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Simulating complex patient populations 
with hierarchical learning effects to support 
methods development for post‑market 
surveillance
Sharon E. Davis1*, Henry Ssemaganda2, Jejo D. Koola3, Jialin Mao4, Dax Westerman1, Theodore Speroff5, 
Usha S. Govindarajulu6, Craig R. Ramsay7, Art Sedrakyan4, Lucila Ohno‑Machado8, Frederic S. Resnic9† and 
Michael E. Matheny10,11† 

Abstract 

Background  Validating new algorithms, such as methods to disentangle intrinsic treatment risk from risk associated 
with experiential learning of novel treatments, often requires knowing the ground truth for data characteristics under 
investigation. Since the ground truth is inaccessible in real world data, simulation studies using synthetic datasets that 
mimic complex clinical environments are essential. We describe and evaluate a generalizable framework for injecting 
hierarchical learning effects within a robust data generation process that incorporates the magnitude of intrinsic risk 
and accounts for known critical elements in clinical data relationships.

Methods  We present a multi-step data generating process with customizable options and flexible modules to sup‑
port a variety of simulation requirements. Synthetic patients with nonlinear and correlated features are assigned to 
provider and institution case series. The probability of treatment and outcome assignment are associated with patient 
features based on user definitions. Risk due to experiential learning by providers and/or institutions when novel treat‑
ments are introduced is injected at various speeds and magnitudes. To further reflect real-world complexity, users can 
request missing values and omitted variables. We illustrate an implementation of our method in a case study using 
MIMIC-III data for reference patient feature distributions.

Results  Realized data characteristics in the simulated data reflected specified values. Apparent deviations in treat‑
ment effects and feature distributions, though not statistically significant, were most common in small datasets 
(n < 3000) and attributable to random noise and variability in estimating realized values in small samples. When learn‑
ing effects were specified, synthetic datasets exhibited changes in the probability of an adverse outcomes as cases 
accrued for the treatment group impacted by learning and stable probabilities as cases accrued for the treatment 
group not affected by learning.

Conclusions  Our framework extends clinical data simulation techniques beyond generation of patient features 
to incorporate hierarchical learning effects. This enables the complex simulation studies required to develop and 
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rigorously test algorithms developed to disentangle treatment safety signals from the effects of experiential learning. 
By supporting such efforts, this work can help identify training opportunities, avoid unwarranted restriction of access 
to medical advances, and hasten treatment improvements.

Keywords  Post-market safety surveillance, Medical devices, Learning effects, Synthetic clinical data, Simulations, 
Hierarchical learning effects

Background
Data simulation provides an efficient and productive 
methodology for the study of theoretical foundations 
and novel analytic algorithms prior to their applica-
tion in real world clinical data. There is an increasingly 
sophisticated literature regarding simulation of health-
care data to create synthetic populations with clinical 
features mimicking electronic health record (EHR) data 
[1–5]. Approaches primarily focus on replicating existing 
associations within EHR data to establish the validity of 
analyses conducted on synthetic databases [5–7] rather 
than on validating new methodologies. The aim of this 
paper is to provide a flexible, generalizable framework for 
synthetic data generation processes (DGPs) that can sup-
port methods development in biomedical research across 
clinical and medical informatics domains. We particu-
larly focus on extending DGPs to incorporate the effects 
on patient safety of experiential learning at the introduc-
tion of novel medical treatments.

Medical device post-market surveillance provides 
a grounding use case for this effort. The U.S. Food and 
Drug Administration (FDA), [8, 9] Brookings Institute, 
[10] and major cardiovascular societies [11] have called 
for new sophisticated proactive approaches that can 
generate timely, evidence-based information to support 
device safety and innovation. While implantable medical 
devices have revolutionized healthcare over the past 50 
years, device failures and post-procedural adverse events 
pose significant patient risk [9, 10, 12–17]. For example, 
conservative estimates suggest Medicare spent $1.5 bil-
lion over 10  years to replace just seven recalled models 
of faulty cardiovascular devices [18]. Experiential learn-
ing as providers and healthcare institutions master new 
technologies and treatments confers additional risk that 
diminishes over time, [19–31] complicating efforts to 
detect safety signals of new devices. Disentangling learn-
ing and intrinsic risk of a device or treatment is critical 
to effective post-market surveillance and safety interven-
tion, and has been emphasized as a priority research area 
by FDA [32].

Correct attribution of observed risk as intrinsic 
to a treatment or due to learning effects can impact 
patient access to medical advances, guide treatment 
improvement, and inform training interventions. To 
date, however, there has been limited exploration into 

the detection and separation of learning effects from 
intrinsic risk of medical interventions. Prior research 
has often been retrospective, limited by small sam-
ple sizes, and/or isolated consideration of provider or 
institutional learning effects despite evidence of simul-
taneous learning at both levels [19–24, 26–31, 33–37]. 
These studies primarily leveraged real world data to 
characterize learning effects, documenting but rarely 
quantifying learning and not evaluating or establishing 
the rigor of the methods considered [33]. Fully speci-
fied simulation studies can be designed to overcome 
these limitations by a) providing specific challenges to 
new methods under development including multiple 
layers of learning; and b) supporting robust evalua-
tion of new methods on complex datasets with known 
underlying truths.

Our DGP approach aims to support methods devel-
opment and evaluation by generating synthetic data 
that is representative of the complex clinical environ-
ment in which novel treatments are introduced. Clini-
cal variables important for understanding patient risk 
and treatment choices may be highly nonlinear, cor-
related with other clinical features, or influence risk 
through multiple interaction effects [2]. Learning may 
be hierarchical, occurring at both provider and institu-
tional levels [34, 38, 39]. At both levels, learning may 
vary in form, speed, and magnitude [33, 39–41]. Data 
may be missing; adverse outcomes may be common or 
rare; treatment-associated risk may be strong or weak; 
and novel treatments of interest may vary in their adop-
tion rate. Existing simulation methods can generate 
complex synthetic patient features, [1–5, 42] but are 
not designed to provide this full suite of specification 
requirements.

We developed and evaluated a novel DGP to sup-
port methods development, especially for comparative 
safety evaluation and learning quantification in medical 
device post-market safety surveillance and other clini-
cal domains. Our DGP that provides a generalizable 
framework for injection of hierarchical learning effects 
and intrinsic treatment safety signals into complex clin-
ical synthetic data. The DGP simulates patient features 
and adverse outcomes, accounting for complex feature 
relationships, treatment patterns, treatment safety, and 
multiple learning effects.
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Methods
DGP Design
We designed a multi-step, hierarchical data generating 
process with customizable options for specification at 
each step (see Fig. 1 and Table 1). This design is flexible 
to support a variety of simulation requirements and 
can be applied to studies interested in multiple proce-
dures, medical devices, or other exposures (collectively 
referred to as “treatments” in this paper) that may or 
may not be impacted by learning. The DGP first gen-
erates a synthetic patient population with patient-level 
features that may be specified through either defined 
distributions or EHR-based data cubes reflecting the 
complexity of data distributions and correlations. Each 
patient is assigned an institution, provider, and time of 
treatment. Treatments are assigned based on patient 
features, some or all of which may be associated with 
the probability of receiving either a novel treatment of 
interest or a reference treatment. Patients are sorted 
into treatment-specific case series that can be associ-
ated with additional risk of an adverse outcome based 
on provider and/or institutional experience. Outcomes 
are assigned based on patient risk profiles, treatment 
assignment, and provider/institutional learning effects. 
To further reflect real world complexity in clinical data, 
we include features to create missingness at random, 
omitted variables, and random noise. A full outline of 

the DGP process, including variable definitions and rel-
evant equations is provided in the Appendix.

Patient generation
The DGP establishes the size of the patient population 
by first determining institution and provider patient vol-
umes. Users specify the number of institutions; a distri-
bution of the number of providers at each institution; a 
distribution of the number of patients treated annually by 
each provider; and the number of years to simulate. Our 
DGP supports bimodal distributions of both the number 
of providers per institution and the number of patients 
per provider, allowing a mixture of high and low volume 
providers and institutions. Each provider is assigned an 
entry point into their institution’s case series. For “single 
entry”, all providers are available to treat patients in all 
simulated years. For “annual entry”, half of the providers 
at each institution are available to treat patients in first 
year and the remaining providers are evenly divided to 
begin treating patients in each subsequent year. The DGP 
generates a list of providers, their assigned institution, 
and the number of patients they will treat in each year of 
the simulated series. From this list, the total sample size 
of patients required for the simulation is determined.

Given the established sample size, patients and their 
features are generated to represent the complexity of 
clinical patient data. We implemented Ruscio’s method 

Fig. 1  Methodologic framework of the data generating process
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for constructing synthetic populations using an iterative 
algorithm simulating non-normal, correlated data [43]. 
This approach takes as input either a) user-defined distri-
butions and correlations; or b) clinical data cubes derived 
from EHRs or registries from which complex distribu-
tions and correlations can be directly estimated. This 
method generates categorical and continuous patient 
features without assumption of normality. The synthetic 
patient features created incorporate the complexity of 
the clinical data environment without including actual 
patient private healthcare information. Synthetic patients 
are randomly assigned to providers, which in turn deter-
mines their institution, and a year of treatment based on 
provider entry and annual patient volume.

Treatment assignment
Each patient is subsequently assigned to receive either 
a novel treatment of interest or a reference treatment. 
We note that the reference treatment could be an exist-
ing treatment or the decision to forgo treatment. Users 
specify the proportion of patients receiving the novel 
treatment, as well as whether and how patient features 

are associated with treatment choice. We implemented 
a logistic regression modeling framework for calculating 
each synthetic patient’s probability of being assigned the 
novel treatment. Users specify the model’s odds ratios 
for assignment to the novel vs reference treatment for 
all or select patient features. While odds ratios may be 
specified arbitrarily, we recommend selecting values that 
present a range of effect sizes that may be encountered 
in real world data and may highlight interesting edge 
cases. As such, we suggest starting with odds ratio val-
ues based on existing data or reports in in the literature 
and expanding possible values based on specific research 
questions. Patient features generated in the prior step 
are multiplied by the corresponding log odds ratios, and 
summative values are converted to the probability scale, 
providing each patient with a probability of receiving the 
novel treatment. Using a Bernoulli distribution, we con-
vert these probabilities to treatment assignments.

Once treatments are assigned, patients are randomly 
shuffled within each simulated year. The resulting order 
defines treatment-specific case series numbers at the 
provider ( CNprov ) and institutional ( CNinst ) levels. For 

Table 1  Overview of available specification parameters

Parameter Description of feature

Patient generation
  # of institutions Total number of institutions to represent in the dataset

  Provider distribution Distribution of number of providers within each institution

  Patient feature set Distributions and correlations of patient features specified by EHR dataset or user definitions

  Provider patient volumes Distribution of the annual number of patients treated by a provider

  Provider entry Whether provider entry into case series should be staggered

Treatment assignment
  Treatment prevalence Proportion of patients receiving each treatment

  Treatment associations Associations specifying how patient features influence treatment assignment

Patient and treatment associated risk
  Treatment risk Difference in the risk of an adverse outcome associated with a novel treatment compared to the reference 

treatment

  Outcome risk factors Associations specifying how patient features influence the risk of an adverse outcome

  Population adverse event rate Proportion of the population experiencing an adverse outcome due to patient risk factor and treatment risk

Provider learning-associated risk
  Provider learning – form Functional form of learning curve (impacts steadiness or steepness of learning)

  Provider learning – speed Number of patients receiving the novel treatment before providers reach 95% of asymptotic performance

  Provider learning—magnitude Magnitude of learning-associated risk when a provider first starts using the novel treatment

Institutional learning-associated risk
  Institutional learning – form Functional form of learning curve (impacts steadiness or steepness of learning)

  Institutional learning – speed Number of patients receiving the novel treatment before institutions reach 95% of asymptotic performance

  Institutional learning – magnitude Magnitude of learning-associated risk when an institution first starts using the novel treatment

Data finalization
  Missingness Proportion of missing values

  Noise Additional random noise in outcome generation

  Omitted variables Patient features to be excluded from final data
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example, if a patient assigned the novel treatment had 
CNprov = 1 and CNinst = 10 , then this would indicate the 
patient was the 1st patient to receive the novel treatment 
from their provider but the 10th patient to receive the 
novel treatment at that provider’s institution.

Patient and treatment associated adverse outcome 
probability
We calculate the probability of an adverse outcome 
due to patient clinical features and treatment assign-
ment ( ppt ) based on a user-specified logistic regression 
model. Users provide odds ratios defining the magnitude 
of association between patient features and a theoretical 
adverse outcome. These odds ratios may include associa-
tions with all or select patient features. Users also specify 
the odds ratio for an adverse outcome associated with 
the novel treatment, indicating the relative increase or 
decrease in probability associated with the novel treat-
ment compared to the reference treatment. As with the 
odds ratios for treatment assignment, we recommend 
estimating values from existing data or as reported in the 
literature, adjusting as needed to create more challenging 
simulations of interest. An adverse outcome rate for the 
population must be specified and determines the inter-
cept of the logistic model when applied to the synthetic 
patient population.

Patient features and treatment assignment are mul-
tiplied by the corresponding log odds ratios, and sum-
mative values are converted to the probability scale, 
providing ppt for each patient observation. This is the 
independent probability of an adverse outcome due solely 
to patient features and treatment.

Provider learning‑associated adverse outcome probability
Any treatment (novel and/or reference) may have some 
probability of an adverse outcome associated with pro-
vider learning ( pprov) . The magnitude of this probability 
is based on each patient’s treatment-specific provider-
level case series number ( CNprov ), with risk declining to 
0 as cases/experience accumulate [44]. For each treat-
ment, users specify the initial magnitude of learning-
associated risk (i.e., maximum pprov which occurs when 
CNprov = 1 ); how many cases are required for providers 
to achieve mastery of the treatment (i.e., probability due 
to learning diminishes to 0); and a functional form for the 
change in probability over a case series. In accordance 
with prior learning curve research [33, 39, 45], our DGP 
supports a variety of functional forms. Currently imple-
mented forms are monotonically decreasing, thus learn-
ing-associated probability of an adverse event diminishes 
as case number and experience increase. We imple-
mented learning curve forms from the power, exponen-
tial, reciprocal, and Weibull distributions (see Appendix 

Figure A.1 for illustrative examples of each). We note, 
however, users may specify alternative curve functions. 
As an example, the following formula estimates the pro-
vider learning-associated probability of an adverse out-
come under exponential learning:

Form-specific parameters, b0prov and b1prov above, are 
calculated within the DGP process based on user-speci-
fied magnitude of learning and number of cases required 
for the learning effect to diminish to 0. When provider-
level learning effects are not specified for a particular 
treatment, the probability of an adverse outcome due 
provider learning is defined as pprov = 0 for all observa-
tions assigned to the treatment.

Institutional learning‑associated adverse outcome 
probability
As with provider-associated learning, any treatment 
may have some risk associated with institutional learn-
ing ( pinst) . This probability is calculated in a manner 
parallel to that of provider-associated learning. For each 
treatment, users specify the initial magnitude of learn-
ing-associated risk (i.e., maximum pinst which occurs 
when CNinst = 1 ); how many cases are required for 
institutions to achieve mastery of the treatment; and a 
functional form for the change in probability over a case 
series. These values are independent of those specified at 
the provider level and may be included in the presence 
or absence of provider learning. The same functional 
forms are available at the provider and institutional lev-
els, though users may specify different forms at both 
levels. For example, above we provided the equation for 
exponential learning and here we provide an example of 
institutional learning-associated probability of an adverse 
outcome with a power form:

Form-specific parameters, b0inst and  b1inst above, are 
calculated within the DGP process based on user-speci-
fied magnitude of learning and number of cases required 
for the learning effect to diminish to 0. When institution-
level learning effects are not specified for a particular 
treatment, the probability of an adverse outcome due 
institutional learning is defined as pinst = 0 for all obser-
vations assigned to the treatment.

Outcome generation
We defined adverse outcomes as resulting from the 
confluence of independent risks due to patient char-
acteristics and learning at each level. Independence 
is a simplifying assumption of the simulation process 

pprov = b0prov ∗ exp −b1prov ∗ CNprov

pinst = b0inst ∗ (CNinst)
−b

1inst
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compared to real-world data, see the Discussion section 
for an examination of implications and alternatives. For 
each observation, the DGP calculates the probability of 
an adverse outcome by combining independent probabil-
ities of an adverse event due to 1) patient and treatment 
associated risk ( ppt ); 2) provider learning-associated 
risk ( pprov ); and 3) institutional learning-associated risk 
( pinst ). As we are interested in the overall probability of 
an adverse event resulting from the union of these inde-
pendent factors, we combine them using the joint proba-
bility of not experiencing an event due to any of the three 
components as:

We convert back to the overall probability of an adverse 
event as:

Using a Bernoulli distribution, we convert these prob-
abilities to binary outcomes.

Data finalization
At this stage, we have a complete synthetic dataset incor-
porating learning effects with patient and treatment risks 
factors. To support a range of simulation objectives, we 
provide optional steps to incorporate additional chal-
lenges that may impact methods used in biomedical 
research. Medical data may have variable signal-to-noise 
ratios, suffer from missing data, include patient features 
of unknown relevance, and omit information on impor-
tant patient features. The DGP includes the option to add 
noise by randomly substituting non-adverse events with 
adverse events and vice versa for a specified proportion 
of patients. Random patient feature values can optionally 
be masked to create missingness at random, and users 
can request the DGP drop a set of patient features from 
the final datasets by specifying omitted variables.

Code availability
We have made our DGP publicly available at https://​tinyu​
rl.​com/​2zre2​8zs. We provide an R script containing func-
tions for each step of the data generation process, as well 
as a script following an example workflow for generating 
a simulated dataset.

DGP Evaluation
To illustrate the alignment of our synthetic datasets with 
user specifications, we conducted a simulation study 
across diverse combinations of DGP parameters. We gen-
erated datasets with 5–30 institutions, split evenly into 
large (10 provider) and small (5 provider) institutions. 
Providers were assigned to be high or low volume, with 

pnoevent =
(

1− ppt
)

∗

(

1− pprov
)

∗ (1− pinst)

pevent = (1− pnoevent)

20–30 or 5–15 cases per year, respectively. Case series 
were simulated over either 2 or 4 years. We did not pre-
define the exact number of observations to be generated 
for each dataset. Rather, the combination of number of 
institutions, number of providers per institution, volume 
of cases assigned to each provider, and number of years 
in the case series determined the number of observations 
generated for each dataset at the time of simulation. This 
led to a wide distribution of sample sizes for considera-
tion and emphasized small and moderate samples over 
large datasets.

As a basis for patient feature distributions and correla-
tions, we constructed an EHR-based data cubed with 35 
patient-level features using publicly-available MIMIC-III 
data [46] and definitions from a prior study of indwell-
ing arterial catheters in these data [47]. The population 
adverse outcome rate was set to 2%, 5%, or 10%. We 
assigned each patient to one of two potential treatments, 
mimicking the situation where an established treatment 
existed on the market and another novel treatment was 
recently FDA approved. We specified three levels of novel 
treatment prevalence (10%, 25%, and 50%) and treatment-
associated risk (odds ratios of 1.0, 1.5, and 2.0). Provider 
and institutional learning effects were either absent, pre-
sent for one level but not the other, or present at both 
levels. When specified, we simulated power, exponen-
tial, or Weibull learning curves. The initial magnitude of 
provider-associated learning, when present, was set at 
20–60% of the mean probability of an adverse outcome 
due to patient features and treatment assignment among 
patients assigned to the relevant treatment. The learn-
ing effect declined to 0 over the provider’s first 10 or 25 
cases. The initial magnitude of institution-associated 
learning, when present, was set at 5–25% of the mean 
probability of an adverse outcome due to patient features 
and treatment assignment among patients assigned to 
the relevant treatment. The learning effect declined to 0 
over the institution’s first 100 or 200 cases.

There were 38,988 unique combinations of these 
parameter settings. One dataset was generated for each 
unique combination. Full specification details are avail-
able in the Appendix.

We validated the synthetic datasets against specifi-
cations by estimating key parameters from the real-
ized data. We evaluated similarity of patient feature 
distributions between the synthetic populations and 
the reference MIMIC-III cohort by comparing vari-
able means, medians, and variability. We compared 
the median and variance of continuous patient fea-
tures in synthetic data to the MIMIC-III data using 
the Wilcoxon rank sum test [48] and Levene’s test of 
homogeneity, [49] respectively. Binary and categorical 
features were compared with chi-squared tests. From 

https://tinyurl.com/2zre28zs
https://tinyurl.com/2zre28zs
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each synthetic dataset, we estimated realized popula-
tion outcome rates (prior to the incorporation of any 
learning), novel treatment prevalence, and novel treat-
ment odds ratio. Realized novel treatment odds ratios 
were estimated from correctly parameterized logistic 
regression models incorporating patient features and 
treatment assignment. Deviations between realized and 
specified parameter settings were examined overall and 
across sample size to determine whether there was a 

lower bound for generating simulations responsive to 
specifications.

Results
Among all synthetic datasets simulated, the number 
of patients ranged from 559 to 14,690 with a mean of 
4,798. The distribution of sample sizes generated across 
the 38,988 datasets is presented in Fig. 2. Figure 3 high-
lights agreement between the specified and realized mix 

Fig. 2  Distribution of the number of simulated observations in each dataset

Fig. 3  Distribution of annual case volumes by provider
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of high and low volume providers among 1,000 randomly 
selected synthetic datasets.

We observed agreement between the distributions of 
patient features in the synthetic data compared to the ref-
erence MIMIC-III dataset from which patient character-
istics were derived. Figure 4 displays the central tendency 
(mean) and variability (standard deviation) of age, body 
mass index, and heart rate in synthetic datasets by sam-
ple size (see Appendix for details of all patient features). 
Across datasets, mean and variance reflected the under-
lying reference population, with no significant differences 
after adjustment for multiple comparisons. Deviations 
from reference population values, while relatively small 
in all cases, were largest when generating small datasets. 
For example, the mean age in the MIMIC-III reference 
population was 56.1  years. Among datasets with < 1000 
versus datasets with > 10,000 observations, the mean 
age ranged from 53.7 – 58.9 years and 55.4 – 56.8 years, 
respectively. The mean body mass index in the MIMIC-
III data was 30.9. Mean body mass index for the same 
sample size groups ranged from 28.8 – 33.6 and 30.2 
– 31.7, respectively. On average, reference population 
means were within the 95% confidence interval 94.8% of 
the time, with no trend by sample size. Variability in both 
the mean and standard deviation of feature distributions 
declined as sample size increased, with improvement 
slowing as sample sizes grew beyond 3,000 observations. 

As we leveraged an existing, previously validated method 
for generating patient features from a reference EHR-
based data cube, additional comparisons of simulated 
and reference values are provided in the Appendix.

We observed strong agreement between specified and 
realized treatment and outcome parameters across all 
generated sample sizes. For each level of the novel treat-
ment prevalence, the mean and median values were 
equivalent to the specified value across the range of sam-
ple sizes. Treatment prevalence ranged from 7.3–13.3% 
when specified at 10%, from 21.0–29.1% when specified 
at 25% and 45.4–55.3% when specified at 50%. For each 
level of the adverse outcome rate, the mean and median 
values were equivalent to the specified value across the 
range of sample sizes. Outcome rates ranged from 1.0%-
3.6% when specified at 2%, from 3.2–7.6% when specified 
at 5% and 7.0%-13.6% when specified at 10%.

Agreement between specified and estimated realized 
effect of the novel treatment varied by simulated sample 
size. Figure  5 illustrates how estimates and confidence 
intervals of novel treatment odds ratios change across 
the range of simulated sample size. For datasets with 
the smallest sample sizes, estimated realized treatment 
effects overestimated the specified value and confidence 
intervals were wide. We note that although point esti-
mates of the odds ratio were high in the smallest data-
sets, confidence intervals for the novel treatment effect 

Fig. 4  Distributions of simulated patient features by sample size. Mean and variance of select patient features by simulated sample size compared 
to reference value in underlying MIMIC data (blue line)
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captured the specified value in 94.1% of simulated data-
sets across all sample sizes. Estimates converged to the 
specified value as sample sizes reached approximately 
3,000–5,000. Confidence intervals correctly excluded 
1.0 when the novel treatment signal was specified to be 
above this null value when sample sizes exceeded 5,000 
and 1,000 when the specified odds ratios were 1.5 and 
2.0, respectively. We note that one must be careful inter-
preting these findings as an indication that the simu-
lated datasets did not reflect specified treatment effects 
in small datasets, as recovering odds ratios by estimating 
values in a small population are subject to high uncer-
tainty even if the true population value approaches the 
specification.

Figure 6 illustrates the impact of specifying treatment 
and learning effects on simulated adverse outcomes, 
as well as the ability to recover these specified relation-
ships as sample size changes. The plots display smoothed 
spline curves fit to the simulated binary outcomes by case 
series order among patients assigned to the reference 
treatment, patients assigned to the novel treatment in the 
absence of learning, and patients assigned to the novel 
treatment in the presence of learning. In these examples, 
the population outcome rate was specified as 10%; the 
odds ratio comparing the novel and reference treatments 
was specified as 2.0; and provider learning, when present, 
was specified to occur over a provider’s first 25 cases 
receiving the novel treatment. With data simulated for 
30 institutions (Fig.  6a), both the difference in outcome 
rate by treatment and the stability of the outcome rates 
over case order for the reference and novel treatments 
in the absence of learning are evident. Adding a learning 
effect for the novel treatment, as illustrated by the blue 
line in Fig.  6a, injected a downward trend in outcome 
rates among cases early in the series only among those 
patients assigned the novel treatment. The outcome rate 
stabilized after approximately 25 cases and was equiva-
lent to the outcome rate observed for the novel treatment 
when learning was absent. When data were simulated for 
10 or 5 institutions (Figs.  6b and c), reducing the num-
ber of observations, confidence intervals of the smoothed 
curves widened and differences by treatment were less 
clear. However, the pattern of decreasing and stabilizing 
outcome rates over the novel treatment’s case series in 
the presence of learning was still apparent.

Discussion
Validating and characterizing the effectiveness of new 
algorithms in biomedical research often requires know-
ing the ground truth for data characteristics under inves-
tigation. As such knowledge of the “truth” is unavailable 
or difficult to ascertain in real world data, simulation 

studies using synthetic datasets that mimic complex 
clinical environments can provide insight. Existing sim-
ulation studies have not addressed programmatically 
changing adverse outcome risk as a function of learn-
ing by clinical providers and healthcare organizations, 
particularly with regards to new medical devices, treat-
ments, or procedures. This study extends the synthetic 
clinical data generation literature by implementing a gen-
eralizable framework for injection of hierarchical learn-
ing effects within a robust data generation process, while 
still accounting for complex clinical relationships.

Our DGP can enable simulation studies across clini-
cal domains and treatment types, however, prospective 
post-marketing surveillance of novel medical devices, a 
priority of the FDA, [32] provides a grounding use case. 
Studies suggest that adverse events attributable to pro-
vider learning of newly approved cardiovascular devices 
are responsible for 50–70% of all adverse events, repre-
senting significant harm in 1–6% of patients treated [30, 
31, 50–53]. For example, after the initial launch of the 
Cordis Cypher sirolimus-eluting coronary stent, safety 
questions emerged from reports of subacute thrombo-
sis and death following stent placement. Further inves-
tigation, however, revealed that some providers were 
not adhering to device labeling recommendations. As a 
result, FDA was able to address the situation by remind-
ing providers to follow stent size and use recommen-
dations rather than recalling a successful, life-saving 
technology [54]. As this example highlights, it is critically 
important that post-market surveillance and comparative 
safety evaluations correctly attribute the source of risks 
associated with new medical devices to properly marshal 
regulatory, health system, and manufacturer resources in 
response safety and experiential learning concerns. New 
algorithms that can disentangle safety signals from learn-
ing effects could promote uptake and maintain access to 
safe and effective new treatments, while also generating 
evidence to advocate for programs to enhance learning 
by providers or institutions. Our DGP directly supports 
this needed methodological research by enabling itera-
tive algorithm improvement and benchmarking to com-
pare approaches.

Our DGP implementation included key assumptions 
of independence that should be carefully considered. We 
assume the probability of an adverse event due to pro-
vider learning, the probability due institutional learning, 
and the probability due patient characteristics are each 
independent from one another. This assumption simpli-
fies the combination of these probabilities while ensuring 
each patients’ final probability of an adverse outcomes 
remains valid between 0 and 1. While this simplifies the 
math, we can imagine scenarios where these probabili-
ties may not be easily separable. The pace of learning 
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Fig. 5  Estimated novel treatment odds ratios and confidence intervals by sample size and specified value



Page 11 of 15Davis et al. BMC Medical Research Methodology           (2023) 23:89 	

may be slower when treating patients with certain com-
plicating factors than when treating the general popu-
lation. Institutional policies, practices, and resources 

may influence the pace at which different providers are 
able to master a new treatment. In such cases, evalua-
tions of new algorithms with simulations based on the 

Fig. 6  Adverse outcome rate in the presence of treatment effect and learning with varying sample sizes. Curves show smoothed probability (and 
95% confidence intervals with corresponding shaded regions) of an adverse outcome over the case series. Provider learning-associated risk was 
specified as starting at 50% of the mean patient-associated risk among patients assigned to the novel treatment and declined toward 0 over the 
provider’s first 25 cases. Number of institutions simulated was set to 30 (a), 10 (b), and 5 c. In each simulated dataset, 50% of the population was 
assigned the novel treatment, the population adverse outcome rate was 10%, and the odds ratio of an adverse outcome for the novel treatment 
compared to the reference treatment was 2.0
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independence assumption may prove optimistic when 
the algorithms are applied in real world data. Users with 
particular concern may consider testing the influence of 
our independence assumption for their use case by vary-
ing the learning effects based on simulated patient traits 
or across different providers.

There is also an inherent assumption in our implemen-
tation that missing values are independent of patient, 
provider, and institution. Missingness at random is a 
strong, but likely often false, assumption common in 
biomedical research. More likely, missing values may be 
informative and associated with outcomes, patient fac-
tors, and provider or institutional practice patterns. Our 
implementation of missingness at random, therefore, 
reflects a common simplification and may be a source 
of optimism in evaluations of novel algorithms. For use 
cases particularly interested in the impact of missingness, 
the data finalization process of our DGP would need to 
be extended to vary the probability of data masking by 
select data characteristics.

Users should also consider sample size requirements 
and the risk of possible deviations between realized 
simulations and specified parameters. Our simulation 
results indicated fidelity between specifications and syn-
thetic datasets increased with sample size, especially 
beyond approximately 3,000 observations. This find-
ing reflects that recovering specified relationships from 
the synthetic data is subject the influence of noise and 
uncertainty, both of which are exacerbated when estimat-
ing values with limited sample sizes. Despite increased 
variability when sample sizes were small, features in 
the synthetic datasets reflected specified settings – an 
observation highlight in the learning curves displayed in 
Fig. 6, in which the impact of learning on outcome rates 
was apparent even as confidence intervals widen with 
declining sample size. While we observed more consist-
ent fidelity of our data above 3,000 observations, this may 
not reflect a rule of thumb lower bound for generating 
simulations responsive to specifications. Simulation com-
plexity and characteristics of the underlying reference 
population likely impact simulation fidelity. For applica-
tions requiring small datasets, users may consider includ-
ing an assessment of simulation fidelity as a quality check 
prior to evaluating new methodologies and consider mul-
tiple replicates at each parameter setting to capture and 
characterize variability.

This work builds on the growing literature around syn-
thetic clinical data generation. The generalizable and flex-
ible nature of our DGP framework allows users to extend 
and customize components of the process to meet their 
unique requirements. Users can specify complex inter-
actions among patient features if desired, both for treat-
ment and outcome assignment. We implemented the 

DGP using an iterative algorithm designed to simulate 
non-normal, correlated data with varying variable for-
mats [43]. However, users could replace this module of 
the DGP with any state-of-the-art synthetic patient fea-
ture generator that produces a patient-level dataset. Our 
DGP could accept such a data cube and merge with pro-
vider and institution assignments before continuing with 
the DGP components specifying treatment assignment, 
learning effects, and outcomes.

Future improvements to the DGP described here can 
address additional limitations. Provider or institution-
level features, such as number of years of provider clini-
cal experience or type of institution, may be important 
for some methodological investigations. While the DGP 
does not currently support features at the provider 
or institutional levels, this functionality can be read-
ily developed in future iterations through extension of 
components currently processing patient-level char-
acteristics. Second, we assign each provider to a single 
institution, however, in practice providers often treat 
patients at multiple facilities. Reassigning a portion of a 
provider’s observations to a different institution prior to 
the assignment of case orders would allow provider case 
series to remain intact and incorporate the provider into 
the case series of multiple institutions. Third, while we 
know patient clinical profiles impact where and from 
which provider they receive care, the DGP currently 
randomizes patients to providers and institutions. Sup-
porting non-random assignment of patients based on 
provider and institutional traits is a complex undertaking 
that we will explore in future work.

Finally, we acknowledge that no synthetic dataset 
can fully represent the complexity and uncertainty of 
real-world data. Simulation studies with their inherent 
simplifications, whether based on our DGP and other 
simulation approaches, provide an important initial 
validation of new algorithms and approaches. However, 
users should consider whether and which simplifying 
assumptions are acceptable for algorithmic benchmark-
ing and anticipate some reductions in performance when 
methods are subsequently evaluated in case studies using 
clinical data.

Conclusions
Complex simulation studies are required to develop 
and test new algorithms that disentangle safety sig-
nals for medical treatments from the effects of expe-
riential learning. In support of such studies, our data 
generating process extends clinical data simulation 
techniques beyond generation of patient features to 
incorporate injection of hierarchical learning effects at 
the provider and institutional levels. Our approach has 
the potential to be adopted as a common resource for 
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the scientific community to increase the efficiency of 
simulation studies in methods development research. 
In turn, supporting algorithmic validations across a 
range of clinical scenarios to provide guidance on the 
use and interpretation of new methods and algorithms. 
Once validated in synthetic data, those methods that 
correctly attribute treatment and learning risk can be 
applied to real world data to identify training oppor-
tunities to accelerate optimal performance and avoid 
unwarranted restriction of patients’ access to medical 
advances.
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