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Abstract
Using data from a major commercial online game, Des-
tiny, we track the development of player skill across time.
From over 20,000 player record we identify 3475 players
who have played on 50 or more days. Our focus is on
how variability in elements of play affect subsequent skill
development. After validating the persistent influence of
differences in initial performance between players, we
test how practice spacing, social play, play mode vari-
ability and a direct measure of game-world exploration
affect learning rate. These latter two factors do not af-
fect learning rate. Players who space their practice more
learn faster, in line with our expectations, whereas play-
ers who coordinate more with other players learn slower,
which contradicts our initial hypothesis. We conclude that
not all forms of practice variety expedite skill acquisition.
Online game telemetry is a rich domain for exploring the-
ories of optimal skill acquisition.
Keywords: learning; games; skill acquisition; expertise;
game analytics

Introduction
Computer games afford a rich data set for the investi-

gation of skill acquisition. Players invest tens, hundreds
or even thousands of hours on individual games, and —
unlike offline domains of expertise — details of every ac-
tion during practice can be unobtrusively recorded. The
present analysis uses data from the online shooter video
game Destiny, which has over 30 million active users as
of 2016 (Nunneley, 2016). Using data on players’ per-
formance we trace their skill acquisition over time and
relate it to their practice habits. Specifically we are inter-
ested in how variability in practice relates to learning.

The power law of learning is justly well-known in cog-
nitive science (A. Newell & Rosenbloom, 1981; Ritter
& Schooler, 2001), both for being a dependable regular-
ity in skill acquisition data (Rosenbaum et al., 2001) and
for expressing a truth we know from personal experience:
when we first begin learning something new progress is
often rapid, but later it slows or stalls. Nonetheless the
presentation of Power Law learning curves based on av-
erages masks the variability that occurs both within and
between individuals (Gallistel et al., 2004; Gray & Lind-
stedt, 2016). This is important for two reasons. Firstly
because individual variability is interesting as an out-
come. We wish to know why some individuals learn
more rapidly, and achieve greater eventual levels of per-
formance (and why some individuals are hindered in

their learning). Secondly, variability is interesting as
a driver of learning. Previously it has been suggested
that greater initial variability in practice may drive higher
subsequent performance (Stafford et al., 2012; Stafford
& Dewar, 2014), a result which accords with compu-
tational accounts of how learning must balance explo-
ration and exploitation of options (Sutton & Barto, 1998;
Humphries et al., 2012).

In addition to looking at how a skill is practised, there
are also results which suggest an effect on skill acqui-
sition of when a skill is practised — the issue of prac-
tice spacing (Stafford & Haasnoot, 2017; Delaney et al.,
2010; Cepeda et al., 2008) — as well as an effect of vari-
ability in how different components are practised (Mag-
ill & Hall, 1990). From this perspective, variability is
as much an engine of learning as consistency (Schmidt,
1975; Van Rossum, 1990; K. M. Newell & McDonald,
1992; Ranganathan & Newell, 2010). This raises the
question of exactly which kinds of variability, and in
what quantities, support optimal skill acquisition.

Previous work has looked at skill learning in a simple
online game (Stafford & Dewar, 2014; Stafford & Haas-
noot, 2017), with the emphasis that even a simple online
game contains many fundamental cognitive processes -
perceptual, decision making and action implementation.
Others have looked at skill development in more complex
games (Thompson et al., 2017, 2013), and here we use
the opportunity to analyse data from one such game, Des-
tiny, to explore issues of how playing style, and particu-
larly variability within play, affects skill development.

Destiny is a science-fiction themed, massively multi-
player, online game where players need to defend the
Earth from various alien threats, taking on the role of
Guardians. Players journey to different planets, complete
missions, daily events, and perform a variety of different
tasks to build up their characters. Destiny is a hybrid
digital game that blends features from a number of tra-
ditional game genres including role-playing games and
massively multi-player online games but which is first
and foremost a shooter (Tammasia et al., 2016). The
main components of the gameplay is focused on tacti-
cal single-player or small-team combat against players
or artificial agents (Drachen et al., 2016).
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Thousands of behavioural or performance-based met-
rics are tracked and stored by Bungie, the developer of
Destiny, which in aggregate provides a detailed record of
the behavioural history of Destiny players.

The metrics that can be calculated based on such
datasets varies, and previous research in game analytics
and other domains have seen such behavioural data be-
ing used for a variety of purposes (Tammasia et al., 2016;
Rattinger et al., 2016; Drachen et al., 2016). For Destiny,
a number of these metrics are of key interest in relation
to evaluation of player skill and skill evolution.

• Playtime: Playtime in the current context simply refers
to the amount of time a player spends playing the game
per day, across either a single or all characters.

• Kills, Assists, Deaths: the shooter-heavy gameplay of
Destiny means that traditional skill indicators from
shooter games such as Kill/Death Ratio (KDR) form
an important means for evaluating player skill.
For Destiny, a variant of KDR, the Kill-Assists/Death
Ratio (KADR) is also used. An assist is a common
term in esports signifying that a player helped an-
other player take down a specific enemy (or in other
ways help another player), without scoring the killing
shot/hit on that enemy.
KADR is thus a more nuanced aggregate measure of
performance than KDR. We use KADR-KDR as a
measure of a players’ propensity for ‘social play’.

• Combat Rating: The Combat Rating (CR) is a game
metric designed to reflect a players’ overall skill.
How CR is based on the TrueSkill system (Her-
brich & Graepel, 2006), a Bayesian model used for
player/team ranking. TrueSkill and CR both serve a
similar functionality to ELO (Charness, 2005). While
the algorithm is confidential, it broadly works by ini-
tialising a player at CR 100. If the player is part of a
team that wins a match, their CR goes up, more if there
is a large difference in the CR between the two teams.
Conversely, if they lose, the CR goes down, again in
relation to the gap in CR between the two teams. CR
is used by the Destiny matchmaking system to config-
ure players into teams and balancing opponents. This
means that players will be playing with and against
players with similar CR (i.e. they are matched against
players of simialr skill-levels).

• Grimoire Score: A Grimoire in Destiny is a record of a
players experience — new cards are awarded the first
time a specific action is taken or challenge overcome.
In essence, the Grimoire score is an expression of the
degree to which a player has explored the world and
content of Destiny.

Working with very large datasets introduces some new
opportunities for the cognitive scientist (Goldstone &

Lupyan, 2016; Stafford & Haasnoot, 2017). Observa-
tional studies, however large, necessarily have reduced
power of causal inference compared to experimental
studies. Large numbers mean that the data can be ‘sliced’
to explore if and how potential effects play out through-
out the population, as well as allowing matching of in-
dividuals on various properties which might confound
any effect. With enough data any observable difference
can be ‘statistically significant’. In experimental studies
effort is expended in achieving enough power to make
convincing inferences. With large data set it is more im-
portant to invest effort in exploring possible confounds
and putting observable differences in the context of other
effects via calculation of effect sizes.

Our hypothesis is that early variability will be associ-
ated with faster skill acquisition. This assumes that play-
ers have a tendency to under-explore the space of pos-
sible actions, and so, due to this reliance on habit, will
be learning sub-optimally. We will test this hypothesis
against different indices of variability in early practice:
spacing of play, social play, world knowledge (grimoire
score), and distribution of play across game modes (event
entropy). These metrics are defined further below.

Data and method
Our data comprise low level daily metrics indicating

performance and meta information for over 20,000 ran-
domly selected Destiny players. The behavioral teleme-
try was provided by Bungie.

For each player the data consists of a unique player
ID and character IDs for each character the player has.
A player is allowed to have at most three characters per
account. For each character, the dataset contains daily
aggregate player behavior such as number of deaths,
completed objectives, weapon usage and average life
span, and importantly playtime, each across the six game
modes - or ways to play the game.

Our analytic strategy is first to split the data into a de-
velopment (8682 players) and validation set (12861 play-
ers). All exploratory analysis was finalised on the de-
velopment set, before being run on the validation set to
produce the figures presented here. All conclusions pre-
sented are unaffected by the minor differences between
the development and validation set results. This affords
us some protection against discovering false patterns in
our data that result from researcher degrees of freedom
in analysis. It is inappropriate to make inferences from
hypothesis testing p-values for an exploratory analysis
such as this, but we report them for completeness where
we have done standard analyses. Our main focus is on
measures of effect size and confidence estimates around
those measures.

Analysis scripts, player summary data, and full reports
of both development and validation set results are avail-
able at https://osf.io/c59n9/. For commercial con-
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fidentiality reasons the full raw dataset is not available at
the point of writing.

Analysis
First, we seek to confirm that players improve with

practice. Following the method of (Stafford & Dewar,
2014), we first select only players who play some min-
imum number of games (50). This produces a data set
of 3475 longer term players (in the validation set; 1984
in the development set) and then divide by ranking all
players according to the average of their three all time
best ratings (in terms of CR). Figure 1 shows the aver-
age score per game for those who scored in the top third,
middle third and lowest third of the high score table.
This shows that the learning curve exists for averaged
data, and that — in line with (Stafford & Dewar, 2014)
— players who end up with the highest scores begin the
game with performance already above that of lower scor-
ers (compare (Stafford & Dewar, 2014) Figure 2).
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Figure 1: Average performance rating as a function of
game number and ranking based on players’ highest
three ratings. Error bars show +/- 1 standard error.

Note that our learning curves show performance,
rather than speed, on the x-axis, and so are inverted
relative to the classic ’Power Law of Learning’. None
the less they reflect the expected decelerating function
of learning with practice amount. Our investigation of
other factors must take account this fundamental pattern
in how player performance changes over time, as well
as the stratification that we observe between players of
differing initial performance. To do this, we fit a linear
regression for each player’s performance against game
number. Because this regression produces a slope and
an intercept, we are able to subsequently analyse player
differences in both level of initial performance and sub-
sequent change in performance (i.e. rate of learning).
Henceforth when we refer to “learning rate” we mean
the slope of this regression for each player. In order to
explore which variables might be related to player learn-
ing rate we first visualise players split on some candi-
date variables against mean combatRating against prac-

tice amount (game number).

Variation in practice timing — spacing
In order to compare practice timing, we calculate the
time range over which players recorded their first 25 days
of play (obviously this has a minimum of 25 days, and no
theoretical maximum). This range correlates positively
(Pearson’s r= 0.18, 99% confidence interval 0.14,0.22)
with learning rate and negatively (Pearson’s r= −0.09,
99% confidence interval −0.14,−0.05) with initial per-
formance.

In order to visualise the effect of greater or less spac-
ing, we select players in the top quartile for spacing their
first 25 games (’spacers’) and those in the bottom quartile
for spacing their first 25 games (’groupers’) and plot the
average performance against game for the two groups.
This is shown in Figure 2.
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Figure 2: Average score as a function of game number
and high and low spacers. Error bars show +/- 1 standard
error.

Variation in practice type
Playing style — social play For each player we have a
game by game measure of their ‘assists’, which are kills
made by teammates which they are near to. Variation
on this measure allows us to rate players according to a
propensity for social play, i.e. a higher rate of assists will
reflect a player who coordinates their actions with their
team.

This measure correlates negatively (Pearson’s r=
−0.16, 99% confidence interval −0.20,−0.12) with
learning rate and positively (Pearson’s r= 0.50, 99% con-
fidence interval −0.47,0.54) with initial performance.

Figure 3 shows the learning curve for players split on
the average of their assists over their first 25 games, as
an index of players’ propensity for ”social play”. Those
in the top quartile of the distribution of assists we term
‘social players’. Those in the bottom quartile we term
‘lone wolves’.
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Figure 3: Social play and skill acquisition. Error bars
show +/- 1 standard error.

World knowledge — Grimoire score For each player
we are able to see the complete history of their Destiny
playing, including how many games they play in total.
Each player also has a ‘grimoire’ score, which is a count
of the items they have encountered in the world. Ob-
viously this is higher for players who have played more
games, but there is considerable between-player variabil-
ity, suggesting that some players focus on exploring the
world, completing actions and collecting items, whereas
others aren’t focused on this aspect of the game. In order
to compare grimoire scores between players who have
complete different numbers of games, we calculate a nor-
malised (Z) score for each player based on the distribu-
tion of grimoire scores among players who have com-
pleted the same number of games.

This measure does not correlate with learning rate
(Pearson’s r= 0.04, 99% confidence interval 0.00,0.09)
and correlates positively, but weakly (Pearson’s r= 0.13,
99% confidence interval 0.10,0.18) with initial perfor-
mance.

Figure 4 shows the average score, in terms of CR,
against game for players whose grimoire Z scores are in
the top and bottom quartiles of the distribution.

Playing style — mode entropy The play modes in
Destiny are:

• Strikes: 3 player cooperative events.
• Raid: 6 player cooperative missions, requiring high

level skills to complete.
• Story: the main single-player game mode, which can

be played cooperatively by up to 3 players.
• Patrol: a single-player exploration mode.
• PvP: all the player-vs-player (PvP) game modes of

Destiny

Note that due to the aggregation into daily sets, it is
possible for players to have played multiple sessions of
Destiny within the same 24 hour cycle. Because Destiny
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Figure 4: Average score by games for players with high
and low grimoire count. Error bars show +/- 1 standard
error.

has six different main game modes, it is of interest to
evaluate how a player spends his or her time across those
game modes. In order to quantify the measure of het-
erogeneity in terms of how a player splits their time be-
tween game modes, we use Shannon’s entropy [see e.g.
(Lessne, 2014; Algoet & Cover, 1988)] which is defined
as:

H =−∑
i

pi log2(pi) (1)

where pi denotes the probability of the player’s activ-
ity across game modes i. For game mode pi is calculated
as the amount of time spent in specific game mode i di-
vided by the total time spent playing all game modes that
day.

Event entropy over the first 25 games for each player
does not correlate with learning rate (Pearson’s r=
−0.02, 99% confidence interval −0.06,0.03) and corre-
lates positively (Pearson’s r= 0.22, 99% confidence in-
terval 0.17,0.26) with initial performance.

Figure 5 shows performance against game for those in
the top and bottom quartiles for event entropy calculated
over the first 25 games.

Statistical model Hitherto, we have explored our data
using visualisation of different groups and reported bi-
variate correlations. By entering all factors into a regres-
sion model we can check whether how all factors com-
bine to explain variation in the learning rate. This is an
essential complement to the visualisation. It allows us
to confirm that patterns visible in the data are statisti-
cally significant. As well as the four measures described
above — spacing, social play, grimoire score and event
entropy — we include maximum numbers of games a
player plays as a measure of overall motivation. The
results of the regression of our five factors against the
learning rate are shown in shown in Table 1.
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Figure 5: Play mode entropy and skill acquisition. Error
bars show +/- 1 standard error.

Table 1: Regression of player behaviours on
player learning rate

Factor B T p

Games played 0.044 1.99 0.0465
Spacing 0.199 10.90 0.0001
Assists -0.172 10.04 0.0001
Grimoire 0.003 0.16 0.872
Event entropy 0.011 0.62 0.537

R2 = 0.063,F(5,3287) = 44.47, p < 0.0001

Note that only spacing and assists, our measure of so-
cial play, are significant. Figure 6 shows the standard-
ised regression coefficients (beta weights) when our five
factors are used to predict learning rate (slope) and for
the initial performance (intercept) of individual learning
functions.

Discussion
Using a complex online game we show that changes

in player’s performance can be tracked and related to
aspects of how they play. We validate the separa-
tion of learning curves by initial performance shown by
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Figure 6: Beta weights for players factors used to predict
slope (learning rate) and intercept of individuals’ learn-
ing functions. Standard error bars shown.)

(Stafford & Dewar, 2014). As with that previous result,
players who achieve the eventual highest levels of perfor-
mance also perform better on their first game. Further,
the difference between those with high and low initial
performance only grows as more practice is completed.

Two other factors influence rate of learning — spac-
ing, and social play. The effect of spacing matches
that found in experimental studies of skill acquisition,
as well as previous analysis of a different, simpler, game
(Stafford & Haasnoot, 2017). The differences between
players who space their practice and those who don’t
is striking, such that the high-spacing players, on aver-
age, perform less well initially, but because they learn
at a faster rate their average rating exceeds that of the
low-spacing players by game 50. The effect of social
play was not predicted: those who play more socially,
as measured by their assist rate, learn slower — perhaps
because the demands of team coordination distract from
skill honing. Two other direct measures of exploration
are not found to relate to rate of learning, in contrast to
earlier results (Stafford et al., 2012; Stafford & Dewar,
2014). This suggest that curiosity alone is not sufficient
to enhance skill acquisition.

Destiny, and online games in general, represent a rich
test-bed for theories of skill acquisition. Games are
played for reasons of intrinsic motivation and so repre-
sent an important contrast to lab studies which are com-
pleted for financial incentives or as part of a course re-
quirement. In addition they represent an opportunity to
collect large data sets, which allow confidence in the esti-
mates of the effects of the factors analysed. Overcoming
statistical uncertainty allows researchers to move swiftly
to wrestling with interpretative uncertainty.

In this case, although variability in practice timing
— spacing — enhances skill acquisition, we failed to
demonstrate that our measures of other kinds of prac-
tice variability can be related to enhanced skill acquisi-
tion. This leaves open the possibility that the exploration
which supports skill acquisition is not captured by our
measures, or that more complex skills, such as Destiny
playing, require an equal match of habitual practice and
exploratory variability.
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