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A B S T R A C T

Predator–prey interactions are one of ecology’s central research themes, but with many interdisciplinary
implications across the social and natural sciences. Here we consider an often-overlooked species in these
interactions, namely parasites. We first show that a simple predator–prey–parasite model, inspired by the
classical Lotka–Volterra equations, fails to produce a stable coexistence of all three species, thus failing to
provide a biologically realistic outcome. To improve this, we introduce free space as a relevant eco-evolutionary
component in a new mathematical model that uses a game-theoretical payoff matrix to describe a more realistic
setup. We then show that the consideration of free space stabilizes the dynamics by means of cyclic dominance
that emerges between the three species. We determine the parameter regions of coexistence as well as the types
of bifurcations leading to it by means of analytical derivations as well as by means of numerical simulations.
We conclude that the consideration of free space as a finite resource reveals the limits of biodiversity in
predator–prey–parasite interactions, and it may also help us in the determination of factors that promote a
healthy biota.
1. Introduction

Predator–prey interaction in theoretical ecology brings several ap-
plicable mathematical models to the limelight, leading to a possible
treasure trove of information. Thomas Robert Malthus first proposed
a significant development in this direction by incorporating exponen-
tial growth in a single species model (Malthus, 2007). Despite its
various shortcomings, this simple model provides a fertile building
block for predator–prey interactions and triggers further fundamental
discoveries. By refining this model, a plethora of systems like the
classical Lotka–Volterra predator–prey model (Lotka, 1925; Volterra,
1926) and, later, the Rosenzweig–MacArthur model (Rosenzweig and
MacArthur, 1963), including density-dependent prey growth and a
functional response, are formed. Most of these models are formed by
incorporating different realistic essence in the system, and thus, those
systems are capable of offering diverse emergent dynamics. However,
the contribution of free space toward the predator–prey competitive
relationship is relatively ignored in the existing literature.

Free space provides every species an opportunity to thrive; however,
it never anticipates any benefit for helping others. Any individual can

∗ Corresponding author.
E-mail address: diba.ghosh@gmail.com (D. Ghosh).

use the free space for their well-being. Recently researchers brought
this altruistic behavior of the free space to the limelight by investigating
its impact on the evolution of cooperation (Nag Chowdhury et al.,
2021b,a; Roy et al., 2022). Various simpler models with diverse mo-
tivations (Helbing and Yu, 2009; Nag Chowdhury et al., 2020b; Jiang
et al., 2010; Nag Chowdhury et al., 2020c; Meloni et al., 2009; Sar
et al., 2022; Noh and Rieger, 2004; Aktipis, 2004; Vainstein et al.,
2007; Nag Chowdhury et al., 2019b; Smaldino and Schank, 2012)
have been proposed to study the impact of free space on natural and
human-made systems. Nevertheless, how free space’s unselfish concern
to benefit others than itself influences the predator–prey interaction
is yet to be discovered. To investigate this, we initially resort to a
mathematical model where predators depend on a particular organ-
ism, prey for living. A predator feed prey and preys feed the insect
parasites. These insect parasites consume food only from predators.
We formulate a set of differential equations by considering this simple
cyclical interaction. Unfortunately, this simplified model cannot stabi-
lize the parasites; hence an unrealistic scenario occurs. In the absence
vailable online 2 March 2023
022-5193/© 2023 Elsevier Ltd. All rights reserved.
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of any physically realistic result, we begin investigating the interaction
among the prey, predator, and parasite using the game’s theoretical
tools. Our constructed model based on the payoff (interaction) ma-
trix offers various notable dynamics in the form of steady-state and
periodic oscillation. The cyclic interaction among the species allows
cyclical dominating one another under favorable circumstances. Exam-
ples of cyclic dominance (Szolnoki et al., 2014) in nature are already
well-documented.

The spontaneous emergence of cyclic dominance is found in several
ecological setups involving microbial populations (Nahum et al., 2011;
Kerr et al., 2002), plant systems (Lankau and Strauss, 2007; Durrett and
Levin, 1998), and marine benthic systems (Jackson and Buss, 1975).
There are ample real-life examples like the genetic regulation in the
repressilator (Elowitz and Leibler, 2000), the mating strategy of side-
blotched lizards (Sinervo and Lively, 1996), oscillating frequency of
lemmings in a simple vertebrate predator–prey community (Gilg et al.,
2003) and the oscillating frequency of the Pacific salmon (Guill et al.,
2011) highlight the beauty of cyclical interactions to maintain the sus-
tainable biodiversity in nature. Interactions among living organisms are
much more complicated compared to the interactions among particles;
hence, it is essential to understand how cyclically competing strategies
promote natural biodiversity. For the study of cyclical interactions,
the classical rock–paper–scissors game (Hofbauer et al., 1998; Nowak,
2006) has proven to be an effective tool. This evolutionary game
entailing cyclic dominance with a few simple microscopic rules can
capture the essence of several realistic, complex spatial patterns (Re-
ichenbach et al., 2007b; He et al., 2010; Kabir and Tanimoto, 2021b;
Reichenbach et al., 2007a). In the present article, we derive a simple set
of ordinary differential equations based on the ecological interactions
between predator, prey, and parasites. Since the nonlinear model for-
mulated using the fundamental principles offers biologically unrealistic
and mathematically unstable dynamics, our approach of inclusion the
selfless contribution of free space not only brings the evolutionary
cycling as a likely outcome of the eco-evolutionary model but also
can capture a more realistic description of the competitive ecological
models.

The section-wise organization of this article is as follows. In Sec-
tion 2, we investigate a three-dimensional dynamical system based on
the cyclical interactions among predator, prey, and parasite motivated
by the Lotka–Volterra model, which is one of the central paradigms for
the emergence of periodic oscillations in nonlinear systems. Unfortu-
nately, these nonlinear equations fail to capture any realistic descrip-
tion, as parasites are unable to stabilize in our constructed model (See
Supplementary material Sections (1–4)). Therefore, we take the help of
the game’s theoretical tools and are able to devise an eco-evolutionary
model offering a more realistic description of predator–prey–parasite
interactions. We aim to shed light on the impact of altruistic behavior
of the free space, and hence we consider the generous contribution of
free space in the payoff (interaction) matrix. We elaborately outline the
model’s main properties (existence, uniqueness, positivity). Motivated
by Hauert et al. (2006), Gokhale and Hauert (2016), we assume each
subpopulation dies at a respective constant death rate and explore the
system’s dynamics numerically with the variation of these parameters
in Section 3. We provide sufficient numerical evidence to validate
the emergence of cyclic dominance. Finally, we briefly summarize our
findings in Section 4 and round off by providing an outlook on the
challenges and promising future research efforts.

2. Mathematical model

We consider a simplistic scenario where predators consume preys
and preys eat up some insect parasites for their survival. The insect
parasite consumes food from the predator’s body at the expense of the
predators. Thus, we have a cyclical interaction between predator, prey,
2

and parasite. To formulate this cyclical interaction, initially, we start
with the following system of ordinary differential equations,
𝑑𝑥
𝑑𝑡′

= 𝑟𝑥 − 𝑑1𝑥 − 𝑑2𝑥𝑦 + 𝑒1𝑑3𝑥𝑧,

𝑑𝑦
𝑑𝑡′

= 𝑒2𝑑2𝑥𝑦 − 𝑑4𝑦 − 𝑑5𝑦𝑧,

𝑑𝑧
𝑑𝑡′

= 𝑒3𝑑5𝑦𝑧 − 𝑑6𝑧 − 𝑑3𝑥𝑧.

(1)

ere, the prey, predator, and parasites’ biomass are given by 𝑥, 𝑦, and 𝑧,
espectively. We assume that the prey population grows linearly with
he intrinsic growth rate 𝑟 without predators and parasites. 𝑑1 is the
atural death rate of prey, while 𝑑2 is the rate of predation of prey by
he predator. 𝑒1 is a dimensionless quantity representing the conserva-
ion efficiency for converting parasites’ biomass to prey’s biomass. We
onsider the predator’s response as a Holling type I functional response.
ere, 𝑒2 is the conversion efficiency (dimensionless) for converting prey

o predator’s biomass. 𝑑4 is the natural death rate of predators, and 𝑑5 is
he death rate of the predator due to parasitism. 𝑒3 is the conversation
fficiency (dimensionless) for converting predator’s biomass to insect
arasite’s biomass, and 𝑑6 is the natural death rate of insect parasite. 𝑡′
s used here to represent the time. Here, the dimension of 𝑟, 𝑑1, 𝑑4, and

6 is 1
time , and that of 𝑑2 and 𝑑5 is 1

time × biomass .

We use the following set of transformations to introduce a new set
of nondimensionalized parameters

𝑢 =
𝑑2
𝑟
𝑥, 𝑣 =

𝑑2
𝑟
𝑦,𝑤 =

𝑒1𝑑3
𝑟
𝑧, 𝑡 = 𝑟𝑡′, 𝛼 =

𝑑1
𝑟
,

𝛽 =
𝑑4
𝑒2𝑟

, 𝛾 =
𝑑5

𝑒1𝑒2𝑑3
, 𝜖 = 𝑒2,

𝛿 =
𝑒3𝑑5
𝑑2

, 𝜉 =
𝑑6
𝑟
, and 𝜂 =

𝑑3
𝑑2
.

(2)

Using these parameters, we get the nondimensionalized system as
follows

�̇� = 𝑑𝑢
𝑑𝑡

= 𝑢(1 − 𝛼 − 𝑣 +𝑤),

�̇� = 𝑑𝑣
𝑑𝑡

= 𝜖𝑣(𝑢 − 𝛽 − 𝛾𝑤),

�̇� = 𝑑𝑤
𝑑𝑡

= 𝑤(𝛿𝑣 − 𝜉 − 𝜂𝑢).

(3)

Here, 𝛼 and 𝛽 are the nondimensionalized intrinsic death rates of prey
nd predator, respectively. 𝜖 is the time-scale separation between the
ife-span of prey and predator populations, which belongs to (0, 1]. 𝛾
s the death rate of predators due to parasitism, and 𝛿 is the growth
ate of insect parasites due to parasitism. 𝜉 is the natural death rate
f the insect parasite, and 𝜂 is the death rate of insect parasite due to
onsumer by prey. Clearly, all these parameters of the model (3) are
ositive for the physically meaningful interpretation of the system. A
etailed analysis of this system is given in the Supplementary Sections
1–4), and we show that the parasites cannot stabilize if we consider
his system. Hence, we resort to the game theoretical approach to
btain a biologically implementable model.

To construct the payoff matrix from the system (3), we observe the
ollowing points

• Interaction coefficient between predator–prey, incurred by prey
(coefficient of 𝑢𝑣 in �̇�) is −1.

• Interaction coefficient between prey–parasite, incurred by prey
(coefficient of 𝑢𝑤 in �̇�) is +1.

• Interaction coefficient between predator–prey, incurred by preda-
tor (coefficient of 𝑢𝑣 in �̇�) is 𝜖.

• Interaction coefficient between predator–parasite, incurred by
predator (coefficient of 𝑣𝑤 in �̇�) is −𝜖𝛾.

• Interaction coefficient between predator–parasite, incurred by
parasite (coefficient of 𝑣𝑤 in �̇�) is 𝛿.

• Interaction coefficient between prey–parasite, incurred by para-
̇
site (coefficient of 𝑢𝑤 in 𝑤) is −𝜂.
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Note that we do not consider any intraspecific interactions as the model
(3) does not contain any terms like 𝑢2, 𝑣2, and 𝑤2. Hence, the payoff
matrix in the absence of any intraspecific competition looks like

Prey Predator Parasite
⎛

⎜

⎜

⎝

⎞

⎟

⎟

⎠

Prey 0 −1 1
Predator 𝜖 0 −𝜖𝛾
Parasite −𝜂 𝛿 0

Now, we consider the contribution of free space to all other popu-
lations. Let 𝜓1, 𝜓2, and 𝜓3 be the reproductive benefits toward prey,
redator and parasite, respectively. Despite giving such selfless promo-
ion of others’ welfare, free space does not receive any positive benefits.
hus, the modified payoff matrix after including free space as the fourth

nteracting entity can be described as

𝑝 𝑞 𝑟 𝑠
⎛

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎠

𝑝 0 −1 1 𝜓1
𝑞 𝜖 0 −𝜖𝛾 𝜓2
𝑟 −𝜂 𝛿 0 𝜓3
𝑠 0 0 0 0

Here, 𝑝, 𝑞, 𝑟 and 𝑠 denote the fraction of prey, predator, parasite, and
ree-space, respectively. Clearly, the total population surrounded by the
ree-space is one, i.e.,

+ 𝑞 + 𝑟 + 𝑠 = 1. (4)

sing the payoff matrix, we can derive the fitness of prey, predator,
arasite, and free space as follows

𝑓𝑝 = −𝑞 + 𝑟 + 𝜓1𝑠,

𝑞 = 𝜖𝑝 − 𝜖𝛾𝑟 + 𝜓2𝑠,

𝑓𝑟 = −𝜂𝑝 + 𝛿𝑞 + 𝜓3𝑠,

𝑓𝑠 = 0.

(5)

By observing the coefficients of 𝑢, 𝑣, and 𝑤 ignoring the signs from
he system (3), the natural death rates of prey, predator, and parasite
re 1 − 𝛼, 𝜖𝛽, and 𝜉, respectively. Thus, we have the eco-evolutionary
odel as follows,

�̇� = 𝑝(𝑓𝑝 − (1 − 𝛼)),

̇ = 𝑞(𝑓𝑞 − 𝜖𝛽),

�̇� = 𝑟(𝑓𝑟 − 𝜉).

(6)

Using Eq. (4), the simplified model looks like

�̇� = 𝑝(−𝜓1𝑝 − (1 + 𝜓1)𝑞 + (1 − 𝜓1)𝑟 + (𝜓1 + 𝛼 − 1)),

̇ = 𝑞((𝜖 − 𝜓2)𝑝 − 𝜓2𝑞 − (𝜖𝛾 + 𝜓2)𝑟 + (𝜓2 − 𝜖𝛽)),

�̇� = 𝑟(−(𝜂 + 𝜓3)𝑝 + (𝛿 − 𝜓3)𝑞 − 𝜓3𝑟 + (𝜓3 − 𝜉)),

�̇� = −�̇� − �̇� − �̇�.

(7)

This model has ten parameters 𝛼, 𝛽, 𝛾, 𝜂, 𝛿, 𝜉 > 0, 𝜓1, 𝜓2, 𝜓3 ≥ 0,
and 𝜖 ∈ (0, 1]. To ensure that the constructed model is biologically well-
behaved, we investigate the positivity of the model for initial densities
(𝑝0, 𝑞0, 𝑟0), where 𝑝0, 𝑞0, 𝑟0 ≥ 0. Since the right-hand side of Eq. (7) is a
polynomial, it is continuous and locally Lipschitz. Thus, the solution of
this proposed system (7) with initial conditions (𝑝0 ≥ 0, 𝑞0 ≥ 0, 𝑟0 ≥ 0)
must exist and is unique in the interval [0,∞)×[0,∞)×[0,∞). Note that
the overall initial densities must satisfy the constraint 0 ≤ 𝑝0 + 𝑞0 + 𝑟0 ≤
1 for a biologically meaningful interpretation. Furthermore from the
3

eco-evolutionary model (7) with non-negative initial conditions (𝑝0 ≥
0, 𝑞0 ≥ 0, 𝑟0 ≥ 0), we have

𝑝(𝑡) = 𝑝0 exp
[

∫

𝑡

0
( − 𝜓1𝑝(𝑠) − (1 + 𝜓1)𝑞(𝑠)

+(1 − 𝜓1)𝑟(𝑠) + (𝜓1 + 𝛼 − 1))𝑑𝑠
]

≥ 0,

𝑞(𝑡) = 𝑞0 exp
[

∫

𝑡

0
((𝜖 − 𝜓2)𝑝(𝑠) − 𝜓2𝑞(𝑠)

−(𝜖𝛾 + 𝜓2)𝑟(𝑠) + (𝜓2 − 𝜖𝛽))𝑑𝑠
]

≥ 0,

(𝑡) = 𝑟0 exp
[

∫

𝑡

0
( − (𝜂 + 𝜓3)𝑝(𝑠) + (𝛿 − 𝜓3)𝑞(𝑠)

−𝜓3𝑟(𝑠) + (𝜓3 − 𝜉))𝑑𝑠
]

≥ 0,∀𝑡 ≥ 0.

(8)

This confirms 𝑝(𝑡), 𝑞(𝑡), 𝑟(𝑡) ≥ 0 for all 𝑡 ≥ 0. Hence, for each non-
egative initial density (𝑝0, 𝑞0, 𝑟0) with 0 ≤ 𝑝0+𝑞0+ 𝑟0 ≤ 1, the proposed
eterministic model (7) has a unique positive solution (𝑝(𝑡), 𝑞(𝑡), 𝑟(𝑡)) for
ll 𝑡 ≥ 0.

. Results

The main drawback of the model (3) is that the parasites cannot
tabilize in society, even if they exist. We consider the model (7) to
vercome this issue. Initially, we fix all the parameters’ values at 𝛼 =
.0, 𝛽 = 0.8, 𝜖 = 0.1, 𝛾 = 1.0, 𝛿 = 1.39, 𝜉 = 0.42, 𝜂 = 0.1, 𝜓1 = 0.52,
2 = 0.72, and 𝜓3 = 0.41. Although the system possesses eight distinct
tationary points; however, only five stationary points exist for the
arameter set mentioned above. The extinction equilibrium (0, 0, 0) is
saddle as the eigenvalues of the Jacobian of the system (7) at origin

re 𝜆1 = −0.01, 𝜆2 = 0.52 and 𝜆3 = 0.64. The predator–parasite free
stationary point is (1, 0, 0). The eigenvalues of the Jacobian at this point
are 𝜆1 = −0.52, 𝜆2 = 0.02 and 𝜆3 = −0.52. Hence, it is also a saddle.
The prey–parasite free stationary point (0, 0.8889, 0) is a saddle with
the Jacobian eigenvalues 𝜆1 = −0.64, 𝜆2 = −0.8311 and 𝜆3 = 0.8611.
The prey-free stationary point is (0, 0.2463, 0.5643) is a saddle-focus
with Jacobian’s eigenvalues 𝜆1,2 = −0.2043 ± 0.3331𝑖 and 𝜆3 = 0.4165,
where 𝑖 =

√

−1. The interior equilibrium (0.3552, 0.2993, 0.2492) is a
addle-focus where the eigenvalues of the Jacobian at this point are
1,2 = 0.0045 ± 0.2583𝑖 and 𝜆3 = −0.5114. All other stationary points

are not biologically meaningful. Thus, the system will not converge to
any stationary points for the parameter set mentioned above. Under
this circumstance, the system either oscillates or leaves the phase space
after a finite time. We iterate the model (7) numerically using the
Runge–Kutta–Fehlberg method with a fixed integration time step ℎ =
0.01. In fact, all the figures of this study are done using the same method
and FORTRAN 90 compiler.

To begin with, we choose all the species’ equal densities, and
without loss of generality, we select the initial condition at (0.3, 0.3, 0.3).
We plot the dynamics of the eco-evolutionary model (7) in Fig. 1. We
find that all the species periodically dominate one another in different
time windows (See Fig. 1(e)). While in system (3), parasites do not even
get a chance to stabilize, here all three species co-exist simultaneously
in the model (7). We notice that not only 𝑝, 𝑞, 𝑟 lie within [0, 1] (See
ig. 1(a–c)), but also the overall population 𝑝 + 𝑞 + 𝑟 lies too within
hysically implementable range [0, 1] (See Fig. 1(d)). We also plot the

unstable interior equilibrium (circular marker) in Fig. 1(f–h). The cyclic
dominance among prey, predator, and parasite is one of the exciting,
realistic essence captured by our eco-evolutionary model.

3.1. Influence of parasite’s natural death rate

For further understanding, we investigate the influence of the pa-
rameter 𝜉 in Fig. 2. 𝜉 > 0 reflects the death rate of the parasite in our
proposed model (7). We vary the parameter 𝜉 within the interval (0, 1]

ith a fixed step length 0.001 and fixed initial condition (0.3, 0.3, 0.3).
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Fig. 1. Cyclic dominance of prey, predator and parasite: While the system (3) does not facilitate the coexistence of all species, the eco-evolutionary model (7) allows the
survivability of all three simultaneously. The time evolutions of (a) prey 𝑝(𝑡), (b) predator 𝑞(𝑡) and parasite (c) 𝑟(𝑡) maintain periodic dynamics, and their overall population density
(d) 𝑝+ 𝑞 + 𝑟 lies within [0, 1]. This boundedness makes the dynamics biologically interpretable. (e) The periodic dynamics provide each species an opportunity over a suitable time
window for maintaining dominance over the other two. The projections of the trajectory on the two-dimensional phase spaces (f) 𝑝 − 𝑞, (g) 𝑝 − 𝑟, and (h) 𝑞 − 𝑟 are presented the
cyclic dominance. We further plot the interior equilibrium (0.3552, 0.2993, 0.2492) with a filled circular marker. It is a saddle-focus for this particular parameter set. The arrows
describe the motion of a particle along the closed orbit. Parameters: 𝛼 = 1.0, 𝛽 = 0.8, 𝜖 = 0.1, 𝛾 = 1.0, 𝛿 = 1.39, 𝜉 = 0.42, 𝜂 = 0.1, 𝜓1 = 0.52, 𝜓2 = 0.72, and 𝜓3 = 0.41. Initial condition:
(0.3, 0.3, 0.3).
Fig. 2. Influence of parasite’s natural death rate: The bifurcation diagrams by varying the parasite’s natural death rate 𝜉 for (a) prey 𝑝(𝑡), (b) predator 𝑞(𝑡) and parasite (c) 𝑟(𝑡)
are shown. Subfigure (d) portrays that the overall population 𝑝+ 𝑞 + 𝑟 lies within the bounded interval [0, 1] for 𝜉 ∈ [0.4160, 1]. The vertical dashed line indicates 𝑝+ 𝑞 + 𝑟 = 1. The
system (7) experiences a Hopf bifurcation at 𝜉 = 0.43793199. Beyond this value of 𝜉, the system converges to a steady state. The prey population (red) goes extinct as 𝜉 increases,
while the increment of 𝜉 benefits the predators (magenta). The parasites (blue) suffer due to the increased natural death rate 𝜉. Consequently, predators are able to get extra aid,
and hence, their density increases. This enhancement is also further supported by the free space induced benefits 𝜓2 > 𝜓1 and 𝜓2 > 𝜓3. We use the FORTRAN-90 compiler and
iterate the system (7) using the RKF45 method with 700000 iterations, out of which 690000 iterations are discarded as transient. The integrating step length is fixed ℎ = 0.01.
Parameters: 𝛼 = 1.0, 𝛽 = 0.8, 𝜖 = 0.1, 𝛾 = 1.0, 𝛿 = 1.39, 𝜂 = 0.1, 𝜓1 = 0.52, 𝜓2 = 0.72, and 𝜓3 = 0.41. Initial condition: (0.3, 0.3, 0.3).
This initial point allows all the species to have equal densities, at least
in the beginning. Fig. 2(d) depicts the overall population 𝑝 + 𝑞 + 𝑟 lies
within [0,1] for 𝜉 ∈ [0.4160, 1]. The dashed horizontal line indicates
the upper bound 𝑝 + 𝑞 + 𝑟 = 1 beyond which the dynamics are not
meaningful from the biological point of view. Within this physically
meaningful range of 𝜉 ∈ [0.4160, 1], a period-halving bifurcation in the
system. Using MATCONT (Dhooge et al., 2003), we have identified a
local bifurcation point at 𝜉 = 0.43793199, where the periodic solution
disappears, and the interior equilibrium stabilizes. At 𝜉 = 0.43793199,
we find the eigenvalues of the linearized system around the interior
equilibrium (0.333, 0.3094, 0.2571) are 𝜆1,2 = ±0.2609𝑖 and 𝜆3 = −0.5013.
Crossing the imaginary axis in the complex plane of the pair of complex
conjugate eigenvalues against the variation of 𝜉 affirms that a Hopf
bifurcation occurs (See section 11.2 of Hale and Koçak, 2012).
4

Fig. 2 is drawn with the same parameters values chosen in Fig. 1.
We find the periodic solution and the steady states for 𝜉 ∈ [0.4160, 1].
Fig. 2(a) shows the prey’s density monotonically decreases and dwin-
dles to zero with increasing 𝜉 in the steady state regime. Interestingly,
the predators’ density increases with increasing 𝜉 as shown in Fig. 2(b).
This increment attests to the contribution of the other nine parameters
in the complex evolutionary dynamics of our model (7). Noticeably,
free space altruistically contributes to all the species; nevertheless,
𝜓2 is higher than 𝜓1 and 𝜓3 for this figure. Thus, free space favors
the evolution of predators for the chosen set of parameter values.
Obviously, the other parameters also play a vital part in forming the
asymptotic dynamics. Fig. 2(c) initially, the parasites’ density increases
in the steady state regime and, finally, decreases beyond a critical
value of 𝜉. Note that the figure is drawn for a fixed initial condition
(0.3, 0.3, 0.3).
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Fig. 3. Multiple steady states for different initial conditions: We choose four different initial densities (a, e) (0.3, 0.3, 0.3), (b, f) (0.45, 0.45, 0), (c, g) (0, 0.45, 0.45), and (d, h)
(0.45, 0, 0.45). The parasite will die in the long run for all these initial conditions. Each column represents the same result. The top row depicts the temporal evolution, and the
bottom row portrays the two-dimensional phase space projection of the trajectories. The first two columns show the coexistence of the prey and predator. The third column
delineates the predator’s sole survivability, as the prey’s initial density is zero. The fourth column reflects that the prey can only survive in the asymptotic state. The yellow circular
marker stands for the two-dimensional projection of the chosen initial conditions. The star marker describes the two-dimensional projection of the converged stationary point. All
parameters are kept fixed at 𝛼 = 1.0, 𝛽 = 0.8, 𝜖 = 0.3, 𝛾 = 0.4, 𝛿 = 0.7, 𝜉 = 0.5, 𝜂 = 0.6, 𝜓1 = 0.5, 𝜓2 = 𝜓3 = 0.3.
Fig. 4. The impact of 𝜖 on the eco-evolutionary dynamics: Bifurcation diagram by changing 𝜖 for (a) 𝑝(𝑡), (b) 𝑞(𝑡) and (c) 𝑟(𝑡). Using MATCONT (Dhooge et al., 2003), we
identify the system (7) experiencing Hopf bifurcations at two different values of 𝜖 = 0.0033008651 and 0.37323091. The periodic solution arises at the first point, and at the second
point, it disappears. Since the natural death rate of predators is a function of 𝜖, their density decreases with increasing 𝜖 ∈ (0, 1]. Consequently, parasites get less amount of food,
and hence, their density diminishes. In fact, beyond 𝜖 = 0.70185963, the parasites will become extinct. This reduction of predators’ density ultimately boosts the prey’s density,
and thus, we observe an increment in the prey’s population with increasing 𝜖. The horizontal dashed line in subfigure (d) indicates 𝑝+ 𝑞 + 𝑟 = 1. Thus, the results are biologically
interpretable for 𝜖 ∈ [0.089, 1], so that the overall population density 𝑝 + 𝑞 + 𝑟 remains bounded within [0, 1]. The figure is drawn by varying the 𝜖 ∈ (0, 1] with step length 0.001.
Parameters: 𝛼 = 1.0, 𝛽 = 0.8, 𝛾 = 1.0, 𝛿 = 1.39, 𝜂 = 0.1, 𝜓1 = 0.52, 𝜓2 = 0.72, 𝜓3 = 0.41, and 𝜉 = 0.42. Initial condition is kept fixed at (0.3, 0.3, 0.3).
3.2. Effect of different initial conditions

The role of initial conditions in determining the final asymptotic
behavior is of utmost importance. To illustrate this factor, we choose
four different initial conditions (𝑝0, 𝑞0, 𝑟0) maintaining the constraint
𝑝0 + 𝑞0 + 𝑟0 = 0.9 in Fig. 3. Since the free-space-induced benefits are
higher for the prey for our chosen parameter values, it is expected to
observe the dominance of prey. We choose four distinct initial points
(0.3, 0.3, 0.3), (0.45, 0.45, 0), (0, 0.45, 0.45) and (0.45, 0, 0.45) in Fig. 3(a–d),
respectively. In all these four subfigures, parasites die in the long run.
5

The Fig. 3(a–b) show that both prey and predator survive, and in both
cases, the prey’s density surpasses that of the predator. Fig. 3(c) reflects
the sole survivability of the predators, while prey can only survive in
Fig. 3(d). Since the initial densities of the parasite, prey and predator
are zero Fig. 3(b–d), respectively; thus there is no scope of reproduction
for them in the asymptotic limit. This expectation is also demonstrated
through Fig. 3(b–d). This Fig. 3 also confirms the system may converge
to diverse stationary points solely depending on the initial conditions
(see Supplementary Section (5)).
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Fig. 5. Importance of 𝛼 on the emergent dynamics: Bifurcation diagram by changing 𝛼 for (a) 𝑝(𝑡), (b) 𝑞(𝑡) and (c) 𝑟(𝑡). We plot here the dynamics of the eco-evolutionary
model (7) by varying 𝛼 ∈ (0, 1.2] with fixed step length 0.001 and fixed initial condition (0.3, 0.3, 0.3). However, 𝛼 > 1 makes the prey’s natural death rate (1 − 𝛼) negative. Thus,
we are only interested in examining the dynamics for 𝛼 ∈ (0, 1]. In fact, the overall population density 𝑝+ 𝑞 + 𝑟 lies within the bounded interval [0, 1] for 𝛼 ∈ (0, 1.004), as reflected
through the subfigure (d). The horizontal dashed line indicates 𝑝 + 𝑞 + 𝑟 = 1. With an increasing value of 𝛼, the death rate (1 − 𝛼) of prey decreases. And thus, the prey (red
line in subfigure (a)) can revive from their zero density at 𝛼 = 0.58348744. Their density grows monotonically after this value of 𝛼 in the steady state regime. Ultimately, this
stationary point vanishes through the Hopf bifurcation at 𝛼 = 0.98402536, and a periodic solution appears. As the prey increases beyond a critical value of 𝛼, this transition affects
the parasites. Their respective density (blue) thus reduces in this steady state regime as portrayed through subfigure (c). As a parasite consumes food from the predator’s body,
consequently, this reduction of the parasite’s density will enhance the predator’s density (magenta in subfigure (b)). Parameters: 𝛽 = 0.8, 𝛾 = 1.0, 𝛿 = 1.39, 𝜂 = 0.1, 𝜉 = 0.42, 𝜖 = 0.1,
𝜓1 = 0.52, 𝜓2 = 0.72, and 𝜓3 = 0.41.
3.3. Effect of time-scale separation 𝜖 between prey and predator populations
on the eco-evolutionary dynamics

Now, we inspect the impact of 𝜖 on our proposed model (7). We vary
𝜖 within (0, 1] with small step-length 0.001 and fixed initial condition
(0.3, 0.3, 0.3) in Fig. 4. For fixed 𝛽, the increase of 𝜖’s value enhances the
death rate of the predator. Thus, it is natural to observe a decreasing
trend in the predators’ density, particularly in the steady state regime.
We find the same result in Fig. 4(b). Consequently, the prey’s density
will get the opportunity to grow in favorable circumstances. The same
trend is observed in Fig. 4(a). In the steady state regime, the parasites
decrease monotonically, and all the parasites will become extinct at
𝜖 = 0.70185963, as shown in Fig. 4(c). Initially, a small range (0, 0.088] of
𝜖 exists in Fig. 4(d), where the overall population 𝑝+𝑞+𝑟 will exceed the
unity. This range is neglected for the sake of a biologically well-behaved
system (7). Using MATCONT, we identify two values of 𝜖 where the
Hopf bifurcation arises. Out of which, the first one 𝜖 = 0.0033008651 is
not subject of concern here, as for this value of 𝜖, we have 𝑝+ 𝑞+ 𝑟 > 1.
At 𝜖 = 0.37323091, once again, a Hopf bifurcation occurs, the periodic
solution disappears, and the interior equilibrium stabilizes. Here, the
overall population 𝑝+ 𝑞 + 𝑟 lies within the domain [0, 1] and makes the
results interpretable from the biological points of view.

3.4. Effect of prey’s death rate

Also, the prey’s death rate is a function of 𝛼; thus, if 𝛼 ∈ (0, 1]
increases, the death rate decreases for the prey. For 𝛼 > 1, the death rate
(1 − 𝛼) for the prey is negative; hence it is not biologically meaningful.
We plot the variation of dynamics in Fig. 5 by varying 𝛼 ∈ (0, 1.2]
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with a fixed step-length 0.001. For 𝛼 > 1.004, the overall population
𝑝+ 𝑞 + 𝑟 exceeds the unity (See Fig. 5(d)). Within 𝛼 ∈ (0, 1], the overall
population 𝑝+𝑞+𝑟 remains always within the bounded domain [0, 1]. At
𝛼 = 0.98402536, the system (7) goes through a Hopf bifurcation, and the
periodic solution arises. We notice prey’s population remains extinct till
𝛼 = 0.58348744. Beyond this value of 𝛼, the prey’s normalized density
increases in the stationary state regime as anticipated (See Fig. 5(a)).
The higher values of 𝛼 ∈ (0, 1] allow the prey to survive under favorable
circumstances as the corresponding death rate decreases. The predator’s
density will also increase whenever the prey’s density gets the opportu-
nity to have enhancement, as reflected through Fig. 5(b). Interestingly,
the parasite’s density will diminish in the steady state regime for 𝛼 ∈
(0.58348744, 0.98402536) (See Fig. 5(c)). As the prey’s density increases,
they eat more and more insect parasites, and simultaneously this will
reduce the parasite’s density.

3.5. Importance of altruistic free space

To understand the role of philanthropic free space, we plot a few
temporal evolutions of 𝑝, 𝑞, and 𝑟 in Fig. 6 for different values of 𝜓1,
𝜓2, and 𝜓3. We also set the initial condition at (0.3, 0.3, 0.3) for all these
eight subfigures. Fig. 6(a) depicts that only prey can survive alone if
free space does not contribute altruistically (𝜓1 = 𝜓2 = 𝜓3 = 0) to
anybody for the particular chosen parameter set. To get a comparative
understanding, we set 𝜓1 = 𝜓2 = 𝜓3 = 2 in Fig. 6(b). Thus, all
species will get an equal amount of benefits from the free space. Clearly,
Fig. 6(b) portrays the coexistence of all three, and we find 𝑞 > 𝑟 > 𝑝
inequality in the asymptotic limit. Thus, predators dominate the other
two species for this chosen parameter set. In Fig. 6(c), we choose 𝜓 = 2
1
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Fig. 6. Impact of altruistic free space on the eco-evolutionary dynamics: For a comparative study, we plot the evolutions of 𝑝, 𝑞 and 𝑟 for (a) 𝜓1 = 𝜓2 = 𝜓3 = 0, (b) 𝜓1 = 𝜓2 = 𝜓3 = 2,
(c) 𝜓1 = 2, 𝜓2 = 𝜓3 = 0, (d) 𝜓1 = 𝜓2 = 2, 𝜓3 = 0, (e) 𝜓1 = 𝜓3 = 0, 𝜓2 = 2, (f) 𝜓1 = 𝜓2 = 0, 𝜓3 = 2, (g) 𝜓1 = 𝜓3 = 2, 𝜓2 = 0, and (h) 𝜓2 = 𝜓3 = 2, 𝜓1 = 0. This figure demonstrates that
free space strongly influences the emergent asymptotic dynamics of the model (7). (a) In the absence of free space’s contribution, prey can only survive. (b) While if free space
contributes equally to everyone’s fitness, then all can coexist. (c) If only free space benefits the prey, then prey and predator can coexist simultaneously. (d) All three can survive
simultaneously if free space only contributes to prey and predator. (e) If free space facilitates the predator only, predator and parasite coexist. (f) The sole contribution of free
space toward the parasite does not significantly differ from the null contribution of free space, at least for the chosen parameter set. (g) The equal contribution toward only prey
and parasite allows the prey and predator to survive; however, the parasite dies in the long run. (h) If free space contributes only to predators and parasites, they all can coexist.
Parameters: 𝛼 = 1.0, 𝛽 = 0.8, 𝜖 = 0.3, 𝛾 = 0.4, 𝛿 = 1.0, 𝜉 = 0.5, and 𝜂 = 0.6. Initial densities: 𝑝0 = 0.3, 𝑞0 = 0.3, and 𝑟0 = 0.3.
and 𝜓2 = 𝜓3 = 0. This indicates that the free space will only entertain
the prey. Interestingly, while in the absence of any positive contribution
from free space, Fig. 6(a) depicts the sole survivability of the prey; here,
in Fig. 6(c), we find the coexistence of both prey and predator. This
attests to the influential contribution of free space in our constructed
model. All three species can co-exist if the free space further provides a
positive, generous contribution to the predator. Fig. 6(d) is drawn with
𝜓1 = 𝜓2 = 2 and 𝜓3 = 0. This simultaneous appearance of all three
prey, predator, and parasite is not observed in the system (3). Now,
if the free space will entertain only the predator, one may observe a
different stationary point in the long run. We choose 𝜓1 = 𝜓3 = 0
and 𝜓2 = 2 in Fig. 6(e). This allows the system to converge in the
prey-free stationary state. However, when all 𝜓1 = 𝜓2 = 𝜓3 = 0, prey
are the sole survivor as per Fig. 6(a). As soon as free space provides
a selfless contribution to only the predators, the prey vanishes from
society. Nevertheless, if free space favors the parasites alone, that does
not make any significant difference in nature. We choose 𝜓1 = 𝜓2 = 0
and 𝜓3 = 2 in Fig. 6(f). This will again lead to a prey dominated society
free from predators as well as parasites. Prey can also dominate the
society if free space favors both prey and parasites. Fig. 6(g) reflects
the concurrence of prey and predator in a parasite-free society. This
subfigure is drawn for 𝜓1 = 𝜓3 = 2 and 𝜓2 = 0. Prey dominate the
predator in the society for this parameter set. Interestingly, prey is
dominated by other two if free space will not contribute in the prey’s
fitness. For 𝜓1 = 0 and 𝜓2 = 𝜓3 = 2, all predator–prey–parasites co-
exist as observed in Fig. 6(h). Despite the free space acts like a selfless
entity in our model, its contribution to the co-evolution of all species
is massive, as illustrated through this figure.

4. Conclusions

There exists a vast literature dealing with predator–prey interaction.
All these model variants try to capture a thorough understanding of the
underlying microscopic processes of ecological species interaction. Our
study on predator–prey–parasite interaction explores many insightful
results on biological systems. The ecological signature of free space
in our theoretical model allows the coexistence of all three species
and, thus, plays an assertive role in the maintenance of biodiversity
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in nature. The consideration of free space’s charitable role promotes
biodiversity sustenance, which is impossible with a model formed anal-
ogously to the Lotka–Volterra model. Our numerical simulations, along
with the analytical findings, support this understanding. We derive both
systems’ stationary points’ existence, uniqueness, positivity, and local
stability criteria analytically. We are further able to capture the beauty
of cyclic dominance among prey, predator, and parasite. This cyclic
dominance supports the realistic understanding that there is no sure-
shot winner in the long run. Instead, one may dominate the others
in a specific time window; however, it is dominated by others in a
different time window. This cyclic dominance lies at the heart of species
coexistence and the maintenance of biodiversity.

Note that, despite such substantial existing literature on this topic,
the selfless contribution of free space in nurturing the evolutionary
scenarios is neglected in most studies to the best of our knowledge.
We thus hope our simple three-dimensional eco-evolutionary model
may serve as a fundamental stepping stone toward this research di-
rection. We further emphasize that our proposed nonlinear system
is far from practical physical scenarios, as our mathematical model
consists of some simplifying assumptions. Still, such a simplified model
can illuminate novel dynamical phenomena depicting several valuable
information. Our mathematical model may provide further exciting
outcomes if one adds additional components like environmental fluctu-
ations (May, 1973), delay (Schwartz et al., 2015), the presence of fear
factors (Creel and Christianson, 2008; Biswas et al., 2021), different
food sources for the predators (Ghosh et al., 2017), and many more. In
fact, we consider only the pairwise interaction in the payoff matrix.
One may consider higher-order interaction (Chatterjee et al., 2022;
Majhi et al., 2022) and can anticipate more diverse emerging dynamical
states. It is not accessible to claim any biological applications imme-
diately of the model studied here. Nevertheless, the cyclic dominance
among competing species in the form of periodic dynamics motivates
us to report the current eco-evolutionary model proposed on theoretical
grounds.

Despite various limitations, our proposed theoretical model can
be generalized to several patches, and such different network topolo-
gies (Newman, 2018) may contain diverse possible time-invariant and
time-varying connectivities (Li et al., 2020; Nag Chowdhury et al.,
2019a; Ghosh et al., 2022; Nag Chowdhury and Ghosh, 2019; Holme
and Saramäki, 2012; Dixit et al., 2021b,a). Studying the role of a net-

work structure using dynamical systems on collective behavior (Jusup
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et al., 2022; Nag Chowdhury et al., 2022; Parastesh et al., 2021;
Nag Chowdhury et al., 2020a; Wang et al., 2016; Perc et al., 2017;
Khaleghi et al., 2019; Kabir et al., 2020) gains wide recognition due to
its two-fold appeal. Firstly, it will allow grasping a better understanding
of several natural phenomena. Secondly, it provides a handy entry point
for devising efficient performing devices from the technological point
of view. On the other hand, organisms’ active and passive dispersal
can substantially affect ecological dynamics, as reported earlier in
various Refs. (Peltomäki and Alava, 2008; Comins and Hassell, 1996;
Dieckmann et al., 1999; Ellner et al., 2001; Baguette et al., 2012;
Crowley, 1981; Hassell and May, 1974). The investigation by Holland
and Hastings (2008) demonstrates that irregularities in connectivities
among different patches (sites) of a dispersal network of predators and
prey generally offer prolonged transient and are favorable for asyn-
chronous ecological dynamics, leading to lower amplitude fluctuations
in population abundances. A recent study (Su et al., 2022) suggests
altruistic unidirectional behavior of individuals can facilitate and pro-
mote cooperation in social networks. Thus, the earlier investigations
suggest that the consequence of various network structures and disper-
sal dynamics will eventually lead to more exciting dynamics, and these
explorations remain an interesting core avenue for future research.
Observing how our theoretical framework allows a possible new range
of insights while generalized to classical three- or four-strategy cyclic
games (Intoy and Pleimling, 2015; Szolnoki et al., 2020; Kabir and
Tanimoto, 2021a; Mobilia, 2010; Islam et al., 2022; Bazeia et al., 2018;
Szolnoki and Perc, 2015; Mathiesen et al., 2011; Berr et al., 2009) will
be further interesting. We hope that our theoretical investigation of the
mathematical model may advance our understanding of social diversity
and probably inspire as well as motivate at least a few readers to
shed light on the predator–prey interplay of ecology and evolutionary
dynamics.
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