which I report in Table A.6.40. To allow
additional flexibility, I introduce 3 additional cubic splines in Gd × CRud, Gd, and daily
maximum temperature, which has little effect on my counterfactual predictions.104 I also
test quarter-of-year fixed effects, in order to match the fixed effects used in Equations (1.6)

104This matches Cullen and Mansur (2017)’s main specification, which includes cubic splines in the
coal-to-gas cost ratio, total system load, and temperature. The third row in Table A.6.40 includes these
three splines, in addition to a spline in the interaction of total generation and cost ratio.
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Table A.6.40: Counterfactual Sensitivities

Realized
abatement

Potential
abatement

Share
eroded

Preferred specification 0.045 0.049 0.075
Spline of Gd × CRud interaction 0.047 0.050 0.073
Splines of Gd × CRud, Gd, temperature 0.046 0.050 0.072
Quarter-of-year FEs 0.045 0.048 0.076
Month-of-year and year FEs 0.024 0.027 0.093
Hourly (not daily) observations 0.044 0.048 0.077

Notes: The top row reports counterfactual results using my preferred specification (Equa-
tion (A.45)). The second row replaces the interacted sum (i.e. the second term in Equation
(A.45)) with a cubic spline in the interaction of Gd and CRud. The third row includes this
spline and two additional cubic splines in Gd and maximum daily temperature. The fourth
row replaces month-of-year fixed effects with quarter-of-year fixed effects. The fifth row
uses both month-of-year and year fixed effects. Finally, the last row estimates Equation
(A.45) at the hourly level, with hour-of-day fixed effects. “Realized abatement” calcu-
lates the share of counterfactual no-fracking CO2 emissions that did not occur. “Potential
abatement” calculates this share using counterfactual coal prices that hold coal markups
constant. The last column reports 1 – (realized abatement)/(potential abatement).

and (A.29), which produces nearly identical counterfactual predictions. The fifth row of
Table A.6.40 includes year fixed effects, which control for medium-to-long run changes
in plant operations while also absorbing most of the identifying variation in natural gas
prices. This yields much smaller estimates of CO2 abatement (0.024 vs. 0.045), which is
unsurprising considering that year fixed effects now control for the large drop in prices after
2009. However, this actually implies that decreasing coal markups eroded a larger share
of potential CO2 emissions reductions (0.093 vs. 0.075). Finally, Table A.6.40 includes
counterfactuals estimated using hourly observations (as in my demand estimation), to
ensure that my decision to aggregate to a daily temporal frequency does not affect these
counterfactual predictions.

How do the magnitudes of these results compare to the previous literature on the
fracking boom? Using a similar time-series estimation strategy at the interconnection
level, Cullen and Mansur (2017) estimate that a tax of $20 per ton CO2 would yield
4.9 percent reductions in daily CO2 emissions.105 Taking my derived expression for the
implicit tax (Equation (A.19)) and plugging in average values for P , MCenv

coal, MCenv
gas , Z,

and ∆Z, this implies an average implicit tax of $20–32 per metric ton CO2.106 Hence, my
105Cullen and Mansur (2017) denominate this tax in short tons of CO2, while I use metric tons (a.k.a

tonnes). A $20/ton CO2 tax is equal to a tax of $22/tonne CO2.
106I use average delivered coal prices across all plants for P ; average environmental costs across all

coal/gas units, converted into $/MMBTU for MCenvcoal and MCenvgas ; average counterfactual gas prices for
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predictions for CO2 abatement are quite close to Cullen and Mansur (2017)’s results from
interconnection-wide reduced-form time series regressions, even though my calculations
come from plant-specific time-series regressions for coal units only. As with Cullen and
Mansur (2017), my use of time fixed effects (for the sake of econometric identification)
absorbs much of the time series variation in natural gas prices (i.e. implicit carbon prices).
Hence, a $20–32 carbon tax may effectively be out-of-sample, giving the variation that
remains.

These estimates of CO2 abatement from short-run fuel-switching do not capture the
full extent to which the fracking boom has decreased CO2 emissions from U.S. electricity
generation. Linn, Mastrangelo, and Burtraw (2014) find evidence that coal plants increase
their thermal efficiency (i.e. lower their heat rates) in response to competitive pressure;
the fracking boom has likely contributed meaningful medium-run CO2 abatement through
this channel. Low gas prices have also led to medium-to-long-run abatement on the
capacity margin, by incentivizing investments in new natural gas combined-cycle plants
and accelerating coal plant retirements (Brehm (2017)). Finally, long-run dynamics of
electric generating capacity imply that even a small carbon tax could have a very large
effect on coal capacity (Cullen and Reynolds (2016)). Equation (A.45) ignores each of
these sources of fracking-induced CO2 abatement, which is likely why my counterfactual
exercise finds only 4.5 percent abatement from fuel-switching.

A simple event-study analysis suggests that carbon emissions from the U.S. electric-
ity sector have fallen by 20–25 percent during the fracking boom. While this does not
establish the causal effect of low gas prices on total emissions, it does suggest that total
abatement was potentially much greater than my 4.5 percent short-run estimate. This
also suggests that the unrealized environmental benefits of the fracking boom maybe have
been much larger, since decreasing coal markups likely also impacted each of the above
abatement channels, in addition to their impact on the short-run coal-to-gas switching
margin. Importantly, CO2 is a global pollutant, and my analysis focuses on U.S. emissions
only. The fracking boom also impacted global energy markets, with theoretically ambigu-
ous implications for global CO2 emissions (Knittel, Metaxoglou, and Trindade (2016);
Wolak (2016)).

Z; and the average difference between factual and counterfactual prices for ∆Z. Annual averages for
2010, 2011, and 2012 translate to implied taxes of $20, $23, and $32, respectively.
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Appendix B

Appendix: Out of the Darkness and
Into the Light? Development Effects of
Rural Electrification

B.1 Data

B.1.1 RGGVY Program Data

The Rural Electrification Corporation maintains an online database of RGGVY imple-
mentation status, and also hosts two separate portals for “Villages Covered” and “Vil-
lages Completed” under the 10th and 11th Plans of RGGVY.1 Each village-specific page
within these portals reported that village’s pre-program electrification status, proposed
RGGVY implementation details (e.g. number of households to be electrified, new trans-
former capacity to be installed), actual progress of RGGVY implementation (e.g. number
of household connections completed, new transformer capacity installed), and implemen-
tation status (e.g. whether work has been completed in this village).2 Unfortunately, these
village-level data are of very poor quality, with rampant missing information, internal in-
consistencies, and program outcomes that conflict with village-level Census data.3 As
detailed in Table B.1.1, RGGVY programs outcomes are missing for 65 percent of villages

1We downloaded these data from the RGGVY home page, http://rggvy.gov.in, which has since
been deactivated as RGGVY has ben subsumed into DDUGJY. The new program website is http:
//www.ddugjy.in/.

2Notably, neither portal recorded the date on which a village was sanctioned for electrification, nor
the date on which works were begun or completed. The only timing recorded in either set of webpages
describes, to the best of our knowledge, was the latest upload of data to the internet. Each of these
datasets had a separate tab on the RGGVY homepage, respectively: “Villages Covered (X & XI Plan
DPR)” and “Villages Completed (X & XI Plan)”. We scraped these datasets between August and October
2014.

3The Census data seems to be of relatively high quality, with no evidence of population manipulation.
Asher and Novosad (2018) shows that PCA data has a high correlation with another Indian dataset, the
Socioeconomic and Caste Census; we also find high correlations between Census data and National Rural

http://rggvy.gov.in
http://www.ddugjy.in/
http://www.ddugjy.in/
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that were eligible under the 10th Plan (our analysis focuses on this earlier wave of the
RGGVY program). These data also report a greater number of covered habitations than
exist for 32 percent of villages.4

Table B.1.1: RGGVY Microdata Irregularities

Type of Irregularity Percent of
Villages

Percent of
10th-Plan Villages

RGGVY outcomes disagree across Covered & Completed datasets 26.8 32.7
Outcomes missing from either Covered or Completed dataset 77.9 65.3
Outcomes missing from both Covered and Completed datasets 74.4 59.9
All outcomes missing from both Covered and Completed datasets 33.4 22.3
Completed dataset reports status not energised 24.4 14.1
RGGVY covers more habitations than exist in village 32.2 31.7

Notes: This table shows data irregularities across the RGGVY Covered and Completed village datasets,
which we do not use in our analysis. The right two columns shows the percent of all villages and the
percent of 10th-Plan villages that satisfy each irregularity criterion, where the denominator excludes
missing and unmatched villages. Program outcomes considered in the first four rows include the count
of household connections, aggregate transformer capacity installed, and aggregate transmission capacity
installed. (The first three rows count villages where any outcome disagrees or is missing; the fourth row
counts only villages for which all of these outcomes are missing.)

Even if these village-level program data were of better quality, we might worry about
using them for our analysis. We would expect the RGGVY microdata to identify precisely
which villages were treated under the program. However, we would still need to construct
a control group from the subset of villages not represented in the RGGVY microdata.
Because the RGGVY datasets do not include information on villages left out of the pro-
gram, we would need to merge the RGGVY microdata into village-level Census data and
denote villages included in the RGGVY dataset as “treated” and all other villages as “con-
trol.” Any imperfect merge or missing RGGVY microdata would cause us to incorrectly
categorize a village. We might also worry about manipulation of RGGVY village-level
outcomes, if implementing agencies (or data tabulators) had an incentive to overstate the
extent of electrification attributable to RGGVY.5

For these reasons, we have chosen to exclude the RGGVY village-level data from
our analysis entirely. Instead, we rely on district-level RGGVY summary reports to
determine the Five-Year Plan under which each electrification project was sanctioned,
the implementing agency responsible for implementation, and the approximate timing of

Drinking Water Programme’s census of habitations (described further in Section B.1.5). For these reasons,
we are inclined to trust the Census data over the RGGVY data.

4We base this total number of habitations on our merge of the Habitation Census to the village-
level Census panel, considering only those RGGVY villages that match to a matched village from the
habitation census merge (described below).

5We are not the only researchers to find inconsistencies in microdata from Indian programs. Asher
and Novosad (2018) document striking irregularities in PMGSY population data.
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electrification. Since the program was implemented based on Detailed Project Reports
(DPR) at the district level, we can use these aggregate data to link villages to DPRs,
and, importantly, to the 10th or 11th Plan.6 Our analysis only relies on these district-
level reports to assign districts to Five-Year Plans. As this is a matter of public record
and involves large transfers of public funds from the Rural Electrification Corporation to
decentralized implementing agencies, we are much more confident in the accuracy of this
aggregate information.

Table B.1.2 summarizes these district-level progress reports.7 We see that under both
the 10th and 11th Plans, the majority of district-level DPRs were implemented by local
electricity distribution companies. However, there were also many districts whose imple-
menting agencies included large public sector undertakings, state departments of power,
and state electricity boards. This table also shows that the majority of villages covered
under both Plans were categorized as “electrified” villages, meaning that there was a min-
imum of power access prior to RGGVY.8 For these villages, RGGVY sought to provide
“more intensive electrification,” including bringing energy access to below-poverty-line
households that still lacked connections. In early 2015, the program reported that over 97
percent of 10th-Plan projects had been completed, and that over 90 percent of 11th-Plan
projects had been completed.

B.1.2 Geospatial Data

Our main source of geospatial information is ML Infomap’s VillageMap.9 This dataset
includes village boundary shapefiles for nearly every village in India, as defined by the
2001 village-level Census. We take the 2001 boundaries as fixed, which is consistent with
our decision to use the 2001 village as our unit of analysis.10 Every square meter in India
belongs to a village or city/town; the only “blank spaces” in the village maps are forests,
bodies of water, and “towns” (urban areas). Village boundaries are set by the Census
Organization of India (Census of India (2011)). Figure B.1.1 shows an example of the
level of detail included in the village boundary dataset.

6These reports were available at http://rggvy.gov.in under the “Progress Reports” menu, and can
now be found at http://ddugjy.gov.in. Most districts appear in exactly one DPR. For districts with
multiple DPRs, we have aggregated DPRs up to the district-level, in order to create a one-to-one mapping
between districts and DPRs. Of the 530 RGGVY districts, only 30 districts had DPRs aggregated across
both the 10th and 11th Plans.

7The state of Goa was excluded from RGGVY along with all 7 union territories, because 100 percent
of their villages were electrified prior to 2005 (Ministry of Power (2012)). We treat Telangana as part of
Andhra Pradesh, since its 2014 split from Andhra Pradesh occurred after our period of analysis.

8The definition of “electrification” has changed over time in India, but as long as “one bulb was
burning” anywhere in the village, a village was considered electrified.

9These data are also used by Min (2011) and Asher and Novosad (2017), among others, to map
villages in India.

10In the 2 percent of cases where a 2001 village matches to multiple 2011 villages in the 2001/2011
Census concordance, we aggregate 2011 data up to the 2001 village definition.

http://rggvy.gov.in
http://ddugjy.gov.in
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Table B.1.2: Summary Statistics – RGGVY Implementation and Scope

Type of
Implementing Agency States Districts Award

Dates
Unelectrified

Villages
Electrified
Villages

BPL
Connections

A. 10th Plan
Public Sector Undertakings 11 57 2005–07 32,638 20,126 2,386,042
State Depts. of Power 5 10 2007–10 542 1,088 45,921
State Electricity Boards 3 6 2006–07 4,482 2,604 441,639
Distribution Companies 14 156 2005–08 26,429 76,495 4,649,733
Total 25 229 64,091 100,313 7,523,335

B. 11th Plan
Public Sector Undertakings 9 78 2008–11 30,298 62,705 6,768,765
State Depts. of Power 5 33 2008–10 2,710 3,850 212,887
State Electricity Boards 3 34 2008–11 80 18,166 149,882
Distribution Companies 15 183 2008–10 13,118 135,038 7,363,814
Rural Electricity Coops 2 5 2008–11 0 755 79,220
Total 25 331 46,206 220,514 14,574,568

Notes: Data summarize district-level progress reports, previously available at http://rggvy.gov.in.
Public sector undertakings include government-owned generating companies, such as Power Grid Corpo-
ration of India and National Hydroelectric Power Corporation. The right three columns show the number
of previously unelectrified and previously electrified villages covered by the program, as well as the the
number of below poverty line households to receive electric connections. Villages classified as electrified
had basic electricity infrastructure with at least 10 percent of households electrified prior to RGGVY
implementation. 23 (of 27) states contain both 10th and 11th Plan districts, while 30 (of 530) individual
districts were targeted under both Plans. For a few districts, we correct financial award dates reported
to have occurred before their respective project sanction dates or before the official announcement of the
program.

We were unable to acquire village shapefiles for Arunachal Pradesh, Meghalaya, Mi-
zoram, Nagaland, and Sikkim. This forces us to drop these 5 states from our geospatial
dataset (and, subsequently, from our analysis of nighttime lights), though we are still able
to include them for the remainder of our analysis. Fortunately, these small states comprise
only 2 percent of all Indian villages and less than 1 percent of India’s rural population.
They also represent less than 3 percent of villages covered under RGGVY, and only 1
percent of villages covered by the 10th Plan.

We also exclude Assam, Himachal Pradesh, Jammu and Kashmir, Uttar Pradesh,
and Uttarakhand from our geospatial dataset, because we believe that the shapefiles for
these states are extremely poor quality. For these 5 states, the correlation between the
village area measurement implied by the shapefiles and the village area reported in the
Indian Census (the official body in charge of defining village boundaries) is below 0.35.
Table B.1.3 shows these correlations by state, demonstrating a clear gap between the 12
correlated and 5 uncorrelated states. These uncorrelated states represent 39 percent of
villages in RGGVY 10th-Plan districts, most of which are in Uttar Pradesh. While we
restrict our analysis of nighttime brightness to these 12 correlated states, our analysis of
Census outcomes includes villages in all 22 states in Table B.1.3.

http://rggvy.gov.in
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Table B.1.3: Correlation of Shapefiles with Village Areas

State Area
Correlation

Percent of
Total Villages

Percent of
10th-Plan Villages

Jharkhand 0.978 5.0 5.9
West Bengal 0.954 6.4 10.8
Bihar 0.932 6.6 9.8
Gujarat 0.896 3.1 0.8
Haryana 0.873 1.1 0.4
Karnataka 0.806 4.6 6.5
Maharashtra 0.781 7.0 1.5
Andhra Pradesh 0.772 4.5 7.2
Rajasthan 0.714 6.8 9.9
Orissa 0.680 8.1 2.5
Madhya Pradesh 0.638 8.9 3.4
Chhattisgarh 0.605 3.3 1.2

Uttarakhand 0.326 2.7 5.3
Uttar Pradesh 0.281 16.6 31.8
Himachal Pradesh 0.138 3.0 0.4
Assam 0.106 4.1 1.0
Jammu and Kashmir 0.002 1.1 0.5

Arunachal Pradesh missing 0.6 0.3
Meghalaya missing 0.9 0.3
Mizoram missing 0.1 0.1
Nagaland missing 0.2 0.1
Sikkim missing 0.1 0.1

States with correlation > 0.35 68.3 59.9
States with correlation < 0.35 28.8 39.0
States with missing shapefiles 2.9 1.0

Notes: This table shows the correlation between areas calculated from village shapefiles and
village areas reported in the Census’s 2001 Village Directory. Our spatial dataset includes only
the 12 states for which this correlation is at least 0.35. We omit the 5 states with shapefile
areas that are uncorrelated with reported village areas, as we take this as a sign of low quality
shapefiles. The middle column reports the percent of Indian villages contained in each state,
while the right column shows the percent of villages in districts eligible for RGGVY under the
10th Plan. Omitted from this table are 3 states which were not eligible under RGGVY’s 10th
Plan (Goa, Punjab, and Tamil Nadu), as well as 2 states which were eligible under RGGVY’s
10th Plan but contain no single-habitation 10th-Plan villages in our RD bandwidth (Kerala and
Tripura).
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Figure B.1.1: Rajasthani Village Boundaries

Notes: This figure shows the approximately 41,575 villages in
Rajasthan. The 1st and 99th percentiles of Rajasthani village
area are 0.2 km2 and 29.5 km2, respectively.

Our full geospatial dataset includes village boundaries for 172,013 villages across the 12
RGGVY states remaining after the sample restrictions detailed above.11 Each boundary
shapefile is identified by its 2001 Census code, as well as village attributes from the
2001 Primary Census Abstract. We use this identifying information to link geospatial
information into our administrative datasets.

B.1.3 Nighttime Lights

In order to credibly measure electrification, we use the National Oceanic and Atmo-
spheric Administration (NOAA)’s Defense Meteorological Satellite Program-Operational
Line Scan (DMSP-OLS) Nighttime Lights data12. Descriptions of these data can be found
in Elvidge et al. (1997) and Doll (2008).13 Data are publicly available from 1992 to 2013;

11This number excludes village with null or missing populations, which appear to have been miscoded.
12The data are available for download here: http://ngdc.noaa.gov/eog/dmsp/

downloadV4composites.html
13Researchers have also used these nighttime lights data as proxies for economic activity, including

Noor et al. (2008), Bleakley and Lin (2012), Henderson, Storeygard, and Weil (2012), Li, Ge, and Chen

http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
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we use images from 1999 to 2013 in this paper. These images are compiled from nightly
satellite photographs taken between 8:30 and 10:00 PM local time, and they are extremely
high resolution: pixels are 30 arc-second squares.14 The Indian subcontinent alone con-
tains 417,876 pixels. Each pixel is assigned a digital number (DN) indicating brightness,
ranging from 0 to 63. This DN is approximately proportional to average luminosity.15

While the images often top-code very bright locations such as urban centers (Henderson,
Storeygard, and Weil (2012)), we focus our attention on rural areas with very low risk of
top-coding.

We might instead worry that the DMSP-OLS sensors are not sensitive enough to de-
tect the subtle changes in brightness associated with rural electrification. However, a
substantial body of evidence suggests otherwise. Elvidge et al. (1997) and Elvidge et
al. (2001) use DMSP-OLS data to estimate electrification rates around the world at the
national level. A variety of papers have also mapped nighttime lights to electrification
rates at the sub-national level, including Ebener et al. (2005), Doll, Muller, and Morley
(2006), Chand et al. (2009), and Townsend and Bruce (2010). Three studies are partic-
ularly relevant to our work: Min et al. (2013) use original survey data from Senegal and
Mali to show that electrified rural villages are significantly brighter in the DMSP-OLS
data than their unelectrified counterparts. Min and Gaba (2014) find a strong correlation
between village-level ground-based electricity usage survey data and DMSP-OLS night-
time lights imagery in rural Vietnam, showing that both streetlights and electrified homes
are correlated with higher DMSP-OLS DN readings. Finally, Min (2011) shows a strong
correlation between power distribution and nighttime lights and administrative data on
electrification and nighttime lights in the Indian state of Uttar Pradesh.16 Based on these
findings, we are confident that the DMSP-OLS data are capable of accurately measuring
rural electrification — any activity in rural India bright enough to be visible from space
is likely to require electricity.17 Furthermore, any bottom coding in our data will lead us
to underestimate the effects of RGGVY on nighttime brightness.18

(2013), Michalopoulos and Papaioannou (2013), and Michalopoulos and Papaioannou (2014). Given that
we are studying electrification directly, we refrain from using nighttime lighting as a proxy for GDP.

14These pixels are squares with approximately 500 meter sides at the equator.
15See Chen and Nordhaus (2011) for details.
16Note that this analysis was done at the district level, obviating the need for village-level shapefiles.
17There are two obvious exceptions: the first is agricultural fires; the second is car headlamps. Because

of the yearly nature of the DMSP-OLS data, ephemeral fires do not appear in the final stable lights
averaged datasets (details can be found in NOAA’s DMSP-OLS data description). Roads are sparse in
the villages we are looking at; it is extremely unlikely that there is enough road traffic to appear in
the DMSP-OLS dataset. Even if there were enough road traffic to be detected in any given flyover of
the satellite, this road traffic is likely to be erratic enough, and the satellite images are taken at variable
enough times of night, that it is unlikely that we mistake vehicle traffic for consistent village electrification
(Min and Gaba (2014)).

18Suppose, for example, that the satellite can detect brightnesses of λ or greater only, and that at
baseline, villages A and B both have brightness of λ−5. These are both coded as λ. Village B is electrified
under RGGVY, and now has brightness of λ + 5. We observe a difference of 5 between A and B, when
in fact, the true difference was 10.
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NOAA releases three different DMSP-OLS lights products: average visible lights; sta-
ble lights; and average visible × percent lights. The average visible lights dataset contains
the average DN over the year’s observations for each pixel. The stable lights dataset is a
more heavily processed version of the average visible lights: it contains the lighting from
persistently lit places, and does not include the light from fires and other sporadic events.
Finally, the average visible × percent lights takes the average visible DN in a pixel and
multiplies it by the frequency with which it is observed.19 Our analysis focuses on the
average visible lights data, which are best equipped to detect the low levels of lighting
associated with electrification of rural villages (Min et al. (2013)). Section B.2.1 performs
a robustness check using the stable lights dataset.

We construct village-level nighttime lights values by combining village shapefiles with
the nighttime brightness data in ArcGIS, overlaying the 2001 village boundaries on top
of lights images for each year. Figure B.1.2 shows an example of this overlay from a
region of Andhra Pradesh. For each village, we calculate the maximum DN value over
all pixels whose centroids are contained within a village boundary. In other words, a
village’s brightness for a given year is equal to the brightness of its brightest pixel.20

For villages too small to contain a pixel’s centroid, we assign the value of the pixel at
the village centroid as the maximum lights value.21 Between 1999 and 2007, NOAA had
two satellites operating DMSP-OLS equipment.22 For these years, we calculate the mean
and maximum lights values for each satellite separately, and then we take an unweighted
average across satellites to obtain village-year DN statistics.

One concern about the DMSP-OLS dataset is that the sensors used to calculate the
DN tend to degrade and become dirty over time. The satellites do not contain on-board
calibration equipment, and the sensors are only adjusted before being loaded onto the
satellite platform. NOAA’s Earth Observation Group, which manages DMSP-OLS data,
has done some ex-post calibration in order to bring different satellite-years in line with
one another. However, this algorithm must assume that brightness in one region (usually
the island of Sicily is used) remains fixed over time, thereby calibrating the sensors to that
region’s DN values. This process is imperfect and not fully transparent. Most economists
who use these data in a panel setting include satellite or year fixed effects to control for
inconsistencies in sensors over time (e.g. Henderson, Storeygard, and Weil (2012)). In our
empirical analysis of nighttime brightness, we use an estimator that relies primarily on
cross-sectional variation in brightness, which should assuage these concerns.

19These lights have been used by Alam (2013) to examine power quality in India, but they are much
less frequently used in the economics literature.

20We also conduct sensitivity analysis on assigning each village the average brightness across all its
pixels. We use the standard Zonal Statistics as Table operation in ArcGIS to calculate both the
maximum and mean brightness.

21All of the villages that did not contain a pixel centroid only overlapped with one pixel, so this is the
correct operation for these very small villages.

22In 1999, F12 and F14 were active; from 2000 to 2003, F14 and F15 were active; from 2004 to 2007,
F15 and F16 were active; from 2008 to 2009, only F16 was active; and from 2010 to 2013, only F18 was
active.
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Figure B.1.2: Example of Nighttime Lights with Village Boundaries

Notes: This image shows a close-up of averge visible nighttime brightness overlaid
with village boundaries, for an area in Rajasthan. The ≈1km2 pixels in this image
range in brightness values from 3 to 38.

We undertake an additional procedure to remove measurement error from the lights
data. After constructing a village-year panel of the maximum nighttime brightness, we
linearly project lights values from 2001 and 2011 on the values of the two years before
and after. We run the following OLS regressions, weighting by village area23:

L2001
v = α0 + α1L

1999
v + α2L

2000
v + α3L

2002
v + α4L

2003
v + εv(B.1)

L2011
v = κ0 + κ1L

2009
v + κ2L

2010
v + κ3L

2012
v + κ4L

2013
v + υv ,

where Lyv is the maximum brightness of village v in year y. We use the estimated α̂is
and κ̂is (for i = {0, 1, 2, 3, 4}) to construct the nighttime lights outcome variables we use
in our regressions, L̂2001

v and L̂2011
v . This removes random year-to-year noise in the 2001

and 2011 lights data that cannot be explained by the brightness observed in adjacent
years. It also isolates the more stable year-to-year changes in brightness that we would
associate with new electricity infrastructure. In Section B.2.1, we include a sensitivity
analysis that varies the number of adjacent years in these linear projections, while also
considering simple unweighted averages of adjacent years.

23The results are not sensitive to the decision to weight. Unweighted regressions produce nearly
identical results.
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B.1.4 Census Data

We construct a village-level panel dataset using three datasets from the Census of India’s
2001 and 2011 decennial Censuses. These datasets are all available for download from the
Census of India’s website.24 Below, we describe each dataset separately, along with the
process we used to construct our 2001–2011 village panel.

B.1.4.1 Primary Census Abstract

The Primary Census Abstract (PCA) reports village population and employment infor-
mation for all geographic units across India’s 28 states and 8 union territories.25 This
dataset includes the total number of households in each village, along with village popu-
lation broken down by gender, the 0–6 age cohort, scheduled caste, and scheduled tribe.26

Village-level literacy rates are also included. The 2001 PCA dataset contains 593,643
villages, while the 2011 dataset contains 597,483 villages.

The PCA reports employment counts by gender, for three disjoint subsets of the village
population: “main workers” who participate in any economically productive activity (with
or without compensation) for at least 6 months of the year; “marginal workers” who
do so for less than 6 months of the year; and “non-workers” who do not participate in
economically productive activity. Within each of these groups, workers of each gender
are separately categorized as either cultivators, agricultural laborers, household industry
workers, or other. The distinction between cultivators and agricultural laborers is that
agricultural laborers work for wages, while taking on no risk in cultivation and owning
no right to cultivate land. “Other” workers include all workers not covered by the other
three categories, such as government workers, teachers, doctors, and factory workers, and
includes all non-farm, non-household employment.

B.1.4.2 Houselisting Primary Census Abstract

The Houselisting Primary Census Abstract (HPCA) reports on a variety of household
attributes and amenities at the village level. These include physical housing stock charac-
teristics such as type of floor/wall/roof and number of rooms; drinking water source; type
of latrine; primary cooking fuel; and main source of in-home lighting (e.g., electricity vs.
kerosene). This dataset also includes information on household inhabitants, including the
number of members; number of married couples; and whether houses are owned or rented.
Finally, the HPCA includes data on household asset ownership, including whether houses
own mobile phones, televisions, motorcycles, radios, and other durable goods.

24http://censusindia.gov.in. We downloaded these data between September 2014 and August
2015.

25India currently has 29 states, but the Andhra Pradesh-Telangana split occurred in 2014, after the
2011 data were collected and published.

26Scheduled castes (SC) and scheduled tribes (ST) are official designations for castes and ethnic groups
that have been historically disadvantaged. Since its independence, India has targeted SC and ST com-
munities for affirmative action in social programs and political representation.

http://censusindia.gov.in
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For each of the above categories, the HPCA reports the proportion of households
within each administrative unit that satisfy each respective criterion. This allows us
to treat each variable as continuous, with considerable variation across villages. The
2011 HPCA is publicly available at the village level, and it reports on 597,502 villages.
The 2001 HPCA is only available at the Census block level (i.e. the administrative unit
between district and village), and it reports block-specific values for most variables across
all 5,415 blocks. However, a few variables are only reported at the district level, including
indicators of physical upkeep, ownership status, number of rooms, and number of married
couples per household.

B.1.4.3 Village Directory

The Village Directory (VD) provides detailed village-level information on a variety of
amenities.27 These data are analogous to a community survey that is often included with
household survey data. Unlike the amenities featured in the HPCA, the VD reports public,
community-level characteristics that are not specific to individual households. These
include the number of primary/middle/secondary schools and other educational facilities;
the number of hospitals, community health centers, and other health facilities; community
drinking water sources; phone, post office, and other communication services; bus/rail
service and road quality; and the presence of banking facilities and credit societies. The
dataset also includes 1/0 indicators for the availability of electric power services, broken
out by agricultural, domestic, and commercial end-use sectors; the 2011 VD additionally
reports average hours per day of electric power received by each sector. For most villages,
the VD lists the most important manufacturing and agricultural commodities (the latter
in 2011 only). Finally, the VD contains several geographic variables, including village area,
area of cropland irrigated (by water source), distance to the nearest road and navigable
waterway, and distance to the nearest town. After removing villages with populations that
are either zero or missing, the 2001 and 2011 VD datasets contain 593,643 and 596,615
villages, respectively.

B.1.4.4 Census panel dataset

We are able to match villages across the above six datasets using their official census codes.
Within each Census year (2001 and 2011), state, district, and village codes are coded con-
sistently across PCA, HPCA, and VD datasets, so merging these data is straightforward.28

In order to link villages across Census years, we take advantage of the Census’s 2001–
2011 concordance. We treat the 2001 PCA village as our master cross-sectional unit,

27The 2001 VD was a standalone product, while the 2011 VD was distributed as part of the District
Census Handbook (DCHB).

28Subdistrict, tehsil, and block codes are not consistently coded across datasets, which reflects different
administrative conventions across states. For example, while the PCA and HPCA assigns a single tehsil
code to each village, the VD assigns separate tehsil and block codes. In our merges, we match on only
state, district, and village code, ignoring block code. Because village code is virtually unique within each
district, this does not affect the accuracy of this merge.
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re-aggregating any 2001 villages that split into multiple villages by 2011.29 Our final
panel includes only those villages that match to all 5 village level datasets – 2001/2011
PCA, 2011 HPCA, and 2001/2011 VD. Since village-level data do not exist for the 2001
HPCA, we instead assign each village the values from its parent block (or district, when
block-level data is unavailable).30

In many cases, the variables reported in the 2011 Census datasets differ from those
published in the corresponding 2001 datasets. This is especially true for the VD and
certain sections of the HPCA. Because our preferred specification includes a control for the
2001 level of the outcome variable wherever possible, we combine and redefine variables
such that our final panel contains only consistent variables.31 The full panel dataset
contains 580,643 villages, with over 200 matching pre/post variables. Tables B.1.4, B.1.5,
and B.1.6 provide summary statistics for our Census panel dataset, for three subsets of
variables originating from PCA, HPCA, and VD, respectively.

B.1.5 Habitation Merge

Because the RGGVY program determines eligibility based on habitation population (only
villages with constituent habitations of at least 300 people were eligible for electrification
under the 10th Plan), the 2001 village population as reported in the PCA provides an
imperfect indicator of eligibility status.32 Any village with a population below 300 cannot
contain a habitation that is eligible under the 10th Plan. However, a village with a
population above 300 may or may not be eligible, depending on the number and size of
its constituent habitations. In order to accurately assign eligibility status, we supplement
our Census panel dataset with information about the habitations within each village.

To the best our knowledge, there exists only one comprehensive nationwide habitation-
level data source: the National Rural Drinking Water Programme conducted a census of
habitations in 2003 and 2009 with the purpose of assessing the drinking water availability
for all rural habitations in India.33 The two waves of the census list the habitation names

29There are many 2001 villages that match to more than one 2011 village, based on the 2001–2011
concordance. We interpret these as administrative splits, and re-aggregation of all 2011 variables affords
us a consistent comparison across years. We drop the very few cases (i.e. < 0.01 percent) where multiple
2001 villages appear to have merged into a single 2011 village.

30While this is imperfect, the alternative would be to ignore any block-level information on the 2001
levels of 2011 HPCA variables. Our RD analysis of 2011 village-level outcomes greatly benefits from the
use of 2001 controls to increase precision.

31For example, the 2001 VD lists multiple types of tubewells, while the 2011 VD lists only a single
tubewell indicator. We construct a single tubewell indicator from the 2001 VD, such that this indicator
is coded identically across VD years.

32Recall that a habitation is a sub-village administrative unit, similar to a neighborhood. Habitations
were not official census administrative units, but are frequently used in making policy that affects rural
village in India.

33The data, along with more information on the National Rural Drinking Water Programme are avail-
able from http://indiawater.gov.in/imisreports/nrdwpmain.aspx. In fact, the RGGVY program
documentation lists this habitation census as a reference to be used by implementing agencies (Ministry
of Power (2014b)).

http://indiawater.gov.in/imisreports/nrdwpmain.aspx
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Table B.1.4: Summary Statistics – Primary Census Abstract

Village Characteristics All Districts 10th-Plan Districts 10th-Plan Districts
150–450 Population

2001 2011 2001 2011 2001 2011
Village population 1222.19 1416.42 1234.40 1442.17 297.60 359.46

(1713.62) (1963.73) (1607.80) (1879.55) (86.60) (154.96)

Number of households 226.02 286.50 218.46 277.65 54.08 70.55
(337.69) (418.29) (303.64) (382.86) (18.50) (31.10)

Share of pop SC or ST 0.36 0.37 0.33 0.33 0.39 0.40
(0.32) (0.32) (0.30) (0.30) (0.36) (0.36)

Literacy rate 0.46 0.57 0.44 0.56 0.44 0.55
(0.17) (0.15) (0.16) (0.13) (0.17) (0.15)

Employment rate 0.44 0.45 0.42 0.42 0.44 0.45
(0.13) (0.14) (0.13) (0.14) (0.14) (0.15)

Male employment rate 0.53 0.54 0.52 0.52 0.52 0.53
(0.09) (0.10) (0.10) (0.10) (0.10) (0.11)

Female employment rate 0.35 0.35 0.32 0.32 0.36 0.36
(0.21) (0.22) (0.21) (0.22) (0.23) (0.23)

Male ag workers/male pop 0.41 0.40 0.40 0.40 0.42 0.42
(0.14) (0.15) (0.14) (0.15) (0.15) (0.16)

Male hhold workers/male pop 0.01 0.01 0.01 0.01 0.01 0.01
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Male oth workers/male pop 0.11 0.12 0.10 0.11 0.09 0.10
(0.11) (0.12) (0.10) (0.11) (0.10) (0.12)

Female ag workers/female pop 0.30 0.28 0.27 0.25 0.32 0.30
(0.22) (0.22) (0.21) (0.21) (0.23) (0.23)

Female hhld workers/female pop 0.01 0.01 0.01 0.01 0.01 0.01
(0.05) (0.05) (0.05) (0.05) (0.06) (0.05)

Female oth workers/female pop 0.04 0.05 0.03 0.05 0.03 0.05
(0.08) (0.08) (0.07) (0.08) (0.07) (0.09)

Male main workers/male pop 0.44 0.41 0.43 0.38 0.42 0.37
(0.13) (0.16) (0.13) (0.17) (0.15) (0.19)

Female main workers/female pop 0.18 0.18 0.16 0.16 0.17 0.17
(0.19) (0.19) (0.18) (0.18) (0.20) (0.20)

Male marg workers/male pop 0.09 0.13 0.09 0.14 0.10 0.16
(0.11) (0.14) (0.10) (0.14) (0.12) (0.17)

Female marg workers/female pop 0.17 0.17 0.16 0.16 0.19 0.19
(0.18) (0.19) (0.17) (0.18) (0.20) (0.21)

Number of villages 580, 643 580, 643 290, 067 290, 067 62, 647 62, 647

Notes: This table reports means and standard deviations from the 2001 and 2011 Primary Census
Abstract. The left two columns include all villages that match across Census datasets, for all 27 RGGVY
states. The middle two columns include the subset of those villages located in districts eligible for RGGVY
under the 10th Plan. The right two columns include only 10th-Plan villages with 2001 populations
between 150 and 450 (i.e. our RD bandwidth). Worker by sector is presented as the fraction of total
workers in the village (main + marginal for each gender, repsectively). Agricultural workers include
both cultivators and agricultural laborers; other workers are classified as non-agricultural, non-household
workers. By definition, main workers work at least 6 months per year, while marginal worker work
less than 6 months per year. The employment rate (by gender) divides the sum of main and marginal
workers by the village population (of that gender). SC and ST refer to Schedule Caste and Scheduled
Tribe designations.
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Table B.1.5: Summary Statistics – Houselisting Primary Census Abstract

Household Characteristics All Districts 10th-Plan Districts 10th-Plan Districts
150–450 Population

2001 2011 2001 2011 2001 2011
Average household size 5.42 5.03 5.60 5.24 5.53 5.16

(0.61)‡ (0.82) (0.64)‡ (0.86) (0.61)‡ (0.86)

Average number of rooms 2.11 2.03 2.18 2.04 2.20 2.06
(0.52)‡ (0.73) (0.54)‡ (0.73) (0.54)‡ (0.81)

Good condition (share HH) 0.43 0.43 0.42 0.43 0.43 0.43
(0.14)‡ (0.31) (0.11)‡ (0.30) (0.12)‡ (0.35)

Livable condition (share HH) 0.51 0.50 0.51 0.51 0.50 0.51
(0.12)‡ (0.29) (0.10)‡ (0.28) (0.11)‡ (0.33)

Dilapidated condition (share HH) 0.06 0.06 0.06 0.07 0.06 0.07
(0.04)‡ (0.10) (0.03)‡ (0.11) (0.03)‡ (0.12)

Owns phone (share HH) 0.03 0.51 0.02 0.54 0.02 0.51
(0.04)† (0.27) (0.02)† (0.26) (0.02)† (0.29)

Owns TV (share HH) 0.17 0.28 0.15 0.24 0.14 0.23
(0.14)† (0.25) (0.10)† (0.21) (0.10)† (0.22)

Owns bicycle (share HH) 0.43 0.47 0.48 0.51 0.45 0.50
(0.23)† (0.29) (0.25)† (0.30) (0.26)† (0.33)

Owns motorcycle/scooter (share HH) 0.06 0.13 0.05 0.12 0.05 0.11
(0.05)† (0.13) (0.03)† (0.12) (0.03)† (0.13)

Owns car (share HH) 0.01 0.02 0.01 0.02 0.01 0.02
(0.01)† (0.04) (0.01)† (0.04) (0.01)† (0.04)

Electric/gas cooking (share HH) 0.05 0.08 0.04 0.06 0.05 0.06
(0.07)† (0.16) (0.06)† (0.13) (0.07)† (0.13)

Non-electric/gas cooking (share HH) 0.94 0.92 0.96 0.93 0.95 0.94
(0.08)† (0.16) (0.06)† (0.13) (0.07)† (0.14)

Thatched roof (share HH) 0.27 0.21 0.30 0.23 0.27 0.22
(0.26)† (0.26) (0.24)† (0.25) (0.24)† (0.27)

Mud floor (share HH) 0.76 0.70 0.78 0.73 0.79 0.76
(0.18)† (0.29) (0.17)† (0.28) (0.16)† (0.28)

Electric/solar lighting (share HH) 0.40 0.52 0.31 0.45 0.32 0.49
(0.29)† (0.37) (0.25)† (0.36) (0.26)† (0.38)

Non-electric/solar lighting (share HH) 0.59 0.48 0.68 0.54 0.68 0.51
(0.30)† (0.37) (0.25)† (0.36) (0.26)† (0.38)

Indoor water (share HH) 0.25 0.29 0.25 0.29 0.21 0.23
(0.19)† (0.30) (0.19)† (0.29) (0.17)† (0.28)

Number of villages 580, 643 290, 067 62, 647

Notes: This table reports means and standard deviations from the 2001 and 2011 Houselisting Primary
Census Abstract. The left two columns include all villages that match across Census datasets, for all 27
RGGVY states. The middle two columns include the subset of those villages located in districts eligible
for RGGVY under the 10th Plan. The right two columns include only 10th-Plan villages with 2001
populations between 150 and 450 (i.e. our RD bandwidth). The 2001 HPCA reports data at higher levels
of aggregation than village (i.e. either block or district), hence 2001 columns report district- or block-
level averages. A ‡ indicates between-district standard deviations, while a † indicates between-block
standard deviations. Share variables are reported in the HPCA as the share of households satisfying each
condition. Households are categorized as good, livable, or dilapidated based on their physical structure.
Phone ownership includes both landline and mobile phones; non-electric/gas cooking includes households
that cook with kerosene, charcoal, crop residue, cowdung, and firewood; non-electric/solar lighting sources
include kerosene and other oil.
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Table B.1.6: Summary Statistics – Village Directory

Village Characteristics All Districts 10th-Plan Districts 10th-Plan Districts
150–450 Population

2001 2011 2001 2011 2001 2011
Village area (ha) 432.89 413.25 402.66 378.37 178.09 185.39

(1369.13) (972.28) (1721.84) (1163.87) (562.11) (1664.20)

Proportion of area irrigated 0.43 0.40 0.63 0.56 0.51 0.45
(10.28) (14.46) (14.48) (20.28) (6.77) (9.32)

Drinking water facilities (0/1) 0.99 0.99 0.99 0.99 0.99 0.99
(0.07) (0.08) (0.08) (0.08) (0.08) (0.09)

Educational facilities (0/1) 0.80 0.84 0.76 0.80 0.58 0.64
(0.40) (0.36) (0.43) (0.40) (0.49) (0.48)

# of primary schools 1.12 1.41 1.05 1.31 0.59 0.71
(1.19) (1.50) (1.18) (1.51) (0.56) (0.63)

# of secondary schools 0.12 0.24 0.09 0.22 0.01 0.05
(0.37) (0.60) (0.33) (0.60) (0.13) (0.24)

Medical facilities (0/1) 0.32 0.43 0.29 0.45 0.12 0.28
(0.47) (0.50) (0.45) (0.50) (0.32) (0.45)

# of primary health centers 0.03 0.10 0.03 0.16 0.00 0.01
(0.18) (39.55) (0.17) (55.95) (0.07) (0.11)

# of dispensaries 0.08 0.07 0.07 0.04 0.01 0.01
(0.50) (8.48) (0.48) (1.24) (0.14) (0.14)

Ag credit societies (0/1) 0.14 0.14 0.11 0.10 0.03 0.03
(0.34) (0.34) (0.31) (0.30) (0.16) (0.16)

Banking facilities (0/1) 0.06 0.07 0.06 0.07 0.01 0.02
(0.24) (0.26) (0.23) (0.25) (0.11) (0.13)

Elec power (0/1) 0.77 0.90 0.70 0.91 0.62 0.88
(0.42) (0.31) (0.46) (0.29) (0.49) (0.33)

Elec power, agriculture (0/1) 0.60 0.68 0.52 0.67 0.41 0.59
(0.49) (0.47) (0.50) (0.47) (0.49) (0.49)

Elec power, domestic use (0/1) 0.75 0.89 0.68 0.90 0.59 0.88
(0.43) (0.31) (0.47) (0.30) (0.49) (0.33)

Elec power, all end uses (0/1) 0.49 0.55 0.38 0.52 0.29 0.43
(0.50) (0.50) (0.49) (0.50) (0.46) (0.49)

Post office (0/1) 0.23 0.11 0.20 0.10 0.04 0.03
(0.42) (0.32) (0.40) (0.30) (0.20) (0.18)

Bus service (0/1) 0.75 0.45 0.63 0.35 0.43 0.22
(0.43) (0.50) (0.48) (0.48) (0.49) (0.41)

Rail service (0/1) 0.05 0.02 0.04 0.03 0.01 0.01
(0.21) (0.15) (0.19) (0.16) (0.11) (0.11)

Number of villages 580, 643 580, 643 290, 067 290, 067 62, 647 62, 647

Notes: This table reports means and standard deviations from the 2001 and 2011 Village Directory. The
left two columns include all villages that match across Census datasets, for all 27 RGGVY states. The
middle two columns include the subset of those villages located in districts eligible for RGGVY under
the 10th Plan. The right two columns include only 10th-Plan villages with 2001 populations between
150 and 450 (i.e. our RD bandwidth). Educational facilities include schools and adult training centers.
Medical facilities include hospitals, family or maternity welfare centers, clincs, and dispensaries (i.e. small
outpatient facilities). Electric power end uses include agriculture, domestic use, and commercial use (the
latter is not reported separately in the 2001 Village Directory).
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and populations for 483,510 and 567,406 villages, respectively, and include over 1.3 and
1.6 million individual habitations, respectively. Together, these datasets cover over 95
percent of India’s villages. Unlike the Census products described above, the habitation
census datasets do not include village census codes, meaning that the only village identifier
present is the village name. Linking these datasets to our master Census village panel is
therefore not straightforward.

We apply a multi-step string matching algorithm in order to merge the 2003 and
2009 habitation census data into our Census panel. First, for each village census code,
we construct a list of the various transliterations of that village’s name that appear in
each of our datasets.34 Second, we search for exact string matches between villages with
census codes and village names that appear in the Water Habitation Census. We repeat
this procedure for each version of the village name. Because transliterations of names
from Hindi, Bengali, and other Indian languages into English are not standardized from
Hindi, Bengali, and other Indian languages, merging on multiple spellings increases the
likelihood of an exact string match. We save the matches in a separate file, and then
remove them from subsequent steps. Third, we repeat this process using the reclink
fuzzy string match function in Stata. Finally, for the remaining unmatched villages, we
apply the Masala merge fuzzy match routine developed by Asher and Novosad (2018).
This algorithm computes the Levensthein distance between strings, while accounting for
letter substitutions and interpolations common to Hindi transliterations, and produces a
set of village name matches.35

After completing this matching procedure separately for the 2003 and 2009 habitation
datasets, we combine the results into a single village-level dataset to merge with the
Census panel. This dataset includes indicators for villages having matched to the 2003
and/or 2009 habitation census; the 2003 and 2009 counts of the number of habitations
per village; the 2003 and 2009 populations of the largest habitation in each village; and
the 2003 and 2009 populations summed over all constituent habitations. Overall, 86.1
percent of villages match to either the 2003 or 2009 habitation census, and 50.6 percent
of matched villages have exactly 1 habitation.36

Table B.1.7 reports match rates after each step in this fuzzy merge process. For 91.3
percent of matches (and 88.6 percent of matches with 2001 village populations between
150 and 450), the village population implied by the habitation census (i.e. the sum of
all habitation populations in a village) deviates from the village population reported by

34These include the 2001 and 2011 PCA, the 2001 VD, the Census 2001–2011 village concordance, and
the RGGVY microdata. The latter simply provide another set of variant spellings, in order to increase
the chances of an exact string match.

35Masala merge is more accurate and flexible than standard fuzzy merging routines, such as reclink.
However we use reclink to remove close matches before applying Masala merge, as this significantly
reduces the time required to execute the computationally intensive Masala merge program. We thank
the authors for sharing this algorithm with us. A longer description of Masala merge, as well as the
code, can be found here: http://www.dartmouth.edu/~novosad/code.html.

36These match rates are very close to those achieved by Asher and Novosad (2018). For villages that
match to both the 2003 and 2009 habitation census, there is a correlation of 0.98 between 2003 and 2009
habitation counts.

http://www.dartmouth.edu/~novosad/code.html
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the Census by less than 20 percent.37 We suspect large population disparities to indicate
erroneous matches, hence we exclude the 11.4 percent of matched villages with dispari-
ties greater than 20 percent from all RD specifications.38 Figure B.1.3 shows habitation
matches across the support of 2001 village populations, with lower match rates for smaller
villages closer to our RD bandwidth.

Table B.1.7: Summary of Habitation Census Merge Results

Habitation census match 2003 and 2009 2003 only 2009 only Unmatched

A. Match rates (all villages)
Exact matches 0.486 0.065 0.132 0.317
+ reclink 0.639 0.050 0.126 0.185
+ Masala merge 0.651 0.085 0.125 0.139

B. Match rates (150–450 population)
Exact matches 0.471 0.046 0.140 0.343
+ reclink 0.627 0.048 0.139 0.186
+ Masala merge 0.641 0.069 0.137 0.153

C. Summary statistics (all villages)
Average habitations per village 2.672 2.397 3.352
Share single-habitation villages 0.571 0.402 0.517
Share with population mismatch > 20% 0.087 0.478 0.095

D. Summary statistics (150–450 population)
Average habitations per village 1.875 1.776 2.057
Share single-habitation villages 0.654 0.517 0.607
Share with population mismatch > 20% 0.114 0.545 0.106

Notes: This table shows results from the habitation merge algorithm described above. Panels A and B
report the share of villages that have merged after each step of the algorithm. Panels C and D calculate
summary statistics on the subset of Census panel villages that successfully merge to the habitation
dataset. Panels A and C report match counts and summary statistics for all 580,643 villages, while
Panels B and D report only the 129,453 villages with 2001 populations between 150 and 450. We define a
population mismatch over 20 percent to be a matched village for which the sum of constituent habitation
populations deviates from both 2001 and 2011 Census populations by at least 20 percent.

37Since the habitation censuses were conducted two years after the 2001 Census and two years before
the 2011 Census, we should not expect 2003/2009 habitation population to correspond exactly with
2001/2011 village populations — even with 100 percent match accuracy.

38Mismatched villages would lead to measurement error in our RD threshold, which relies on correctly
identifying villages with a single habitation. Tables B.2.3 and B.2.12 include these villages as sensitivity
analysis.
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Figure B.1.3: Habitation Merge Results, by 2001 Village Population
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Notes: This figure shows a histogram of Indian villages by 2001 population (solid navy),
and the subset of villages that we successfully matched with the habitation census (hollow
blue). The solid light blue bars show the subset of matched villages with population
disparities of less than 20 percent, which we include in our RD analysis. Match rates are
lower for smaller villages, yet we still match 84.7 percent of villages with 2001 populations
between 150 and 450. Exclude villages with population disparities, this leaves us with
69.6 percent of villages with 2001 populations between 150 and 450.

B.1.6 Socio-Economic Caste Census Dataset

We use microdata from the Socioeconomic and Caste Census (SECC) to examine the
effects of RGGVY on income. These data were collected between 2011 and 2012, with
the intention of recording data on the socioeconomic status of every single Indian.39 The
SECC is a follow-up to the 2002 Below Poverty Line Census, which only included house-
holds that were likely to be below the poverty line.40 The 2011 SECC was expanded to
the entire population, and while it used the Enumeration Blocks from the 2011 Census,
it was collected separately, using an electronic tablet-based data collection platform. We
obtained a subset of these data from the Ministry of Petroleum and Natural Gas, whose
liquid petroleum gas subsidy program, Pradhan Mantri Ujjwala Yojana, uses SECC data

39See http://www.secc.gov.in/aboutusReport for further details.
40We do not use the 2002 data in our analysis. It does not comprehensively survey the entire popula-

tion, and we have been unable to gain access to the data.

http://www.secc.gov.in/aboutusReport
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to determine eligibility.41 As a result, we observe the universe of rural individuals that
are eligible for this fuel subsidy program. This includes “households having one of the
Deprivations [in the SECC]”42, where a “deprivation” is a household poverty indicator. In
the SECC, to be considered for poverty status, a household must not be automatically
deemed either too wealthy or too destitute. After removing these affluent and destitute
households, the remaining households are considered for poverty status. That is, only
the subset of households without one (or more) affluence indicator(s) and without one
(or more) destitution indicator(s) were tested for poverty indicators. Among the tested
households, the households found to display at least one poverty indicator were eligible
for the program, and therefore included in our dataset.

Specifically, our sample of fuel-subsidy-eligible households was constructed by first
removing all households that satisfied at least one affluence indicator, or “exclusion.”43 In
particular, households with motorized 2/3/4 wheelers or fishing boats; with mechanized
3-4 wheeler agricultural equipment; with a Kisan credit card (issued by the government to
assist farmers) with a credit limit over Rs. 50,000; with a government employee member;
operating a non-agricultural enterprise registered with the government; with a member
earning more than Rs. 10,000 per month; paying income tax; paying professional tax; with
3 or more rooms with “pucca” (essentially permanent) walls and roof; with a refrigerator;
with a landline phone; with more than 2.5 acres of irrigated land and irrigation equipment;
with 5 or more acres of irrigated land for two or more crop seasons; or owning at least
7.5 acres of land and irrigation equipment were all excluded from our SECC dataset.
Next, destitute households were “automatically” included if they were without shelter;
were destitute or living on alms; earned income from manually scavenging; belonged to a
primitive tribal group; or were engaged in legally released bonded labor.

Our SECC dataset includes all remaining households that satisfy at least one poverty
(or “deprivation”) critertion. These criteria are: households with one or fewer rooms,
“kuccha” (non-pucca) walls and roof; households with no adult members between the age
of 18 and 59; female-headed households with no adult male member between 16 and 59;
households with a “differently-able” member with no other able-bodied member; scheduled
caste and scheduled tribe households; households with no literate adults above age 25;
or landless households deriving a majority of their income from manual labor. These
households yield a dataset the 332 million individuals from 81 million households with no
affluence indicators (auto-exclusions), no destitution indicators (auto-inclusions), and at
least one poverty indicator (deprivation).44 This represents roughly half of all households
in rural India.

41The Ministry of Rural Development, who collected the SECC, are in the process of making the full
dataset publicly available. As of now, only district-level aggregates are posted at http://secc.gov.in/
welcome. We downloaded our data in Excel format from http://lpgdedupe.nic.in/secc/secc_data.
html.

42See http://www.pmujjwalayojana.com/faq.html.
43See http://secc.gov.in/reportlistContent.
44We were unable to download SECC data from several districts. While most of these are urban

districts with virtually no rural villages, six of these districts contain a nontrivial number of rural villages.
These missing districts are: Chamoli, Uttarakhand (1,246 villages); Jalor, Rajasthan (802 villages);

http://secc.gov.in/welcome
http://secc.gov.in/welcome
http://lpgdedupe.nic.in/secc/secc_data.html
http://lpgdedupe.nic.in/secc/secc_data.html
http://www.pmujjwalayojana.com/faq.html
http://secc.gov.in/reportlistContent


263

This SECC datset contains individual-level data on age, gender, employment, caste,
and marital status; and household-level data on the housing stock, land ownership, asset
ownership, income sources, and the household head. Importantly for our analysis, the
SECC includes data on income, in the form of an indicator for whether the main income
earner in each household receives less than 5,000 rupees per month, or between 5,000
and 10,000 rupees per month.45 Ideally, we would like to have a continuous measure
of income, yet we believe this to be the best measurement of income available in any
Indian Census product. We cannot use income data included in other surveys, such as
the more comprehensive NSS or ICRISAT’s VDSA, because these datasets do not contain
a large enough sample of villages near the 300-person RGGVY cutoff to be useful for
our identification strategy. The SECC also contains information on the main source of
household income, and whether at least one household member has a salaried job. We
use these variables to test for the effects of RGGVY on incomes. The SECC also contains
information on land and asset ownership and household head characteristics. Because the
SECC contains records at the individual level, we can also use it to corroborate overall
employment results from the PCA, and to test for heterogeneity by age group.

In particular, we use data each individual supplies on occupation to test for the ef-
fects of RGGVY on sectoral changes. Unlike the other data in the SECC, the occupation
field in the SECC was not implemented via a drop-down menu in the survey program,
but rather was left open-ended. This results in a large number of employment cate-
gories, rampant misspellings, and transliterations from Indian languages to English. We
attempt to consolidate these to sectors that match the PCA: “agriculture,” “household,”
and “other” labor. To do this, for each district, we use the strgroup command in Stata
to group similar words. We then replace each group of words with the word in the group
that appears in the largest number of entries, under the assumption that it is most likely
the correct spelling. From this cleaned subset of words, we use regular expressions to
categorize agriculture, students, dependents, shopkeepers, retirees, drivers, household la-
borers, children, and generic workers. We deploy this grouping algorithm a second time,
again keeping the most-represented word in each group. Finally, we sort the remaining
occupations into three mutually-exclusive worker categories: “agriculture,” “household,”
and “other” (which are as consistent as possible with the PCA coding of these variables).
We also create three mutually exclusive non-labor categories: “students,” “dependents,”
and “none” (the latter includes both unemployed individuals and individuals that do not
report an occupation).

We merge these SECC data with our village-level Census dataset using a fuzzy match
algorithm similar to that described in Section B.1.5. While the SECC data include Census
codes for state, district, and block, they do not include the same village codes that are
used by the Census. However, upon inspection we discovered that in nearly all districts,

Jalpaiguri, West Bengal (768 villages); Dhanbad, Jharkhand (1,760 vilages); Dindigul, Tamil Nadu (481
villages); and Thanjavur, Tamil Nadu (516 villages). Together, these districts contain 5,573 villages,
representing less than 1 percent of the total number of villages in our Census dataset.

45As described above, households whose primary income earner earns above 10,000 rupees per month
were automatically excluded from our sample.
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Table B.1.8: Summary Statistics – SECC Village-Level Dataset

2011 Village Characteristics All Districts All Districts 10th-Plan
Districts

10th-Plan Districts
150–450 Population

Raw Data Matched Matched Matched
A. Share of households
Monthly income greater than Rs 5,000 0.08 0.08 0.09 0.08

(0.17) (0.16) (0.17) (0.19)

Main source of income: cultivation 0.27 0.27 0.28 0.34
(0.31) (0.30) (0.30) (0.35)

Main source of income: non-farm enterprise 0.01 0.01 0.01 0.01
(0.05) (0.05) (0.04) (0.05)

Main source of income: manual/casual labor 0.64 0.65 0.63 0.57
(0.33) (0.33) (0.33) (0.37)

Main source of income: domestic service 0.02 0.02 0.02 0.02
(0.07) (0.07) (0.07) (0.08)

Main source of income: other sources 0.06 0.06 0.06 0.06
(0.16) (0.16) (0.16) (0.18)

At least one member has salaried job 0.02 0.02 0.02 0.02
(0.09) (0.09) (0.09) (0.10)

Owning any land 0.36 0.37 0.39 0.47
(0.32) (0.31) (0.31) (0.35)

Owning irrigation equipment 0.03 0.03 0.04 0.04
(0.09) (0.09) (0.10) (0.11)

Household head is female 0.16 0.16 0.16 0.18
(0.14) (0.14) (0.15) (0.18)

Household head is literate 0.45 0.45 0.43 0.43
(0.24) (0.23) (0.23) (0.26)

Household head has middle school education 0.19 0.19 0.18 0.18
(0.16) (0.16) (0.16) (0.18)

B. Share of each subpopulation
Male adult employment rate 0.73 0.73 0.71 0.71

(0.20) (0.19) (0.20) (0.23)

Female adult employment rate 0.75 0.76 0.73 0.74
(0.20) (0.19) (0.20) (0.22)

Male youth employment rate 0.09 0.09 0.08 0.09
(0.15) (0.15) (0.16) (0.18)

Female youth employment rate 0.09 0.09 0.09 0.09
(0.16) (0.15) (0.16) (0.18)

Adult literacy rate 0.50 0.50 0.48 0.49
(0.22) (0.21) (0.21) (0.23)

Number of villages 548, 489 516, 456 255, 989 54, 481

Number of households 80.6M 74.6M 36.6M 2M
Number of individuals 331.8M 308.5M 158.7M 8.5M
Share of village households included 0.51 0.49 0.50

(0.26) (0.25) (0.28)

Notes: This table reports means and standard deviations from the SECC village-level dataset, which
includes all individuals residing in households with at least one poverty indicator in 2011. Variables in
Panel A are coded as the share of households in each village, while variables in Panel B are calculated by
aggregating up from the individual level. For all summary statistics, the denominator is the total number
of households (individuals of a given subpopulation) included in this SECC dataset for each village. The
left column reports raw means and standard deviations for all villages in the SECC dataset, while the
remaining columns include only SECC villages that match to villages in our Census dataset. We define
“adult” to include all individuals at least 16 years old. The last row reports the average fraction of each
village’s total number of households (per the 2011 Census) that is reported in the SECC dataset, with
standard deviations in parentheses.
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Figure B.1.4: SECC Merge Results, by 2001 Village Population
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Notes: This figure shows a histogram of Indian villages by 2001 population, and the
subset of villages that we successfully matched with a village in the SECC dataset
(hollow blue). Overall, we match 88.9 percent of Census villages to the SECC dataset,
and for 94.1 percent of these matches, at least 10 percent of total households are included
in our SECC dataset (because they have at least one poverty indicator). Within our
150–450 population bandwidth, we match 88.7 percent of Census villages to the SECC
dataset, and for 91.9 percent of these matches, our SECC dataset includes at least 10
percent of total village households.

SECC village codes simply reindex Census village codes and largely preserve the relative
order of village codes within a block. Hence, the first step of our algorithm searches for
exact matches on (reindexed) villages codes, allowing for discrepancies between village
names of up to 2 characters. Second, for the remaining unmatched villages, we search
for exact matches on villages name. Third, for the few remaining unmatched villages, we
apply the Masala merge algorithm discussed above. Ultimately, we are able to match
94.2 percent of SECC villages to a village in our Census dataset, with very few (i.e., less
than 5 percent) of matches relying on the fuzzy Masala merge algorithm.46 However,
because our subset of SECC data does not include the full population of Indian villages,
only 89.7 percent of villages in our Census dataset match to an SECC village. Figure

46This excludes the 2.7 percent of SECC-Census matches for which the SECC data include either a
village population or a village household count over 10 percent larger than those reported by the 2011
Census. We also omit this 2.7 of villages from our analysis, as these population and household count
discrepancies make these SECC-Census matches suspect.
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B.1.4 summarizes the proportion of total villages that match to our SECC dataset in a
histogram by population.

Table B.1.8 displays summary statistics from our SECC dataset. The first column
includes all villages in our raw subset of the SECC data, while the remaining columns
report on SECC villages that match to the Census. They reveal no systematic differences
induced by our matching algorithm. The bottom row reveals that proportion of village
households included in our SECC dataset (i.e. the proportion of households with at least
one poverty indicator) is very similar after restricting the matched sample to only villages
in RGGVY 10th-Plan districts and within our 150–450 RD bandwidth. Consistent with
Table 2.4.1, villages in our main RD analysis sample are slightly more agricultural, and
households in these villages are more likely to own land, more likely to rely on cultivation
as a source of income, and less likely to earn income from manual labor. Panel B reports
employment rates separately by gender and age, and we see that both male and female
youth unemployment rates are quite low across all subsets of the SECC data.

B.1.7 DISE Schools Dataset

In order to include educational outcomes in our analysis, we construct a panel dataset
containing the universe of primary (grades 1–5) and upper primary (grades 6–8) schools
in India for the 2005–2006 through 2014–2015 school years. These data are publicly
available online through the District Information System for Education (DISE)’s School
Report Cards website.47 In total, these data cover 1.68 million schools across over 600,000
villages. However, this yearly school panel is quite unbalanced, with the average school
appearing in only 7 out of 10 total years.48

The DISE data were originally intended to inform policymakers about the effectiveness
of the District Primary Education Programme (DPEP), and data collection for DPEP
districts began in 1995. In the early 2000s, DISE was extended to cover the rest of
the country in the early 2000s. The information in this dataset is collected by school
headmasters or head teachers, and submitted to district- and subsequently state-level
authorities before entering the official national system. Quality control is performed by
the cluster resource coordinator, and again at the district level.

This dataset includes a large number of variables, although all variables do not appear
in every year of the data. We restrict our analysis to student enrollment counts, which ap-
pear consistently throughout the full panel. DISE records the number of students, broken

47These data can be found here: http://schoolreportcards.in/SRC-New/.
48While this partly reflects new school construction between 2005 and 2014, we encountered a number

of errors when downloading data from the DISE website that contributed to the unbalanced nature of
this panel. This means that 7 percent of schools in our DISE panel are missing data for at least 1 year
between their first and last reporting years. We have no reason to believe that these errors are anything
other than random.

http://schoolreportcards.in/SRC-New/
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Figure B.1.5: Sample DISE data, 2012–2013
                                                                                                                                                                                                        

Change Language  Hindi, Marathi,  Kannada,  Malayalam,  Tamil,  Telugu,  Gujarati, Punjabi 

Click to print this page Previous year report card  201112,  201011,  200910,  200809   Click Here to see Detailed Report Click here to see RTE Report Card

                                                                                                                                                                                                    
SCHOOL REPORT CARD:201213*

State RAJASTHAN District Name BUNDI Grade*

   6/10
School Code   08230302902 School Name   GOVT. PS GUJRO KA JHOPRA
Block Name   NAINWA Cluster Name   BAMANGAON, GGUPS
Village Name   BAMANGAON Name of Head Master   KAMLESH (Post Graduate)
General Information  (PINCODE:323801)

Rural / Urban Rural Distance from BRC (Km.) 17 Distance From CRC (Km.) 0

Type of Residential School NA Residential School No Approachable by all weather roads Yes

School Category Primary only Lowest Class in school 1 Highest class in school 5

Preprimary Section No Total Students (Preprimary) 0 Total Teachers (Preprimary) 0
Year of Establishment 2001 Year of recognition 2001 Year of Upgradation from Pri. to U.Pri.

Management Local Body Academic Inspections 13 School Funds (In Rs.) Recd. Expd.

Type of School CoEducational Shift School No Teaching Learning Material fund 500 500

Special School for CWSN No No.of visits by Resource teacher for CWSN 0 School Development Fund 5000 5000

No. of Visits by BRC Coordinator 10 No. of Visits by CRC Coordinator 3 Collection from Students 0 0

Staff Category (Primary & Upper Primary only)
Teaching Staff Pri. U.Pri. Teacher(s) Male 1 Teacher(s) Female 0
Sanctioned 2 0 Parttime instructor (Upper Primary only) 0 Nonteaching Staff 0
In Position 1 0 Teachers Involved in Nonteaching assignments 0 Head Master/Head Teacher Yes
Contract Teachers 0 0 Avg. working days spent on Nontch assignments 0 Teachers Received in service Training 1
Graduate & Above 1 Teachers with Professional Qualification 1 Teachers Aged above 55
School Building, Equipment & Facilities
Number of Building Blocks Pucca 1 Partially Pucca 0 Kuccha 0 Tent 0
Classrooms Require Major Repairs 0 # of Classrooms for Teaching 2 Number of Other Rooms 1
Classrooms Require Minor Repairs 0 Status of School Building Government Separate Room for Head Master No

# of Classrooms in Good Condition 2 Playground No Land available for playground No

Ramp for Disabled Children Needed Yes Ramps for Disabled Children Available Yes Hand rails for Ramp No

Medical checkup of Students Yes Electricity No Computer Aided Learning Lab No

Furniture for Students No # of Computers Available 0 # of Computers Functional 0
Toilets Boys Girls Library Yes # of Books in School Library 158
Total 0 1 Drinking Water Facility Handpump Drinking Water Functional No
Functional 0 1 Measured campus plan prepared Yes Boundary Wall No
Enrolment & Repeaters
Enrolment 201112 Total SC ST OBC Repeaters CWSN Muslim
Grade All All Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls
I 5 10 5 5 0 0 0 0 3 4 0 0 0 0 0

II 8 7 3 4 0 0 0 0 1 4 0 0 0 0 0

III 5 6 2 4 0 0 0 0 1 4 0 0 0 0 0

IV 1 5 1 4 0 0 0 0 1 4 0 0 0 0 0

V 2 2 1 1 0 0 0 0 1 0 0 0 0 0 0

VI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VII 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VIII 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 21 30 12 18 0 0 0 0 7 16 0 0 0 0 0

Incentives (Previous Academic Year )
Primary only Upper Primary only

General SC Students ST Students OBC Students Muslim
Minority General SC Students ST Students OBC Students Muslim

Minority
Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls

Textbooks 1 0 0 1 0 0 5 14 0 0 NA NA NA NA NA NA NA NA NA NA
Stationary 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA NA NA NA NA NA
Uniform 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA NA NA NA NA NA
Scholarship 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA NA NA NA NA NA
Transport Facility 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA NA NA NA NA NA
Residential Facility 0 0 0 0 0 0 0 0 0 0 NA NA NA NA NA NA NA NA NA NA

Key Indicators

Pupil : Teacher Ratio 30 Student : Classroom Ratio 15 % Change in Enr. Over Prev. Year 42.86

% SC Students 0.00 %SC Girls to SC Enrolment 0.00 % Girls Enrolment 60.00

% ST Students 0.00 %ST Girls to ST Enrolment 0.00 % CWSN Enrolment 0.00

%Muslim Students 0.00 % Muslim Girls to Muslim Enrolment 0.00 %Classrooms Require Major Repair 0.00

% OBC Enrolment 76.67 % Repeaters to Total Enrolment 0.00 Teachers with Prof. Qualification 100.00
* Based on availability of Ramp, Playground, Boundary Wall, Drinking Water, Boys Toilet, Girls Toilet, Library, PTR≤30 at Primary Schools, PTR ≤35 at Upper Primary Level,
SCR≤30 at Primary Schools, SCR ≤35 at Upper Primary Level and ClassroomTeacher Ratio≥1.

CWSN : Children with Special Needs, BRC : Block Resource Center, CRC : Cluster Resource Center , NA : Not Applicable, na : Not Available

© 2013, NUEPA, New Delhi, India *As on 30th September 2012

Notes: This figure displays the variables available in the 2012–2013 DISE dataset, from the Government
Private School Gujro Ka Jhopra in Rajasthan.
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down by grade and gender, for each school-year pair.49 Table B.1.9 summarizes enrollment
counts from this dataset at the village level. Across India, there are approximately 200
children in primary school (grades 1–5) and approximately 70 children in upper primary
school (grades 6–8) on average per village. There are slightly more boys on average than
girls in primary school, and this gap grows among upper primary students. On average,
we observe between 1.9 and 2.3 schools per village in the DISE data; we observe between
536,330 and and 559,442 unique villages in each year, reflecting the unbalanced panel
nature of these data.

DISE also reports information on various school facility characteristics. The DISE
dataset includes, for example, what building materials each school is made out of, whether
a school has toilets, whether a school is private or public, the funding received by the
school, and the number of teachers employed by each school. Figure B.1.5 provides an
example of the data included in the 2012–2013 school year’s DISE dataset for a randomly
selected school, Government Private School Gujro Ka Jhopra in Rajasthan.

In constructing our DISE panel dataset, we link schools across years based on their
unique numerical school codes. DISE also reports the state, district, block, and village
name of each school. We use this information to match schools to villages in our main
analysis dataset. DISE does not report village census codes, so we are forced to undertake
a fuzzy match procedure similar to that used to merge habitations into our village dataset
(see Section B.1.5). We begin by building a concordance between school codes and village
names as reported in the DISE dataset. In many cases, one school will be associated
with multiple village names in different years — this can occur both when villages are
split or combined, and when single villages are spelled differently across datasets.50 We
conservatively allow for multiple village spellings for a single school, in order to maximize
our chances of matching to a village name in the census.

We search for exact string matches between villages with census codes and village
names that appear in the DISE data, following the exact string match, reclink, and
Masala merge algorithm described in Section B.1.5. After establishing a list of census
villages matched to DISE villages, we remove duplicates by reintroducing the school code
data. In cases where one school code matches to multiple census villages, we select the
match which occurs most frequently.51 We use the results of this matching procedure to
construct two datasets: first, a dataset of schools matched to census villages, which we
use to generate our school-level RD results in the main text and in Appendix B.2.8; and
second, a village-level dataset that sums enrollment across schools in a village to a single
village-level observation, which we use for sensitivity analysis below.

49In some years, these variables are also broken down by students who belong to Scheduled Castes
and Scheduled Tribes, as well as students with special needs.

50We only observe each school once per school year. These different linkages occur when we observe
schools across different years.

51For example: if school A matches to village 1 in 2005, village 1 in 2006, and village 2 in 2007, we
keep the match that links school A with village 1.
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Table B.1.10 reports the proportion of census villages that we successfully match to
the DISE dataset, after each stage of the matching algorithm. We achieve an overall
match rate of 67 percent across all villages, and 58 percent for villages with populations
within our main RD bandwidth of 150–450 people. Note that unlike the habitation
match described above, we should not expect to be able to match 100 percent of villages
ex ante: not every village in India is home to a school. According to the Village Directory,
only 84 percent of villages actually had schools in 2011. Of these villages, we are able
to successfully match 74 percent of villages to schools, and 66 percent of villages with
populations between 150 and 450. Figure B.1.6 displays our match results graphically,
demonstrating both that small villages are less likely to have schools than large villages,
and that our matching algorithm is more successful in larger villages than in smaller
villages. Our final match rates for villages containing schools (according to the Village
Directory) within our preferred RD bandwidth are comparable to those achieved with
habitation merges. Our RD analysis on school enrollment ultimately includes only 41
percent of the villages in our RD regressions for Census outcomes, because only 51 percent
of single-habitation villages in our main RD sample match to the DISE data. We also
must exclude the 10 percent of school-village matches with missing enrollment data in
either 2011–2012 or 2005–2006, as our main RD specification uses 2011–2012 enrollment
as an outcome and 2005–2006 enrollment as a control variable.52

B.1.8 Village Counts by Dataset

Our master dataset includes RGGVY district-level implementation details, village char-
acteristics from the 2001 and 2011 Census, and a count of habitations per village as
determined by the fuzzy merge to the habitation census. Each merge between different
data sources is imperfect, and Table B.1.11 shows the number of villages present after each
step in this merging process. We focus on single-habitation villages in RGGVY 10th-Plan
districts (in the middle and right columns), in order to ensure the internal validity of our
RD design. Our analysis of nighttime brightness requires an additional merge between
this panel dataset and village-specific brightness for the restricted 12-state geospatial sam-
ple (as indicated by the fourth row of Table B.1.11).53 Likewise, our analyses of SECC
outcomes and school enrollment each require an additional (fuzzy) merge with the SECC
and DISE datasets, respectively (as indicated by rows 4 and 6 of Table B.1.11). We do not
enforce the lights match when running regressions on non-spatial outcomes, nor we do not
enforce SECC or schools matches when running regressions on non-SECC/non-enrollment
outcomes.

52In many cases, these data appears “missing” because schools likely did not exist during the 2005–2006
school year. We perform sensitivities on the choice of school years in Section B.2.8.

53Village shapefiles include attribute tables with 2001 Census codes, allowing a straightforward merge
between Census datasets and shapefiles.
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Figure B.1.6: School Merge Results, by 2001 Village Population
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Notes: This figure shows a histogram of Indian villages by 2001 population (hollow white),
the subset of villages with schools 2011 (as reported by the 2011 Village Directory; solid
navy), and the subset of villages that we successfully matched with a school in the the
DISE dataset (hollow blue). After adjusting for the share of small villages without schools,
we achieve match rates closer to those shown in Figure B.1.3.

Table B.1.10: Summary of School Merge Results

All Villages 150–450 Population

A. Match rates
Exact matches 0.371 0.324
+ reclink 0.624 0.541
+ Masala merge 0.667 0.578

B. Summary statistics
Average number of schools per matched village 3.594 1.972
Share of villages with school in 2011 0.844 0.741
Match rates for villages with school in 2011 0.734 0.654

Notes: This table shows results from the school merge algorithm described above, and it is analo-
gous to Table B.1.7. Panel A reports the share of villages that have merged after each step of the
algorithm. Panel B calculates summary statistics on the subset of Census panel villages that suc-
cessfully merge to the DISE schools dataset. The first column reports match counts and summary
statistics for all 580,643 villages, while the second column considers only the 129,453 villages with
2001 populations between 150 and 450. Our merge algorithm does not restrict matches to only the
subset of villages reported to have schools in the 2011 Census.
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B.2 Empirics
In this appendix, we provide a variety of robustness and falsification exercises to comple-
ment the results in the main text. We first discuss sensitivity of our nighttime brightness
results, and then move to the economic outcomes of interest.

B.2.1 Nighttime Brightness: RD Robustness

B.2.1.1 Sample and outcome variable definition

As discussed above in Section B.1.2, because of missing or low-quality shapefiles, we are
forced to drop ten states from our nighttime lighting analysis sample. This leaves us
with twelve states with 10th-Plan RGGVY districts, which contain over 18,000 single-
habitation villages within our RD bandwidth. Our main specification assigns village
brightness based on each village’s brightest pixel. We focus on the brightest pixel due
to the typical organizational structure of South Asian villages, which have concentrated
inhabited regions surrounded by agricultural lands. Since RGGVY is targeted at elec-
trifying public places and homes, the brightest pixel will best reflect brightness that is
attributable to RGGVY infrastructure upgrades.

We also linearly project village brightness on the values in adjacent years in order to
remove year-to-year measurement error and focus on more permanent year-to-year changes
in electricity use (see Equation (B.1) in Appendix B.1.3). Table B.2.1 demonstrates
the degree to which this cross-year calibration refines our estimates, while Table B.2.2
compares these weight-averaged linear projections to unweighted 3- and 5-year averages.
These unweighted averages yield very similar point estimates, however we see that the
linear projections provide greater precision. In addition, Table B.2.2 shows that our results
are almost identical when we average village brightness across all pixels (i.e., Columns
(2), (4), and (6)), as opposed to using the maximum brightness.

We have chosen to use NOAA’s average lights product, as opposed to the more pro-
cessed stable nighttime lights. While the latter images exclude fires and other sporadic
lights, they are also less likely to detect the low levels of lighting we might expect from
small recently electrified villages. Table B.2.3 compares RD estimates using each data
product, and we see that the stable lights actually yield larger RD coefficients than the
(preferred) average visible lights. Columns (2) and (4) of Table B.2.3 display the results
of an additional sensitivity test, by including 2,373 single-habitation villages whose official
village Census populations differ from their matched habitation populations by over 20
percent. Such substantial population disparities suggest that these Census villages may
be wrongly matched to single-habitation villages, hence we have excluded them from all
other specifications. As expected, including these potentially erroneous matches atten-
uates our RD estimates, by having introduced measurement error in the RD indicator
variable.
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Table B.2.1: RD Sensitivity – Raw vs. Projected Lights

2011 village brightness Raw
Lights

Projected
(2010–2012)

Projected
(2009–2013)

(1) (2) (3)
1[2001 pop ≥ 300] 0.0788 0.1408∗∗ 0.1493∗∗

(0.0698) (0.0680) (0.0603)

2001 population −0.0002 −0.0006 −0.0008
(0.0009) (0.0007) (0.0007)

1[2001 pop ≥ 300] × 2001 pop 0.0012 0.0007 0.0008
(0.0011) (0.0009) (0.0008)

2001 Control Yes Yes Yes
State FEs Yes Yes Yes
RD bandwidth 150 150 150
Number of observations 18,686 18,686 18,686
Number of districts 130 130 130
Mean of dependent variable 6.244 6.368 6.370
R2 0.673 0.746 0.766

Notes: This table shows results from estimating Equation (2.1), using raw and
projected 2011 brightness. Column (1) uses raw 2011 lights as the dependent
variable. Column (2) uses a linear projection of 2011 lights on 2010 and 2012
values. Column (3) reproduces our preferred specificaton from Table 2.5.2, us-
ing a linear projection of 2011 lights on 2009, 2010, 2012, and 2013 values. For
each column, the 2001 lights control uses the analogous projection, for con-
sistency within each regression. Each regression includes all single-habitation
villages in 10th-Plan districts with 2001 populations in the RD bandwidth (a
150-person bandwidth includes villages with 2001 populations between 150 and
450), for the 12 states with available village shapefiles that match to Census
village areas with a correlation above 0.35. Standard errors are clustered at
the district level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table B.2.2: RD Sensitivity – Alternative Lights Variables

2011 village brightness Projected 3-Year Average 5-Year Average
Max Mean Max Mean Max Mean
(1) (2) (3) (4) (5) (6)

1[2001 pop ≥ 300] 0.1493∗∗ 0.1386∗∗ 0.1163∗ 0.1146∗ 0.1219∗ 0.1188∗∗

(0.0603) (0.0556) (0.0671) (0.0622) (0.0631) (0.0592)

2001 population −0.0008 −0.0008 −0.0004 −0.0004 −0.0004 −0.0004
(0.0007) (0.0007) (0.0008) (0.0008) (0.0008) (0.0007)

1[2001 pop ≥ 300]× 2001pop 0.0008 0.0006 0.0007 0.0004 0.0006 0.0004
(0.0008) (0.0007) (0.0009) (0.0009) (0.0009) (0.0008)

2001 Control Yes Yes Yes Yes Yes Yes
State FEs Yes Yes Yes Yes Yes Yes
RD bandwidth 150 150 150 150 150 150
Number of observations 18,686 18,686 18,686 18,686 18,686 18,686
Number of districts 130 130 130 130 130 130
Mean of dependent variable 6.370 6.077 7.047 6.711 6.735 6.411
R2 0.766 0.762 0.753 0.751 0.761 0.760

Notes: This table shows results from estimating Equation (2.1), using alternative definitions of 2011
brightness as the outcome variable. Columns (1)–(2) use a linear projection of 2011 lights on 2009, 2010,
2012, and 2013 values, with Column (1) reproduces our preferred specification from Table 2.5.2. Columns
(3)–(4) use unweighted averages of 2010–2012 values, while Columns (5)–(6) use unweighted averages of
2009–2013 values. Columns (1), (3), and (5) assign village brightness based on the brightest pixel, whereas
Columns (2), (4), and (6) average village brightness across all pixels contained in the village boundary.
We construct 2001 lights controls to be analogous to their respective outcome variables, for consistency
within each regression. Each regression includes all single-habitation villages in 10th-Plan districts with
2001 populations in the RD bandwidth (a 150-person bandwidth includes villages with 2001 populations
between 150 and 450), for the 12 states with available village shapefiles that match to Census village
areas with a correlation above 0.35. Standard errors are clustered at the district level. Significance: ***
p < 0.01, ** p < 0.05, * p < 0.10.
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Table B.2.3: RD Sensitivity – NOAA DMSP–OLS Datasets

2011 village brightness Average Visible Lights Stable Lights
(1) (2) (3) (4)

1[2001 pop ≥ 300] 0.1493∗∗ 0.1170∗∗ 0.1810∗∗ 0.1419∗∗

(0.0603) (0.0530) (0.0726) (0.0680)

2001 population −0.0008 −0.0004 −0.0012 −0.0008
(0.0007) (0.0006) (0.0008) (0.0007)

1[2001 pop ≥ 300] × 2001 pop 0.0008 0.0004 0.0008 0.0005
(0.0008) (0.0007) (0.0010) (0.0009)

Forced population match Yes No Yes No
2001 Control Yes Yes Yes Yes
State FEs Yes Yes Yes Yes
RD bandwidth 150 150 150 150
Number of observations 18,686 21,059 18,686 21,059
Number of districts 130 130 130 130
Mean of dependent variable 6.370 6.333 4.873 4.825
R2 0.766 0.775 0.782 0.789

Notes: This table shows results from estimating Equation (2.1), using alternative NOAA DMSP–
OLS lights data. Columns (1)–(2) show the average visible lights data, which is our preferred
measure of nighttime brightness (Column (1) is reproduced from Table 2.5.2). Columns (3)–(4)
show results for NOAA’s more processed stable lights product. Columns (2) and (4) include
villages that match to the 2003 and/or 2009 habitation census datasets, but have population dis-
parities of greater than 20 percent (indicating potentially erroneous matches). For each specifica-
tion, 2011 and 2001 brightness values are constructed using a linear projection on the brightness
values of adjacent years, using their respective NOAA data products. Each regression includes
all single-habitation villages in 10th-Plan districts with 2001 populations in the RD bandwidth
(a 150-person bandwidth includes villages with 2001 populations between 150 and 450), for the
12 states with available village shapefiles that match to Census village areas with a correlation
above 0.35. Standard errors are clustered at the district level. Significance: *** p < 0.01, **
p < 0.05, * p < 0.10.
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B.2.1.2 Bandwidths

Because RD designs rely on data close to the threshold to estimate a local average treat-
ment effect (LATE) at the threshold, any sensitivity of RD estimates to bandwidth selec-
tion could undermine their internal validity. Our preferred specification uses a 150-person
bandwidth on either side of the 300-person cutoff, including villages of between 150 and
450 people. Figure B.2.1 estimates Equation (2.1) using bandwidths ranging from 50 to
300 people. This demonstrates that our RD point estimate is not sensitive to bandwidth
selection, as our point estimates are quite stable. At the same time, they lose significance
at narrower bandwidths, which reduce the RD sample size.

We choose a 150-person bandwidth for two primary reasons. First, we want to ensure
that our estimation window does not overlap with two other program eligibility cutoffs
— the 100-person cutoff implemented under the 11th Plan of RGGVY, and the 500-
person cutoff used in the PMGSY road-building program. Both thresholds may have
led to increases in nighttime brightness with the potential to confound our estimates
at the 300-person cutoff, either directly through electrification or indirectly due to the
economic benefits of road infrastructure. Second, we want to exclude very small villages
(i.e. population less than 50) in our RD sample. These villages are likely quite different
than villages of 200–400 inhabitants.

As an alternative strategy, we implement on the optimal RD bandwidth procedure
formalized by Imbens and Kalyanaraman (2012). Using this technique, we derive an
optimal bandwidth of 137 using a uniform kernel, 162 using an Epanechnikov kernel, and
174 using a triangular kernel. Figure B.2.1 shows that had we chosen any of these three
bandwidths, our results would have be nearly identical.

B.2.1.3 Functional form

Our preferred RD specification excludes higher-order polynomials, following Gelman and
Imbens (2017). We control for only a linear function of the running variable, allowing the
slope to differ on either side of the RD threshold. While this has become standard practice
for implementing RD designs, we also test for sensitivity of our estimates to higher-
order polynomials. Table B.2.4 compares our preferred specification (in Column (1)) to
specifications with 2nd- and 3rd-order terms. Our RD estimate is robust to the inclusion of
a quadratic function of the running variable, but we lose precision when we include higher-
order terms. Figure B.2.2 presents these results graphically, and we see that the 3rd-order
polynomial appears to be affected by observations far from the RD threshold (as Gelman
and Imbens (2017) warn might occur with higher-order polynomials). The right-hand
panels of Figure B.2.2 present the same three specifications using a 174-person bandwidth,
also reported in Columns (2), (4), and (6) of Table B.2.4. This is our largest Imbens-
Kalyanaraman optimal bandwidth (which we calculated using uniform, Epanechnikov,
and triangular kernels). We see that extending the bandwidth affects the curvature of
the 3rd-order polynomial estimates, while the fitted linear and quadratic curves appear
mostly unchanged.
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Figure B.2.1: RD Sensitivity – Nighttime Brightness, Bandwidth
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Notes: This figure presents our bandwidth sensitivity analysis for Equation
(2.1), estimated separately on bandwidths ranging from 50 (i.e., 250–350 peo-
ple) to 300 (i.e., 0–600 people). Each dot represents the point estimate on the
RD discontinuity at a given bandwidth around the 300-person cutoff, with 95
percent confidence intervals clustered at the district level. Our chosen band-
width of 150 includes villages with populations between 150 and 450. The
optimal bandwidth, calculated using the algorithm proposed by Imbens and
Kalyanaraman (2012), is 137 using a uniform kernel, 162 using an Epanech-
nikov kernel, and 174 using a triangular kernel.
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Table B.2.4: RD Sensitivity – Higher Order Polynomials

2011 village brightness Linear Quadratic Cubic
(1) (2) (3) (4) (5) (6)

1[2001 pop ≥ 300] 0.1493∗∗ 0.1337∗∗ 0.1497∗∗ 0.1372∗∗ 0.0742 0.1261
(0.0603) (0.0549) (0.0607) (0.0550) (0.0987) (0.0864)

2001 population −0.0008 −0.0002 −0.0011 −0.0021 0.0001 −0.0019
(0.0007) (0.0005) (0.0016) (0.0013) (0.0016) (0.0015)

1[2001 pop ≥ 300] × 2001 pop 0.0008 −0.0001 0.0014 0.0036 0.0014 0.0036
(0.0008) (0.0006) (0.0029) (0.0023) (0.0029) (0.0024)

(2001 population)2 −0.0000 −0.0000 −0.0000 −0.0000
(0.0000) (0.0000) (0.0000) (0.0000)

(2001 population)3 −0.0000 −0.0000
(0.0000) (0.0000)

2001 Control Yes Yes Yes Yes Yes Yes
State FEs Yes Yes Yes Yes Yes Yes
RD bandwidth 150 174 150 174 150 174
Number of observations 18,686 21,551 18,686 21,551 18,686 21,551
Number of districts 130 130 130 130 130 130
Mean of dependent var 6.370 6.344 6.370 6.344 6.370 6.344
R2 0.766 0.775 0.766 0.775 0.766 0.775

Notes: This table compares our main RD specification to two specificaions with higher-order polynomials,
as presented graphically in Figure B.2.2. Columns (1)–(2) estimate our main specification using a linear
function of the running variable, 2001 population. Columns (3)–(4) use a quadratic function of population,
while Columns (5)–(6) use a cubic function of population. Each regression includes all villages meeting
the above sample criteria with 2001 populations in the RD bandwidth (either our preferred bandwidth
of 150 or our largest optimal bandwidth of 174), for the 12 states with available village shapefiles that
match to Census village areas with a correlation above 0.35. Standard errors are clustered at the district
level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Figure B.2.2: RD Sensitivity – Nighttime Brightness, Higher Order Polynomials
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Notes: This figure presents our RD for 2011 nighttime brightness, estimated using 1st-, 2nd-, and 3rd-
order polynomials. The three figures in the left-hand column correspond to the regressions in Table
B.2.4, and the top-left panel reproduces Figure 2.5.4. The three figures in the right-hand column use the
Imbens-Kalyanaraman optimal bandwidth of 174 (which contains 21,551 villages). Blue dots show average
residuals from regressing 2011 nighttime brightness on 2001 nighttime brightness and state fixed effects.
Each dot contains approximately 1,600 villages, averaged in 25-person population bins. Linear terms are
estimated separately on each side of the 300-person threshold, and higher-order terms are restricted to be
the same on each side of the threshold. Plots include all within-bandwidth, single-habitation, 10th-Plan
villages, for the 12 states with available village shapefiles that correspond to Census village areas (with
a correlation above 0.35).
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B.2.1.4 Fixed effects and 2001 controls

RD designs do not rely on fixed effects or controls for identification, but their inclusion can
greatly improve efficiency (Lee and Lemieux (2010)). Our main specification controls for
both state fixed effects and the 2001 level of nighttime brightness. Table B.2.5 estimates
this specification with and without this 2001 control, as well as with no fixed effects, state
fixed effects, and district fixed effects. We see that the RD estimates without the 2001
control are noisy and imprecise, meaning that our RD requires this baseline control to
find a statistically detectable effect. Stated differently, we find that RGGVY eligibility
has led to a statistically significant increase in brightness conditional on 2001 levels of
brightness, but we are unable to statistically detect the unconditional effect of RGGVY
eligibility on 2011 brightness. This makes sense: nighttime brightness prior to RGGVY is
very heterogeneous; conditioning on the pre-period level dramatically improves the signal-
to-noise ratio. This is not an uncommon practice in papers using remotely sensed data,
as Jayachandran et al. (2017) also rely on pre-period controls in order to detect treatment
effects. Table B.2.5 also reveals that our estimates are not sensitive to the inclusion of
fixed effects. We have chosen to include state fixed effects in our main specification, in
order to control for large differences in nighttime brightness across our 12 sample states
(see Table B.2.6).

Table B.2.7 introduces additional 2001 village controls to our main RD specification.
Our RD point estimates are not affected by the inclusion of these pre-RGGVY controls,
even though two (literacy rate and presence of road) have statistically significant as-
sociations with 2011 nighttime brightness. Interestingly, 2001 electric power indicator
variables are poor predictors of 2011 brightness. This is not surprising, considering that
these Census variables do not capture the intensity of electrification within the village.

B.2.1.5 Pre-RGGVY lights

Covariate smoothness across the threshold is a key identifying assumption in RD designs.
If pre-existing factors were to jump discontinuously at the threshold, this would have
the potential to confound our RD estimates. Figure B.2.3 and Table B.2.8 show that
lights from 2001–2004 (i.e., before the announcement of RGGVY) do not exhibit any
significant breaks at the 300-person cutoff. This supports our assumption that selection
into eligibility around the 300-person cutoff was as-good-as-random.

B.2.1.6 Standard errors

Finally, our main specification clusters standard errors at the district level. This allows
for arbitrary dependence in the error structure between any two villages in the same dis-
trict. Because RGGVY projects were approved based on district-specific implementation
plans (or DPRs), and funds were awarded to district implementing agencies, we allow
for within-district dependence to control for any unobserved factors affecting RGGVY
implementation. Since districts are geographically contiguous area, this also accounts for
spatial correlations between nearby villages.
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Table B.2.5: RD Sensitivity – Fixed Effects and 2001 Control

2011 village brightness
(1) (2) (3) (4) (5) (6)

1[2001 pop ≥ 300] 0.1002 0.0836 0.0745 0.1451∗∗ 0.1493∗∗ 0.1292∗∗

(0.1201) (0.1149) (0.1144) (0.0635) (0.0603) (0.0568)

2001 population 0.0006 0.0007 0.0009 −0.0012∗ −0.0008 −0.0005
(0.0013) (0.0013) (0.0012) (0.0007) (0.0007) (0.0006)

1[2001 pop ≥ 300] × 2001 pop 0.0008 0.0005 −0.0001 0.0012 0.0008 0.0005
(0.0017) (0.0016) (0.0015) (0.0008) (0.0008) (0.0008)

2001 Control No No No Yes Yes Yes
State FEs No Yes No No Yes No
District FEs No No Yes No No Yes
RD bandwidth 150 150 150 150 150 150
Number of observations 18,686 18,686 18,686 18,686 18,686 18,686
Number of districts 130 130 130 130 130 130
Mean of dependent var 6.370 6.370 6.370 6.370 6.370 6.370
R2 0.001 0.062 0.169 0.748 0.766 0.791

Notes: This table shows results from estimating Equation (2.1), using with and without fixed effects
and the 2001 control. For each regression, the dependent variable is the maximum village brightness for
2011. Column (5) reproduces our preferred specification from Table 2.5.2. Each regression includes all
single-habitation villages in 10th-Plan districts with 2001 populations in the RD bandwidth (a 150-person
bandwidth includes villages with 2001 populations between 150 and 450), for the 12 states with available
village shapefiles that match to Census village areas with a correlation above 0.35. Standard errors are
clustered at the district level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Figure B.2.3: RD Sensitivity – Pre-RGGVY Brightness
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Notes: These four figures estimate our preferred RD specification using nighttime brightness for 2001–
2004, corresponding to the regressions in Table B.2.8. Each graph uses a different year’s nighttime
brightness as the dependent variable, after having linearly projected these values on adjacent years.
Blue dots show average residuals from regressing that year’s nighttime brightness on state fixed effects
(without any other controls). Each dot contains approximately 1,600 villages, averaged in 25-person
population bins. Lines are estimated separately on each side of the 300-person threshold, for all 18,686
single-habitation villages between 150–450 people, in 10th-Plan districts, for the 12 states with available
village shapefiles that correspond to Census village areas (with a correlation above 0.35).
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Table B.2.6: Nighttime Brightness by State

RD Sample State 2001 Average
Village Brightness

2011 Average
Village Brightness

Villages in
RD Sample

Andhra Pradesh 5.021 7.049 1,020
Bihar 3.347 4.559 2,555
Chhattisgarh 3.999 6.807 364
Gujarat 5.111 6.007 333
Haryana 12.329 17.625 31
Jharkhand 4.211 6.537 549
Karnataka 5.495 8.002 2,747
Madhya Pradesh 4.774 5.191 1,568
Maharashtra 4.946 5.563 315
Orissa 4.258 5.681 471
Rajasthan 4.757 7.039 4,138
West Bengal 4.413 6.568 4,595

Total 4.583 6.492 18,686

Notes: This table shows the average 2001 and 2011 brightness by state, for villages in
our main RD sample. The 2001 and 2011 brightness variables used in this table are
the same linear projections used in our main specification.

Table B.2.9 reports standard errors on our RD point estimate for alternative assump-
tions about the error structure. We see that clustering by census block yields slightly
larger standard errors than clustering by district.54 We also calculate Conley “spatial
HAC” standard errors, which are robust to spatial dependencies between villages within a
given geographic radius, as well as heteroscedasticity and autocorrelation.55 Table B.2.9
shows that spatial standard errors estimated with a 50-km and 250-km bandwidth are
smaller than our preferred standard error estimates.

54Census block is the administrative unit that is smaller than district but larger than village. The
only administrative unit larger than district is state. Because our nightlights regressions only include 12
states, we do not cluster at the state level for fear of bias resulting from having too few clusters (Cameron
and Miller (2015)).

55We use code from Fetzer (2014) to implement this Conley HAC procedure. This code can be
found online: http://www.trfetzer.com/conley-spatial-hac-errors-with-fixed-effects/. It is
in turn based on code from Hsiang (2010), itself based on theory from Conley (1999) and Conley (2008).
Because our RD regression is cross-sectional and does not include multiple observations for each village,
the autocorrelation (“AC”) component of the spatial HAC estimator is not relevant for our purposes. Our
spatial standard errors apply a uniform kernel, which yields very similar estimates to those generated
using a linear Bartlett kernel.

http://www.trfetzer.com/conley-spatial-hac-errors-with-fixed-effects/
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Table B.2.7: RD Sensitivity – 2001 Village Controls

2011 village brightness
(1) (2) (3) (4) (5) (6)

1[2001 pop ≥ 300] 0.1489∗∗ 0.1484∗∗ 0.1510∗∗ 0.1431∗∗ 0.1468∗∗ 0.1808∗∗∗

(0.0603) (0.0605) (0.0606) (0.0615) (0.0604) (0.0573)

2001 population −0.0009 −0.0008 −0.0008 −0.0008 −0.0008 −0.0013∗∗

(0.0007) (0.0007) (0.0007) (0.0007) (0.0007) (0.0006)

1[2001 pop ≥ 300] × 2001pop 0.0009 0.0008 0.0008 0.0009 0.0009 0.0016∗∗

(0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0007)

2001 literacy rate 0.9232∗∗∗

(0.2937)

2001 share SC/ST −0.1558
(0.1181)

2001 share of area irrigated 0.2959
(0.2699)

2001 road prsent (0/1) 0.2690∗∗∗

(0.0630)

2001 elec, any use (0/1) 0.0072
(0.1343)

2001 elec, all uses (0/1) 0.1593
(0.1333)

2001 Brightness Yes Yes Yes Yes Yes Yes
State FEs Yes Yes Yes Yes Yes Yes
RD bandwidth 150 150 150 150 150 150
Number of observations 18,686 18,686 18,669 18,358 18,647 16,907
Number of districts 130 130 130 130 130 130
Mean of dependent var 6.370 6.370 6.370 6.398 6.365 6.451
R2 0.767 0.766 0.766 0.766 0.766 0.773

Notes: This table introduces 2001 village controls to our main RD specification. SC/ST refer to official
Scheduled Caste and Scheduled Tribe designations, while the 2001 presence of a road indicator includes
both paved and mud roads. 2001 electric power indicators consider three distinct end uses: domestic,
agricultural, and commercial. Electricity for any use (all uses) indicates whether any one (all) of these
three end-use sectors had electric power in 2001. Each regression includes all villages meeting the above
sample criteria with 2001 populations in the RD bandwidth (a 150-person bandwidth includes villages
with 2001 populations between 150 and 450), for the 12 states with available village shapefiles that match
to Census village areas with a correlation above 0.35. Standard errors are clustered at the district level.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table B.2.8: RD Sensitivity – Pre-RGGVY Brightness

Village brightness 2001 2002 2003 2004
(1) (2) (3) (4)

1[2001 pop ≥ 300] −0.0496 −0.0319 −0.0290 −0.0411
(0.0736) (0.0721) (0.0649) (0.0648)

2001 population 0.0011 0.0010 0.0009 0.0010
(0.0007) (0.0007) (0.0007) (0.0007)

1[2001 pop ≥ 300] × 2001 pop −0.0002 −0.0003 −0.0002 −0.0002
(0.0011) (0.0011) (0.0010) (0.0010)

State FEs Yes Yes Yes Yes
RD bandwidth 150 150 150 150
Number of observations 18,686 18,686 18,686 18,686
Number of districts 130 130 130 130
Mean of dependent variable 4.512 4.448 3.603 3.918
R2 0.053 0.055 0.058 0.062

Notes: This table shows results from estimating our RD specification using bright-
ness outcomes for years prior to the announcement of RGGVY. For each regression,
the dependent variable is the maximum village brightness for a given year, after ap-
plying a linear projection onto brightness in adjacent years. Unlike Equation (2.1),
these specifications do not control for pre-RGGVY brightness. Each regression in-
cludes all single-habitation villages in 10th-Plan districts with 2001 populations in
the RD bandwidth (a 150-person bandwidth includes villages with 2001 populations
between 150 and 450), for the 12 states with available village shapefiles that match
to Census village areas with a correlation above 0.35. Standard errors are clustered
at the district level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

Table B.2.9: RD Sensitivity – Alternative Standard Errors

Clustered
by Block

Clustered
by District

Spatial HAC
(50 km)

Spatial HAC
(250 km)

Standard Error
on RD coefficient (0.0680)∗∗ (0.0603)∗∗ (0.0602)∗∗ (0.0542)∗∗∗

Notes: This table shows robustness of our RD point estimate (β̂1 from Table 2.5.2) to
alternative standard error assumptions. Column (1) clusters standard errors by census
block, which is the administrative unit between district and village. Column (2) clusters
by district, which is our preferred method. Columns (3)–(4) apply standard errors that
are robust to heteroscedasticity and spatial correlation, with bandwidths of 50 and 250
km. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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B.2.2 Nighttime Brightness: Validity Tests

In addition to the robustness checks above, we also conduct placebo, randomization, and
falsification tests to corroborate our results for nighttime brightness. Section 2.5 in the
main text discuss our placebo test and randomization inference procedures, and Figure
2.5.5 reveals that our observed increase in nighttime brightness is very unlikely to result
from spurious correlations in the relationship between brightness and village populations.

Section 2.5 describes an additional falsification exercise, where we demonstrate that
nighttime brightness only increased for the subset of villages within 10th-Plan eligible
districts containing a single habitation. We find no increase in brightness at the 300-
person threshold for villages in 11th-Plan districts (for which the eligibility cutoff was
reduced from 300 to 100 people) or for villages with more than one habitation (for which
the total village population does not correspond to the population used to determine
eligibility). Figure 2.5.6 graphically compares our main RD results to three “falsification”
samples: multi-habitation villages in 10th-Plan districts, single-habitation villages in 11th-
Plan districts, and multi-habitation villages in 11th-Plan districts. Table B.2.10 presents
the same results in regression format. As expected, none of these alternative samples
exhibits evidence of a positive discontinuity at the 300-person cutoff. This provides further
evidence that the RGGVY program is what is driving the increase in nighttime brightness
for 10th-Plan, single-habitation villages.

B.2.3 Nighttime Brightness: Timing

As a final validity test, we look at changes in nighttime brightness over time. Since we
are attributing the increase in nighttime brightness to RGGVY eligibility, year-on-year
changes in differential brightness at the RD cutoff should be consistent with the rollout
of the RGGVY program. We should expect our RD estimates to increase incrementally
over time, for two reasons. First, RGGVY project funds under the 10th Plan were dis-
bursed gradually between 2005 and 2010. Because we estimate the average effect on
brightness across 128 eligible districts, our RD estimate should increase in magnitude as
more districts received RGGVY funding. (There is an additional lag between the date
that a district received RGGVY funding and the rollout of project implementation across
its constituent villages). Second, the effects of infrastructure improvements on observed
brightness are likely not immediate. For a village that received transformer upgrades and
additional household electric connections in 2009, we might expect observed brightness
to increase incrementally between 2010–2011, as villages invest in appliances that use
electricity and emit light.

We test for these gradual rollout and investment effects in Figure B.2.4 and Table
B.2.11. As expected, we see that the RD point estimate increases monotonically from
2006 to 2011. Hence, the RD effect that we detect from NOAA’s satellite images is
consistent with the incremental rollout and takeup of electricity use due to the RGGVY
program.
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Table B.2.10: RD Sensitivity – Falsification Tests

2011 village brightness 10th-Plan
Single-Hab.

10th-Plan
Multi-Hab.

11th-Plan
Single-Hab.

11th-Plan
Multi-Hab.

(1) (2) (3) (4)
1[2001 pop ≥ 300] 0.1493∗∗ −0.0326 −0.0109 −0.0781

(0.0603) (0.0751) (0.0595) (0.0986)

2001 population −0.0008 −0.0001 −0.0001 0.0007
(0.0007) (0.0007) (0.0005) (0.0009)

1[2001 pop ≥ 300] × 2001 pop 0.0008 0.0011 0.0005 −0.0005
(0.0008) (0.0008) (0.0008) (0.0008)

2001 Control Yes Yes Yes Yes
State FEs Yes Yes Yes Yes
RD bandwidth 150 150 150 150
Number of observations 18,686 10,304 17,385 11,382
Number of districts 130 116 174 149
Mean of dependent variable 6.370 5.398 5.587 5.010
R2 0.766 0.793 0.756 0.611

Notes: This table compares our main RD specification in Column (1) to three separate samples
for which RGGVY’s 300-person eligibility threshold should not be relevant. Columns (2) and (4)
estimate Equation (2.1) using villages with multiple habitations, for which the running variable
(village population) does not correspond to the habitation populations that determined village
eligibility. Columns (3) and (4) estimate Equation (2.1) using villages that were eligibile for RGGVY
under the 11th Plan, which moved the eligibility cutoff from 300 to 100 people. Figure 2.5.6 presents
these three falsification tests graphically. Each regression includes all villages meeting the above
sample criteria with 2001 populations in the RD bandwidth (a 150-person bandwidth includes
villages with 2001 populations between 150 and 450), for the 12 states with available village shapefiles
that match to Census village areas with a correlation above 0.35. Standard errors are clustered at
the district level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table B.2.11: RD Sensitivity – Brightness by Year

Village brightness 2006 2007 2008 2009 2010 2011
(1) (2) (3) (4) (5) (6)

1[2001 pop ≥ 300] 0.0377 0.0649∗∗ 0.0900∗∗ 0.0999∗∗ 0.1175∗ 0.1493∗∗

(0.0251) (0.0321) (0.0352) (0.0427) (0.0632) (0.0603)

2001 population −0.0000 −0.0001 −0.0003 −0.0004 −0.0005 −0.0008
(0.0002) (0.0003) (0.0003) (0.0005) (0.0008) (0.0007)

1[2001 pop ≥ 300] × 2001 pop −0.0000 −0.0002 0.0002 0.0004 0.0007 0.0008
(0.0003) (0.0003) (0.0004) (0.0006) (0.0009) (0.0008)

2001 Control Yes Yes Yes Yes Yes Yes
State FEs Yes Yes Yes Yes Yes Yes
RD bandwidth 150 150 150 150 150 150
Number of observations 18,686 18,686 18,686 18,686 18,686 18,686
Number of districts 130 130 130 130 130 130
Mean of dependent var 3.844 4.344 5.063 5.123 7.542 6.370
R2 0.914 0.867 0.854 0.801 0.758 0.766

Notes: This table shows results from estimating Equation (2.1), using brightness outcomes from varying
years. For each regression, the dependent variable is the maximum village brightness for a given year,
after applying a linear projection onto brightness in adjacent years. Each regression includes all single-
habitation villages in 10th-Plan districts with 2001 populations in the RD bandwidth (a 150-person
bandwidth includes villages with 2001 populations between 150 and 450), for the 12 states with available
village shapefiles that match to Census village areas with a correlation above 0.35. Standard errors are
clustered at the district level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Figure B.2.4: RD on Nighttime Brightness Over Time
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Notes: These six figures estimate our preferred RD specification using nighttime brightness for 2006–2011,
corresponding to the regressions in Table B.2.11. Each graph uses a different year’s nighttime brightness
as the dependent variable, after having linearly projected these values on adjacent years. The lower-right
graph reproduces Figure 2.5.4. Blue dots show average residuals from regressing that year’s nighttime
brightness on 2001 nighttime brightness and state fixed effects. Each dot contains approximately 1,600
villages, averaged in 25-person population bins. Lines are estimated separately on each side of the 300-
person threshold, for all 18,686 single-habitation villages between 150–450 people, in 10th-Plan districts,
for the 12 states with available village shapefiles that correspond to Census village areas (with a correlation
above 0.35).
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B.2.4 Census Outcome Results: RD Robustness

Next, we run a series of analogous RD robustness tests for the range of Census outcomes
results that we report in the main text.

B.2.4.1 Sample and outcome variables

We normalize our main village-level results in Table 2.5.3 by either village population
(by gender) or by the share of village households. This is because our RD specification
is cross-sectional, and most village-level outcomes will vary mechanically with the run-
ning variable (e.g., number of 2011 female agricultural workers will increase mechanically
in 2001 village population). However, this normalization relies on the assumption that
village-level demographics were unaffected by RGGVY program eligibility. Figure B.2.5
shows RD plots for 2011 village population and the size of the 0–6 age cohort, as reported
in Panel A of Table 2.5.3. We see no evidence that RGGVY eligibility changed either the
total village population or the fertility rate.

As an additional sensitivity, Table B.2.12 reproduces our main RD results from Table
2.5.3, including villages with population disparities in the habitation census of over 20
percent. After adding nearly 3,962 villages that were potentially miscategorized as having
a single habitation, our RD estimates are nearly identical, although slightly more precise
due to a greater sample size. In contrast, including villages with population disparities
attenuates our nighttime brightness results (see Table B.2.3). As we see no corresponding
attenuation in Table B.2.12, this underscores the lack of evidence of any economically
meaningful impacts of RGGVY electrification for villages close to the cutoff.

B.2.4.2 Bandwidths

Section B.2.1.2 discusses our choice of a 150-person RD bandwidth around RGGVY’s 300-
person 10th-Plan cutoff, which avoids overlapping with the 100-person 11th-Plan cutoff
and the 500-person PMGSY eligibility cutoff. However, we also demonstrate that our
RD results for nighttime brightness are not sensitive to our choice of bandwidth (see
Figure B.2.1). We present analogous bandwidth sensitivities in Figure B.2.6, for eight
census outcomes reported in Table 2.5.3. This demonstrates that our RD results for these
Census outcomes (male and female labor shares; mud floors; asset ownership; share of
village area planted and irrigated) are not overly sensitive to our choice of bandwidth,
for bandwidths between 100 and 250 (above which includes very small villages). Figure
B.2.6 shows the range of feasible symmetric RD bandwidths, which stops at 300 due to
our 300-person RD threshold. The optimal bandwidth calculations (following Imbens and
Kalyanaraman (2012)) vary across each outcome, ranging from 130 to 353.
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Table B.2.12: RD Sensitivity – Census Outcomes, No Forced Population Match

2011 Outcome Variable RD
Coeff

Std
Error

95 Percent
Confidence

Mean of
Outcome

A. Demographic outcomes
Total population −0.2473 (2.335) [−4.824, 4.329] 273.01
0–6 cohort / total population 0.0010 (0.001) [−0.001, 0.003] 0.15
Average household size −0.0063 (0.012) [−0.029, 0.016] 5.12
Literacy rate −0.0025 (0.002) [−0.006, 0.001] 0.56

B. Labor outcomes
Male agricultural workers / male pop −0.0069∗∗∗ (0.002) [−0.012,−0.002] 0.42
Female agri. workers / female pop −0.0055 (0.004) [−0.013, 0.002] 0.29
Male household workers / male pop −0.0008 (0.001) [−0.002, 0.000] 0.01
Female household workers / female pop −0.0015 (0.001) [−0.003, 0.001] 0.01
Male other workers / male pop 0.0035∗ (0.002) [−0.000, 0.007] 0.10
Female other workers / female pop −0.0016 (0.002) [−0.005, 0.002] 0.05

C. Asset ownership
Share of households with telephone 0.0025 (0.005) [−0.007, 0.012] 0.53
Share of households with TV 0.0015 (0.004) [−0.006, 0.009] 0.25
Share of households with bicycle 0.0007 (0.004) [−0.007, 0.008] 0.49
Share of households with motorcycle −0.0008 (0.003) [−0.006, 0.004] 0.13
Share of households without assets 0.0016 (0.004) [−0.006, 0.009] 0.23

D. Housing stock
Share of households w/ elec/gas cooking 0.0008 (0.002) [−0.004, 0.005] 0.06
Share of households w/ kerosene lighting 0.0023 (0.006) [−0.009, 0.014] 0.48
Share of households with mud floors 0.0056 (0.004) [−0.002, 0.013] 0.74
Share of households with thatched roof −0.0037 (0.005) [−0.013, 0.005] 0.23
Share of households dilapidated −0.0024 (0.003) [−0.008, 0.003] 0.07

E. Village-wide outcomes
1/0 Mobile phone coverage in village 0.0051 (0.010) [−0.015, 0.025] 0.74
1/0 Post office in village 0.0017 (0.003) [−0.005, 0.008] 0.03
1/0 Ag credit societies in village 0.0005 (0.003) [−0.006, 0.007] 0.02
1/0 Water from tubewell in village −0.0033 (0.011) [−0.024, 0.017] 0.45
Share of village area irrigated −0.0075∗ (0.005) [−0.016, 0.001] 0.35
Share of village area planted 0.0018 (0.006) [−0.009, 0.013] 0.58

Notes: This table includes the identical set of regressions in Table 2.5.3, including villages with large
population disparities with the Habitation Census (i.e., villages whose matched habitation populations
disagree with official Census populations by over 20 percent). The RD bandwidth now includes 33,727
villages with 2001 populations between 150 and 450, across 225 districts. The second column shows the
RD point estimate (β̂1) for each regression. All specifications control for the 2001 level of the outcome
variable, except for share of village area planted (where 2001 values are not available) and 1/0 indicator
variables. All specifications also include state fixed effects. Standard errors are clustered at the district
level, which we use to calculate 95 percent confidence intervals in the fourth column. The fifth column
reports the mean of the dependent variable for each RD regression. Significance: *** p < 0.01, **
p < 0.05, * p < 0.10.
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Figure B.2.5: RD Reduced Form – 2011 Village Population
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Notes: This figure presents results for RD regressions of 2011 village population (left) and the share of
the 2011 population less than 7 years old (right). These correspond to the first two rows of Table 2.5.3.
Blue dots show average residuals from regressing the 2011 outcome on and state fixed effects and the
2001 level of the outcome (except for the left panel, where 2001 population is the running variable
and hence not an additional control). Each dot contains approximately 1,500 villages, averaged in
15-person population bins. Lines are estimated separately on each side of the 300-person threshold,
for all 29,765 single-habitation villages between 150 and 450 people, in 10th-Plan districts.

B.2.4.3 Functional form

Section B.2.1.3 discusses our choice to exclude higher-order polynomials from our preferred
RD specification (following Gelman and Imbens (2017)). Table B.2.13 tests for sensitivity
of our RD regressions on village-level census outcomes to the inclusion of a quadratic
function of the running variable. This yields point estimates and confidence intervals
that are very close to the linear RD specification in Table 2.5.3. Figure B.2.7 presents a
subset of these results graphically, where the share of male agricultural workers remains
the census outcome that is most obviously discontinuous at the 300-person threshold.

Table B.2.14 re-estimates Equation (2.1) using weighted least squares, weighting ob-
servations by their distance from the RD threshold. We define village weights as wv ≡
1− |Pv−300|

150
, where Pv is the 2001 village population. These results confirm that upweight-

ing villages close to the RD threshold does not significantly change our results.
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Figure B.2.6: RD Sensitivity – Census Outcomes, Bandwidths
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Notes: This figure presents our bandwidth sensitivity analysis for eight separate outcomes in Table 2.5.3.
For each outcome, we estimate Equation (2.1) separately on bandwidths ranging from 50 (i.e., 250–350
people) to 300 (i.e., 0–600 people). Each dot represents the point estimate on the RD discontinuity at
a given bandwidth around the 300-person cutoff, with 95 percent confidence intervals clustered at the
district level. Our chosen bandwidth of 150 includes villages with populations between 150 and 450. The
optimal RD bandwidth varies for each outcome, ranging from 130 to 354 for the eight outcomes shown
here (calculated using the algorithm proposed by Imbens and Kalyanaraman (2012), using uniform,
Epanechnikov, and triangular kernels).
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Table B.2.13: RD Sensitivity – Census Outcomes, Quadratic in Population

2011 Outcome Variable RD
Coeff

Std
Error

95 Percent
Confidence

Mean of
Outcome

A. Demographic outcomes
Total population −0.8933 (2.510) [−5.813, 4.026] 271.09
0–6 cohort / total population 0.0009 (0.001) [−0.001, 0.002] 0.14
Average household size −0.0054 (0.013) [−0.030, 0.019] 5.13
Literacy rate −0.0025 (0.002) [−0.006, 0.002] 0.57

B. Labor outcomes
Male agricultural workers / male pop −0.0071∗∗ (0.003) [−0.012,−0.002] 0.42
Female agri. workers / female pop −0.0051 (0.004) [−0.013, 0.003] 0.29
Male household workers / male pop −0.0009 (0.001) [−0.002, 0.000] 0.01
Female household workers / female pop −0.0015 (0.001) [−0.004, 0.001] 0.01
Male other workers / male pop 0.0047∗∗ (0.002) [0.001, 0.008] 0.10
Female other workers / female pop −0.0003 (0.002) [−0.004, 0.004] 0.05

C. Asset ownership
Share of households with telephone 0.0028 (0.005) [−0.008, 0.014] 0.54
Share of households with TV 0.0026 (0.004) [−0.005, 0.010] 0.26
Share of households with bicycle −0.0015 (0.004) [−0.010, 0.007] 0.50
Share of households with motorcycle −0.0008 (0.003) [−0.006, 0.004] 0.13
Share of households without assets 0.0037 (0.004) [−0.004, 0.012] 0.22

D. Housing stock
Share of households w/ elec/gas cooking 0.0005 (0.003) [−0.005, 0.006] 0.07
Share of households w/ kerosene lighting 0.0029 (0.006) [−0.009, 0.015] 0.48
Share of households with mud floors 0.0041 (0.004) [−0.003, 0.012] 0.73
Share of households with thatched roof −0.0034 (0.005) [−0.013, 0.006] 0.23
Share of households dilapidated −0.0031 (0.003) [−0.009, 0.003] 0.07

E. Village-wide outcomes
1/0 Mobile phone coverage in village −0.0002 (0.011) [−0.022, 0.022] 0.75
1/0 Post office in village 0.0015 (0.004) [−0.006, 0.009] 0.03
1/0 Ag credit societies in village 0.0015 (0.004) [−0.006, 0.009] 0.02
1/0 Water from tubewell in village −0.0025 (0.011) [−0.024, 0.019] 0.44
Share of village area irrigated −0.0056 (0.005) [−0.015, 0.004] 0.34
Share of village area planted 0.0019 (0.006) [−0.009, 0.013] 0.58

Notes: This table includes the identical set of regressions in Table 2.5.3, except controlling for a quadratic
function of 2001 village population. The RD bandwidth includes 29,765 villages with 2001 populations
between 150 and 450, across 225 districts. The second column shows the RD point estimate (β̂1) for
each regression. All specifications control for a 2nd-order polynomial in the running variable and state
fixed effects. All specifications also control for the 2001 level of the outcome variable, except for share of
village area planted (where 2001 values are not available) and 1/0 indicator variables. Standard errors
are clustered at the district level, which we use to calculate 95 percent confidence intervals in the fourth
column. The fifth column reports the mean of the dependent variable for each RD regression. Significance:
*** p < 0.01, ** p < 0.05, * p < 0.10.
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Figure B.2.7: RD Sensitivity – Census Outcomes, Second-Order Polynomials

−.01

−.005

0

.005

.01

S
h

a
re

 o
f 

M
a

le
 P

o
p

u
la

ti
o

n
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Male Agricultural Workers (Quadratic)

−.01

−.005

0

.005

.01

S
h

a
re

 o
f 

F
e

m
a

le
 P

o
p

u
la

ti
o

n
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Female Agricultural Workers (Quadratic)

−.01

−.005

0

.005

.01

S
h

a
re

 o
f 

M
a

le
 P

o
p

u
la

ti
o

n
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Male Household Workers (Quadratic)

−.01

−.005

0

.005

.01
S

h
a

re
 o

f 
F

e
m

a
le

 P
o

p
u

la
ti
o

n
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Female Household Workers (Quadratic)

−.01

−.005

0

.005

.01

S
h

a
re

 o
f 

M
a

le
 P

o
p

u
la

ti
o

n
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Male Other Workers (Quadratic)

−.01

−.005

0

.005

.01

S
h

a
re

 o
f 

F
e

m
a

le
 P

o
p

u
la

ti
o

n
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Female Other Workers (Quadratic)

(Figured continued on next page.)
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Notes: This two-page figure shows reduced form results estimating Equation (2.1) including a second-
order polynomial in population, as reported in Table B.2.13. Blue dots show average residuals form re-
gressing the 2011 outcomes on the 2001 control and state fixed effects. Each dot contains approximately
1,500 villages, averaged in 15-person population bins, including all 29,765 single-habitation villages be-
tween 150 and 450 people, in 10th-Plan districts.
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Table B.2.14: RD Sensitivity – Census Outcomes, Weighting Inverse Distance from Cutoff

2011 Outcome Variable RD
Coeff

Std
Error

95 Percent
Confidence

Mean of
Outcome

A. Demographic outcomes
Total population −0.5747 (2.536) [−5.545, 4.396] 301.22
0–6 cohort / total population 0.0005 (0.001) [−0.001, 0.002] 0.14
Average household size −0.0003 (0.014) [−0.027, 0.027] 5.14
Literacy rate −0.0009 (0.002) [−0.005, 0.003] 0.57

B. Labor outcomes
Male agricultural workers / male pop −0.0075∗∗∗ (0.003) [−0.013,−0.002] 0.43
Female agri. workers / female pop −0.0063 (0.004) [−0.015, 0.002] 0.28
Male household workers / male pop −0.0008 (0.001) [−0.002, 0.000] 0.01
Female household workers / female pop −0.0010 (0.001) [−0.003, 0.001] 0.01
Male other workers / male pop 0.0044∗∗ (0.002) [0.000, 0.009] 0.10
Female other workers / female pop 0.0010 (0.002) [−0.003, 0.005] 0.05

C. Asset ownership
Share of households with telephone 0.0037 (0.006) [−0.008, 0.016] 0.54
Share of households with TV 0.0050 (0.004) [−0.003, 0.013] 0.25
Share of households with bicycle 0.0007 (0.004) [−0.008, 0.009] 0.51
Share of households with motorcycle 0.0016 (0.003) [−0.004, 0.007] 0.13
Share of households without assets 0.0030 (0.004) [−0.005, 0.011] 0.22

D. Housing stock
Share of households w/ elec/gas cooking 0.0015 (0.003) [−0.004, 0.007] 0.06
Share of households w/ kerosene lighting 0.0000 (0.007) [−0.014, 0.014] 0.48
Share of households with mud floors 0.0045 (0.004) [−0.004, 0.012] 0.74
Share of households with thatched roof −0.0042 (0.005) [−0.015, 0.006] 0.22
Share of households dilapidated −0.0032 (0.003) [−0.010, 0.003] 0.07

E. Village-wide outcomes
1/0 Mobile phone coverage in village 0.0088 (0.013) [−0.017, 0.035] 0.75
1/0 Post office in village 0.0056 (0.004) [−0.002, 0.013] 0.03
1/0 Ag credit societies in village 0.0053 (0.004) [−0.002, 0.013] 0.02
1/0 Water from tubewell in village 0.0040 (0.012) [−0.019, 0.028] 0.46
Share of village area irrigated −0.0063 (0.006) [−0.018, 0.005] 0.36
Share of village area planted 0.0034 (0.006) [−0.008, 0.015] 0.59

Notes: This table includes the same regressions as in Table 2.5.3, but running weighted least squares. We
weight villages by their absolute distance from the 300-person cutoff, such that a wv ≡ 1− |Pv−300|

150 . The
RD bandwidth includes 29,573 villages with 2001 populations between 150 and 450, across 225 districts.
The second column shows the RD point estimate (β̂1) for each regression. All specifications control for
the 2001 level of the outcome variable, except for share of village area planted (where 2001 values are
not available) and 1/0 indicator variables. All specifications also include state fixed effects. Standard
errors are clustered at the district level, which we use to calculate 95 percent confidence intervals in the
fourth column. The fifth column reports the mean of the dependent variable for each RD regression.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.



299

B.2.4.4 Fixed effects and controls

As mentioned above, while RD designs do not require fixed effects or controls for identifi-
cation, they can greatly improve precision of RD point estimates. Section B.2.1.4 demon-
strates that the RD results for nighttime brightness are robust to different fixed effects
specifications, and our results for census outcomes are also not sensitive to cross-sectional
fixed effects. Table B.2.15 and Figure B.2.8 present RD results estimating Equation (2.1)
without fixed effects, while Table B.2.16 and Figure B.2.9 include more granular fixed
effects at the district level. These results are quite similar to our preferred specification
(with state fixed effects), with slight differences in precision.

Section B.2.1.4 also shows that our RD results for nighttime brightness depend on the
inclusion of 2001 brightness as a village-level control. This reveals that there is enough
cross-sectional variation in brightness levels (even within districts) to obscure within-
village changes in brightness due to RGGVY electrification. In contrast, Table B.2.17
and Figure B.2.10 show that our RD results for census outcomes are much less sensitive
to the exclusion of 2001 controls. The decrease in male agricultural employment at the
300-person cutoff remains small but precisely estimated, and the confidence intervals on
other labor outcomes in Panel B are very similar to those in Table 2.5.3.

Comparing Tables 2.5.3 and B.2.17 highlights two key features of our census outcome
data. First, Panels C and D report on outcomes from the Houselisting Primary Census
Abstract (HPCA), which is not available at the village level for 2001 (see Section B.1.4.2).
This means that for Table 2.5.3 regressions in Panels C and D, 2001 controls are at the
block level.56 Because these regressions cannot control for within-block baseline hetero-
geneity, it is unsurprising that removing these 2001 block-level controls does not affect
their precision.

Second, our regressions in Panel E of Table 3 already do not include 2001 controls
for 1/0 indicator variables. Since these outcomes are not continuous, including baseline
controls would not greatly increase the precision of our RD point estimates. Moreover,
including 2001 controls for 1/0 indicator variables would effectively remove observations
for villages that did not change status (i.e. from 0 to 1) between 2001 and 2011. This
illustrates why we strongly prefer nighttime brightness as a measure of electricity access:
nighttime brightness is a more continuous measure of electricity access (a 0–63 scale, com-
pared to a binary indicator); nighttime brightness measures luminosity, a better proxy
for electricity consumption than binary indicators of electricity access (the latter does
not account for variation in reliability or usage); the majority of RGGVY villages were
targeted for “more intensive electrification”, while already meeting the government’s of-
ficial definition of being “electrified” (we would not expect binary indicators to reflect
more intensive electrification); and the official definition of “electrified” changed in 2004,
meaning that 2001 and 2011 VD variables might not be apples-to-apples comparisons (see
Section B.3 for further detail). Table B.2.17 reports RD results for end-use-specific 1/0
electric power indicators, and we see the RGGVY led to statistically significant increases

56The only exception is share of households dilapidated, which was only available in 2001 at the district
level.
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in electricity access for the commercial sector. We do not see corresponding increases for
electricity access in the domestic or agricultural sectors, which reflects the fact that most
treated villages already had low levels of electrification prior to RGGVY — meaning that
the 1/0 indicators were coded as 1 in the baseline, and RGGVY did not cause them to
increase.

B.2.4.5 2001 covariate smoothness

A key RD identifying assumption is smoothness of covariates across the RD cutoff. Section
B.2.1.5 demonstrates that nighttime brightness is not discontinuous at the 300-person
threshold prior to the 2005 announcement of RGGVY. Table B.2.18 shows that 2001
village-level covariates are also smooth across the 300-person cutoff in 2001 population.
This includes all 2001 covariates corresponding to 2011 census outcomes reported in Table
2.5.3, which are available in 2001 at the village level. Figure B.2.11 presents a subset of
these results graphically.
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Table B.2.15: RD Sensitivity – Census Outcomes, No Fixed Effects

2011 Outcome Variable RD
Coeff

Std
Error

95 Percent
Confidence

Mean of
Outcome

A. Demographic outcomes
Total population −1.4365 (2.576) [−6.486, 3.613] 271.09
0–6 cohort / total population 0.0011 (0.001) [−0.001, 0.003] 0.14
Average household size −0.0014 (0.013) [−0.027, 0.024] 5.13
Literacy rate −0.0025 (0.002) [−0.006, 0.002] 0.57

B. Labor outcomes
Male agricultural workers / male pop −0.0069∗∗ (0.003) [−0.013,−0.001] 0.42
Female agri. workers / female pop −0.0047 (0.004) [−0.014, 0.004] 0.29
Male household workers / male pop −0.0009 (0.001) [−0.002, 0.000] 0.01
Female household workers / female pop −0.0014 (0.001) [−0.004, 0.001] 0.01
Male other workers / male pop 0.0046∗∗ (0.002) [0.001, 0.008] 0.10
Female other workers / female pop −0.0003 (0.002) [−0.004, 0.004] 0.05

C. Asset ownership
Share of households with telephone 0.0026 (0.006) [−0.009, 0.015] 0.54
Share of households with TV 0.0039 (0.004) [−0.004, 0.012] 0.26
Share of households with bicycle −0.0007 (0.004) [−0.009, 0.008] 0.50
Share of households with motorcycle 0.0001 (0.003) [−0.005, 0.005] 0.13
Share of households without assets 0.0034 (0.004) [−0.005, 0.011] 0.22

D. Housing stock
Share of households w/ elec/gas cooking 0.0009 (0.003) [−0.004, 0.006] 0.07
Share of households w/ kerosene lighting 0.0053 (0.006) [−0.007, 0.018] 0.48
Share of households with mud floors 0.0035 (0.004) [−0.004, 0.011] 0.73
Share of households with thatched roof −0.0032 (0.005) [−0.013, 0.007] 0.23
Share of households dilapidated −0.0034 (0.003) [−0.009, 0.002] 0.07

E. Village-wide outcomes
1/0 Mobile phone coverage in village −0.0035 (0.012) [−0.027, 0.020] 0.75
1/0 Post office in village 0.0020 (0.004) [−0.005, 0.009] 0.03
1/0 Ag credit societies in village 0.0010 (0.004) [−0.006, 0.008] 0.02
1/0 Water from tubewell in village 0.0006 (0.011) [−0.022, 0.023] 0.44
Share of village area irrigated −0.0068 (0.006) [−0.019, 0.005] 0.34
Share of village area planted 0.0059 (0.006) [−0.006, 0.018] 0.58

Notes: This table includes the identical set of regressions in Table 2.5.3, without controlling for state fixed
effects. The RD bandwidth includes 29,765 villages with 2001 populations between 150 and 450, across
225 districts. The second column shows the RD point estimate (β̂1) for each regression. All specifications
control for the 2001 level of the outcome variable, except for share of village area planted (where 2001
values are not available) and 1/0 indicator variables. Standard errors are clustered at the district level,
which we use to calculate 95 percent confidence intervals in the fourth column. The fifth column reports
the mean of the dependent variable for each RD regression. Significance: *** p < 0.01, ** p < 0.05, *
p < 0.10.
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Figure B.2.8: RD Sensitivity – Census Outcomes, No Fixed Effects
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(Figured continued on next page.)
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Notes: This two-page figure shows reduced form results estimating Equation (2.1) without fixed effects,
as reported in Table B.2.15. Blue dots show average residuals form regressing the 2011 outcomes on the
2001 control. Each dot contains approximately 1,500 villages, averaged in 15-person population bins,
including all 29,765 single-habitation villages between 150 and 450 people, in 10th-Plan districts.
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Table B.2.16: RD Sensitivity – Census Outcomes, District Fixed Effects

2011 Outcome Variable RD
Coeff

Std
Error

95 Percent
Confidence

Mean of
Outcome

A. Demographic outcomes
Total population −0.6014 (2.371) [−5.248, 4.045] 271.09
0–6 cohort / total population 0.0010 (0.001) [−0.001, 0.003] 0.14
Average household size −0.0060 (0.012) [−0.030, 0.018] 5.13
Literacy rate −0.0031 (0.002) [−0.007, 0.001] 0.57

B. Labor outcomes
Male agricultural workers / male pop −0.0060∗∗ (0.003) [−0.011,−0.001] 0.42
Female agri. workers / female pop −0.0029 (0.004) [−0.011, 0.005] 0.29
Male household workers / male pop −0.0008 (0.001) [−0.002, 0.000] 0.01
Female household workers / female pop −0.0013 (0.001) [−0.003, 0.001] 0.01
Male other workers / male pop 0.0043∗∗ (0.002) [0.001, 0.008] 0.10
Female other workers / female pop −0.0007 (0.002) [−0.004, 0.003] 0.05

C. Asset ownership
Share of households with telephone −0.0003 (0.005) [−0.011, 0.010] 0.54
Share of households with TV 0.0014 (0.004) [−0.006, 0.009] 0.26
Share of households with bicycle −0.0016 (0.004) [−0.010, 0.006] 0.50
Share of households with motorcycle −0.0012 (0.002) [−0.006, 0.004] 0.13
Share of households without assets 0.0041 (0.004) [−0.004, 0.012] 0.22

D. Housing stock
Share of households w/ elec/gas cooking −0.0005 (0.003) [−0.006, 0.005] 0.07
Share of households w/ kerosene lighting 0.0018 (0.006) [−0.010, 0.014] 0.48
Share of households with mud floors 0.0038 (0.004) [−0.003, 0.011] 0.73
Share of households with thatched roof −0.0018 (0.005) [−0.011, 0.008] 0.23
Share of households dilapidated −0.0033 (0.003) [−0.009, 0.002] 0.07

E. Village-wide outcomes
1/0 Mobile phone coverage in village 0.0022 (0.011) [−0.019, 0.024] 0.75
1/0 Post office in village 0.0010 (0.004) [−0.006, 0.008] 0.03
1/0 Ag credit societies in village 0.0013 (0.004) [−0.006, 0.008] 0.02
1/0 Water from tubewell in village −0.0013 (0.010) [−0.021, 0.018] 0.44
Share of village area irrigated −0.0059 (0.005) [−0.015, 0.004] 0.34
Share of village area planted 0.0016 (0.005) [−0.007, 0.011] 0.58

Notes: This table includes the identical set of regressions in Table 2.5.3, except controlling for district fixed
effects (instead of state fixed effects). The RD bandwidth includes 29,765 villages with 2001 populations
between 150 and 450, across 225 districts. The second column shows the RD point estimate (β̂1) for
each regression. All specifications control for the 2001 level of the outcome variable, except for share of
village area planted (where 2001 values are not available) and 1/0 indicator variables. Standard errors
are clustered at the district level, which we use to calculate 95 percent confidence intervals in the fourth
column. The fifth column reports the mean of the dependent variable for each RD regression. Significance:
*** p < 0.01, ** p < 0.05, * p < 0.10.
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Figure B.2.9: RD Sensitivity – Census Outcomes, District Fixed Effects
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(Figured continued on next page.)
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Notes: This two-page figure shows reduced form results estimating Equation (2.1) including district fixed
effects, as reported in Table B.2.16. Blue dots show average residuals form regressing the 2011 outcomes
on the 2001 control and district fixed effects. Each dot contains approximately 1,500 villages, averaged
in 15-person population bins, including all 29,765 single-habitation villages between 150 and 450 people,
in 10th-Plan districts.
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Table B.2.17: RD Sensitivity – Census Outcomes, No 2001 Controls

2011 Outcome Variable RD
Coeff

Std
Error

95 Percent
Confidence

Mean of
Outcome

A. Demographic outcomes
Total population −0.8647 (2.528) [−5.820, 4.091] 271.09
0–6 cohort / total population 0.0007 (0.001) [−0.001, 0.002] 0.14
Average household size 0.0022 (0.014) [−0.026, 0.031] 5.13
Literacy rate −0.0016 (0.003) [−0.007, 0.004] 0.57

B. Labor outcomes
Male agricultural workers / male pop −0.0084∗∗∗ (0.003) [−0.014,−0.003] 0.42
Female agri. workers / female pop −0.0055 (0.004) [−0.013, 0.003] 0.29
Male household workers / male pop −0.0007 (0.001) [−0.002, 0.001] 0.01
Female household workers / female pop −0.0018 (0.001) [−0.004, 0.000] 0.01
Male other workers / male pop 0.0047∗∗ (0.002) [0.000, 0.009] 0.10
Female other workers / female pop −0.0005 (0.002) [−0.004, 0.003] 0.05

C. Asset ownership
Share of households with telephone 0.0016 (0.006) [−0.009, 0.013] 0.54
Share of households with TV 0.0014 (0.004) [−0.007, 0.009] 0.26
Share of households with bicycle −0.0034 (0.006) [−0.015, 0.008] 0.50
Share of households with motorcycle −0.0033 (0.003) [−0.010, 0.003] 0.13
Share of households without assets 0.0032 (0.005) [−0.006, 0.012] 0.22

D. Housing stock
Share of households w/ elec/gas cooking −0.0006 (0.003) [−0.006, 0.005] 0.07
Share of households w/ kerosene lighting 0.0031 (0.006) [−0.009, 0.015] 0.48
Share of households with mud floors 0.0075 (0.005) [−0.003, 0.018] 0.73
Share of households with thatched roof −0.0022 (0.006) [−0.013, 0.009] 0.23
Share of households dilapidated −0.0028 (0.003) [−0.009, 0.003] 0.07

E. Village-wide outcomes
1/0 Electricity (domestic use) −0.0086 (0.006) [−0.021, 0.004] 0.90
1/0 Electricity (agricultural use) −0.0098 (0.010) [−0.030, 0.010] 0.61
1/0 Electricity (commercial use) 0.0243∗∗ (0.011) [0.003, 0.046] 0.44
1/0 Electricity (all end uses) 0.0240∗∗ (0.011) [0.002, 0.046] 0.43
Share of village area irrigated −0.0021 (0.006) [−0.013, 0.009] 0.35

Notes: Panels A–D of this table included the same sets of regressions in Table 2.5.3. Panel E includes
sector-specific 1/0 indicator variables for electricity availability at the village level, while omiting 4 regres-
sions from Table 2.5.3 that already did not include 2001 controls. All RD regressions in this table control
only for state fixed effects, not for the 2001 level of the outcome variable. The RD bandwidth includes
29,765 villages with 2001 populations between 150 and 450, across 225 districts. The second column
shows the RD point estimate (β̂1) for each regression. Standard errors are clustered at the district level,
which we use to calculate 95 percent confidence intervals in the fourth column. The fifth column reports
the mean of the dependent variable for each RD regression. Significance: *** p < 0.01, ** p < 0.05, *
p < 0.10.
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Figure B.2.10: RD Sensitivity – Census Outcomes, No 2001 Controls

−.01

−.005

0

.005

.01

S
h

a
re

 o
f 

M
a

le
 P

o
p

u
la

ti
o

n
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Male Agricultural Workers (No 2001 Control)

−.02

−.01

0

.01

.02

S
h

a
re

 o
f 

F
e

m
a

le
 P

o
p

u
la

ti
o

n
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Female Agricultural Workers (No 2001 Control)

−.01

−.005

0

.005

.01

S
h

a
re

 o
f 

M
a

le
 P

o
p

u
la

ti
o

n
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Male Household Workers (No 2001 Control)

−.01

−.005

0

.005

.01
S

h
a

re
 o

f 
F

e
m

a
le

 P
o

p
u

la
ti
o

n
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Female Household Workers (No 2001 Control)

−.01

−.005

0

.005

.01

S
h

a
re

 o
f 

M
a

le
 P

o
p

u
la

ti
o

n
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Male Other Workers (No 2001 Control)

−.01

−.005

0

.005

.01

S
h

a
re

 o
f 

F
e

m
a

le
 P

o
p

u
la

ti
o

n
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Female Other Workers (No 2001 Control)

(Figured continued on next page.)



309

−.02

−.01

0

.01

.02

S
h

a
re

 o
f 

H
o

u
s
e

h
o

ld
s
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Telephone Ownership (No 2001 Control)

−.02

−.01

0

.01

.02

S
h

a
re

 o
f 

H
o

u
s
e

h
o

ld
s
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Kerosene Lighting (No 2001 Control)

−.02

−.01

0

.01

.02

S
h

a
re

 o
f 

H
o

u
s
e

h
o

ld
s
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

TV Ownership (No 2001 Control)

−.02

−.01

0

.01

.02

S
h

a
re

 o
f 

H
o

u
s
e

h
o

ld
s
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Mud Floors (No 2001 Control)

−.02

−.01

0

.01

.02

S
h

a
re

 o
f 

H
o

u
s
e

h
o

ld
s
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Motorcycle Ownership (No 2001 Control)

−.02

−.01

0

.01

.02

S
h

a
re

 o
f 

H
o

u
s
e

h
o

ld
s
, 

re
s
id

u
a

ls

150 200 250 300 350 400 450
2001 village population

Dilapidated Households (No 2001 Control)

Notes: This two-page figure shows reduced form results estimating Equation (2.1) without 2001 controls,
as reported in Table B.2.17. Blue dots show average residuals form regressing the 2011 outcomes on state
fixed effects. Each dot contains approximately 1,500 villages, averaged in 15-person population bins,
including all 29,765 single-habitation villages between 150 and 450 people, in 10th-Plan districts.
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Table B.2.18: RD Sensitivity – Census Outcomes, 2001 Covariate Smoothness

2011 Outcome Variable RD
Coeff

Std
Error

95 Percent
Confidence

Mean of
Outcome

A. Demographic indicators
0–6 cohort / total population −0.0009 (0.001) [−0.003, 0.001] 0.18
Share or population SC or ST −0.0080 (0.007) [−0.021, 0.005] 0.33
Literacy rate 0.0015 (0.003) [−0.005, 0.008] 0.45

B. Labor indicators
Male agricultural workers / male pop −0.0027 (0.003) [−0.008, 0.003] 0.43
Female agri. workers / female pop −0.0017 (0.005) [−0.011, 0.007] 0.31
Male household workers / male pop 0.0010 (0.001) [−0.000, 0.002] 0.01
Female household workers / female pop −0.0014 (0.001) [−0.004, 0.001] 0.01
Male other workers / male pop 0.0001 (0.002) [−0.004, 0.004] 0.09
Female other workers / female pop −0.0007 (0.002) [−0.004, 0.003] 0.03
Male main workers / male pop −0.0017 (0.004) [−0.009, 0.005] 0.43
Female main workers / female pop −0.0047 (0.004) [−0.013, 0.004] 0.17
Male marginal workers / male pop 0.0002 (0.003) [−0.005, 0.006] 0.09
Female marginal workers / female pop 0.0008 (0.004) [−0.007, 0.009] 0.18

C. Village-wide indicators
1/0 Electricity (all end uses) 0.0038 (0.007) [−0.009, 0.017] 0.29
1/0 Electricity (domestic use) 0.0018 (0.010) [−0.018, 0.021] 0.59
1/0 Electricity (agricultural use) −0.0014 (0.009) [−0.020, 0.017] 0.41
1/0 Water from tubewell in village −0.0188∗ (0.010) [−0.039, 0.001] 0.51
Share of village area irrigated 0.0079 (0.007) [−0.006, 0.022] 0.33
1/0 Educational facilities −0.0081 (0.010) [−0.028, 0.012] 0.50
Number of primary schools −0.0093 (0.012) [−0.032, 0.014] 0.49
Number of secondary schools 0.0039 (0.003) [−0.001, 0.009] 0.01
1/0 Medical facilities 0.0036 (0.007) [−0.010, 0.018] 0.10
1/0 Banking facilities 0.0012 (0.002) [−0.003, 0.006] 0.01
1/0 Agricultural credit societies 0.0002 (0.004) [−0.008, 0.009] 0.02
1/0 Post office 0.0006 (0.004) [−0.007, 0.008] 0.03
1/0 Bus service 0.0058 (0.014) [−0.022, 0.033] 0.41

Notes: This table regresses 2001 village covariates on the RD variables in Equation 2.1 and state fixed ef-
fects. Each row represents a separate regression, with the second column reporting the RD point estimate
(β̂1). This table includes all available 2001 village-level covariates that correspond to a 2011 outcome
reported in Table 2.5.3. SC and ST refer to official scheduled caste and scheduled tribe designations.
“Main” workers work at least six months of the year, while “marginal” workers work less than six months.
The RD bandwidth includes 29,765 villages with 2001 populations between 150 and 450, across 225 dis-
tricts. Standard errors are clustered at the district level, which we use to calculate 95 percent confidence
intervals in the fourth column. The fifth column reports the mean of the dependent variable for each RD
regression. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Figure B.2.11: RD Sensitivity – Census Outcomes, 2001 Covariate Smoothness
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(Figured continued on next page.)
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Notes: This two-page figure shows reduced form results estimating Equation (2.1) without 2001 controls,
as reported in Table B.2.17. Blue dots show average residuals form regressing the 2011 outcomes on state
fixed effects. Each dot contains approximately 1,500 villages, averaged in 15-person population bins,
including all 29,765 single-habitation villages between 150 and 450 people, in 10th-Plan districts.
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B.2.5 Census Outcome Results: Intensive Margin of Labor

Our main results examine the effects of electrification on extensive-margin employment.
Thus far, we have presented results on the fraction of men and women working in agricul-
ture, in the home, and in other sectors (see Table 2.5.3). We find evidence that eligibility
for RGGVY shifts a small number of men out of agriculture and into the more formal
sector, and we find a small but not statistically significant impact of RGGVY eligibility
on female employment. However, it is also possible that electrification changes employ-
ment on the intensive margin, by causing previously employed workers to either increase
of decrease the amount they work.

We test for effects on this intensive margin using data from the PCA, which reports
separately employment counts for workers are “main”, working 6 or more months out
of the year, or “marginal”, working fewer than 6 months.57 We conduct an analogous
employment analysis using the number of main workers divided by the number of total
(main plus marginal) workers for each gender and sector as the dependent variable. In
doing this, we drop villages with no workers in a particular gender-sector group, where this
fraction is undefined. (This essentially amounts to dropping cases where this intensive
margin does not exist.) Our results should therefore be interpreted as the effects of
eligibility for electrification on the share of workers working at least 6 months per year,
conditional on each village employing people of a given category.

Table B.2.19 and Figure B.2.12 display the results of this exercise. We find no evidence
of a discontinuity in the intensive margin of labor at the 300-person RD threshold across
any gender-sector category. Our point estimates across all categories are negative, with the
exception of female agricultural workers. This demonstrates that RGGVY eligibility did
not increase labor on the intensive margin. None of our results are statistically significant,
but our confidence intervals are relatively tight, and we can reject small effects.

B.2.6 Census Outcome Results: Validity Tests

Section 2.5 in the main text supports the validity of the nighttime brightness RD results
using a placebo test, a randomization test, and three falsification tests. Below, we conduct
the analogous validity tests on the two census outcomes with the strongest non-zero results
— the share of male agricultural workers, and the share of male “other” workers. While
even these RD results are small in magnitude, they are statistically significant and have
RD plots that display a level shift at the 300-person eligibility cutoff.58 This implies that
these validity tests can support our use of RD inference to test the effects of RGGVY
program eligibility on these labor outcomes.

57For all employment results in Table 2.5.3 and Appendix B.2.4, we sum main and marginal workers
into a single pooled employment metric for each subcategory.

58Male agricultural labor is statistically significant at the 5 percent level in every set of sensitivity
results we present. Male other labor is mostly significant at the 5 percent level, and quite robust to
different RD specifications.
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Figure B.2.13 reports the results of placebo and randomization tests for 2011 male la-
bor outcomes. We implement these tests separately on each outcome, exactly as described
in Section 2.5 in the main text. The decrease in the share of men working in agriculture
falls below the 3rd percentile of the placebo distribution and below the 1st percentile of
the randomization distribution. This indicates that that this RD result is very unlikely to
reflect spurious volatility in the relationship between male agricultural labor and village
population data. The increase in the share of male “other” labor also passes the placebo
and randomization tests (above the 99th and 97th percentiles, respectively).

Table B.2.20, Figure B.2.14, and Figure B.2.15 conduct three falsification tests, by
estimating Equation (2.1) on subsets of villages for which the 300-person cutoff in village
population was not the relevant criterion determining RGGVY eligibility (because these
villages contain multiple habitations and/or faced a 100-person eligibility cutoff). As
expected, none of the three alternative samples shows statistically significant discontinu-
ities at the 300-person cutoff. This provides further evidence that the RGGVY program
has driven the small-but-statistically-significant shift of male labor out of the agricultural
sector.

Table B.2.19: RD Results – Share of “Main” Workers by Sector

2011 Outcome Variable RD
Coeff

Std
Error

95 Percent
Confidence

Mean of
Outcome

Total
Villages

Share main male ag workers −0.0029 (0.007) [−0.016, 0.011] 0.72 29,572
Share main female ag workers 0.0023 (0.010) [−0.017, 0.022] 0.51 26,487
Share main male hh workers −0.0333 (0.023) [−0.079, 0.013] 0.65 5,324
Share main female hh workers −0.0161 (0.035) [−0.084, 0.052] 0.42 2,807
Share main male other workers −0.0018 (0.008) [−0.017, 0.013] 0.79 24,855
Share main female other workers −0.0010 (0.013) [−0.027, 0.025] 0.69 14,389

Notes: This table estimates Equation (2.1) on the share of “main” workers for each sector/gender. By
definition, “main” workers work for at least 6 months of the year, while “marginal” workers work for
less than 6 months of the year. Our main results in Table 2.5.3 pooled main and marginal workers,
thereby testing for effects on the extensive margin of labor. In this table, we test the intensive margin
using outcome variables that divide the number of main workers by the number of (main + marginal)
workers in each category. Each row represents a separate regression, with the second column reporting
the RD point estimate (β̂1). All specifications control for state fixed effects and the 2001 level of the
outcome variable. Standard errors are clustered at the district level, which we use to calculate 95 percent
confidence intervals in the fourth column. The fifth column reports the mean of the dependent variable
for each RD regression. The sixth column shows the number of villages in each regression, which varies
since the 2011 outcome and the 2001 control divide by total workers and many villages report zero total
workers for a given category. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Figure B.2.12: RD Results – Share of “Main” Workers by Sector
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Notes: This figure shows RD results estimating Equation (2.1) on the share of workers in each category
that work at least 6 months of the year, as reported in Table B.2.19. Blue dots show average residuals
form regressing the 2011 outcomes on the 2001 control and state fixed effects. Each dot contains between
150–1,500 villages, averaged in 15-person population bins, including all 29,765 single-habitation villages
between 150 and 450 people, in 10th-Plan districts, with nonzero total workers for both 2001 and 2011.
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Figure B.2.13: Male Labor Shares – Placebo and Randomization Tests
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Notes: This figure presents the distributions of placebo RD coefficients and randomized RD coefficients.
The left panels were generated by estimating Equation (2.1) using 801 placebo RD thresholds, representing
all integer values in [151, 275]∪ [325, 1000]. We omit placebo thresholds within 25 people of the true 300-
person threshold to ensure that placebo RDs do not detect the true effects of RGGVY eligibility, and
we exclude thresholds below 151 due to our 150-person bandwidth. The right panel was generated by
scrambling village brightness 10,000 times and re-estimating Equation (2.1) each time. The red lines
represent our estimates of the RD coefficients from Table 2.5.3, using the correct 300-person threshold
with unscrambled lights data. The RD point estimate for the share of male agricultural workers falls
below the 3nd percentile of the placebo distribution and below the 1st percentile of the randomization
distribution. The RD point estimate for the share of male other workers falls above the 99th percentile
of the placebo distribution and above the 97th percentile of the randomization distribution.
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Table B.2.20: RD Sensitivity – Falsification Tests

2011 Outcome Variable 10th Plan
Single-Hab.

10th Plan
Multi-Hab.

11th Plan
Single-Hab.

11th Plan
Multi-Hab.

(1) (2) (3) (4)
Male ag workers / male pop −0.0071∗∗ 0.0009 −0.0034 0.0024

(0.0028) (0.0039) (0.0033) (0.0042)

Male oth workers / male pop 0.0046∗∗ 0.0032 0.0027 −0.0003
(0.0019) (0.0033) (0.0027) (0.0033)

RD bandwidth 150 150 150 150
Number of observations 29,765 16,481 24,104 16,164
Number of districts 225 202 261 219

Notes: This table reports results from 8 separate RD regressions, estimating Equation (2.1) on four
disjoint subsets of Indian villages. Column (1) reproduces results from Table 2.5.3, using our RD sample
of single-habitation villages in 10th-Plan RGGVY districts. Columns (2) and (4) include villages with
multiple habitations, for which the the running variable (village population) does not correspond to the
habitation populations that determined village eligibility. Columns (3) and (4) includes villages that were
eligibile for RGGVY under the 11th Plan, after the cutoff had moved from 300 to 100 people. Figures
B.2.14 and B.2.15 present these falsification tests graphically. All specifications control for the 2001
level of the outcome variable and state fixed effects. Standard errors are clustered at the district level.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Figure B.2.14: Male Agricultural Labor – Falsification Tests
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Notes: This figure presents three falsification tests for our RD on male agricultural labor, corresponding
to the first row of Table B.2.20. The top-left and bottom panels include only villages with multiple
habitations, for which the running variable of village population did not determine RGGVY eligibility.
The top-rignt and bottom panels include only villages in districts that became eligible for RGGVY under
the 11th Plan, for which the appropriate eligibility cutoff was lowered from 300 to 100 people. Blue dots
show average residuals form regressing the 2011 outcomes on 2001 male agricultural employment and
state fixed effects. Each dot contains approximately 800–1,500 villages, averaged in 15-person population
bins. Lines are estimated separately on each side of the 300-person threshold, for villages within the
150–450 population RD bandwidth.
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Figure B.2.15: Male Other Labor – Falsification Tests
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Notes: This figure presents three falsification tests for our RD on male other labor, corresponding to
the second row of Table B.2.20. The top-left and bottom panels include only villages with multiple
habitations, for which the running variable of village population did not determine RGGVY eligibility.
The top-right and bottom panels include only villages in districts that became eligible for RGGVY under
the 11th Plan, for which the appropriate eligibility cutoff was lowered from 300 to 100 people. Blue dots
show average residuals form regressing the 2011 outcomes on 2001 male other employment and state
fixed effects. Each dot contains approximately 800–1,500 villages, averaged in 15-person population bins.
Lines are estimated separately on each side of the 300-person threshold, for villages within the 150–450
population RD bandwidth.
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B.2.7 Socio-Economic Caste Census Results: RD Robustness

Table 2.5.4 presents in the main text results from ten SECC outcomes relating to house-
hold wealth and adult employment. Figure 2.5.9 displays RD plots for four of these ten
outcomes, and we report the remaining six RD plots below in Figure B.2.16. The two
household figures show no visual evidence of discontinuities at the 300-person threshold,
confirming our results from Table 2.5.4 that reject economically significant effect as a
result of RGGVY electrification. The four employment figures are qualitatively similar to
those in Figure 2.5.7, except for suggestive evidence of an increase in the share of adult
women working on other jobs.

Figure B.2.17 conducts RD bandwidth sensitivities on two SECC outcomes reported
in the main text: the share of total households with at least one poverty indicator, and
the share of these households earning a monthly income greater than Rs 5,000. We see
that for bandwidths above 80 people, our RD estimates are not sensitive to the choice of
bandwidth.59

We might be concerned that when we average SECC outcomes to the village level for
villages containing very few households with a poverty indicator in 2011, these averages
are noisy and sensitive to outliers. Table B.2.21 tests for this possibility, by dropping
villages with fewer than 10 percent of households in our SECC dataset in Panel A, and
fewer than 20 percent of households in Panel B. In Panel C, we introduce 2001 controls
to the SECC RD specifications, by selecting the 2001 Census variables that most closely
align with each 2011 village level outcome. These sensitivities have very little effect on
our results from Table 2.5.4.

Table B.2.22 presents results for additional village-level employment outcomes. In
Panel A, we report results for the main source of household income earned by the house-
hold’s main income earner. These income categories (“cultivation”, “manual/casual labor”,
“non-farm enterprise”) were recorded directly by SECC enumerators, and they do not map
to the employment sectors used in other SECC outcomes. By contrast, the string-parsed
employment categories for heads of household produce results very close to the adult male
employment regressions in Panel B of Table 2.5.4. This is not surprising, as 83 precent
household heads in our RD sample are adult men. Panel B of Table B.2.22 reports anal-
ogous results for youth (i.e. ages 0–16) employment, for the subset of households with at
least 1 poverty indicator. We see that non-farm, non-household youth employment may
increase slightly as a result of RGGVY eligibility, but we can reject effects larger than 1.6
percentage points.

We construct the employment categories “agricultural”, “household”, and “other” by
string parsing occupations reported at the individual level and aggregating up to the
household/village. While we try to recreate the three labor sectors reported in the Pri-
mary Census Abstract as closely as possible (in order to best facilitate apples-to-apples
comparisons between Census and SECC outcomes), the “other” category contains an ex-
tremely wide range of occupations. In Panel C of Table B.2.22, we restrict this “other”

59The Imbens and Kalyanaraman (2012) optimal bandwidths range from 102 to 141 for these out-
comes).
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Figure B.2.16: RD Results – SECC Village-Level Outcomes
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Notes: This figure presents RD results for SECC outcomes for our preferred specification, as a complement
to Figure 2.5.9. They correspond to results reported in Table 2.5.4. Blue dots show average residuals
from regressing the 2011 SECC village-level outcome (coded as the share of households in the village with
at least one poverty indicator) on state fixed effects. Each dot contains approximately 1,600 villages,
averaged in 20-person population bins. Lines are estimated separately on each side of the 300-person
threshold, for all 10th-Plan single-habitation villages within our 150–450 population RD bandwidth,
which match to the SECC dataset.
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category to exclude occupations containing strings closely associated with manual labor:
“labor” and “worker”. This yields larger point estimates with larger t-stats, across all
four gender/age combinations. Hence, this suggests that the (small) increases in “other”
employment caused by RGGVY may represent a (small) shift towards relatively higher
paying jobs outside of agriculture.

Figure B.2.17: RD Sensitivity – SECC, Bandwidths
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Notes: This figure presents our bandwidth sensitivity analysis for two SECC outcomes
(represented in the first two rows of Table 2.5.4). For each outcome, we estimate Equation
(2.1) separately on bandwidths ranging from 50 (i.e., 250–350 people) to 250 (i.e., 50–
550 people). Each dot represents the point estimate on the RD discontinuity at a given
bandwidth around the 300-person cutoff, with 95 percent confidence intervals clustered
at the district level. Our chosen bandwidth of 150 includes villages with populations
between 150 and 450. The optimal RD bandwidth for these RD specifications ranges
from 102 to 141 (calculated using the algorithm proposed by Imbens and Kalyanaraman
(2012), using uniform, Epanechnikov, and triangular kernels).
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Table B.2.21: RD Sensitivity – SECC Village-Level Outcomes

2011 Outcome RD
Coeff

Std
Error

95 Percent
Confidence

Mean of
Outcome

A. Minimum 10 percent households with poverty indicator
Monthly income greater than Rs 5,000 0.0017 (0.004) [−0.006, 0.010] 0.08
One member holding salaried job 0.0030 (0.002) [−0.001, 0.007] 0.02
Owning any land 0.0044 (0.009) [−0.012, 0.021] 0.44

Male agricultural workers / adult men −0.0108∗∗ (0.005) [−0.021,−0.000] 0.29
Female agricultural workers / adult women −0.0021 (0.005) [−0.011, 0.007] 0.08
Male household workers / adult men 0.0013 (0.001) [−0.001, 0.004] 0.01
Female household workers / adult women −0.0035 (0.007) [−0.018, 0.010] 0.51
Male other workers / adult men 0.0056 (0.006) [−0.007, 0.018] 0.42
Female other workers / adult women 0.0063 (0.005) [−0.004, 0.016] 0.16

B. Minimum 20 percent households with poverty indicator
Monthly income greater than Rs 5,000 0.0029 (0.004) [−0.006, 0.011] 0.07
One member holding salaried job 0.0018 (0.002) [−0.003, 0.006] 0.02
Owning any land 0.0049 (0.008) [−0.011, 0.020] 0.43

Male agricultural workers / adult men −0.0114∗∗ (0.006) [−0.022,−0.001] 0.29
Female agricultural workers / adult women −0.0015 (0.005) [−0.011, 0.008] 0.08
Male household workers / adult men 0.0011 (0.001) [−0.002, 0.004] 0.01
Female household workers / adult women −0.0044 (0.007) [−0.018, 0.009] 0.51
Male other workers / adult men 0.0056 (0.007) [−0.008, 0.019] 0.43
Female other workers / adult women 0.0064 (0.006) [−0.004, 0.017] 0.17

C. Adding 2001 village controls
At least one poverty indicator 0.0001 (0.006) [−0.012, 0.013] 0.48
Monthly income greater than Rs 5,000 0.0053 (0.004) [−0.003, 0.014] 0.08
One member holding salaried job 0.0030 (0.002) [−0.002, 0.008] 0.02
Owning any land −0.0005 (0.008) [−0.017, 0.016] 0.44

Male agricultural workers / adult men −0.0072 (0.005) [−0.017, 0.003] 0.29
Female agricultural workers / adult women −0.0036 (0.005) [−0.013, 0.006] 0.08
Male household workers / adult men 0.0007 (0.001) [−0.002, 0.004] 0.01
Female household workers / adult women −0.0016 (0.008) [−0.016, 0.013] 0.51
Male other workers / adult men 0.0044 (0.006) [−0.008, 0.017] 0.42
Female other workers / adult women 0.0054 (0.005) [−0.005, 0.016] 0.16

Notes: This table reports results of three sensitivity analyses on regressions reported in Table 2.5.4. Household-
level outcomes are coded as the proportion of households with at least one poverty indicator, while adult em-
ployment outcomes are coded as the share of men (women) over 16 in households with a poverty indicator with
an occupation in each sector. Each row represents a separate RD regression. Panel A includes villages where
at least 10 percent of total households are included in our subset of the SECC data, resulting in 23,711 village
observations. Panel B includes only villages where at least 20 percent of total households are included in our
subset of the SECC data, restricting the analysis to only 21,072 village observations. Panel C includes all 25,942
SECC villages within our RD bandwidth, and also includes 2001 controls from the Census dataset. The share of
households with a poverty indicator and monthly income regressions each include 13 village-wide controls from
the 2001 Village Directory, while the salaried job and land regressions control for 2001 total other employment
and 2001 village land area, respectively. The six employment regressions control for their corresponding village-
wide employment shares from the 2001 PCA. The second column shows the RD point estimate (β̂1) for each
regression. All specifications include state fixed effects. Standard errors are clustered at the district level, which
we use to calculate 95 percent confidence intervals in the fourth column. The fifth column reports the mean of
the dependent variable for each RD regression. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table B.2.22: RD Results – Additional SECC Village-Level Employment Outcomes

2011 Outcome RD
Coeff

Std
Error

95 Percent
Confidence

Mean of
Outcome

A. Share of households
Main source of income: cultivation 0.0046 (0.007) [−0.010, 0.019] 0.33
Main source of income: manual/casual labor −0.0081 (0.007) [−0.022, 0.006] 0.58
Main source of income: non-farm enterprise −0.0006 (0.001) [−0.002, 0.001] 0.01

Head of household occupation: agriculture −0.0119∗ (0.007) [−0.025, 0.001] 0.34
Head of household occupation: household work 0.0026 (0.003) [−0.003, 0.008] 0.06
Head of household occupation: other work 0.0060 (0.007) [−0.008, 0.020] 0.46

B. Youth employment
Male youth ag workers / male youth 0.0006 (0.001) [−0.001, 0.003] 0.01
Female youth ag workers / female youth −0.0009 (0.001) [−0.003, 0.001] 0.01
Male youth household workers / male youth −0.0006 (0.001) [−0.003, 0.002] 0.01
Female youth household workers / female youth −0.0007 (0.001) [−0.004, 0.002] 0.02
Male youth other workers / male youth 0.0070 (0.005) [−0.002, 0.016] 0.07
Female youth other workers / female youth 0.0067 (0.004) [−0.001, 0.015] 0.07

C. Excluding manual labor
Adult male other workers / adult men 0.0107∗∗∗ (0.004) [0.003, 0.019] 0.15
Adult female other workers / adult women 0.0104∗∗∗ (0.004) [0.003, 0.018] 0.08
Male youth other workers / male youth 0.0086∗ (0.005) [−0.000, 0.017] 0.06
Female youth other workers / female youth 0.0080∗ (0.004) [−0.000, 0.016] 0.06

Notes: Each row represents a separate regression estimating Equation (2.1) on a different SECC village-level
outcome. Outcomes are coded as the proportion of households (individuals) in each village, conditional on the
(individual belonging to a) household having at least one poverty indicator in 2011. In Panel A, we report
household income by source, based on categories coded in the SECC data; household head occupations are coded
via string parsing each individual’s reported occupation. Panel B presents youth employment results analogous
to the adults labor results presented in Panel B of Table 2.5.4, defining all individuals less than 16 years old as
“youth”. Panel C reports adult and youth employment results where we narrow the definition of “other” to exclude
occupations with “labor” or “worker” in their description. The second column shows the RD point estimate (β̂1)
for each regression. All specifications include state fixed effects, but they do not include any additional baseline
control variables. The RD bandwidth includes 25,942 villages with 2001 populations between 150 and 450. These
regressions contain fewer villages than regressions in Table 2.5.3 because only 87 percent of 10th-Plan, single-
habitation, 150–450 villages match to the SECC dataset. Standard errors are clustered at the district level with
222 clusters, which we use to calculate 95 percent confidence intervals in the fourth column. The fifth column
reports the mean of the dependent variable for each RD regression. Significance: *** p < 0.01, ** p < 0.05, *
p < 0.10.
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B.2.8 School Enrollment Results: RD Robustness

Table 2.5.5 reports results for five measures of village-level school enrollment, using our
preferred RD specification. Figure 2.5.10 includes RD plots for two of these five outcomes,
and we report the remaining three RD plots below in Figure B.2.18. We see no visual
evidence of a discontinuity at the RD threshold, confirming our results in Table 2.5.5
that reject economically significant increases in school enrollment as a result of RGGVY
electrification.

As an alternative RD specification, we re-estimate these enrollment regressions at
the school level. Instead of aggregating enrollment counts across all schools in a village
up to a single village-level observation, these regressions treat each school as a separate
observation.60 Table B.2.23 reports results for these school-level RD regressions, while
Figure B.2.19 shows the analogous RD graphs. These estimates are very similar to the
village-level results, with confidence intervals that reject 10 percent changes in enrollment
as a result of RGGVY eligibility. The school-level RD plots in Figure B.2.19 likewise show
no evidence of a discontinuity at the 300-person threshold.

Figure B.2.20 conducts RD bandwidth sensitivities using the total enrollment out-
come, for both the village-level and school-level specifications. This demonstrates that
these RD results are not sensitive to bandwidths above 100 people, which is below the
smallest optimal bandwidth calculation for these outcomes (Imbens and Kalyanaraman
(2012) optimal bandwidths range from 138 to 179). This provides further evidence in sup-
port of the assumptions underpinning our RD design. Table B.2.24 conducts additional
specification sensitivities for our village-level enrollment RD. This shows that our RD
point estimates are not sensitive to our choice of outcome year (i.e. total enrollment for
the school year beginning in 2010, 2011, or 2012), control year (i.e. pre-RGGVY enroll-
ment for the school year beginning in 2005 or 2006), or sample restriction (i.e. removing
village-school matches most likely to be inaccurate). Across all sensitivities, we can reject
even moderate increases to school enrollment around our 300-person RD threshold.

6025 percent of the 15,215 RD bandwidth villages that matched to the DISE schools dataset (via the
fuzzy matching algorithm detailed in Section B.1.7) matched to multiple schools reporting enrollment
counts in 2005 and 2011.
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Figure B.2.18: RD Results – School Enrollment
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Notes: This figure presents RD results for school enrollment counts for our preferred specification, as a
complement to Figure 2.5.10. They correspond to results reported in Table 2.5.5. Blue dots show average
residuals form regressing the 2011 village-level enrollment on 2005 village-level enrollment and state fixed
effects. Each dot contains approximately 1,000 villages, averaged in 25-person population bins. Lines are
estimated separately on each side of the 300-person threshold, for all 10th-Plan single-habitation villages
within our 150–450 population RD bandwidth, with school-village matches and nonmissing enrollment
counts for both 2005 and 2011.
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Figure B.2.19: RD Sensitivity – School-Level Enrollment Regressions
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Notes: This figure presents RD results for school-level enrollment, corresponding to results reported
in Table B.2.23. Blue dots show average residuals form regressing the 2011 school enrollment on 2005
enrollment and state fixed effects. Each dot contains approximately 1,000 schools, averaged in 25-person
population bins. Lines are estimated separately on each side of the 300-person threshold, for all 10th-
Plan single-habitation villages within our 150–450 population RD bandwidth, with schools reporting
nonmissing enrollment data for both 2011 and 2005.
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Table B.2.23: RD Sensitivity – School Enrollment, School-Level Regressions

2011 Outcome Variable RD
Coeff

Std
Error

95 Percent
Confidence

Mean of
Outcome

Total enrollment, grades 1–8 −0.742 (2.30) [−5.25, 3.77] 61.19
Male enrollment, grades 1–8 −0.189 (1.13) [−2.39, 2.02] 31.07
Female enrollment, grades 1–8 −0.556 (1.22) [−2.95, 1.84] 30.12
Total enrollment, grades 1–5 −1.205 (1.98) [−5.08, 2.67] 50.06
Total enrollment, grades 6–8 0.499 (0.75) [−0.97, 1.97] 11.13

Notes: Each row represents a separate regression estimating Equation (2.1) at the school level, on a
different enrollment count. The second column shows the RD point estimate (β̂1) for each regression.
All specifications control for the 2005 level of the outcome variable and state fixed effects. The RD
bandwidth includes 13,150 school-level observations, across 11,578 villages with 2001 populations
between 150 and 450. These regressions contain fewer villages than regressions in Table 2.5.5 because
some villages have nonmissing enrollment counts for for 2011 and 2005 only after summing across
multiple schools (even though no single school in these villages has nonmissing data for both years).
Standard errors are clustered at the district level, with 215 clusters, which we use to calculate 95
percent confidence intervals in the fourth column. The fifth column reports the mean of the dependent
variable for each RD regression. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.

Table B.2.24: RD Sensitivity – Total Grade 1–8 Enrollment, Village-Level Regressions

Outcome
Year

Control
Year Subsample RD

Coeff
Std
Error

95 Percent
Confidence

Mean of
Outcome

Village
Obs

2011 2005 −0.472 (3.93) [−8.18, 7.24] 74.05 12,251
2011 2006 2.196 (3.31) [−4.30, 8.69] 74.05 12,651
2010 2005 −1.242 (3.66) [−8.42, 5.94] 75.96 12,290
2012 2005 −2.952 (4.97) [−12.69, 6.78] 69.94 12,205

2010–12 2005–06 0.528 (3.19) [−5.73, 6.79] 73.30 12,801
2011 2005 VD school 0.825 (3.48) [−6.00, 7.65] 66.21 8,837
2011 2005 PIN code −1.449 (4.49) [−10.25, 7.35] 73.81 9,560

Notes: This table conducts sensitivity analysis on the RD results for total school enrollment, at the
village level. The first row reproduces our preferred specification from the top row of Table 2.5.5. The
next three rows report results for the same regression, using outcomes and controls from adjacent years.
Due to the unbalanced nature of DISE school panel dataset, nonmissing village observation counts are
sensitive to the choice of outcome/control year. The fifth row averages village enrollment across 2010–
2012 nonmissing values and controls across 2005–2006 nonmissing enrollment, which allows us to include
4 percent more schools than our preferred specification. The bottom two rows restrict our sample of
village-schools matches to include only villages reported to have schools in the 2011 Village Directory;
and only villages with Pincodes that match those reported in the DISE dataset. The fourth column
shows the RD point estimate (β̂1) for each regression. All specifications control for total enrollment from
2005 (or 2006) and state fixed effects. The RD bandwidth includes single-habitation villages in 10th-Plan
districts with 2001 populations between 150 and 450. Standard errors are clustered at the district level.
Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Figure B.2.20: RD Sensitivity – School Enrollment, Bandwidths
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Notes: This figure presents our bandwidth sensitivity analysis for total school enrollment
(grades 1–8), at the village level (represented in the first row of Table 2.5.5) and at the
school level (represented in the first row of Table B.2.23). For each outcome, we estimate
Equation (2.1) separately on bandwidths ranging from 50 (i.e., 250–350 people) to 300
(i.e., 0–600 people). Each dot represents the point estimate on the RD discontinuity
at a given bandwidth around the 300-person cutoff, with 95 percent confidence intervals
clustered at the district level. Our chosen bandwidth of 150 includes villages with popula-
tions between 150 and 450. The optimal RD bandwidth for these RD specifications ranges
from 138 to 179 (calculated using the algorithm proposed by Imbens and Kalyanaraman
(2012), using uniform, Epanechnikov, and triangular kernels).
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B.2.9 Spatial Spillovers

Villages economies do not exist in isolation, and it is important to consider potential
spillover effects of electrification on neighboring villages. Below, we test for spatial
spillovers by modifying Equation (2.1) such that the dependent variable is the average
of each 2011 outcome across villages within 10-, 20-, and 50-km radii of each village in
our RD sample. These regressions still treat single-habitation 10th-Plan villages with
2001 populations between 150–450 as the unit of analysis; they simply test for effects on
RGGVY eligible on outcomes in other surrounding villages.61

Table B.2.25 reports these results, where we find little evidence of spatial spillovers.
Compared to our main specification (labeled “0 km”), spillover results attenuate at 10 km.
Weakly significant effects within a 10km radius would not necessarily provide evidence
of spillovers, given the measurement error inherent to assigning villages to shapefiles and
calculating spatial averages in GIS. As we have no reason to suspect different degrees of
measurement error across outcomes, we conclude that economically meaningful spatial
spillovers are unlikely.

B.2.10 Heterogeneous RGGVY Implementation

One possible explanation for the small magnitudes of our RD results could be that
RGGVY only impacted a subset of villages/districts/states in our sample. If this is were
the case, and our RD estimates pooled villages with strong treatment effects and villages
with no treatment effects, this would produce small average treatment effects. Below, we
employ two strategies of subsampling our RD sample, by isolating districts and states
most likely to demonstrate economically significant impacts from RGGVY.

First, we exploit the gradual rollout of RGGVY implementation under the 10th Plan.
As shown in Table B.1.2, 10th-Plan districts received RGGVY funding as early as 2005 and
as late as 2010. Even though the latest 10th-Plan funding predates our 2011 outcome data,
it is quite possible that these 2011 data do not reflect the full impacts of electrification in
districts where RGGVY implementation began in 2009 or 2010. This is especially likely
to be true for medium-run economic outcomes. Table B.2.26 estimates Equation (2.1)
on subsamples of RGGVY 10th-Plan districts that received RGGVY funds before 2007,
2008, 2009, and 2010. We see that while over half of 10th-Plan districts received funding
in 2005 or 2006 (i.e. before 2007), this subsample yields RD point estimates very close
to the full-sample averages. Variation in the timing of RGGVY rollout is unlikely to be
obscuring large effects of electrification in districts with early RGGVY implementation.

Second, we consider heterogeneous power quality across states. Poor power quality
could help to explain the small magnitudes of our economic results — newly electrified
villages can only benefit from electricity infrastructure if power reliably flows through
the grid. As a proxy for power quality at the state level, we use electricity demand
surpluses/deficits as reported in the 2011–2012 Load Generation Balance Report (Central

61We exclude RD-sample villages when taking these spatial averages, in order to ensure that no village
is simultaneously represented on the left-hand side and the right-hand side of these regressions.
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Table B.2.25: Spatial Spillovers to Adjacent Villages

Radius around within-bandwidth village
2011 Outcome Variable 0 km 10 km 20 km 50 km

2011 nighttime brightness 0.1493∗∗ 0.0529 0.0475∗∗ 0.0178
(0.0603) (0.0360) (0.0241) (0.0189)

Male agri. workers / male pop −0.0065∗∗ −0.0004 −0.0004 0.0001
(0.0033) (0.0009) (0.0007) (0.0004)

Female agri. workers / female pop −0.0051 −0.0012 −0.0004 −0.0002
(0.0049) (0.0015) (0.0011) (0.0006)

Male other workers / male pop 0.0056∗∗ 0.0009 0.0007 0.0003
(0.0023) (0.0007) (0.0005) (0.0003)

Female other workers / female pop −0.0006 0.0010 0.0007 0.0002
(0.0026) (0.0009) (0.0007) (0.0004)

Notes: This table estimates Equation (2.1) on main RD samples, using the average 2011 outcomes
of adjacent villages. For each single-habitation, 10th-Plan district within our 150–450 bandwidth, we
calculate the average level of each outcome varaible for all adjacent villages not in the RD sample, within
a 10-, 20-, and 50-kilometer radius of the village centroid. In each row, we present RD point estimates
(β̂1) from four separate regressions — three regressions of the average outcome for adjacent villages within
a given radius, and the main specification (i.e. 0 km) in the first column. Both nighttime brightness and
labor regressions include 18,686 village observations, restricting the RD sample to the 12 states with
available shapefiles that correlate with village areas. All specifications control for the 2001 level of the
outcome variable and state fixed effects. Standard errors are clustered at the district level. Significance:
*** p < 0.01, ** p < 0.05, * p < 0.10.
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Electricity Authority (2011)). This defines demand surplus/deficit as the percentage of
required electricity load that is available to the state. For the 12 states in our RD sample
for nighttime brightness, this measure ranged from a 17.3 percent surplus in Chhattisgarh
to a 19.4 percent deficit in Madhya Pradesh, with a 2011 national average shortfall of 10.3
percent of total load.

To test for heterogeneous effects in power quality, we estimate Equation (2.1) on the 7
states in our 12-state RD sample with 2011–2012 shortfalls that were better than the na-
tional average. These states are, in order of lowest-to-highest deficit (i.e. negative surplus):
Chhattisgarh (−17.3 percent), Orissa (−15.4), Karnataka (−4.8), West Bengal (0.0), Gu-
jarat (1.6), Haryana (6.0), and Rajasthan (7.0). Table B.2.27 shows that restricting the
RD sample to these 7 states increases our RD point estimate for nighttime brightness by
a factor of 1.7, without sacrificing precision. However, applying the same restriction to
RD regressions on labor outcomes if anything attenuates our point estimates while barely
affecting their confidence intervals. This demonstrates that even in states where RGGVY
investments were likely coupled with above-average power availability, we can still reject
economically significant changes in employment. Table B.2.28 presents analogous results
for asset ownership, housing outcomes, and village-wide outcomes, while Tables B.2.29
and B.2.30 do so for the outcomes in Tables 2.5.4 and 2.5.5, respectively. The confidence
intervals for the low-deficit sample remain broadly similar to those of both full 22-state
RD sample and the 12-state lights sample, even at 32 percent smaller sample size.62

There are three exceptions. First, the share of households owning bicycles in Table
B.2.28 is negative and statistically significant in the low-deficit sample. This result appears
to be spurious, as it is not robust across other assets that require electricity. Second, the
adult male other employment result in Table B.2.29 is larger and statistically significant in
the low-deficit sample. While the 0.034 upper bound of the 95 percent confidence interval
is twice as large as with the full sample of 22 states, 0.034 still represents a relatively small
change in the share of adult male workers.63 Third, the five school enrollment results in
Table B.2.30 are negative and statistically significant for low-deficit states, suggesting
that RGGVY led to decreases in student enrollment. We report six corresponding RD
pictures in Figure B.2.21, and only the SECC adult male other employment result reveals
visual evidence of a discontinuity at the 300-person threshold.

RGGVY implementation may have been heterogeneous in other ways that limited
its effectiveness. Given that district-specific RGGVY projects were often carried out by

62For simplicity, B.2.27–B.2.30 use the 12-state RD lights sample for all outcome regressions. This
excludes 11,079 villages in 10 states with low-quality or missing shapefiles, which are included in all
other RD regressions on Census outcomes. 93 percent of these excluded villages are in Uttar Pradesh
and Uttarakhand, two states with deficits well above the national average. Hence, the 12 vs. 22 state
distinction is unimportant in this split-sample exercise, because the excluded states with below-average
deficits are all very small.

63Our labor share results from Table 2.5.3 use the village’s full male population as the denominator.
For comparison, a 3.4 percentage point increase in adult men in households with at least one poverty
indicator translates to less than a 1 percentage point increase in the full male population. This is because
for the average village in our sample, 67 percent of the male population is 16 or older, and only 44 percent
of the male population is included in our SECC dataset.
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decentralized implementing agencies (i.e. state electricity boards, local distribution com-
panies), the efficacy of project implementation might have varied widely across states
or districts.64 Even if all implementation efforts were identical, enforcement of the 300-
person eligibility cutoff might have varied across implementers, which could reduce the
power of our RD design. However, we lack a strong prior as to which states/districts
are likely to have most strongly enforced the 300-person rule and most effectively imple-
mented RGGVY projects. Interestingly, if we cherry-pick the 7 states with the largest
RD point estimates for 2011 nighttime brightness, 6 of the 7 cherry-picked states also
had below-average electricity deficits in 2011. This suggests that if poor implementa-
tion prevented barely eligible RGGVY villages in certain states from exhibiting increased
nighttime brightness, these states were likely to have been states with above-average power
shortfalls.

64Apart from implementer-specific effects, this could reflect socioeconomic or political differences across
states. For example, newspaper stories have cited ethnic conflict as having caused RGGVY implementa-
tion delays in the northeastern states of Bihar, Assam, and Jharkhand.
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Table B.2.26: Subsample – Districts Receiving Early RGGVY Funding

Received RGGVY funding before
2011 Outcome Variable 2007 2008 2009 2010

2011 nighttime brightness 0.1414 0.1172∗ 0.1172∗ 0.1493∗∗

(0.0977) (0.0609) (0.0609) (0.0603)

Number of villages 10,833 17,960 17,960 18,686
Number of districts 90 126 126 130
Number of states 10 12 12 12

Male agri. workers / male pop −0.0081∗∗ −0.0063∗∗ −0.0070∗∗ −0.0073∗∗∗

(0.0035) (0.0029) (0.0028) (0.0028)

Female agri. workers / female pop −0.0056 −0.0036 −0.0042 −0.0050
(0.0049) (0.0041) (0.0041) (0.0041)

Male other workers / male pop 0.0047∗∗ 0.0041∗∗ 0.0046∗∗ 0.0046∗∗

(0.0024) (0.0020) (0.0020) (0.0019)

Female other workers / female pop 0.0016 −0.0004 −0.0003 −0.0004
(0.0022) (0.0021) (0.0020) (0.0020)

Number of villages 20,958 28,489 28,973 29,703
Number of districts 167 211 217 223
Number of states 12 18 20 21

Notes: This table estimates Equation (2.1) on subsamples of villages, in districts that received RGGVY
10th-Plan funding before a given year. All 10th-Plan districts received funding before the end of 2010,
and only 2 districts in Nagaland received funding after January 1, 2010 (and are not included in the
rightmost column above). In each row, we present RD point estimates (β̂1) from four separate regres-
sions on subsamples of single-habitation, 10th-Plan villages within our RD bandwith. The number of
villages/districts/states differ across nighttime brightness and labor regressions, because our nighttime
lights sample includes only the 12 states with available shapefiles that correlate with village areas. All
specifications control for the 2001 level of the outcome variable and state fixed effects. Standard errors
are clustered at the district level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table B.2.27: Subsample – States with Low Power Deficits (Lights and Labor)

2011 Outcome Variable Full RD
Sample

Full Lights
Sample

Low-Deficit
States

2011 nighttime brightness 0.1493∗∗ 0.2481∗∗∗

(0.0603) (0.0737)
[0.031, 0.268] [0.104, 0.393]

Number of villages 18,686 12,679
Number of districts 130 67
Number of states 12 7

ag workers / male pop −0.0071∗∗ −0.0065∗∗ −0.0043
(0.0028) (0.0033) (0.0039)

[−0.013,−0.002] [−0.013,−0.000] [−0.012, 0.003]

ag workers / female pop −0.0049 −0.0051 −0.0040
(0.0040) (0.0049) (0.0061)

[−0.013, 0.003] [−0.015, 0.005] [−0.016, 0.008]

oth workers / male pop 0.0046∗∗ 0.0056∗∗ 0.0054∗∗

(0.0019) (0.0023) (0.0025)
[0.001, 0.008] [0.001, 0.010] [0.000, 0.010]

Female oth workers / female pop −0.0004 −0.0006 −0.0006
(0.0020) (0.0026) (0.0036)

[−0.004, 0.004] [−0.006, 0.005] [−0.008, 0.006]

Number of villages 29,765 18,686 12,679
Number of districts 225 130 67
Number of states 22 12 7

Notes: This table estimates Equation (2.1) on our full RD sample (in the first column), our 12-state
lights RD sample (in the second column), and a subsample of 7 states with the lowest reported electricity
demand shortfalls for 2011 (in the third column). We define this demand shortfall as the percent of total
electricity demand not met by each state (Central Electricity Authority (2011)). These 7 states are (in
order of increasing demand shortfall) Chhattisgarh, Orissa, Karnataka, West Bengal, Gujarat, Haryana,
and Rajasthan. In each row, we present RD point estimates (β̂1) from three separate regressions, include
all villages in the full RD sample, the nighttime lights RD sample or the 7-state subset of the nighttime
lights RD sample (the latter two samples exclude states with shapefiles that are either unavailable or
uncorrelated with village areas). All specifications control for the 2001 level of the outcome variable and
state fixed effects. We report 95 percent confidence intervals in brackets. Standard errors (in parentheses)
are clustered at the district level. Significance: *** p < 0.01, ** p < 0.05, * p < 0.10.
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Table B.2.28: Subsample – States with Low Power Deficits (Assets, etc.)

2011 Outcome Variable Full RD
Sample

Full Lights
Sample

Low-Deficit
States

C. Asset ownership
Share of households with telephone 0.0025 −0.0007 −0.0010

[−0.008, 0.013] [−0.014, 0.013] [−0.018, 0.016]

Share of households with TV 0.0026 0.0041 0.0016
[−0.005, 0.010] [−0.004, 0.013] [−0.008, 0.011]

Share of households with bicycle −0.0015 −0.0048 −0.0116∗∗

[−0.010, 0.007] [−0.016, 0.006] [−0.023,−0.000]

Share of households with motorcycle −0.0008 −0.0008 −0.0020
[−0.006, 0.004] [−0.007, 0.005] [−0.010, 0.006]

Share of households without assets 0.0039 0.0060 0.0098
[−0.004, 0.012] [−0.005, 0.017] [−0.003, 0.022]

D. Housing stock
Share of households w/ elec/gas cooking 0.0005 −0.0013 −0.0045

[−0.005, 0.006] [−0.006, 0.003] [−0.010, 0.001]

Share of households w/ kerosene lighting 0.0029 −0.0047 0.0027
[−0.009, 0.015] [−0.020, 0.011] [−0.009, 0.014]

Share of households with mud floors 0.0043 0.0046 0.0040
[−0.003, 0.012] [−0.004, 0.013] [−0.007, 0.015]

Share of households with thatched roof −0.0034 −0.0045 0.0037
[−0.013, 0.007] [−0.016, 0.007] [−0.008, 0.015]

Share of households dilapidated −0.0031 −0.0060∗ −0.0060
[−0.009, 0.002] [−0.013, 0.001] [−0.014, 0.003]

E. Village-wide outcomes
1/0 Mobile phone coverage in village −0.0008 −0.0006 −0.0193

[−0.023, 0.021] [−0.030, 0.029] [−0.049, 0.011]

1/0 Post office in village 0.0017 0.0002 0.0001
[−0.005, 0.009] [−0.008, 0.008] [−0.009, 0.009]

1/0 Ag credit societies in village 0.0013 −0.0032 −0.0035
[−0.006, 0.008] [−0.011, 0.005] [−0.011, 0.004]

1/0 Water from tubewell in village −0.0075 −0.0170 −0.0290
[−0.036, 0.021] [−0.050, 0.016] [−0.065, 0.007]

Share of village area irrigated −0.0057 −0.0033 −0.0051
[−0.016, 0.004] [−0.011, 0.004] [−0.014, 0.003]

Share of village area planted 0.0015 0.0064 0.0036
[−0.010, 0.013] [−0.008, 0.021] [−0.014, 0.022]

Notes: This table is exactly analogous to Table B.2.27, except that it reports full sample, lights sample,
and low-deficit-states results for outcomes in Panels C, D, and E of Table 2.5.3. Standard errors are
omitted for brevity, but 95 percent confidence intervals are still presented in brackets. Please refer to the
notes below Table B.2.27.
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Table B.2.29: Subsample – States with Low Power Deficits (SECC Outcomes)

2011 Outcome Variable Full RD
Sample

Full Lights
Sample

Low-Deficit
States

A. Share of households
At least one poverty indicator 0.0006 −0.0034 −0.0021

[−0.011, 0.012] [−0.019, 0.012] [−0.022, 0.018]

Monthly income greater than Rs 5,000 0.0043 0.0069 0.0059
[−0.004, 0.013] [−0.003, 0.017] [−0.006, 0.018]

One member holding salaried job 0.0030 0.0046∗∗ 0.0029
[−0.002, 0.008] [0.000, 0.009] [−0.002, 0.008]

Owning any land −0.0005 −0.0007 0.0068
[−0.017, 0.016] [−0.015, 0.014] [−0.011, 0.024]

B. Adult employment
Male agricultural workers / adult men −0.0091∗ −0.0078 −0.0047

[−0.019, 0.001] [−0.021, 0.005] [−0.022, 0.013]

Female agri. workers / adult women −0.0039 −0.0002 −0.0001
[−0.013, 0.006] [−0.012, 0.012] [−0.017, 0.017]

Male household workers / adult men 0.0008 0.0013 0.0014
[−0.002, 0.004] [−0.002, 0.005] [−0.004, 0.007]

Female hhold. workers / adult women −0.0015 0.0065 0.0111
[−0.016, 0.013] [−0.014, 0.027] [−0.019, 0.041]

Male other workers / adult men 0.0052 0.0124∗ 0.0177∗∗

[−0.007, 0.017] [−0.002, 0.027] [0.001, 0.034]

Female other workers / adult women 0.0054 0.0017 0.0033
[−0.005, 0.016] [−0.011, 0.014] [−0.010, 0.017]

Notes: This table is exactly analogous to Table B.2.27, except that it reports full RD sample, lights RD
sample, and low-deficit-state results for outcomes in Table 2.5.4. Regressions in the first column contain
25,942 village observations (as in Table 2.5.4), while regressions in the second and third columns contain
16,240 and 11,027 village observations, respectively. All regressions control for state fixed effects, but do
not include any additional controls. Standard errors are omitted for brevity, but 95 percent confidence
intervals are still presented in brackets. Please refer to the notes below Table B.2.27.
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Figure B.2.21: RD Sensitivity – Selected Regressions, Low-Deficit States
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Notes: This figure presents RD results for the subset of states with above-average power quality (i.e.,
below-average deficits). They correspond to the adult male other workers regression in Table B.2.29, and
all five village-level enrollment regressions in Table B.2.30. Only the upper-left RD plot for the share of
adult men working in “other” job reveals visual evidence of a discontinuity, even though all six RD point
estimates are statistically significant. Blue dots show average residuals form regressing the 2011 outcome
on state fixed effects and the 2005 level of the outcome (for enrollment variables only). Each dot in the
upper-left plot contains approximately 700 villages, averaged in 20-person population bins. For the five
enrollment plots, each dot contains approximately 450, averaged in 25-person population bins.
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Table B.2.30: Subsample – States with Low Power Deficits (DISE Outcomes)

2011 Outcome Variable Full RD
Sample

Full Lights
Sample

Low-Deficit
States

Total enrollment, grades 1–8 −0.4725 −2.7663 −7.4681∗∗

[−8.182, 7.237] [−8.174, 2.642] [−13.325,−1.611]

Male enrollment, grades 1–8 0.1966 −1.5136 −3.6321∗∗

[−3.715, 4.108] [−4.304, 1.277] [−6.737,−0.527]

Female enrollment, grades 1–8 −0.6504 −1.1691 −3.7973∗∗∗

[−4.612, 3.311] [−3.910, 1.572] [−6.678,−0.917]

Total enrollment, grades 1–5 −0.4080 −0.8513 −4.3510∗∗

[−6.191, 5.375] [−4.848, 3.146] [−8.133,−0.569]

Total enrollment, grades 6–8 0.0513 −1.4067 −2.6964∗

[−2.892, 2.994] [−4.083, 1.270] [−5.815, 0.423]

Notes: This table is exactly analogous to Table B.2.27, except that it reports full RD sample, lights RD
sample, and low-deficit-state results for outcomes in Table 2.5.5. We report the corresponding RD figures
in B.2.21. Regressions in the first column contain 12,251 village observations (as in Table 2.5.5), while
regressions in the second and third columns contain 8,569 and 5,482 village observations, respectively.
All regressions control for state fixed effects and the 2005 level of the outcome variable. Standard errors
are omitted for brevity, but 95 percent confidence intervals are still presented in brackets. Please refer to
the notes below Table B.2.27.
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B.2.11 Difference-in-differences Results

We estimate a two-period difference-in-differences (DD) model in Section 2.6.3, as an
alternative to our RD strategy. While invoking much stronger identifying assumptions
(i.e. parallel trends, no time-varying unobservables, as-good-as-random selection into 10th-
Plan treatment), this model allows us to include larger villages that are far from our
300-person RD cutoff.65 Despite estimating treatment effects on a larger sample with
a different counterfactuals (comparing 10th- vs. 11th-Plan villages, as opposed to barely
eligible 10th-Plan vs. barely ineligible 10th-Plan villages), our DD estimates for nighttime
brightness and male agricultural employment are quite comparable to our (preferred) RD
estimates (see Figure 2.6.11).

Figure B.2.22 reports the analogous DD results for female agricultural, male other,
and female other employment. We see that the DD point estimates are quite close to our
RD estimates, except for female other employment.66 This DD figure also shows rela-
tively constant treatment effects for labor outcomes across the population support, which
is consistent with the DD results for male agricultural employment in Figure 2.6.11. By
contrast, DD treatment effects for nighttime brightness are positive and increase mono-
tonically in village population.

Together, these results suggest that the small magnitude of our RD labor results is
not simply an artifact of restricting our sample to villages smaller than 450 people. Even
though the effects of electrification on nighttime brightness are increasing in population,
labor effects are constant. This corroborates our RD evidence that electrification does
not transform labor markets.

Table B.2.31 compares our preferred RD point estimates to DD estimates estimated
using a pooled version of Equation (2.2):

Yvst = γ0 + γ11[10th× Post]vt + δt + ηv + εvt(B.2)

Taken at face value, the pooled DD point estimates (in the second column) are fairly
consistent with the RD point estimates, except for female other employment. Importantly,
for all four labor outcomes, 95 percent confidence intervals reject effects larger than 2.2
percent for both RD and DD models. The third column of Table B.2.31 tests the parallel
trends assumption by estimating a district-level model on pre-RGGVY employment:

Ydt = ζ0 + ζ11[10th× 2001]dt + δt + ηd + εdt , for t ∈ {1991, 2001}(B.3)

The parallel trends assumption necessary to identify Equations (2.2) and (B.2) requires
that ζ1 = 0. However, Table B.2.31 reveals that we can reject parallel trends for three

65Our difference-in-differences analysis also allows us to incorporate multi-habitation villages and vil-
lages we could not match to the habitation dataset, since these restrictions are not necessary for identi-
fication in the DD context.

66Our 300-person DD bins estimate separate treatments for villages with 2001 populations between
0–300 and 300–600. Because our 150–450 RD window spans two bins, the RD estimate lies between these
two DD binned estimates. We construct population bins this way in order to allow for heterogeneous DD
effects on either side of the 300-person cutoff.
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out of four labor outcomes, as ζ̂1 is statistically different from zero. Hence, we interpret
our DD results with caution.

Figure B.2.22: Difference-in-Differences Results
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Notes: This figure compares the reduced form effects from our preferred RD specification (Equation
(2.1)) to the results from our DD specification (Equation (2.2)), using 300-person population bins. Navy
blue dots show the RD coefficients, and whiskers the RD 95 percent confidence interval. Light blue dots
and dashed lines show the DD point estimates and 95 percent confidence intervals. From left to right,
the three panels show effects for female agricultural, male other, and female other employment. Only the
RD results for male employment is statistically significant at the 10 percent level. Table B.2.31 reports
pooled DD results. DD regressions include 994,802 village-year observations.
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Table B.2.31: RD vs. Difference-in-Differences Results

Outcome Variable RD Point
Estimate

DD Point
Estimate

1991–2001 District
Pre-Trend

Nighttime brightness 0.1493∗∗ 0.4540∗

(0.0603) (0.2659)
[0.031, 0.268] [−0.067, 0.975]

Number of villages 18,686 314,889
Number of districts 130 307

Male ag workers / male pop −0.0071∗∗ −0.0136∗∗∗ −0.0112∗∗

(0.0028) (0.0042) (0.0049)
[−0.013,−0.002] [−0.022,−0.005] [−0.021,−0.002]

Female ag workers / female pop −0.0049 −0.0069 0.0024
(0.0040) (0.0059) (0.0101)

[−0.013, 0.003] [−0.019, 0.005] [−0.017, 0.022]

Male oth workers / male pop 0.0046∗∗ 0.0013 −0.0076∗∗

(0.0019) (0.0028) (0.0033)
[0.001, 0.008] [−0.004, 0.007] [−0.014,−0.001]

Female oth workers / female pop −0.0004 0.0086∗∗∗ −0.0130∗∗∗

(0.0020) (0.0028) (0.0039)
[−0.004, 0.004] [0.003, 0.014] [−0.021,−0.005]

Number of villages 29,765 497,401
Number of districts 225 499 499

Notes: This table compares our main RD regression results (from estimating Equation (2.1)) to results
from a difference-in-differences model. The first column reproduces the RD results from Tables 2.5.2
and 2.5.3. The second column reports γ̂1 from separate regressions of Equation (B.2) on each outcome.
The third column reports ζ̂1 from separate district-level regressions of Equation (B.3) on each outcome.
(weight districts by their 2001 rural populations). The number of villages and districts differs across
nighttime brightness and labor regressions, because our nighttime lights sample includes only states with
available shapefiles that correlate with village areas. We report 95 percent confidence intervals in brackets.
All standard errors (in parentheses) are clustered at the district level. Significance: *** p < 0.01, **
p < 0.05, * p < 0.10.
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B.3 Electrification in India: A (More) Detailed
History

B.3.1 Before RGGVY

India has a long history of rural electrification programs.67 Upon Independence in 1947,
rural electricity access was virtually nonexistent; by 2012, 92 percent of India’s villages
were electrified, based on the government’s official definition. This dramatic increase is
attributable to a series of rural electrification schemes. Each of India’s Five Year Plans has
funded some sort of rural electrification program, beginning with the 1st Plan (1951–1956)
and continuing through the current 12th Plan (2012–2017).

The 1st Plan (1951–1956) focused its electrification efforts on agricultural production
and irrigation. A village was legally considered electrified if any electricity was used within
its boundaries for any purpose. During these early years, the government’s goal was to
provide electricity in every 200th village. Ultimately, 4,231 villages were electrified. Under
the 2nd Plan (1956–1961), the government’s goals shifted towards providing electricity
as a “social amenity.” This accelerated electrification efforts, bringing 14,458 villages
and 350 towns online by the end of the 2nd Plan. The 3rd Plan (1961–1966) motivated
electrification as an anti-poverty tactic, with an additional 25,955 villages receiving access
to electricity.

With rural electrification becoming increasingly expensive, the All India Rural Credit
Review Committee recommended forming a financing agency focused on energy access.
At the start of the 4th Plan in 1969, the Rural Electrification Corporation (REC) opened
its doors. As a Public Sector Undertaking with a significant degree of fiscal autonomy, the
REC funded rural electrification with the joint goals of reducing poverty and promoting
productive activity. During that period, India’s Green Revolution was increasing the
economic returns to electricity in rural areas: electrified pumps enabled the irrigation
systems necessary to support new high yield variety grains. The REC had a mandate to
promote electrified pumpsets, and it targeted villages with populations of at least 5,000. In
1974, the beginning of the 5th Plan, the Minimum Needs Programme was begun in order
to improve standards of living and provide for basic needs. This scheme targeted states
with village electrification rates below than the national average and subsidized short
distance connections between villages and the existing grid. Broader access to electricity,
beyond for agriculture alone, was a key component of this legislation. As a result, over
200,000 villages gained access to electricity between 1969 and 1979.

Between 1980 and 1990, the 6th and 7th Plans funded a variety of schemes to promote
access to electricity, including the Integrated Rural Energy Program and Kutir Jyoti
Yojana.68 These programs had strong distributional motivations, and were designed to

67The information from this section comes from a combination of Rural Electrification Corporation
(2010) and Banerjee et al. (2014).

68Kutir Jyoti Yojana provided 100 percent subsidies for single point connections to BPL households.
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decrease energy poverty amongst India’s poorest households. The 1980s saw 237,371
newly electrified villages.

Under the 8th Plan (1992–1997), the government created both the Ministry of Power
and the Ministry of New and Renewable Energy. However, funding challenges forced rural
electrification efforts to slow dramatically, with only 11,666 villages electrified in this five
year period. The 9th Plan (1997–2002) once again sought to promote electrification as an
economic development program. In keeping with this goal, the Ministry of Power released
a new definition of electrification in 1997. Villages were now only considered electrified if
electricity was being used in the inhabited areas of the village. This exemplified the shift
away from electrification solely for agriculture’s sake. At the same time, new government
programs, including Pradhan Mantri Gramodaya Yojana, began providing subsidies for
electricity services. New provisions in the Minimum Needs Programme, as well as the
launch of the Accelerated Rural Electrification Program, helped to provide individuals
and states with the financing necessary to increase rural energy access. During the 9th
Plan, 13,317 villages were electrified. By 2001, 86 percent of all villages were deemed
electrified.

The 10th Plan (2002–2007) spanned several major changes to India’s rural electrifi-
cation efforts. The Electricity Act, 2003, codified the government’s commitment to rural
electrification, stating that “The Central Government shall ... formulate a national pol-
icy...for rural electrification and for bulk purchase of power and management of local
distribution in rural areas.” The Act also requires the government to “endeavour to sup-
ply electricity to all areas including villages and hamlets” (Ministry of Law and Justice
(2003)). In 2004, the Ministry of Power created a new, stricter definition of electrification,
which is still in use today. A village is now officially considered electrified only if basic
infrastructure, including transformers and distribution lines exist in that village and in
its constituent habitations; if public locations such as schools, government offices, health
centers, and others have electricity; and if at least 10 percent of the village’s households
are electrified.

In 2004’s National Electricity Policy, the Ministry of Power laid the groundwork for
the future of rural electrification in India. Invoking the 2003 Electricity Act, the Na-
tional Electricity Policy states that “The key development objective of the power sector is
supply of electricity to all areas including rural areas...governments would jointly endeav-
our to achieve this objective at the earliest” (Ministry of Power (2005a)). In particular,
subsequent rural electrification programs are supposed to create a “Rural Electrification
Distribution Backbone” (REDB) of at a minimum one 33/11 kV or 66/11 kV substa-
tion in each Census block, with higher-load regions supplied with additional substations.
These substations are to be connected to the state transmission grid. In addition, each
village should have supply feeders and at least one distribution transformer, such that
every household may be connected on demand to the grid via that transformer. Every
household should be connected on demand to the village’s transformer.69 In keeping with

69Rural Indian households typically pay for their own electricity connections, unless they are specifi-
cally subsidized through an electrification program.
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the theme of electrification as a tool for development, the Policy requires that electricity
infrastructure be able to support the load from agriculture, textiles and other industries,
small and medium enterprises, cold-chain (refrigeration) services, and other public ser-
vices such as health and education. The Policy also stipulates that priority be given to
electrification in “economically backwards” regions. Finally, the Policy makes the REC
(now a division of the Ministry of Power) the nodal agency in charge of implementing the
country’s rural electrification goals.

B.3.2 RGGVY

In 2005, the REC initiated Rajiv Gandhi Grameen Vidyutikaran Yojana (RGGVY), the
Prime Minister’s Rural Electrification Plan. RGGVY was the flagship Indian rural elec-
trification program, created with the National Common Minimum Programme goal of
universal electricity access in mind.70 Upon launch, RGGVY enveloped the remaining
ongoing electrification schemes, including the Accelerated Electrification of One Lakh Vil-
lages and One Crore Households and the Minimum Needs Programme.71 The RGGVY
scheme was detailed in a Ministry of Power Office Memorandum from March of 2005
(Ministry of Power (2005b)), and its rules followed directly from the National Electricity
Policy.

Under RGGVY, states were required to “make adequate arrangements for supply of
electricity,” and to serve rural and urban customers equally. As stipulated by the National
Electricity Policy, RGGVY was mandated to create the Rural Electricity Distribution
Backbone, to electrify unelectrified habitations and villages, and to provide adequate dis-
tribution infrastructure in these newly electrified areas. This infrastructure was supposed
to be able to support household load, as well as load from irrigation pumpsets, various
industrial activity, cold chains, health care, education, and information technology. A
small Decentralized Distributed Generation (DDG) provision was put in place for vil-
lages where grid connection would be infeasible or prohibitively expensive. RGGVY was
specifically intended to “facilitate overall rural development, employment generation and
poverty alleviation,” and the policy specifically supported the poor by providing 100 per-
cent subsidies for grid connections for below-poverty line (BPL) households.72 As part of
India’s national anti-corruption efforts, details of proposed and completed electrification
under RGGVY are available online.73

The Rural Electrification Corporation, serving as a nodal agency to the Ministry of
Power, has been the main implementing agency for RGGVY, providing 90 percent of the
capital needs as direct grants to states and loaning them the remaining 10 percent. The

70The program was designed to cover the entire country, but one state (Goa) and all of the union
territories have been left out, since they had already achieved 100 percent village electrification by 2005.

71These other schemes had, by this point, been discontinued for financial reasons. In the South Asian
numbering system, 1 lakh = 100,000 and 1 crore = 10,000,000.

72Note that this does not include free power - RGGVY only provides free connections to BPL house-
holds. Above-poverty line households pay their own connection charges.

73The new program website with these details is http://www.ddugjy.in/.

http://www.ddugjy.in/
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REC was responsible for providing detailed program guidelines, including requirements
and standards for materials, equipment, and construction. Within each state that was eli-
gible for RGGVY, the state government power utilities designated implementing agencies.
These implementing agencies could be state power distribution companies, state electric-
ity boards, state government power departments, central power sector undertakings (ap-
pointed by the state government), or co-operative societies.74 These implementing agen-
cies prepared Detailed Project Reports (DPRs) for each district under their jurisdiction,
by carrying out surveys in every village. A DPR listed each village’s electrification status,
population, number of households (above/below the poverty line, and with/without elec-
tricity), and number of public places (with/without electricity). These reports proposed
village-by-village RGGVY implementation plans for eligible villages, which included de-
tails on new electricity infrastructure and household connections to be installed (Ministry
of Power (2014b)). These DPRs were then submitted to the REC after approval from
the state government. After the REC conducted a comprehensive review of each DPR, it
passed them on to the Ministry of Power for final approval. Once the Ministry of Power
approved a DPR, it sanctioned that district’s RGGVY project, and the REC disbursed
funds to the implementing agency in charge of the project.75

Under the 10th Plan, RGGVY limited program eligibility to villages with constituent
habitations of 300 people or above. It justified this population cutoff on the grounds of
keeping program costs low. In all, the REC reports that RGGVY electrified 64,091 villages
under the 10th Plan. This number included both “unelectrified” villages that did not meet
the 2004 definition of electrification, as well as “de-electrified” that had previously been
deemed electrified but no longer meet the official definition of electrification.76

In 2008, the Ministry of Power ordered the continuation of RGGVY in the 11th plan
(2007–2012).77 This second wave of RGGVY continued to target electrification for all,
with the goal electrifying 115,000 un-electrified villages and providing free connections to
23.4 million BPL households. The REC continued as the nodal agency, with the same
the 90/10 percent subsidy/loan capital split. Under the 11th Plan, RGGVY provided the
same infrastructure as under the 10th Plan. However, states were now required to guar-
antee a minimum 6–8 hours of power supply for RGGVY villages before the REC would
approved a given DPR proposal. The 11th Plan also included guidelines for electrifying
villages where grid extensions would be cost-prohibitive with microgrids, under the small
Decentralized Distributed Generation (DDG) carve-out.78

74The choice of implementing agency was left to the states, and depended on the administrative struc-
ture and relative capacity amongst different state agencies. Importantly, these were not local agencies: the
REC specifically prohibited Gram Panchayats (local governments) from implementing RGGVY projects.

75All implementing agencies were required to bring their own teams to villages for RGGVY electrifi-
cation; no hiring of local labor was permitted.

76These “de-electrified” village either had access to electricity and then lost this access due to infras-
tructure breakdown, or moved out of official electrified status when the definition became more stringent
in 2004.

77A new Office Memorandum contains the details (Ministry of Power (2008)).
78For more details on this DDG carve-out, see: http://powermin.nic.in/sites/default/files/

uploads/Guidelines_for_Village_Electrification_DDG_under_RGGVY_0.pdf

http://powermin.nic.in/sites/default/files/uploads/Guidelines_for_Village_Electrification_DDG_under_RGGVY_0.pdf
http://powermin.nic.in/sites/default/files/uploads/Guidelines_for_Village_Electrification_DDG_under_RGGVY_0.pdf
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A three-tier quality monitoring mechanism was also put in place with the 11th plan.
First, the state or sub-state level implementing agencies would conduct inspections to
ensure that workmanship on RGGVY projects was up to standards. These agencies
were mandated to randomly inspect 50 percent of RGGVY villages. Next, the REC
was instructed to inspect materials before shipment to RGGVY sites, as well as a ran-
dom subsample 10 percent of villages. Finally, the Ministry of Power hired National
Quality Monitors to inspect 1 percent of villages. Amid complaints from state and local
governments, the 300-person constraint was relaxed in the 11th plan. All villages with
habitations of 100 people or more were supposed to be covered in RGGVY during this
period. Between 2007 and 2012, the REC reports that an additional 46,206 villages were
electrified.

India is currently in its 12th Five-Year Plan (2012-2017). In September 2013, the
Ministry of Power again extended RGGVY, this time to be covered under both the 12th
and 13th Plans (forthcoming in 2017–2022).79 This time, the scheme was sanctioned to
complete unfinished projects from the 10th and 11th Plans and to cover all remaining
habitations and villages with populations above 100. The third wave of RGGVY also
continues to subsidize BPL connections. As of 2012, 92 percent of villages in India were
officially classified as electrified.

Rural electrification work continues in India. In 2014, RGGVY was subsumed into
a new program, Deendayal Upadhyaya Gram Jyoti Yojana (DDUGJY), the Deendayal
Upadhyaya Village Light Plan.80 This program is slated to carry out RGGVY’s works
as under the 2013 continuation document. Under DDUGJY, however, all villages and
habitations are now eligible for rural electrification, regardless of population (Ministry of
Power (2015)). DDUGJY also provides for the creation of new feeder lines to separate
agricultural and non-agricultural consumers. It aims to strengthen sub-transmission and
distribution infrastructure in the rural areas, with a particular focus on metering.

79Once again, an Office Memorandum marked the occasion (Ministry of Power (2013)).
80The Ministry of Power announced this decision in an Office Memorandum in December (Ministry of

Power (2014a)).
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