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ABSTRACT

A theor>' of software engineering (SE) is presented and its application to explaining

and analysing SE situations is illustrated. The theory is based on a characterization of SE

representations and the fundamental activities that are applied to them. Motivations for

developing a theorj' and means of establishing its validity are also discussed.



MOTIVATION

We are researchers interested in understanding phenomena in the area of software engi

neering — that human activity involved with the development of software in a systematic,

engineering-oriented way. We are also people interested in the pragmatic aspects of soft

ware development — that is, in seeing that software engineering is effective in reaching the

goals set for it. The ideas and analysis presented in this paper are intended to contribute

to scientific understanding and engineering practice by providing a theoretical basis for

both.

A precise definition of software engineering (SE) is not necessarj' (in general), but it

may help if the reader understands the context in which we are working. To us, software

engineering is:

The systematic application of methods, tools, and knowledge to achieve stated tech

nical, economic, and human objectives for a software-intensive system.

We would emphasize that, in our view, SE applies (in some form) to any software devel

opment, not just large, complex, technically sophisticated systems.

Theories in science, and in human affairs more generally, serve a valuable role of

encapsulating knowledge about some topic in compact form. Further, they often permit

an economy of action and thought, and provide an ability to predict (in limited ways) the

future of events in the realm dealt with by the theory.

We see several specific reasons to support the need for a theory of software engineering,

including:

Methods and tools for software engineering abound and one of the pressing questions

of the day is "How do they compare to each other?". A theory about the basic processes

of software engineering will provide us a basis for evaluating some of the artifacts of the

software engineering world with which we come into contact. If there is no underlying
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theon- or conceptualization ofsoftware engineering, then any such comparisons are limited

to shallow, feature comparisons. The existence of a theory, however, will permit a deeper

analysis of methods and tools that can begin to evaluate these artifacts not in terms of

comparison to their neighbors, but rather, in comparison to what the theory tells us is

important in SE.

A second, ver>' important reason for having a theory is to provide rational guidance

for research efforts. A good theory will indicate areas where our knowledge is insuflScient,

thus leading us in useful research directions. It will also indicate areas where pragmatic

advantage can be gained based on the theory, thus contributing to the practical aspects of

the field. We feel that all too often current RtD work is oriented just toward examples,

rather than towards basic issues.

A third consideration is the importance of theories in teaching and, more generally,

explanation. Computer science, for the most part, progressed beyond being simply a

descriptive science some years ago. We no longer just teach specific algorithms, languages,

or machine architectures and believe that we are teaching computer science. Instead, we try

to present our students with characterizations of classes of algorithms, general principles

of languages, and fundamentals of machine organization.

We would submit that in SE we do not have many theories that permit us to teach

the subject in a compact and general manner. Likewise, we are often at a loss to explain

SE conceptually to those not directly familiar with it (e.g. high-level managers). Thus,

one of our prime moti\'ations is to provide this kind of basis for the transmittal of software

engineering knowledge.

These are the main motivators (for us) for developing a more theoretical understanding

of SE. Before presenting the core of a theory, however, we will quite briefly outline it and

discuss the all-important topic of theory validation.
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AN OVERVIEW OF THE THEORY

Figure 1, taken from Kerola and Freeman (1981), partitions the elements of the devel

opment world into three classes. Our theory concerns portions of Class II — the people

who do development — and Class III of that figure — the tools of development (used in

a broad sense that includes concepts as well as physical artifacts). This subset of Classes

II i: III is shown in Figure 2. It contains two items of interest to us here: representations

and activities.



Figure 1: Elements of Concern in Development
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Figure 2: Elements of the Theory
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Our underlying purpose here is to make the software development process sensible

through the use of a small number ofunderlying concepts. In that context, we believe that

careful explanation of these two elements will provide the basis for understanding most of

what goes on in software engineering.

Activities and representations that are largerly managerial in nature (size prediction,

project planning, budgets, manpower allocations, negotiation of acceptance standards, and

so on) are not covered in our theory. They are essential and their integration with the

technical acti\ itie? is key.* However they are outside the scope of our concern here.

The first element of the theor>' concerns the representations used in SE. A cornerstone

of the theor>' is that software engineering can be viewed entirely as a process of creating

and manipulating representations. This view is central to understanding the theory.

The second element of the theory, then, is composed of the fundamental intellectual

activities that people carry out in dealing with software engineering representations. (We

do not exclude automated versions of these activities.) The analysis criterion used to

identify the activities is that they all deal with representations or the process of creating

and manipulating them in some way.

• One of us (PF) is currently exploring the det^ed relationship between the technical and managerial
aspects of software engineering.
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Using SADT notation, Figure 3 ties together these elements and relates them in the

following way. We view SE as a process of transforming objectives into systems under

the constraint of development tools [t.g. representations) and SE knowledge (information

about development objects - class I in Figure 1). It is important to remember that Figure 3

could represent any software engineering activity from a single design change to an entire

development lifecycle.

We intend that this theory be fundamental - that is, implied by the nature of the task.

It is not dependent on any particular methodology {e.g. structured development [Yourdon,

1979] or Jackson design [Jackson, 1983]); if it bears similarity to particular approaches,

then we lake thai as evidence of its power to explain different techniques.

We are well aware that this is not the first time someone has attempted to theorize

about systems development. Boehm [1976] and Mills [1980] both present some general prin

ciples of SE; Parnas [1972,1976] has long dealt with principles of design and specification;

text book writers such as Jensen and Tonies [1978], Pressman [1982], and Fairley [1985] try

to present general explanations; every methodology developer is inherently dealing with a

"theory" in a specific area (see [Freeman and Wassennan, 1983] for a selection).

Without giving a precise review of other attempts or comparison to the ideas in this

paper (that is better left to others), we would observe that most of the above-cited instances

are attempts to abstract or generalize. The theory presented here, on the other hand, cuts

below the surface and addresses issues of underlying processes.

In that sense, there are a smaller number of similar works. One of us has previously

theorized about design process and representation [Freeman and Newell, 1971, Freeman,

1978, 1979, 1983], forming a clear base for some of the theory. While not explicitly utilized

here, the paper by Ross, Goodenough, and Irvine [1975] has goals close to our own and

must be counted as an intellectual ancestor. Similarly, while rather different in realization,

the work of Kerola and his collegues [1979] is quite similar in motivation to our own. Their
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dedication to providing an intellectual foundation for systems development has certainly

increased ours.

Many others have contributed to our intellectual ancestry and a few others have at

tempted some rigorous theorizing. A thorough review should properly come later, however,

since our theory is not directly based on the work of others.

Before presenting it, we must address the question of how one validates such a theory.

That is the subject of the next section.

THEORY VALIDATION

It is important to keep in view the distinction between theory and reality. A theory is

at best a "... coherent set of general propositions used as principles of explanation for a

class of phenomena"* and at worst may be a conjecture that is totally false.

The purpose of validation is to provide objective information concerning the degree of

correspondence between a theor>' and the reality it proposes to explain. Validation of a

theon,' is always important if the theor>' is to be used in any meangingful way. We believe

that in the case of SE theory', validation is especially important because of the newness of

the field. Theories that are largely wrong, not just ineffectual, could do serious damage to

our ability to develop software if they are followed.

An indirect way of validating the correctness of a theory is to determine whether or not

it can answer questions about the pheonomena of interest. A theory of SE should permit

us to answer a question such as "Does improvement in the ability of developers to perform

certain activities greatly improye the overall quality of software?" If we can determine

the accuracy of answers to such questions, then we can have some indirect information

* The Random Route Diclionarn of the Englith Language, Random House, New York, 1968.
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concerning the validity of the theory. Later in this paper we present an initial validation

of this sort.

The classical way of validating a theory is to take observations or perform experiments

and test whether the data taken agrees with what the theory predicts. The difficulty of

running experiments in SE is well-known (Basili, 1980] and probably is not an appropriate

way to test the theories proposed here. Observations in which we collect data about some

naturally occuring event rather than setting up a controlled situation offer more hope.

In general, theories of this type must be validated largely through comparison to ob

servations of actual software development. Can the activities listed here be identified in

the behavior observed? Are there other activiti^? Do software representations have char

acteristics besides the fundamental ones we propose? Are there overall processes being

used in practice that are not captured by the theory?

Having dealt with the preliminaries, we are now ready to present the theory.

REPRESENTATION

In software engineering, representations are everything. The artifacts that we build —

systems — exist in physical form only as states of various electronic or magnetic devices.

Thus, the representations we build are all we really have of our systems.

In this section we present the first element of our theory, a set of nine statements that

characterize SE representations:

• the difference between information, representational forms, and representations;

• insufficiency of a single representation;

• quality measures of representational forms (capacity, communicability, and verifi-

ability);
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• levels of detail;

• scope;

• hierarchy;

• viewpoint;

• quality measures of representations (syntactic correctness, completeness, consis

tency, and validity);

• transformability of representations.

In the following, we will expand on these characterizations of SE representations.

1. There are three aspects: information, representations, and representational forms.

Information is what goes into a representation and is the knowledge (facts, etc.) about a

system that we wish to communicate to others (including ourselves at a later time). Rep

resentations contain information about a particular system and can be considered models

of that system. These are instances of representational forms (or, rep forms for short)

which are models of representations; that is, they specify the format of information for

a particular type of representation. We usually think of representational forms as being

simple (e.^. structure charts) or compound (e.g. a document outline that specifies the use

of specific forms in each section). In the following we sometimes do not differentiate be

tween representations (instances) and representational forms (types) when the distinction

is unimportant; if we make statements about the instances, they are also assumed true of

the types.

As an example, when designing an operating system, we may have a list of commands

the system must support, interface constraints to other systems, and a description to the

interrupt structure of the underlyingmachine; this is informationrelevant to this particular

situation. As a representational form for the design specification we may choose Petri nets
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and finite-state machines with a simple pseudo-code for actions, organized in a particular

document format. A representation results when we place this particular set of information

into this representational form.

2. No single representation or form (except a simple concatenation) will suffice to hold

effectively all the information relevant to a particular system.

There are many aspects of a system to understand (performance, static structure,

data representations, and so on) and this leads to many different representational needs.

A corollary^ to this is that a structured collection of representations is normally needed to

describe a particular system in a coherent fashion.

The word "effectively" in statement 2 leads to:

3. There are three inherent measures of quality of SE representational forms: capacity

communicability, and verifiability.

Capacity addresses the issue of whether a particular form can hold specified informa

tion. For example, if we must represent the interconnection of modules and the conditions

under which they are called, then traditional structure charts will have insufficient capacity

(since they do not show calling conditions).

Communicability, on the other hand, refers to how effective a given form is for com

municating information to the intended reader. For example, the communicability of

structure charts, for showing interconnections, is generally considered to be greater than

a linear language (such as a pseudo-code).

Verifiability is a property of a form that measures how easily any property of a rep

resentation constructed from the form may be checked for some property. For example,

natural language is much harder to check for consistency than is a formal language.
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We are painfully aware of the absence of any real measures of representational qual

ity (in any dimension). That does not detract, however, from this being a fundamental

property of SE representational forms.

4. Representations exist at different levels of abstraction.

This should be obvious, given that we use representations to model something (the

system) that exists at various levels. Normally we have, co-existing multiple representa

tions of a system that are at different levels of abstraction. Some of the variation is for

effectiveness of communication (a functional specification being presented to the customer

for approv-al should not have complete, design detail) and some is due to the chronological

order of creation of the representation. Although there is no general way at this point

to measure level, it is clear that there are some intuitive ways in which good developers

choose a level of representation to best suit a particular task.

5. A representation has scope.

Often there will be information about a system, at the level of abstraction in a given

representation, which is not included in it. For example,-the description of the operating

instructions for a system might be at the same level as the description of the screen

formats the system produces; but, this information might not be included in a particular

representation because it is outside the scope.

Scope is not the same as completeness. Scope is a property that establishes a bound-

ar>' — like the border of a road map. Completeness refers to whether all appropriate

information that is within the defined scope of a representation is, in fact, included —

corresponding on a map to whether all roads at the defined level of detail and within the

border are actually shown.

In practice, however, incorrectly defined scope and incompleteness often lead to the

same result: needed information missing from a representation.
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6. Representations form a natural hierarchy.

A piece of information in one representation may be related to another representation

in a parent-child relation, in which the information in the parent is expanded in the child.

For example, the information at one step of a step-wise refinement is expanded in later

representations. This might be termed a natural or semantic hierarchy.

There may also be a "defined" hierarchy in which a representational form is compound,

being made up of several other forms. For example, a requirements definition document

(a representational form) might include a section utilizing data-flow diagrams and another

utilizing decision tables. There would be a hierarchy of forms in this case, defined for

convenience rather than resulting from any inherent property of the representation.

A more extreme example of defined hierarchy involves FDL and structure charts. In

some cases, an overall representational form utilizes PDL at the highest level (in order to

show control) and structure charts to show the structure of subsystems; other forms reverse

this, utilizing PDL within structure charts to show control within individual modules.

7. A representation has a viewpoint.

The information in a representation can be related, scoped, and detailed in a way that

reflects a particular point of view. For example, a design may leave out information about

the operational aspects of the system because it is not presented from the viewpoint of the

system operator, whereas a maintenance manual will include it.

Vantage point is not often taken into account in preparing representations (see Ross

and Schoman [1977] for an exception), but can be extremely important. It provides a way

of improving the consistency of a representation, thus improving its communicability.

8. Representations have four basic quality properties in addition to the quality properties

of forms: syntactic correctness, completeness, consistency, and validity.
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Syntactic correctness means that a representation matches its associated rep form.

A representation is a model of something and is considered complete if it contains all

the information necessary to model the external reality at the desired scope and level of

abstraction. We say the information is consistent if all models of any given external item

have the same interpretation. A representation is valid if the model it forms does not

permit incorrect conclusions to be drawn about the external reality (within the limits of

scope and level of abstraction). Validity corresponds most closely to semantic correctness

although completeness and consistency are involved also.

9. Representations may be changed into other representations.

The degree of sj ntatic correspondence between the two may vary from very high (in

the case when we simply correct a syntax error) to very low (in the case where we produce

a system structure chart from a natural language description of the requirements for the

system). The semantic correspondence may also vary in a similar fashion.

A deeper and more extensive* theory of SE representation could be developed. The

characterizations presented here, however, capture the essence of the situation at a level

consistent with the other parts of the theory.

ACTIVITIES OF SOFTWARE DEVELOPMENT^

The last point in the previous section is the key to understanding this theory. In its

simplest, most basic form, the theory comes down to:

Software engineering consists of the creation and manipulation of (system) rep

resentations.

* A pragmatic aspect is the set of requirements for SE representation forms (languages) that is implied
by our theory. We are actively exploring this in another paper [Von Staa and Freeman, 19^].

t A rudimentary version of some of the material in thb section can be found in [FYeeman, 1983] and its
earlier editions.
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Given this underlying philosophy, we derive a set of basic SE activities as follows.

Figure 4: Operations on a Representation

R R
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Consider a SE representation, R, as shown in Figure 4. There are several things that

can be done to it or that involve it:

1. Create it ab initio (A);

2. Change it into another SE representation R'(B);

3. Modify it (C);

4. Derive a representation R® which could have been used in obtaining it initially (D);

5. Derive some information from it (and, perhaps, other representations) (E);

6. Gather information from sources outside the representation to be put into it;

7. Decide what to do to the representation next.

The first four of these operations can be abstracted to the single operation of "Change

Representation." Doing so leads to Figure 5 that succinctly models the activities ofSE as

described in the theory.
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These five basic activities can be broken down as follows, yielding a set of activities

that are sufficient to decribe any (technical) SE activity:

Choose Locale and Operation
search
scout

check
decide

Gather External Information
read
observe

listen
experiment
obtain feedback
filter

Change Representation
partition
elaborate

abstract
translate
delete

modify
compose

Extract Information from Representation
detect changes
derive
identify corruption
measure

predict

Evaluate Representation
verify
validate

apply quality control
approve

A careful study of Figure 5 will reveal that our basic model adopts the information

processing view of human problem-solving [Newell and Simon, 1972]. Figure 5is essentially

a model of the (relevant portions of the) mind of a software engineer; bear in mind that

we are trying to explain the intellectualprocesses of SE.

In this context, then, our model isorganized in an overall (SE) control part (box AO.l)

and four functional elements (boxes A0.2-A0.5) that act on or help us act on represen

tations. (We do not claim, necessarily, that this is precisely how the brain works; we are

only interested here in the observable behavior of a software engineer).
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The class of control activities, "Choose Locale and Operation," are concerned with

what to do next. They are defined in terms of finding a (part of a) representation to work

on, the change to be effected in it, and the operation to carry out (including getting more

information).

"Gather External Information" is a straight-forward class of activities. They are in

volved in obtaining information from outside the immediate focus of attention that is

needed to change or evaluate representations.

"Change Representation" activities are the core of the SE process. They are primarily

concerned with effecting specific changes in a representation (including creating one from

scratch). Although the activities are mental, the changes must always be made in an

explicit, tangible representation. Thus the activities of "writing"" or otherwise recording

changes to a representation are a very important subpart of "Change Representation."

The "Extract Information" class is composed of those operations that derive some

information from an SE representation, but do not change it.

"E\-aluate Representation" activities also extract information from a representation,

but in a specialized way. They are concerned with evaluating the quality ofa representation

against xarious expectations.

The remainder of this section will briefly discuss each of the elemental activities. One

is tempted to define strict levels ofcognitive functions in modeling human activity in order

to make the theory more orderly and regular. The fact that our theory includes rather

low-level functions such as "decide"* and high-level functions such as "experiment" gives

the impression of a shot-gun approach. However, considering our objectives, that is not the

case. Our focus here is on explaining observable SE activity, not on building a complete

cognitive theoiy.

• Notationally, we will try to always quote the actual operator or its derivative.
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Choose Locale and Operation

Search.

Look for a representeiion having a given set of characteristics.

The action of searching for something is, of course, a fundamental mental activity that

is used constantly. In the context of SE, searching means to look in one's mind for a

representation that could meet our current goals.^ A common example is when we are

producing a structure chart;~we imagine several alternative structures (in general) before

writing one down.

Scout.

Explore possible alternatives without fully completing the corresponding alter

natives.

In development, as in other endeavors, we often employ a form of look-ahead. Scouting

is an activity in which we explore the ramifications of possible decisions before actually

making them.

Typically, when engaged in a scouting activity, the developer does not produce the

complete representation implied by the decision being explored. Rather, only enough of it

is produced to collect the required information. (For example, in scouting the addition of

a new module for a function versus simply modifying an existing one, we probably would

not produce a completely changed structure chart but only sketch the proposed changes.)

There is a close relationship between searching and scouting. The essential differences

are in the sizeof the operation and result. Searching is wholly a mental activity (no visible

^ "Goals" and "objectives" are often used synonymously; we use "goak" to denote internal mental states
describing a new state of the external world to be achieved and "objectives" to denote externally stated
targets for an SE task.
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output) and typically small in scope {e.g. a part of a structure chart) while scouting

connotes producing tangible and larger results.

Check.

Determine if a given representation and set of goals (for the representation)

match.

This is a low-level "comparison" operator that permits us to determine if we have

achieved the representation we are seeking. There are much higher-level comparisons that

are ver\' important in SE {e.g. acceptance testing) which are based on this elemental

operation.

An example of checking can be seen when we have in mind a certain sequence of

actions, produce a flow chart, and then "check" whether it properly represents the actions.

There are, of course, much lower-level comparison operators (at the physiological level, for

example) on which checking is based.

Decide.

Choose among alternatives.

Decision-making is an activity found throughout SE at all levels. We decide what

requirements are important and should be put into a requirements definition and which

should be left out; we decide which form of an algorithm to use in a program; we decide if

a set of tests is adequate to provide a desired level of confidence. These observable forms

of decision-making are based on "decide" but also include many other operations.

The "decide" operator at a fundamental level is concerned with choosing alternatives

relating to other basic operators. Goals for representations must be chosen; information

to include in a repr^entation must be chosen from what has been obtained; sequences of

operations necessary to achieve a development objective must be formulated; and so on.
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Clearly, there is much fine structure of "decide." Careful study of how we make

development decisions at the level of changes to a representation will provide us with

a scientific basis for understanding more complex decision-making in this arena. (See

[Levin, 1976] for an early start in this direction.)

Gather External Information

Read, observe, listen.

These actions are the common ones of human perception.

Experiment.

Produce a representation or situation from which needed information can he

obtained.

Prototyping is the archetypical experimental operation in SE. We build prototypes in

order to obtain information useful to later stages of development (e.g. to learn if proposed

screen formats are easy for users to deal with). Building a simulation model of a proposed

design to determine critical operational characteristics is another form of experimenting.

If we create a scenario depicting typical use of a system and present it to the customer, we

have created a situation from which we can obtain needed information (e.g. on possible

omissions from the proposed system).

Obtain feedback.

Communicate an understanding of some set of information to others for the

purpose of checking the accuracy of the understanding.

The last example of "experiment" could also be an example of "obtain feedback."

Based on our understanding of the requirements for a system, we might produce a sce

nario for the customer in order to check the accuracy of our understanding of them. During
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information gathering, there is usually frequent "obtain feedback" actions to check accu

racy; for example, a primary function of the SADT review cycle is to check the accuracy

of the information in the model.

Review of SE workproducts is often done to obtain feedback. That activity is covered

below in a more detailed manner. The "obtain feedback" operation has the connotation

of creating a new representation of information (e.ff. spoken words) in one's head for the

purpose of communicating to someone else.

Filter.

Remove from a set of information any that is not needed for a given set of

goals.

Information is gathered in the context of some set of goals for building system reps

{e.g. to produce a functional specification or finding an appropriate algorithm). As one

gathers information (e.g. by talking with potential users or reading a description of various

algorithms), the information not relevant to those goals is removed (or, at least, ignored).

We would note that the ability of one to filter is a key determiner of success in many

development situations.

Change Representation

Partition.

Segment a representation into pieces, each containing a part of the information

in the original.

The modules of a system (representation) form a partitioning of the system (although

the dependencies between modules have an aspect of hierarchy that suggest more than a
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simple partition). Segmentation of a large system into overlays that can fit into a given

memory is, perhaps, a clearer example of partitioning.

We also partition on a smaller scale when we divide the information in a functional

specification into subsections, group the functions in a design into facilities or cluster a

set of format statements into a single subroutine. The key idea is that of establishing

boundaries or interfaces between subsets of information in a representation.

This means that the concepts of coupling and cohesion are closely tied to the operation

of partitioning. They often serve as guidelines for partitioning (telling us where to place

the cut-lines in the representation) and are used to characterize the result.

Partitioning is perhaps the most critical operation on a representation because of the

great impact different partitionings may have on our understanding of the information

in it. This, in turn, leads to the fact that many design methods are primarily ways of

achieving partitionings with specific properties {e.g. information hiding).

Elaborate

Add information to a representation.

To "elaborate" something means to make it more detailed, to add features, to work

it out to perfection. Top-down design procedures make heavy use of elaboration, but

other approaches and aspects of design involve elaboration as well. For example, if we are

following a most-critical-component-first design approach, then, after devising the critical

components, we elaborate our design by adding additional less-critical parts. When we take

a gross representation of control flow and add the housekeepingdetails we are elaborating.

Decomposition, an activity frequently discussed in SE, is (in the terms of our theory)

a partitioning followed by an elaboration. For example, the information contained in an

SADT diagram is partitioned into a set of boxes representing functions (or data) and then
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each box is elaborated (inside its boundary) with details on another diagram; the result is

called a decomposition.

There are other cases called decomposition which do not fit this definition, leading us to

not include decomposition as a basic activity. For example, decomposition of a set of specs

into individual work assignments is simply a partitioning while top-down decomposition

in programming is almost entirely elaboration with little or no partitioning.

Abstract.

Take information out of a representation by grouping (parts of it), naming the

groups, and removing the detail.

"Abstraction" is the opposite of "elaboration." "Abstraction" is the operation of gen

eralizing, of throwing away irrelevant details, of separating the essentials of a situation

from the inessential, of considering something as a general quality unrelated to any par

ticular concrete object. Abstraction is always done with respect to some reference point,

in SE this is typically the underlying machine.

We abstract in many situations in order to see the overall structure of something. Theo

rems in mathematics, physical laws, and generalizations of all kinds are abstractions that

permit us to better understand individual situations by relating them to other situations

having similar characteristics. Abstraction has long been used in programming through

the use of subroutines, in which we abstract a set of operations into a single name. The

power of "abstraction" in SE is widely, and properly, appreciated.

Translate.

Take the information in a given rep form and put it into a second rep form

different from the first.
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During development we often must convert a representation written in some language

into another representation written in a different language; maintaining, however, the same

meaning in the output representation as is in the input representation. We commonly call

this process "translation." The purpose of performing a translation is usually to obtain

a new representation of the system that has some desired properties. For example, we

may have represented the modular structure of a system using structure charts in order

to gain the advantage of a graphical representation. At a later time, we may then need to

translate the connections shown on the chart and the accompanying interface definitions

into statements in a module interconnection language in order to facilitate constructing

the physical sj'stem.

Translations are supposd to be perfect (with respect to information preservation) but

often are not — leading to corruptions in the representation. Measuring the accuracy of

the translation is sometimes important.

When we convert a problem model expressed as a data-flow diagram into a structure

chart, we are translating and elaborating (by adding control information). When we

decompile a piece of machine code into equivalent higher-level language, we are translating

and deleting (details at the machine level).

Delete

Remove information from a representation.

Deletion takes place at many levels in SE. Wemay delete a function from a specification,

an entire sub-branch of a structure chart, or a comma from a program. All have the effect

of removing some information from the representation.

Deletion gives rise to a number of other operations involved with checking that the

deletion maintains correct syntax, fixing it if not, and so on. This fine structure offers
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an interesting and well-bounded situation from which some deeper cognitive studies could

profit.

Modify

Change information in a representation without translating, abstracting, or

elaborating.

The most common form of modification is the correction of syntax. We correct a

misspelled identifier, add a missing operator, or move a line on a DFD. Semantic changes

may also be made when adding another function to a specification, adding parameters to

a module interface, or changing the computation of a quantity in a program. The essential

aspect of modify is that it does not change the rep form being used nor add or remove

information through abstraction and deletion.

Compose.

Create a representation out of pieces.

As noted in the discussion of rep forms, we often use compound forms such as for a

requirements definition. The action of taking several completed representations {e.g. a

DFD, a data dictionary, and a set of process descriptions) and joining them to form a

composite whole is composition.

Extract Information from Representation

Detect changes.

Determine changes needed to make a given representation fulfill its goals.

This operation takes place in the context of two representations, one of which forms a

set of goals for the other {e.g. the external specification of a module and the corresponding
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detailed design). Typically, a change has been made at the lower level of abstraction [t.g.

the detailed design) and this must be reflected into appropriate changes at the higher level

{e.g. the external spec) so the two representations match.

Derive.

Determine the specifications from which a given representation was produced.

It sometimes occurs that a representation, as built, is inconsistent with the stated goals

(the representation from which it was derived) but isnonetheless acceptable. Theaction of

obtaining the revised goals from the representation, we call derivation. A common example

is the situation in which functions not in a design are added by the implementors. The

design corresponding to the system as built must then be derived.

Identify Corruption.

Find in what way, if any, two representations differ in meaning.

We use the term corruption to denote a difference in meaning between two representa

tions that are supposed to have the same meaning. For example, a program specification

may indicate parameters A, B, and C in that order; the actual implementation of the

program may erroneously list the parameters in order A, C, B. This would be a corrup>-

tion. "Identify corruption", then, is the activity of examining two representations (or sets

of representations) to find corruptions in the output representation as compared to the

input representation. A typical example is the comparison of the external and internal

specifications of a program to ascertain if the interfaces are consistant.

Measure.

Determine the value of some quantity or properly in a given representation.

There are many properties of a representation which can be measured, ranging from a

simple count of its symbols to complex notions such as the cohesion between its elements.
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We call any activity that ascertains values of some externally defined quantity, a "mea

suring activity." An example is the determination of the level of coupling present in a

structural representation of a system.

Predict.

Make projections on the basis of a representation that indicate the characteris

tics of the final representation of the development.

Prediction is another fundamental mental activity that is used in many ways. Here we

use it to indicate an action that is central to the validation process — the determination

of whether a specification, if eventually implemented without error, describes a system

which will meet the current goak for the system. Perhaps the most common example of

this activity is the customer sign-off on a set of system specifications.

Evaluate Representations

Verify.

Test if a given representation fulfills its stated specification.

Generally, verification means the process of determining that a specific workproduct

meets the specifications from which it was derived. For example, we may verify that an

architectural design fulfills the functional specifications or that a set of detailed module

designs conforms to the architectural design. This operation is a direct result of the

underlying view that SE is a process of mapping one representation into another.

Validate.

Test if a given representation fulfills a given set of development objectives.
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We differentiate between "goals" which apply to a representational mapping and "ob

jectives" which relate to the external targets for a given SE development. A common

activity (sometimes formalized) is the comparison of the current system rep (c.y. a func

tional spec) to the development objectives. TVpically, this happens at the start of a project

(once the functional specs are written) and at the end (acceptance testing). More care

ful development is sometimes needed (e.g. in large and complex projects) resulting in

validation at several intermediate stages.

Apply Quality Control.

Compare a set of measurements of a representation to a set of standards.

A representation, just as any other object, can be compared to a set of external quality

criteria. This activity which may employ measuring to produce characterizations to be

compared, we call representation quality control. This is what we are doing when we

check a specification for consistency of data definitions, for example.

Approve.

Certify that a representation meets a set of quality standards.

A neglected activity of SE is that of issuing a piece of information that a given rep>-

resentation has been inspected and meets (or fails to meet) a set of quality criteria. An

example is the certification that a functional spec is complete and consistent.

APPLICATION OF THE THEORY TO DEVELOPMENT PROCESSES

There is presently considerable interest in the subject of the software process [Lehman,

1984], to the point that the 8th. International Conference on Software Engineering is

dedicated to the subject. This interest is largely driven by pragmatic concerns, but forms

an ideal point of connection with the theoretical notions presented here.
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Before applying the theory to several specific situations, we will connect it to the

development processes that tie together the individual activities and representations of

development. Development lifecycles are the most common and obvious manifestations

of development processes, but any sequence of activities, aimed at producing software,

qualifies. At this stage, the connection is informal and incomplete, but suflSces to begin

the process of utilizing the theory to explain pragmatic software engineering.

In this context then, the following statements characterize development processes in

terms of our theory:

• A SE development process is fundamentally one of gathering information and

putting it into a representation.

Our model is that there is a lot of information "out there," some of which is relevant

to the system model we are currently developing. The activities of development, when

formed into a coherent process, can be properly viewed as a process that filters out the

relevant information and puts it into the developing representation of the system.

• There is a representation of the system at all times.

At first, it may be a single sentence describing the concept or need of the commissioner

of the system; at the end, it is the code and all the accompanying documentation. As noted

above, we assume the representation is always a tangible one.

• There is a partial ordering of the representations with respect to their degree of

completeness and a complete ordering with respect to time at which they were pro

duced.

Given these orderings, wecan think of a "direction" of development which goesfrom the

earlier (less complete) representations to the later (more complete) ones. This corresponds

to the utilization of the elaboration operator to carry us from more abstract (with respect

to the machine) to less abstract representations of the system.
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• A common variant of the "normal" process is that of reflection in which we go back

to a previous representation.

Sometimes this iteration of steps in development consists of an explicit "derive" opera

tion to obtain the corresponding, more abstract specification that led to the representation.

Other times, we simply shift attention to the previous representation and make changes

to it based on information that has become available only after creating the "later" repre

sentation.

• Development is a process of transforming one representation into another.

In this context, all of the activities of development can be viewed as either carrying

out such transformations or making them possible.

• As the representation of the system progresses (i.e. gets closer to the final form) it

"soaks up" information.

Thus, we think of there being "more" information in later versions. As with abstrac

tion, in which it is important to note the point of reference, the "more" here refers to

machine-relevant information. Indeed, a common problem of development is that as the

system is built, we lose information relevant to the application domain.

• Progression is not alwaysfoward with respect to the partial degree of completeness.

We often must iterate and return to an earlier (in time) representation. However, this

iteration may be progress since the newer representation will be produced (by some activ

ity) from the later representation. It may have more information in it, or the information

may be more accurate. In either event, the iteration may produce a better version. This

is not always the case, however, since it is possible that the iteration will introduce errors

or in some other way produce a worse representation.

• Development processes are often non-predictive.
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That is, we cannot always tell what will result from applying a particular activity.

Further, we often cannot say in advance which activity should even be applied.

• Development proceaaes are complex comhinationa offundamental development ac

tivities.

The complexity of a development process in terms of the amount of information, num

ber of pieces of representation, and number of possible activities that can be applied at

any step lead to the need for having systematic technical and managerial control of the

development activity. This complexity is also what leads to the need for mathematical

rigor wherever possible.

• Development processes are only activities in even larger processes.

For example, the process of automating a factory has as one activity, the develop

ment of software. Business planning and management of systems development surround a

development process, which in turn is composed of fundamental activities.

There are many additional things that one can observe about pragmatic development

processes. This set however, provides a tie between the abstractions of the theory and the

pragmatic world of software engineering.

APPLICATION OF THE THEORY TO SPECIFIC SITUATIONS

In this section we pr^nt some examples illustrating usage of the theory. We have

picked simple examples so as to not get bogged down in a mass of details (and to keep

their length manageable). We have also used situationsdescribed in the literature in order

to emphasize our usage of the theory as an analysis and understanding tool.

Our presentation will consist of a statement of the SE situation, interleaved with a

translation into the terminology of the theory. This wiU then be followed by an analysis.
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step-Wise Refinement

Wirth's original formulation of the step-wise refinement method (Wirth, 1971, p.226]

was succinctly summarized at the end of his paper and can be paraphrased as follows

(leaving out only original commentary as indicated by (...)):

1. Program construction consists of a sequence of refinement steps. In each step, a given

task is broken up into a number of subtasks. Each refinement description of a task

may be accompanied by a refinement of the description of the data, which constitute

the means of communication between the subtasks. Refinement of the description of

program and data structures should proceed in parallel.

l'. Program construction consists of a sequence of refinement {partitioning followed by

elaboration) stef>s. At each step a given task is partitioned into a number of subtasks.

Each elaboration in the representation of a task may be accompanied by the elaboration

of the representation that permits communication among the subtasks. Elaboration of

both representations should proceed so that their level of detail are made more concrete

by a like amount in a given step.

2. The degreeof modularity obtained in this way willdetermine the ease or difficulty with

which a program can be adapted to changes or extensions of the purpose or changes

in the environment (language, computer) in which it is executed.(...)

2'. The degree of modularity of the program will determine the ease of applying change

activities to the finished program representation in the event of changes or extensions

to the purpose or changes in the environment (language, computer) in which it is

executed.

3. During the process of stepwise refinement, a notation which is natural to the problem

in hand should be used as long as possible. The direction in which the notation

develops during the process of refinement is determined by the language in which the
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program must ultimately be specified, i.e. with which the notation ultimately becomes

identical. This language should therefore allow us to express as naturally and clearly

as possible the structures of program and data which emerge during the design process.

At the same time, it must give guidance in the refinement process by exhibiting those

basic features and structuring principles which are natural to the machine by which

programs are supposed to be executed. (...)

3'. The representation should maintain a viewpoint oriented toward the problem as long

as possible. The representational forms used during refinement will be influenced by

the form of the target language. They must be highly communicative of the structures

of program and data which are elaborated. At the same time, these representational

forms must communicate features of the target machine.

4. Each refinement implies a number of design decisions based upon a set of design cri

teria. Among these criteria are efficiency, storage, economy, clarity, and regularity of

structure. (...)

4'. (no change)

5. (...)

The following analysis is based on the theory:

• It is left implicit in the original statement that the initial representation should

have a scope that encompasses the entire problem to be solved and that each

step should preserve this scope. It is our understanding, however, that this is an

essential aspect of the method and hence should not be left implicit.

• Guidance is needed on how to change the representational forms (language) as

the process proceeds in order to achieve the desired viewpoint and communication

characteristics.
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• No reflection activities are indicated, although, again, we believe they are Intended.

• No evaluation activities are indicated (such as "verify" or "validate," although

implicitly they are essential.

• It is not indicated whether future changes to the problem should operate on the

final representation or on an intermediate one in the hierarchy.

Although additional comments can be made, our purpose here is to iUustrate use of

the theory, not to tear apart a particular presentation. In fairness, we should note that

some of the items not mentioned in the quoted material above are covered implicitly in

the presentation in Wirth's paper.

However, one of the motivations for our theory is to make it easier to give such pre

sentations. The theory can provide a checklist to remind us to deal with issues (such as

reflection and evaluation in this case) that are indicated as important in the situation.

Top-Down Programming

Ledgard (1974, p.64) provides a concise definition of a top-down programming method

that builds on stei)-wise refinement:

1. Exact Problem Definition: The programmer starts with an exact statement of the

problem. (...)

1'. The tcope of the initial problem statement should include all elements of the problem

to be solved, and its validity should be as high as possible consistent with the level of

detail chosen. No "derivation" should be permitted to act on or produce a new initial

representation.

2. Initial Language Independence: The programmer initially uses expressions (often in

English) that are relevant to the problem solution, even though the expressions cannot

be derectly translated into the target language. lYom statements that are machine and
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language independent, the programmer moves toward a final machine implementation

in the target language.

2'. Starting with a representation that has a viewpoint independent of machine and later

representation forms, the programmer applies a series of operators to arrive at a final

representation in the target language.

3. Design in Levels. The programmer designs the program in levels. At each level, the

programmer considers alternative ways to refine some parts of the previous level. The

programmer may look a level or two ahead to determine the best way to design the

level at hand.

3'. The programmer produces an explicit design in levels of detail. The programmer

considers alternative "elaborations" at each level. The programmer may "scout" ahead

two or three levels to gain information on how to best make "decisions" at the current

level.

4. Postponement of Details to Lower Levels. The programmer concentrates on critical

broad issues at the initial steps, and postpones details (...) until lower levels.

4'. The programmer makes decisions ("decides") at early stepsofdevelopment (low level of

detail) that are critical and affect the entire scope of the representation, the programmer

postpones decisions that affect only part of the entire scope or narrow parts of the

representation until later steps (high level of detail).

5. Insuring Correctness At Each Level. After each level, the programmer rewrites the

"program" as a correct formal statement. This step is critical. He must debug his

program and insure that all arguments to unwritten procedures or sections ofcode are

explicit and correct so that furthersections ofthe program can be written independently

without later changing the specifications or the interfaces between modules.
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5'. After each step, the programmer translates the representation into a correct, formal

representational form. He must debug and "verify" his program by "identifying cor

ruptions" involving references to unwritten sections of code or.procedures.

6. Successive Refinements. Each level of the program issuccessively refined and debugged

until the programmer obtains the completed program in the target language.

6'. Each representation is further "elaborated" and "transformed^ into new representa

tions closer to the target representation form. It is also "verified"; until a representation

in the target representation form is obtained.

Casting this method into the terms of our theory leads to the following observations:

• The original formulation just restates in places {e.g. step 6) the basic ideas of the

theory. An individual method should be able to build on the underlying concepts

rather than having to restate them each time.

• Though relatively well stated, Ledgard required two additidnal pages of prose to

explicate the approach. For example by itself, step 5 says nothing about what to

do with the formal statements. Using the concepts to the theory, the entire method

could be stated more concisely.

• The prohibition against changing the initial problem representation is unreasonable

when the method is viewed as part of a larger system development method in which

validation activities may show inconsistencies between the developing program and

development goals.

• Little guidance is given on choice of representation elements to "partition" and

"elaborate".

In general the top-down method, as stated here, captures in a' pragmatic form much

of the underlying theory.
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Waterfall Model

Figure 6 shows the well known "waterfall" lifecycle model. A fuller description of it

can be found in [Freeman, 1983] and numerous other places. It is used so broadly, that it

is impossible to find a concise statement of it.
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Figure 6: Software Lifecycle
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The following, then, is a synthesized description, expressed in the terms of our theory:

The lifecycle of a software system can be divided into a number of stages

characterized by the aetivitieB applied and the repreaentation forma pro

duced. The activities are actually developement proctaata focused on the

production of a particular rtpreaenlation form (e.g. detailed design).

A flow of repreaentationforma between stages b expected in in a "forward"

direction (i.e. in growing level of detail). It is further expected that a

return to a previous stage may be necessitated. Repreaentation forma for

each stage maybe specified.

Some of the complaints commonly lodged against the waterfall model can then be

explained in terms of the theory:

• Development does not proceed in such a strict, top-down manner. (The model

implies a time-line in the forward direction. Reflection — which ia shown —

destroys this.)

• The workproducts passed from stage to stage are not well-defined. (Representation

forms are not defined and, in general, are not related to the activities in a stage.)

• The model does not explain how to develop the specified workproducts. ("Repre

sentation change" activities are not composed into development sequences in the

model.)

• Quality assurance b not addressed. ("Evaluation" activities are not directly linked

to the model.)

• Prototyping is not included in the model. (Only a single development sequence b

shown even though many alternatives may be utilized in practice.)
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Additional analysis of this traditional model can be developed on the basis of the

theory, but we will not do so here.

Jackson System Design

Jackson [1983, p.38] succinctly presents a new approach to software development;

1. Entity action step: In this step the developer defines the real world areas of interest

by listing the entities and actions with which the system will be concerned.

l'. The scope of a model of the areas of interest is defined by "deciding* with which entities

and actions the system will be concerned.

2. Entity structure step: In this step the actions performed or suffered by each entity

are arranged in their orderings by time. The orderings are representated by Jackson

Structure Diagrams.

2'. The representation of step 1 is "partitioned* and "elaborated" into one in which (a)

all actions associated with each entity are explicitly given and (b) these activities are

ordered by time.

3. Initial model step: In this step, the description of reality, in terms of entities and

actions, is realized in a process model and connections between the model and the real

world.

3'. The representation of step 2 is utilized as the basis for a new representation produced

by "elaborating* the descriptions of entities and actions. The representation form is

one of parallel, cooperating processes.

4. Function step: In this step, functions are specifiedto produce the outputs of the system,

additional processes being added to the specification as necessary.

4'. The representationof step 3 is "elaborated" with additional functionspecifications and

processes.
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5. System timing step: Here, the developer considers some aspects of process scheduling

which might affect the correctness or timeliness of the system's functional output.

5'. The representation is "validated" against customer goals and "predictions" of perfor

mance are made. "Decisions" are made, but informally documented (this last taken

from more detailed explanation in Jackson's book).

6. Implementation step: In this step, the developer considers what hardware and soft

ware is, or should be, provided for running the system and applies the techniques of

transformation and scheduling, along with techniques of database definition, to allow

the system to be efiiciently and conveniently run.

6'. "Decisions" are made regarding needed software and hardware for running the system.

The representation is "translated" into one that can be eflBciently and conveniently

run.

The steps given here are taken from Jackson's outline ofhis entire book, in which each

step is thoroughly treated. Some ofthe points below are treated in the fuller presentation:

• Nothing is said of "verification" activities to be applied between steps.

• The transformational view ofdevelopment of our theory is very similar to Jackson's

basic model of development.

• Reflection is not discussed.

• The viewpoint taken in the first four steps is that of the customer or user.

• We believe presentation of the method could be improved by emphasizing the

information that must be added at each step (following that a^ect of our theory).

Again, the analysis here is intended to be illustrative of use of the theory, not a defini

tive critique of a particular method. ^
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Miscellaneous Characterisations

As afinal iUustration of nse of the theon. we list witho .
izations of software engineering situations and issues:

I The emphasis in almost all research concerned with th
on the representation change activities Yi th i ^
that extraction and evaluation acf f ' '

oevaluation activities are just as imnortant ir» .the research tends to focus on only afew of the scf f '
"elaboration,- ignoring others h and. Ignoring others such as "partitioning.-

' .r:it:::iz
process out of the multitude that canlrf" T

^ oe formed. Rirther that v.f^ ias not incorporating some of thp K • • ' ^gsome of the basic activities relevant to SE.

3. Languages (rep forms) are central to SE Vet, few are des' ^
based on any underlying notion of th '®^"''®'Pontslying notion of the nature of SE (e.« that the sr

contmually trensformi„g areprreentation Of the system,developers of modern languages such as Ada IDoD ,980, hr . "
Plain (Wasserman I98II do t a ' "'"'"'̂ •3 IWirth, I983J, andn, 1981] do not understand SE. We ar»«,"
could be improved if they are based on f ^ °^®ver, that languagesy are pased on a fundamental view F\,rf i.

do not support many of the characteristics of.. ' <="'««« languagesenst.cs of representations or basic activities of SE

AEducation in SE is all too often focimed on purt,ewer H,representations rather than on th • e^elopment processes andr than on their genera] properties Wh ae
valid, new ones must be learned «« longer

learned, sometimes with ereat dim la.

to teaching how each piece of el-.r • The situation is akinacn piece of electronic equipment works nti. .v
fundamentals of electronics. ' leaching the
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5. Management of SE is often considered difficult since there may be no way to tell when
the design is finished or how much it should be iterated. This is a result of having
no measures of the properties of a representation (scope, correctness, validity, and so

on) nor clear understanding of the results expected from applying certain activities or
development processes.

We offer these characterizations as further examples of the explanatory power of our theory.

CONCLUSION

We can make several conclusions from the development and presentation of this theory:

1. It has a certain internal consistency and completeness;

2. It is capable of explaining common situations in a clear manner and of providing
some insight to more complex situations;

3. It needs to be validated;

4. It needs to be further developed and refined;

5. It needs to be used.

Our own research (individually and cooperatively) will focus on appUcation of the

theory to a number of situations, since (for us, at least) it is a working tool that greatly
aids our understanding of SE. We also wiU be expanding it, especiaUy in the area of
development processes.

The ultimate conclusion will be drawn by others. If it aids in the further study and

understanding of the SE process, then it will have met its goal.
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