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Abstract

Cognitive science is itself a cognitive activity. Yet, computa-
tional cognitive science tools are seldom used to study (lim-
its of) cognitive scientists’ thinking. Here, we do so using
computational-level modeling and complexity analysis. We
present an idealized formal model of a core inference prob-
lem faced by cognitive scientists: Given observations of a sys-
tem’s behaviors, infer cognitive processes that could plausibly
produce the behavior. We consider variants of this problem at
different levels of explanation and prove that at each level, the
inference problem is intractable, or even uncomputable. We
discuss the implications for cognitive science.
Keywords: philosophy of cognitive science, formal episte-
mology, abduction, computational complexity, intractability

Introduction
Imagine a scientist, called Dr. Conjectura, who wants to ex-
plain some cognitive system’s behavior and inner workings.
They may be interested in explanations at different levels of
granularity, ranging from high-level functional explanations
of its input-output behavior to lower-level process or mech-
anistic explanations (Marr, 1982; Bechtel & Shagrir, 2015;
Anderson, 1990; Egan, 2017; Jarecki, Tan, & Jenny, 2020;
Love, 2020). A number of challenges facing Dr. Conjectura
have been recognized and studied to various degrees. Tradi-
tionally, challenges posed by uncertainty have been the focus
(e.g., statistically inferring effects from data, problems of in-
duction and generalizability, underdetermination of theory by
data). In this paper, we show that even if all of this uncer-
tainty were removed, a major obstacle to explaining cogni-
tion would remain. In particular, the inference problems that
Dr. Conjectura aims to solve are computationally intractable,
and some are even uncomputable. This shows that we can-
not hope to explain cognition solely through techniques for
removing or responding to uncertainty; the task is difficult in
a more fundamental way, and different kinds of strategies are
necessary to address this.

Based on where the most energy is expended, one would
think that the main challenges for cognitive science have
to do with gathering sufficient, high-quality empirical evi-
dence. This idea is further strengthened by the fact that re-
cent science reforms (motivated in large part by the ‘repli-
cation crisis’) have focused on devising practices and proce-
dures geared towards reducing uncertainty about which ef-

fects are real, and which ones illusory (Open Science Col-
laboration, 2015; Nosek et al., 2019). Whether or not these
approaches help or hinder is a topic of debate (Szollosi et al.,
2020; Devezer, Navarro, Vandekerckhove, & Ozge Buzbas,
2021; Irvine, 2021), but let’s assume for sake of argument
that this challenge were resolved, and our experiments and
statistical analyses would yield only true results. We would
still have a major problem, namely the problem of induction
(Hume, 1739; Goodman, 1983), since present results are in-
sufficient to infer future observations. Dr. Conjectura may
have observed people behaving a certain way or a particular
brain region being activated during an experiment, but remain
uncertain about how to generalize these observations across
contexts and time.

But let’s suppose that the problem of induction were also
solved; let’s even imagine that Dr. Conjectura has full, auto-
matic access to all facts, present and future. Then their pre-
dictions would be accurate, a fortiori, but would Dr. Con-
jectura also be able to supply us with correct explanations of
cognitive phenomena? It might seem that little work would
remain, but explanation might still prove elusive. Not only
would the sheer volume of data present a practical challenge,
but theory is (notoriously) underdetermined by data (Quine,
1951).1 Dr. Conjectura may provide an explanation only for
future researchers to replace it with an alternative that they
find preferable not because it is objectively more accurate,
but because it is e.g. simpler or more fruitful (Kuhn, 1962).

Now, let’s imagine that even this challenge would disap-
pear; we somehow knew for sure that only one acceptable
theory were consistent with our data. We suspect that many
would think that no serious theoretical challenges remained,
and that Dr. Conjectura could certainly provide all of the ex-
planations we could want. The purpose of this paper is to
demonstrate that this is not true: even if all uncertainty is re-
moved from scientific inference problems, there are further
principled barriers to deriving explanations, resulting from
the computational complexity of the inference problems.This
implies that our inferential challenges cannot be solved purely
by improving our responses to uncertainty. Furthermore, it
would be a mistake to think that finding strategies to address

1The identifiability problem in cognitive science (Anderson,
1991; Varma, 2014) is a special case.
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computational obstacles to scientific inference can be post-
poned until after the other challenges have been addressed;
methodological proposals must be assessed in terms of their
prospects all-things-considered, lest Dr. Conjectura waste
time on short-sighted measures that cannot lead to long-term
success.

The remainder of this paper is organized as follows. We
first present idealized models of the inference problems Dr.
Conjectura faces when generating explanations of the work-
ings of a cognitive system. Next, we analyze how hard these
inference problems are using concepts, tools and techniques
from the mathematical theories of computability and com-
plexity. Finally, we position our conclusions with respect to
existing work and use a fictional dialogue to explain the im-
plications of our results for practicing cognitive scientists.

Formalizing scientific abductive inference
In this section, we develop formalizations of inference prob-
lems posed to Dr. Conjectura when they try to explain the
workings of a cognitive system M (see Fig. 1). Without loss
of generality2, we work with a highly idealized scenario: Dr.
Conjectura has access to a data set D⊆ S×B where all obser-
vations are free from error in measurement or interpretation.
Each pair (s,b)∈D denotes an observed behavior b ∈ B of M
in a situation s ∈ S (see Table 1).

Table 1: Illustration of a hypothetical data set D. Here, sit-
uations can be anything (e.g., choice problems, visual tasks,
social situations, or combinations thereof), and behavior can
also be anything (e.g., choices, movement trajectories, speech
acts, reaction times, or combinations thereof).

entry nr. situation behavior

1 s1 b3
2 s1 b4
3 s2 b3
4 s6 b1
5 s7 b1
... ... ...
... ... ...
... ... ...
365 s63 b3

Dr. Conjectura aims to generate explanations of M from
D (a.k.a. abductive inference) at a functional level and/or al-
gorithmic level while taking into account background knowl-
edge and assumptions about the nature of the world (e.g., that
computation takes time, that physical systems are bounded in
space) and the system under study (e.g., M belongs to cer-
tain class of mechanisms). We formalize this idea as follows:
Dr. Conjectura seeks as a functional level explanation a func-
tion F ∈ F , where F is a class of functions F : S→ 2B that

2See the Discussion section.

Figure 1: A (cognitive) system M computes an unknown
function FM using an unknown algorithm AM . Dr. Conjec-
tura observes the behavior of M in various situations and tries
to come up with a function F and an algorithm A that are
consistent with the observations and background knowledge.
[Figure created with elements from freepik.com]

satisfy these background assumptions. Similarly, Dr. Con-
jectura seeks as an algorithmic level explanation an algorithm
A∈A , where A is a class of algorithms able to compute func-
tions F ∈ F in a way that satisfies the relevant background
assumptions.

Dr. Conjectura will need to be able to describe these ex-
planations F and A somehow, possibly using a mix of natural
language, mathematical notation and diagrammatic sketches
(Guest & Martin, 2021; van Rooij & Blokpoel, 2020). We
formalize the scientific language system that Dr. Conjectura
uses for functional level explanations as a function LF that
maps any string LF (a description of a function), and sets S
and B, to a function LF (S,B,LF) = F : S→ 2B. In practice,
such desciptions cannot be arbitrarily long, but need to fit a
scientific article or book of reasonable length. Therefore we
assume some upper bound K on the length of descriptions
that Dr. Conjectura will consider workable and publishable.

With these formalizations in hand we can now more pre-
cisely define the inference problem that Dr. Conjectura solves
as they come up with functional level explanations (we con-
sider an algorithmic level variant later on):

(F ,LF )-ABDUCTIVE INFERENCE
Given: A data set D with observed situation-behavior
pairs (s,b) ∈ S×B, generated by an unknown function
FM : SM → 2BM of type F , where S ⊆ SM , B ⊆ BM , and
an upper bound K ∈ N∪{∞}.
Inference: A description LF ∈ LF of a function F ∈ F
that is consistent with D, such that LF has length at most
K, if such an LF exists. “None” otherwise.

What is meant here by ‘consistent’ is somewhat open to inter-
pretation, and different interpretations yield slightly different
variants of the inference problem, just as different classes F
and languages LF do. For ease of presentation, let’s take
‘consistent’ to mean that for each (s,b) ∈D, b ∈ F(s). As we
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explain in the Discussion, our analyses and results are robust
to variations in the definition.

We illustrate the abductive inference problem with an ex-
ample: Say Dr. Conjectura is interested in explaining human
choice behavior. A colleague, Dr. Mensura, has provided a
large data set D ⊆ S×B, where the s ∈ S are situations in
which individuals are presented with choices (i.e., sets of op-
tions that the person can choose from) and each b∈B is a par-
ticular choice made by the person (one or more of the options
from the given set). Based on their previous training in behav-
ioral economics, Dr. Conjectura postulates that the functional
level explanation LF describing participant behavior is to be
built with the following constraints (F ): each person p has
a utility function up : X → R that maps choice options x ∈ X
to subjective values up(x) ∈ R, and a person selects options
that meet some minimum subjective value criterion t. I.e.,
given a subset X ′ ⊆ X of options, person p will choose an
option x ∈ {x|x ∈ X ′ and up(x) ≥ t}. Given this background
commitment, the abductive inference problem for a given D
comes down to searching for a combination of functions up
and values tp that is consistent with D. Of course, this ex-
planation would also need to be described somehow (in LF ,
e.g. with a mix of natural language and formal notation, as
we ourselves used above), and this description should not be
too long to be practical.

This is but one example of assumptions about F that
Dr. Conjectura could make. They could make additional
assumptions (e.g., that the utility functions satisfy ratio-
nality principles like transitivity); very different assump-
tions (e.g., that preferences are dynamically constructed and
not describable by any option-level utility function (Payne,
Bettman, & Johnson, 1993)); or almost no assumptions (e.g.,
that decision making is describable by some (computable or
tractable) function (van Rooij, Blokpoel, Kwisthout, & Ware-
ham, 2019)). This illustrates that (F ,LF )-ABDUCTIVE IN-
FERENCE can be interpreted very narrowly as model fitting,
or very broadly as model specification or theory formation.3

We next define the algorithmic-level version of Dr. Con-
jectura’s abductive inference problem. Again, they will need
a language (LA ) to express their explanations, which can be
of any level of granularity, ranging from high (e.g. cognitive)
to low (neural). The main difference with the functional-level
language (LF ) is that LA must be constructive. For instance,
LF allowed Dr. Conjectura to postulate that a decision maker
presented with a set of options X ′ chooses any x ∈ {x|x ∈ X ′

and up(x) ≥ t}, without specifying how this x is found. In
contrast, an algorithmic level explanation needs to specify ex-
actly how a person is believed to compute set membership.
LA can be thought of as akin to a programming language,
but allowing only those computational steps that Dr. Conjec-
tura believes are realizable by the system under study. Like
functional level explanations, algorithmic level explanations

3Dr. Conjectura can also drop assumptions about F whenever a
previous inference returned “none,” until inference is possible. We
do not model the problem of deciding which assumptions to drop.
Hence, our hardness results are really lower-bounds on complexity.

must be publishable, and hence cannot be arbitrarily large (al-
though the domains over which they compute can be infinite).
We can thus define Dr. Conjectura’s problem of inferring al-
gorithmic level explanations as follows:

(A ,LA)-ABDUCTIVE INFERENCE
Given: A data set D with observed situation-behavior
pairs (s,b) ∈ S× B, generated by an unknown algo-
rithm AM of type A computing an unknown function
FM : SM → 2BM , where S ⊆ SM , B ⊆ BM , and an upper
bound K ∈ N∪{∞}.
Inference: A description LA ∈ LA of an algorithm A∈A
that computes a function FA that is consistent with D,
such that LA has length at most K, if such an LA exists.
“None” otherwise.

Note that (A ,LA)-ABDUCTIVE INFERENCE and (F ,LF )-
ABDUCTIVE INFERENCE really are two distinct problems; a
solution to one does not automatically yield a solution to the
other. In one direction this may be obvious: a description LF
of a function F need not specify an algorithm A for comput-
ing F . To see that the reverse also holds, note that a descrip-
tion LA of an algorithm A may concisely specify a method for
computing a function F , but that in itself does not naturally
give a short description of F in the explanatory language LF
(Bechtel & Shagrir, 2015; Egan, 2017; Varma, 2014).

Computational complexity analysis
To analyse how hard the inference problems posed to Dr.
Conjectura are, we build on concepts and proof techniques
from the mathematics of computability and complexity. We
start by presenting key definitions in an accessible form that
suffices for our purposes. For more extensive and formal
treatments see textbooks such as (Lewis & Papadimitriou,
1997; Garey & Johnson, 1979; Arora & Barak, 2009; Prim-
iero, 2019; van Rooij et al., 2019).

Definition 1 (Computability) A relation (e.g., function
or inference problem) Q : X → 2Y is said to be com-
putable if there exists at least one algorithm that can
compute y ∈ Q(x) for any x ∈ X . Otherwise we say that
Q is uncomputable.

Definition 2 (P-time algorithm) An algorithm A is said
to be a polynomial-time algorithm if it runs in time
O(nc), where n is a measure of the input size and c is
a constant.

Algorithms that take more than polynomial time, such as
exponential time algorithms, are generally regarded as in-
tractable for all but small input sizes (Garey & Johnson,
1979; Arora & Barak, 2009). To illustrate why, consider an
abductive inference problem with a data set D, of modest size
|D| = 100. An exponential time algorithm running in, say,
time O(cn) with c = 2 would take on the order of 1030 steps,
which is more than the number of seconds that passed since
the birth of the universe (< 1018 seconds). For |D|= 500, this

3036



number would be on the order of 10150, which far surpasses
the number of atoms in the universe (< 1082 atoms). This
means that for such a data set, even a brain or machine—or a
collection of brains or machines, with as many parallel com-
puting channels as there are atoms in the universe—may take
as long as the time that has passed since the birth of the uni-
verse to complete the inferential process. Suffice it to say that
in practice, intractable abductive inferences are not feasible
for medium to large inputs.

Definition 3 (Tractability) A relation Q is said to be
tractable if there exists at least one polynomial-time al-
gorithm that can compute it. Otherwise we say Q is in-
tractable.

Definition 4 (Tractable verifiability) A relation Q :
X→ 2Y is said to be tractably verifiable if there exists an
algorithm that (i) runs in polynomial time in the size of
x, and (ii) given x and y, can verify that y ∈ Q(x) holds.

Note that if Q is tractable then it is also tractably verifiable.
The converse is generally assumed to be false (Goldreich,
2010, Chapter 2).

Here we will assume that both the functions computed
by cognitive systems and the inferential capacities of cogni-
tive scientists themselves are bounded by the requirement of
tractability (for an extensive argument see (van Rooij et al.,
2019)). Given this assumption, we ask: How hard is cog-
nitive science? To address this question, we derive a set of
theorems that we collectively refer to as Conjectura theorems
(see the supplementary materials4 for details and proofs and
Table 2 for an overview):

Theorem 1 If there is no bound on the length of the
explanation LF ∈ LF (i.e., K = ∞), then (F ,LF )-
ABDUCTIVE INFERENCE is uncomputable for some LF .

Theorem 1 holds even if LF is tractable (and hence F con-
tains only tractable functions). This shows that the uncom-
putability of (F ,LF )-ABDUCTIVE INFERENCE is not due to
excessive complexity of the to-be-explained cognitive sys-
tem, but rather to the absence of the bound on the length of
explanations. This interpretation is confirmed by Theorem 2.

Theorem 2 If there is a bound K ∈ N on the length
of the explanation LF ∈ LF , then (F ,LF )-ABDUCTIVE
INFERENCE is computable for all LF .

While a bound on the length of explanations buys com-
putability, it does not yet buy tractability, as shown next.

Theorem 3 If there is a bound K ∈ N on the length of
the explanation LF ∈ LF and LF is tractable (and hence
F contains only tractable functions), then (F ,LF )-
ABDUCTIVE INFERENCE is intractable for some LF .

4Available on OSF at https://osf.io/gpkhj/

Theorem 3 shows that there cannot exist any polynomial-time
algorithm for generating tractable functional explanations (of
bounded size) for any given data set. What is possible, how-
ever, is to tractably recognize explanations when stumbled
upon by chance, as shown next.

Theorem 4 If there is a bound K ∈ N on the length
of the explanation LF ∈ LF and LF is tractable (hence
F contains only tractable functions), then (F ,LF )-
ABDUCTIVE INFERENCE is tractably verifiable for all
LF .

Theorem 4 holds even if M is assumed to be a limited com-
putational device, such as a finite state automaton.

The theorems listed so far pertain to the abduction of func-
tional level explanations. We have a fully analogous set of
theorems for algorithmic level abduction.

Theorem 5 If there is no bound on the length of
the explanation LA ∈ LA (i.e., K = ∞), then (A ,LA)-
ABDUCTIVE INFERENCE is uncomputable for some LA .

Theorem 6 If there is a bound K ∈ N on the length of
the explanation LA ∈ LA , then (A ,LA)-ABDUCTIVE IN-
FERENCE is computable for all LA .

Theorem 7 If there is a bound K ∈ N on the length of
the explanation LA ∈ LA and LA is tractable (and hence
A contains only tractable functions), then (A ,LA)-
ABDUCTIVE INFERENCE is intractable for some LA .

Theorem 8 If there is a bound K ∈N on the length of the
explanation LA ∈ LA , LA is tractable (hence A contains
only tractable functions), then (A ,LA)-ABDUCTIVE IN-
FERENCE is tractably verifiable for all LA .

Discussion
We started our exploration by asking how hard cognitive sci-
ence would be if there were no uncertainty in our observations
and we had all the relevant data. The Conjectura theorems
show that even in such an ideal situation, generating expla-
nations consistent with our observations defies any efficient
abductive inference procedure (see Table 2 for an overview
of the results). We situate our results in the literature before
drawing out their implications.

While the results will strike some of the cognitive science
community as unintuitive and disappointing, others will not
be surprised because there is a family of negative theoret-
ical results which are similar in spirit, coming from multi-
ple research traditions and dating back to at least the 1960’s.
Most salient are computational and formal learning theory
(Solomonoff, 1964; Angluin, 1992; Kelly, 1996; Gierasim-
czuk, 2010) and the cognitive science of science (Thagard,
2012). The lines of research differ in their aims, degree of
generality, and the types of scientific problems they address.
There are several key differences between our formalization
and those existing approaches. We focus on explanation
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Table 2: How hard is cognitive science?

Type of explanation Assumptions Computable Tractable Tractably verifiable

Functional LF tractable, K = ∞ No No No
Algorithmic LA tractable, K = ∞ No No No
Functional LF tractable, K ∈ N Yes No Yes
Algorithmic LA tractable, K ∈ N Yes No Yes

instead of, for instance, induction, prediction or testability
(Kelly, 1996; Kelly & Schulte, 1995). We investigate compu-
tational complexity rather than learnability in the limit (Gold,
1967; Solomonoff, 1964). We model the specific problem of
abduction given background assumptions about the cognitive
system, in contrast to more generic formalisms (Gold, 1978;
Angluin, 1992). Our models are, however, general enough
to encompass all explanatory computational frameworks in
cognitive science, in contrast to Bayesian (Kwisthout, 2011;
Lipton, 2003) or coherentist (Thagard, 1989; Thagard & Ver-
beurgt, 1998) models of abduction. In sum, our formalisms
allow us to show how hard specific, recognizable abductive
inference problems of interest to cognitive scientists are.

It is important to show which negative results apply to these
specific problems, even though the nature of negative results
is that there can be no “solution” in the form of a way to get
around them. Compare to the “no free lunch theorem” of ma-
chine learning (Wolpert, 1996), which says essentially that
there exists no best algorithm for solving all learning prob-
lems; awareness of this is important so that researchers don’t
go looking for a generic best algorithm. Similarly, it is im-
portant to generate awareness among all cognitive scientists
that there can be no fixed, general procedure to generate good
explanations, precisely so that such a procedure is not sought,
and claims of its existence are not trusted.

Unpacking the full implications of our results for cogni-
tive science research practice is not easy, and we imagine that
those reading this may have all kinds of questions, objections,
or counter-intuitions. Given space limitations, we cannot pos-
sibly address them all. Instead, we unpack the implications of
the results using a fictive dialogue, addressing the most likely
concerns along the way. In the dialogue, Dr. Conjectura (de-
noted by C) plays the role of the skeptic who does not see the
relevance of the results for their own practices. R relays our
responses.

C: I appreciate you trying to help me achieve my research
goals, but I can’t see how you are doing so. How are the
theorems relevant to me? I am never in that ideal situation.

R: What ideal situation?

C: You formalized my inferential problems by assuming I
have perfect, errorless observations. But my data are always
incomplete and noisy.

R: The theorems show that in the ideal situation finding
explanations consistent with the facts is not tractable. How

can more uncertainty about the relevant facts make this
problem easier? It seems it can only make it harder.

C: Fair. But you set an unrealistic standard for explanation.
No explanation is perfect, but at best an approximation.

R: What do you mean exactly by ‘approximation’?

C: Well, for instance, explanations do not always need to be
consistent with all the data.

R: We need not assume such a high standard. Even if
an explanation needs to be consistent with, say, half of
the data,5 generating such ‘half-consistent’ explanations
remains intractable.

C: Oh. That’s counter-intuitive.

R: I hope this takes away your worries about the idealiza-
tions we introduced? In general, many problems that are
intractable to solve exactly are also hard to solve approxi-
mately, for various meanings of ‘approximation.’6

C: But I still do not understand. If you would just give me
perfect, error-free observations, shouldn’t it be easy for me
to infer the mechanism producing that data?

R: Explanation does not come for free. The number of
possible mechanisms you could describe with language
and mathematics is astronomical. Finding a description
that pinpoints a mechanism consistent with the data is like
finding a needle in a haystack: there exists no general effi-
cient procedure for searching the space.

C: But I’ve already narrowed down the options. I’m looking
only for explanations of a particular cognitive architecture
type: [insert your favorite framework, e.g., ACT-R, Adaptive
Toolbox, PDP, Subsumption-Architecture, etc.].

R: Our analyses encompass this view, as one option, by
constraining the space of possible functions (the set F ) and
algorithms (A), according to your architectural commit-
ments. Even with such general a priori commitments, the
space remains astronomically large for architectures with
non-trivial computing power.

C: What do you mean by non-trivial?

5Equivalently, one could assume that D contains only those data
you care about and think are relevant for ones explanation.

6See e.g. (Arora, 1998; Garey & Johnson, 1979).
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R: Well, even if a system has few possible internal states
and its behavior is fully governed by simple rules, generat-
ing explanations of its behaviors remains intractable.7 Do
you think that human cognition is simpler than this?

C: No, likely more complex.

R: Then our intractability results apply to your work.

C: Are you saying my work is hopeless? I cannot hope to
ever generate a satisfactory explanation for cognition?

R: I wouldn’t say hopeless. If you were to hit upon a
satisfactory explanation through sheer luck, then you could
recognize this.8

C: Sigh. That’s not much of a plan ...

R: I don’t think you need to be any more discouraged by
intractability than by the inherent uncertainty in your data,
generalizations, and theory that you were already dealing
with. But it does mean that your inferential work cannot
be proceduralized in any efficient way. So best not try to
make an algorithm, or an otherwise too-strict set of rules,
to replace your scientific thinking.

C: Why not? What could go wrong?

R: You may fool yourself into thinking you are searching
the whole space, while you are actually stuck in a small
corner of an astronomical space outside your considera-
tion. It may also cause you to assume that the system you
are studying is simpler than you really believe, because
otherwise your procedures would not converge efficiently.

C: Well if any procedure I might use will hold me back,
what can I do?

R: I would endorse a meta-approach of not proceduraliz-
ing. This is especially important now, as we increasingly
focus on a too narrow set of methodological approaches in
cognitive science.9 The best advice I can give pertains to
the community: our only hope of understanding the mind is
if the community allows for pluralism10 in approaches and
an unbounded number of procedures different researchers
may adopt.

C: Why unbounded?

R: Because it is known that intractable problems cannot
be solved by a fixed number of parallel procedures.11

C: But if we impose no limit on the number of approaches,
wouldn’t there be many bad ones?

7See Thm A.1 and Proposition A.3 in Supplementary materials.
8By Thms. 3, 6. Note that so far, we only know this for ideal

situations as per our problem definitions.
9For instance, due to increasing dominance of experimental psy-

chology in cognitive science over the last 30 years (Gentner, 2019).
10Cf. Devezer, Nardin, Baumgaertner, and Buzbas (2019) and

Dale (2008).
11By Lemma 3, p. 481 of van Rooij et al. (2012).

R: Recognizing the need for and legitimacy of alternative
approaches is a prerequisite to productive critique.12 So
you can critique approaches on substantive grounds, but I
must dissuade you from viewing any fixed (set of) proce-
dure(s) as the right one and trying to convince others that
they should adopt it too. I’ve noticed you grumbling about
the too-subjective methods13 some of your colleagues are
using, and I must encourage you to live and let live.14
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