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Data Descriptor: An ab initio
electronic transport database for
inorganic materials
Francesco Ricci1, Wei Chen2,3, Umut Aydemir4, G. Jeffrey Snyder4, Gian-Marco Rignanese1,
Anubhav Jain2 & Geoffroy Hautier1

Electronic transport in materials is governed by a series of tensorial properties such as conductivity,
Seebeck coefficient, and effective mass. These quantities are paramount to the understanding of materials
in many fields from thermoelectrics to electronics and photovoltaics. Transport properties can be calculated
from a material’s band structure using the Boltzmann transport theory framework. We present here the
largest computational database of electronic transport properties based on a large set of 48,000 materials
originating from the Materials Project database. Our results were obtained through the interpolation
approach developed in the BoltzTraP software, assuming a constant relaxation time. We present the
workflow to generate the data, the data validation procedure, and the database structure. Our aim is to
target the large community of scientists developing materials selection strategies and performing studies
involving transport properties.
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Background & Summary
Many devices such as solar cells, transistors, and thermoelectric generators rely on materials with specific
transport properties such as conductivity, mobility, and Seebeck coefficient. An insight into the electronic
transport properties of materials is accessible, although with some limitations, by exploiting the semi-
classical approach provided by the Boltzmann theory1,2. The transport tensors can indeed be linked to the
fundamental electronic structure and atomistic properties of any material using Boltzmann transport
theory. From the knowledge of the band structure (e.g., from ab initio computations within density
functional theory (DFT)) and of the relaxation times due to different scattering processes, solving the
Boltzmann transport equation provides indeed an assessment of the electronic transport tensors3,4.

Materials properties can be computed on a unprecedented level using high-throughput (HT) ab initio
computing5–8. This new paradigm is transforming the way materials are discovered, offering the
possibility to select materials with certain properties before going to the lengthy process of synthesis,
characterization, and device making9,10. Large datasets are also useful to perform data mining
studies where trends and correlations between materials properties are revealed11–14. Freely accessible
high-throughput databases are being built providing data to a large community of scientists to facilitate
the screening and data mining process15 (the Materials Project16,17, Open Quantum database18,
AFLOW19, NOMAD repository20, the Harvard Clean Energy Project21).

The BoltzTraP code4 solves Boltzmann equation by interpolating a band structure computed within
DFT and performing all the required integrations. Since its development, BoltzTraP has been used in
several high-throughput studies in various fields from thermoelectrics to transparent conducting
oxides22–27 and also to obtain new general descriptors of the band structure28. In this paper, we report on
a large dataset of electronic transport properties obtained by combining high-throughput generated
ab initio band structures and Boltzmann transport theory within the constant relaxation time
approximation. In total, we provide access to the computed electronic transport data for about 48,000
compounds to this date. This is the largest public database of electronic transport data obtained by
BoltzTraP and DFT.

This dataset adds to the growing database of materials properties of the Materials Project (MP)16,17. It
will be accessible via its web interface similar to thermodynamics, battery, elastic29, and piezo-electric
data30. In the remainder of the paper, we summarize the Boltzmann equation within the relaxation time
approximation, the properties calculated, and the workflow followed. Finally, we present a graphical
overview of the data and compare it with published computational and experimental values to better
understand the precision and accuracy of our approach.

Methods
Methods definitions
In order to evaluate transport phenomena occurring at the electronic level, a microscopic model of the
transport process is needed to assess the transport coefficients of materials. The basic transport equation
of the current density in presence of electrical E and magnetic B field, and a temperature gradient ΔT is
ji ¼ σijEj þ σijkEjBk þ νij∇jT þ ¼ . In this work, we limit the development to the first order in the
magnetic field B and we focus only on the conductivity tensors σij, σijk, and νij.

A semi-classical approach based on solving Boltzmann’s equation, within the relaxation time
approximation, is commonly used to describe the conductivity tensors. This model evaluates the electrical
conductivity introducing a lifetime, τ, for an electron that encapsulates all the different scattering
mechanisms that it can undergo1–3. Following the notation used in ref. 4 describing the BoltzTraP code,
the conductivity tensors can be written as:

σαβði; kÞ ¼ e2τi;kuαði; kÞuβði; kÞ ð1Þ
and using the Levi-Civita tensor31 εijk:

σαβγði; kÞ ¼ e3τ2i;kεγuuuαði; kÞuuði; kÞM - 1
βu ; ð2Þ

in terms of the group velocity and the inverse mass tensor:

uα i; kð Þ ¼ 1
_

∂εi;k
∂kα

; M - 1
βu ði; kÞ ¼

1

_2
∂2εi;k
∂kβ∂ku

: ð3Þ

Apart from the band structure (εi,k), the relaxation time τi,k term needs to be defined. It describes all the
scattering processes involved in the electronic transport and, in the most general description, it depends
on both energy band index i and k vector direction. In the section Limitations, we provide a more
detailed description about common models used to compute the relaxation time (one of which consist in
approximating it by a constant) and how we treat it in our HT approach.

Summing over all the bands and all the k-points in the full Brillouin zone, we calculate a differential
conductivity tensor depending on energy: σαβðεÞ ¼ 1

N

P
i;kσαβði; kÞδ ε - εi; k

� �
, where i is the number of

bands and N is the number of k-points. The three main transport tensors depending on the temperature
T and the Fermi level (or chemical potential) of the electrons μ are now accessible4:
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1. the conductivity related to the electric field:

σαβðT; μÞ ¼ 1
Ω

Z
σαβðεÞ -

∂f μ T; εð Þ
∂ε

� �
dε; ð4Þ

2. the conductivity related to the electric and magnetic field:

σαβγðT; μÞ ¼ 1
Ω

Z
σαβγðεÞ -

∂f μ T; εð Þ
∂ε

� �
dε; ð5Þ

3. the conductivity related to the thermal gradient:

ναβðT; μÞ ¼ 1
eTΩ

Z
σαβðε - μÞ -

∂f μ T; εð Þ
∂ε

� �
dε;

4. the electronic contribution to thermal conductivity:

κ0αβðT; μÞ ¼
1

e2TΩ

Z
σαβðεÞ ε- μð Þ2 -

∂f μ T; εð Þ
∂ε

� �
dε: ð6Þ

where fμ is the Fermi distribution, Ω is the volume of the unit cell, and e the electron charge. From these
tensorial quantities, it is straightforward to determine the other following quantities:

κelij ¼ κ0ij -Tνiα σ - 1� �
βα
νβj; the electronic thermal conductivity at zero electric current; ð7Þ

Sij ¼ Ei ∇jT
� � - 1 ¼ σ - 1� �

αiναj; the Seebeck coefficient; ð8Þ

Rijk ¼
Eind
j

jappli Bappl
k

¼ σ - 1� �
αjσαβk σ - 1� �

iβ; the Hall coefficient; ð9Þ

nðT; μÞ ¼ nu -
1
Ω

Z
gðεÞf μðT; εÞdε; the doping carrier concentration: ð10Þ

The Seebeck coefficient Sij, also known as thermopower, is one of the characteristic properties of
thermoelectrics. Within the constant relaxation time approximation, 1/Rijk is proportional to the Hall
carrier density, a quantity usually obtained in experiments by Hall effect measurements. n(T; μ) is the
electron or hole concentration depending on the doping type, calculated via the density of states g(ε),
the number of valence electrons per volume nu and the Fermi distribution fμ(T; ε). All these quantities are
part of the standard output of the BoltzTraP code.

In addition, we computed the conductivity effective mass. This effective mass is simply derived from
the conductivity tensor and the doping carrier concentration:

M
- 1
αβ ¼ σαβ

ne2τ
ð11Þ

We note that this definition works properly only for semiconductors where the doping carrier
concentration (equation (10)) is well defined. In metals and small gap materials it fails because the doping
carrier concentration deviates from the total carrier concentration, as we discuss further in the Usage
Notes. Effective mass tensors are typically evaluated from band structures by computing second
derivatives at a certain k-point (e.g., the valence band maximum or conduction band minimum) along
certain symmetry lines through finite differences. There are numerical challenges in doing so32 and
choosing the k-point to evaluate the effective mass is not obvious when facing band structures with
important non-parabolicity, multiple degenerate bands or pockets with close energy in different part of
the Brillouin zone. The conductivity effective mass can be also seen as an average over the Brillouin zone
and bands of the k-dependent second derivative (equation (3)) as integration by parts leads to:

M
- 1
αβ ¼ -

P
i

R
M - 1

αβ i; kð Þf μ εi;k;T
� �

dk
4π3P

i

R
f μ εi;k;T
� �

dk
4π3

: ð12Þ

We note that this conductivity effective mass tensor is dependent on temperature and doping level. This
quantity has been successfully used for high-throughput screening of new low effective mass transparent
conducting and thermoelectric materials27,28,33–35. Hereafter, when we refer to calculated effective mass
we mean conductivity effective mass.

The integration of Boltzmann’s equation requires an analytical description of the band structure. The
BoltzTraP code provides it using an interpolation method based on a Fourier expansion of the band
energies that maintains the space group symmetry by using star functions. The basic idea of this
technique is to use more star functions than band-energies, but constraining the number of fit bands ~ε to
be equal to the number of energy bands ε and using the additional freedom to minimize a roughness
function ρ. This method was introduced by Shankland36, verified and tested by Koelling and Wood37, and
modified by Pickett et al.38. The BoltzTraP code has been largely tested over the last decade in different
applications ranging from superconductors39 to thermoelectric40–44 materials, and good agreement has
been found with experimental values in several cases45–47. From a practical point of view, the BoltzTraP
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code takes as input the electronic energies for different k-points, previously calculated by a DFT code
(or other methods), interpolates the bands, and computes the Fermi integrals for different temperatures
and Fermi level. Finally, it returns as output all the transport coefficients, along with other data such as
the coefficients of the interpolating function.

Finally, we also would like to mention the BoltzWann code48: a recent attempt to interpolate bands
using Wannier functions49. Although it provides a greater accuracy for the interpolated band structures,
(e.g., treating the band crossings better), this method has not been as widely tested as BoltzTraP, and it is
difficult to exploit within a HT framework since the automated construction of Wannier functions is still
in its early stages50.

Computational parameters
The input data needed to run BoltzTraP are the crystal structure and the electronic band structure on
a uniform grid. Both of these inputs are computed using the standard high-throughput density functional
theory (HT-DFT) recipe from the MP summarized in refs 51,52. The DFT calculations were performed
using the Vienna Ab initio Simulation Package (VASP)53,54 using the Perdew-Burke-Ernzerhof (PBE)55

generalized gradient approximation (GGA) and adopting the projector augmented-wave (PAW)56,57

approach. For transition metal oxides with localized d orbitals, the GGA+U method was employed
setting the MP standard Hubbard corrections58,59. Most of the structures contained in the MP database
originate from the Inorganic Crystal Structures Database (ICSD)60,61. The others come from previous
high-throughput projects (e.g., a Li-ion battery screening project51) as well as from other databases
(e.g., the Open Quantum Materials Database18). All structures were fully-relaxed (cell and atomic
positions) using a two-step procedure, until the energy difference is lower than 0.0005 eV/atoms.
All relaxations were performed with spin polarization on and initializing magnetic ions in a high-spin
ferromagnetic. For subsequent calculations spin-polarization was retained only when the relaxation
results demonstrated non-zero atomically projected magnetic moments. The band structure calculations
were determined for standard primitive cells according to the conventions of Setyawan and Curtarolo19.
A self-consistent static calculation was first performed in order to converge the charge density using a
moderate k-point density to sample the Brillouin zone (90 k-points per Å− 3 (reciprocal lattice volume)
for large gap systems (≥0.5 eV) and of 450 k-points per Å− 3 for those with small gap (o0.5 eV)).
The tetrahedron method has been used for the band structure integration over k space in most of the
cases. Whenever this method fails, the Gaussian smearing method has been used51,52. Then, two non-self-
consistent calculations were performed to evaluate the band structures: the first one along symmetry lines
as defined in ref. 19 and the second one on an uniform k-point grid (1,000 k-points per Å− 3 for large
band gap systems, i.e., ≥0.5 eV, estimated from self-consistent runs and 1,500 k-points per Å− 3 for small
band gap systems i.e., o0.5 eV). Spin-orbit coupling was not considered in the current study, but could
be implemented as a next step to refine the database.

Doping (i.e., introduction of additional carriers either holes or electrons) has a tremendous effect on
electronic transport properties. Doping will set the Fermi level (μ) and directly influence the values of the
transport properties. A first dataset provides all the transport quantities for both n-type and p-type
doping at fixed doping levels ranging from 1016 to 1020 cm− 3, increasing the doping by one order of
magnitude at each step. A second and finer dataset provides the electronic transport properties at various
Fermi level energies (on a uniform bin from −1.5 to 1.5 eV around the Fermi level with an energy
increment of 0.005 eV), and temperatures (ranging from 100 to 1,300 K with an increment of 100 K). The

Transport Property Keys Units Datatype Size Description

cond_doping (Ωms)− 1 array, array 3 × 3, 1 × 3 Full tensor and its sorted eigenvalues of the electronic conductivity (divided by τ) for
different doping (type and level) and temperature

kappa_doping W/(mKs) array, array 3 × 3, 1 × 3 Full tensor and its sorted eigenvalues of the electronic thermal conductivity (divided
by τ) for different doping (type and level) and temperature

seebeck_doping μV/K array, array 3 × 3, 1 × 3 Full tensor and its sorted eigenvalues of the Seebeck coefficient for different doping
(type and level) and temperature

carrier_conc cm− 3
float n× 1 Doping carrier concentration for different temperature in the range of energy values

specified in the mu_steps key

hall_carrier_conc cm− 3
float n× 1 The averaged trace of the full tensor of the Hall carrier concentration for different

temperature in the range of energy values specified in the mu_steps key

cond_eff_mass me array 1 × 3 Sorted eigenvalues of the conductivity effective mass tensor, at the 1018 cm− 3doping
level (n- and p-type) and at 300 K.

mu_steps eV array n× 1 The Fermi level values.

Table 1. Transport properties stored in the first dataset with their units and data size. See Table 5 for
the available keys inside each of these root keys. The electronic conductivity and the electronic contribution of
the thermal conductivity are stored divided by τ. For the electronic conductivity, the electronic contribution of
the thermal conductivity, and the Seebeck coefficient both the full tensor and its sorted (in ascending order)
eigenvalues are provided.
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transport quantities accessible in the two datasets are listed in Tables 1 and 2. We should note that users
interested in values for doping levels not within our fixed dopings from 1016 to 1020cm− 3 can use the
finer dataset to compute more precise doping (see Usage Notes).

Limitations
Here, we would like to discuss the main approximation which is made in this work: the constant
relaxation time. Looking at the conductivity tensor, the relaxation time τi,k is written in the general form
as a tensor depending on both the energy and the direction. All scattering events that can influence
electron conduction such as impurity scattering, phonon scattering, etc., are included in this
parameter1,2,62. Considering this term as a constant thus means that it is modeled to be isotropic and
not strongly varying at the energy scale of kBT. This is a strong approximation that it is known to be far
from experimental values for several materials. Many models have been proposed and tested in order to
take into account different scattering processes, both empirical39,63–66 and first-principles67,68. However
such models for going beyond the constant relaxation time are more complex and introduce a
dependence on further materials properties such as electron-phonon interaction, deformation potential,
elastic constants, and dielectric constants. They are therefore more difficult to use on a high-throughput
scale for thousands of materials. We should stress that while more accurate approaches exist, particularly
for detailed studies of single materials, the constant relaxation time is extremely useful for a first screening
and for getting general trends if the user keeps in mind its limitations23–25.

As conductivities (thermal and electronic) depend proportionally on the relaxation time within our
constant relaxation time framework, we provide those quantities per unit of relaxation time. The user
could then simply multiply these values by a constant relaxation time (typically 10− 14 to 10− 15 s) to
obtain the final transport properties. The Seebeck coefficient does not depend on the relaxation time
within the constant relaxation time approximation. We remind though that in this approximation the
sign of Seebeck coefficient is wrong for some metals69.

Another issue is related to the k-point grid. Its density is quite important for the precision of transport
properties calculated by interpolation. A known problem of the Fourier interpolation is the incorrect
determination of band derivatives near band crossings. This problem has been analyzed in ref. 38
demonstrating that if the band crossing is not too close to the Fermi level, the derivative and curvature of
the bands are not much affected. A possible solution has been proposed by Uehara et al.70. Also, as
mentioned in ref. 4, this problem is localized only along high-symmetry lines. A dense k-point grid will
often solve this issue, and since properties are averaged with respect to k-points and bands their accuracy
is not affected significantly. When considering a limited number of materials, a very dense k-grid is
commonly used. For example, Madsen suggests 64·106/V k-points in the full Brillouin zone24. Since we
are dealing with thousands of materials, the k-point grid used in this project is coarser. It represents a
compromise between computational time and accuracy. However, we stress here that we use a validation
method (see Validation section) which tests the quality of the band structure interpolation and assesses if
the k-point grid is dense enough to avoid any large failure of the interpolation scheme.

Finally, standard density functionals such as the generalized gradient approximation (GGA) used in
this work are known to underestimate band gaps. We have found that, in particular, materials for which
we predict band gaps less then about 10 kBT, but the true gaps are higher than this value, can be subject to
larger errors in the predicted properties23.

Workflow
The sequence of steps used for the HT calculations in order to produce the dataset is illustrated in Fig. 1.
It has been automated using the FireWorks workflow software71. The Materials Project provides the
GGA/GGA+U band structure on a uniform grid for the majority of the materials. On this set of materials,
we executed the BoltzTraP code exploiting the BoltztrapRunner class from the pymatgen software72. This

Transport Property Keys Units Datatype Size Description

cond_mu (Ωms) − 1 array, array 3 × 3, 1 × 3 Full tensor and its sorted eigenvalues of the electronic conductivity (divided by τ) for different
temperature in the range of energy values specified in mu_steps key.

kappa_mu W/
(mKs)

array, array 3 × 3, 1 × 3 Full tensor and its sorted eigenvalues of the electronic thermal conductivity (divided by τ) for
different temperature in the range of energy values specified in mu_steps key

seebeck_mu μV/K array, array 3 × 3, 1 × 3 Full tensor and its sorted eigenvalues of the Seebeck coefficient for different temperature in the
range of energy values specified in mu_steps key

cond_eff_mass me array 1 × 3 Sorted eigenvalues of the conductivity effective mass tensor for n- and p-type and different
doping levels at 300 K.

mu_steps eV array n× 1 The Fermi level values.

mu_doping eV float 1 × 1 The values of the Fermi level for each doping level of the two types of doping.

Table 2. Transport properties stored in the second dataset with their units and data size. The
electronic conductivity and the electronic contribution of the thermal conductivity are stored divided by τ. For
the electronic conductivity, the electronic contribution of the thermal conductivity, and the Seebeck coefficient
both the full tensor and its sorted (in ascending order) eigenvalues are provided.
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class, written by some of the authors of this paper, automates writing the four input files required by
BoltzTraP, converting units (from eV in Ry and from bohr to Å), checking possible known errors in the
output log file, and rerunning BoltzTraP with different parameters in order to solve them. This class also
includes an internal loop on two main parameters to get a convergence of the conductivity effective mass.
The two tuned parameters in the loop are the lpfac, controlling the multiplier for the interpolated mesh
and the energy_grid that is the increment dε used to compute the integral of transport properties. We use
another class of pymatgen that we developed, called BoltztrapAnalyzer, to extract the properties from the
output and transform them into Python dictionaries that organize the data according to the doping type,
doping levels, and temperatures.

Before storing the transport properties, we perform a validation step, which compares the
bandstructure on high-symmetry lines calculated by DFT with those interpolated by BoltzTraP. Having
a rough assessment of the interpolation accuracy, we can weight the reliability of the related properties.
We can also determine in which cases the uniform grid is too sparse, and when needed, recompute the
band structure with a denser grid. This validation step is discussed further in the validation section.

Finally, once all the properties are collected for each material, we store them in the form of a JSON
(JavaScript Object Notation) data document in the Dryad-repository (Data Citation 1). Furthermore, in
the future all currently available data will be accessible via the MP website and obtainable by the MP
REST API73,74.

Code availability
The proprietary Vienna Ab Initio Simulation Package (VASP) code53,54 is used in this work for the
calculation of band structures. The BoltzTraP code is open source and freely accessible. The python
classes used to run the BoltzTraP code, extract its output, format it, and perform the accuracy check on
bands are implemented in the pymatgen software72. Pymatgen is released under the MIT (Massachusetts
Institute of Technology) License and is open source. The workflow depicted in Fig. 1 is implemented
using the FireWorks software71, which is open source under a modified GPL (GNU General Public
License). Although VASP is available only under commercial license, the present results can be
reproduced by querying for the band structures in the MP database using the associated mp-id and then
running BoltzTraP calculations.

Data Records
The calculated transport properties of ~48,000 materials are reported in the present work. All the
considered materials are inorganic solid crystal compounds. Molecules are not included. In order to have
an overview of the dataset of structures, we can define two partitions according to the DFT-GGA band
gap: about 18,000 metals and about 25,000 semiconductors with band gap higher than 0.1 eV. The
calculated transport properties and the associated metadata of all the materials are grouped into two
datasets: the first dataset contains higher-level information (the properties listed in Table 1 and the
metadata in Table 3); the second dataset contains more detailed information (the properties listed in
Table 2). For each material, we provide the transport properties calculated from the GGA band structure
(~46,000) and, if available, also from the GGA+U one (~13,000). We stress that both GGA and GGA+U
data can be available for the same compound. The two datasets contain a JSON file for each material,
grouped in unique compressed archive and stored in the Dryad-repository (Data Citation 1). All the data
will additionally be made accessible through the Materials Project website (www.materialsproject.org).
The Materials API73 and a dedicated web interface of the MP website will be available for downloading
the data and querying materials for certain transport properties. The MP website will also include
dedicated pages with details for each compound, giving an overview of its calculated properties as well as
the calculation parameters.

File format
The data for each of the calculated material is stored as a JSON document (Data Citation 1). The JSON
format is comprised of hierarchical key-value pairs. Tables 1 and 2 report the first level JSON keys, units,
the datatype of the values, and a short description, for both datasets. Table 4 contains a description of
the dictionary used to store the output of the check of the interpolation of bands. All these keys are
inside the main root key called ‘GGA’ (and/or ‘GGA+U’ when available). Table 5 offers a description

Figure 1. Flowchart illustrating the HT calculation scheme used to calculate and store transport

properties.

www.nature.com/sdata/

SCIENTIFIC DATA | 4:170085 | DOI: 10.1038/sdata.2017.85 6

www.materialsproject.org


of the structure of the dictionary used for collecting all the values of each property according to doping
type, temperature, doping level, and data type. Additional keys (located at the root level) are provided as
metadata for each entry of both datasets. They contain information regarding some of the properties of
the materials, such as the crystal structure and a unique mp-id for structure identification within the MP
database.

Properties
The properties included in the two datasets are reported in Tables 1 and 2. Each property is stored in a
dictionary and, except for the effective mass, has been calculated for various doping types, temperatures,
doping levels, and data type. All these cases are accessible by the sub-keys reported in Table 5.

In the first dataset, the following properties are stored: Seebeck coefficient, electronic conductivity
(divided by τ), and electronic thermal conductivity (divided by τ) for different doping (type and levels)
and temperature; carrier and Hall carrier concentration for different temperatures as a function of the
Fermi level (energy steps contained as values of the mu_steps key); effective masses for a doping
concentration of 1018 cm− 3 at 300 K, where n- and p-type refer to electron and hole masses, respectively;
the Fermi level values.

In the second dataset (containing additional information intended for expert users) the following
properties are stored: Seebeck coefficient, electronic conductivity (divided by τ), and electronic thermal

Key Datatype Description

mp_id string IDs for entries in the Materials Project

pretty_formula string Chemical formula

cif_structure string Relaxed crystal structure represented in Crystallographic Information File (cif)

spacegroup dictionary Space group details contained in the followings keys: ‘symbol’, ‘number’,
‘point_group’,’source’,’crystal_system’,’hall’

volume number Volume of the relaxed structure in Å− 3

nsites number Number of atomic sites for the conventional cell

gap dictionary GGA (and GGA+U when available) band gap. ‘GGA’ and ‘GGAU’ are the keys

Table 3. Additional keys for each entry of both datasets and their descriptions.

Root Key 1st Level Keys 2st Level Keys Keys description

bands_check Key of the dictionary containing all the information about the interpolation check of
bands

nb_list The list of the bands where the check is performed

avg_corr The average over all the bands for the correlation

avg_distance The average over all the bands for the distance

‘45’,... The index of the band

Corr Correlation value for the band

Distance Distance value for the entire band

‘Γ−X’,... Distance value only for the high symmetry path segments

acc_err List of two Boolean values: True if the average of correlation/distance quantity over
the eight bands is higher then 0.03; False otherwise.

Table 4. Description of the dictionary structure used to store the output of the interpolation check of
bands. This dictionary is stored in the first dataset. ‘45’ and ‘Γ−X’ are examples for the band index and the
high symmetry segments keys, respectively. A True value in the ‘acc_err’ list has to be considered as a warning
of low accuracy in the interpolation of the bands.

Level Keys Type Keys description

1 n, p string Doping type keys available for ‘x’_doping, cond_eff_mass, mu_doping root keys.

2 300, 400,..., 1,300 integer Temperature keys available for ‘x’_doping, ‘x’_mu, carrier_conc, hall_carrier_conc,
mu_doping root keys.

3 1e+16, 1e+17,..., 1e+20 string Doping level keys available for ‘x’_doping, cond_eff_mass, mu_doping root keys.

4 tensor, eigs string Data type key for ‘x’_doping, ‘x’_mu root keys.

Table 5. Description of the dictionary structure used to store transport properties in both datasets.
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conductivity (divided by τ) for different temperatures as a function of the Fermi level (energy steps
contained as values of the mu_steps key); effective masses for different doping levels (n- and p-type) at
300 K; the values of the chemical potential corresponding to each doping level (n- and p-type); the Fermi
level values.

In both datasets, for the Seebeck coefficient, the electronic conductivity (divided by τ), and the
electronic thermal conductivity (divided by τ) both the full tensor and its eigenvalues, sorted in ascending
order, are stored. For the effective mass, only the sorted (in ascending order) eigenvalues of the full tensor
are stored. Regarding the Hall carrier concentration, only the averaged trace of the full Hall tensor is
stored. We provide eigenvalues since they are invariant of the axis choice. They are therefore extremely
useful to query. For instance, a search for high Seebeck materials would involve a query on the
Seebeck eigenvalues. To facilitate queries, the eigenvalues are sorted by ascending order (the first
eigenvalue being the smallest one). The anisotropy of a property can directly be assessed by the difference
between the last and first eigenvalue. We stress that the provided eigenvalues are sorted in ascending
order and do not contain any information about the corresponding principal directions. In order to
obtain the correspondence between crystallographic directions and eigenvalues, we suggest to work on
the full tensor (and the crystal structure information) and apply an algorithm finding eigenvalues and

Figure 2. Seebeck versus electron conductivity (divided by τ). The color represents the power factor (S2σ) and

the pointsize is used for band gap. The reported values are averages over the three direction for T= 600 K and

n- and p-type doping level (Dop) of 1020 cm− 3. Only materials with band gap higher than 0.1 eV in GGA are

considered.

Figure 3. Electron contribution of the thermal conductivity versus electron conductivity: (both divided

by τ). The values are averages over three direction for T= 600 K. Only materials with band gap equal to zero eV

in GGA are considered. The blue line represents the Wiedemann-Franz law that holds for metals.

www.nature.com/sdata/

SCIENTIFIC DATA | 4:170085 | DOI: 10.1038/sdata.2017.85 8



eigenvectors (see also Usage Notes). We also remind that the effective masses are reported only for
semiconductor materials, namely compounds with a band gap higher than zero in GGA or GGA+U.

Graphical representation of results
In Figs 2 and 3, we present some of the transport properties stored in the current database. In Fig. 2, we
present the Seebeck coefficient as a function of the electrical conductivity (divided by τ), for all materials
having a GGA band gap higher than 0.1 eV (around 25,000 compounds). Both properties are computed
for 600 K and a doping level of 1020 cm− 3. The diameter of the circles is used to indicate the band gap
and the color to represent the power factor, S2σ (PF). The graph shows an almost symmetrical spread of
points with respect to the x-axis. The two halves contain the two types of doping due to the opposite sign
of the Seebeck coefficient. The color gradient shows a reasonable increasing trend toward values of
Seebeck and conductivity that maximize the PF. It is evident, however, how difficult it is for materials
to reach both high Seebeck and high conductivity at the same time, given the absence of points in that
region. The distribution of points according to their size suggests that small band gap materials are
concentrated in a range of Seebeck coefficient values lower than 200 μV/K. Above 200 μV/K is difficult to
find any trend because of the overlapping of data points.

In Fig. 3, we plot the electrical part of thermal conductivity as a function of the electrical conductivity
(both divided by τ) for all metallic compounds (with a gap equal to zero in GGA) in the database
(~18,000 compounds). For such materials, the electronic contribution of the thermal conductivity can be
related to the electrical conductivity and the temperature through the well known Wiedemann-Franz law:
κel/σ=LT, where L= 2.4·10− 8 WΩK− 2 is the Lorenz number. This law is plotted as a blue line
superimposed onto the set of points. The theoretical trend is followed quite well by our dataset, especially for
those materials that are common metals with electronic conductivity in the range 1021− 1022 (mΩs)− 1.

Experimental data for Seebeck, thermal and electrical conductivity stored in the MRL database of
thermoelectric properties75,76 show very similar trends.

Technical Validation
Validation of interpolation precision
Given that the initial uniform k-point grid of band structure might not be sufficient for a good
interpolation of all band structures, we performed a post-process check before storing our data. The band
structure along symmetry lines given by the interpolation are compared to the one explicitly computed
with denser k-point grid which are reported in the Materials Project. This comparison has been
implemented in pymatgen.

The comparison is two-fold. First, we assess the correlation distance (as defined in scipy.spatial.
distance.correlation class; basically 1−ρ, where ρ is the Pearson coefficient) between the two energy
bands to determine if they behave similarly. Second, we evaluate their energy distance for each segment of
high-symmetry path by means of a sum of absolute differences averaged over the number of k-points in
each segment: Dk - path

i ¼ 1
N

P
k ε

Bzt
i;k - εDFTi;k

��� ���, where εBzti;k ; ε
DFT
i;k are the energies for the band i in the k-point

k calculated by BoltzTraP and DFT, respectively. The output of this check is stored in a dictionary
described in the Table 4. It mainly contains the correlation distance and the energy distance (for each
segment and for the entire band) for the last (first) four valence (conduction) bands for non-metals or
four bands above and four below the Fermi level for metals. For a quick screening, it also contains a
warning flag (see ‘acc_err’ key in Table 4), for both correlation distance and energy distance (for the
entire band), set to True when their average over the eight bands is higher then 0.03. According to this
threshold, around 2.5% of GGA/GGA+U band structures have a warning on the correlation and 4% have
a warning on the energy distance. The data with a warning on interpolation should be used with extreme
caution.

Validation through comparison to experimental measurements
In this section, we evaluate the level of agreement between calculated properties and the experimental
counterpart. Several sources of disagreement can a priori be expected. First of all, we use a series of
approximations including DFT, the neglect of temperature effect on the band structure and the constant
relaxation time assumption. Numerical effects will also be present in terms of the k-point grid density or
the accuracy of derivative close to band crossings although we expect those to be of smaller effect. Finally,
experimental measurements are often performed on crystals that could have impurities or be
polycrystalline.

Keeping that in mind, we refer to a recent paper by Chen et al.23 where the Seebeck coefficient and
electrical conductivities providing from a same approach using DFT and the constant relaxation time
within BoltzTraP are compared with experimental measurements. We summarize here only the main
outcomes of the comparison, and refer the reader to the original paper and its supplementary section for
more details. The best agreement is by far obtained for the Seebeck coefficient. Mobilities and
conductivities are more sensitive to the constant relaxation time approximation but general trends
between materials are fairly reproduced. We should stress though that our dataset has not been corrected
for the typical band gap error in DFT by a scissor operation.

We finally compare our computed effective mass with experimental data. We only select direct
measurements of effective mass through cyclotron resonance and Shubnikov-de Haas (SdH) effect.
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All the experimental data is obtained from the Landolt-Börnstein database77. We take into account the
anisotropy of the effective mass when needed and report each symmetrically different direction as a
different data point. Our computed effective mass is obtained from the conductivity tensor and averages
all the bands contributing to the transport. When compared to cyclotron and SdH measurements of
individual bands, we need to average those individual band contributions. We do so by a weighted
average following the given formula:

m12 ¼ m
3
2
1Um1 þm

3
2
2Um2

m
3
2
1 þm

3
2
2

; ð13Þ

where the individual contributions are labeled with 1 and 2. The formula assumes parabolicity of
the bands.

In total we compare 33 effective masses. This is the largest comparison versus experiment to our
knowledge. Figure 4 plots the experimental versus the theoretical effective mass obtained by our approach
within GGA. The agreement is fairly good and the trends between large and small effective mass
materials are well reproduced by DFT. The calculated Pearson and Spearman coefficients are equal to
0.93 and 0.91, respectively. This justifies the use of these DFT effective masses to screen for materials with
low effective masses27,33. No difference in accuracy between electron and hole effective mass is noticeable.
Most of the DFT effective masses underestimate the experimental data. This could come from either a
systematic tendency for DFT along the underestimation of the band gap as well for the effect of large
polaron present in experiments and not taken into account in our work.

When comparing our results with experiments, one should keep in mind the systematic tendency for
semilocal exchange-correlation functionals used within DFT to underestimate the band gap. While the
band structure of semiconductors with smaller band gaps can still provides very useful transport
properties, the closing of the band gap and the formation of a metallic compounds can lead to much
larger deviations.

Usage Notes
Our paper provides a dataset of transport properties on about 48,000 materials derived from DFT
(GGA/GGA+U level) band structures and Boltzmann transport calculations within the constant
relaxation time approximation. This type of data has already been used to give insights into fundamental
materials properties in electronics, or thermoelectrics. While we warn the user to be always careful in the
way this dataset is used (keeping in mind the limits of our approach), this database constitutes a powerful
basis for materials search and data mining of materials transport properties.

The meaning of the doping provided by BolzTraP and used in our dataset needs to be clarified. The
doping level is not the total amount of carriers. (equation (10)) states that the doping concentration is the
difference between the number of electrons per volume present in an undoped material and the number
of electrons per volume at the given Fermi level. For a better understanding, we can rephrase it defining
the doping concentration as the number of excess holes compared to the number of free electrons at the

Figure 4. Comparison of effective mass values computed in this work with experimental values from

ref. 77. Red and blue colors are used for n and p type materials, respectively. Circles represent the average

effective mass values along the three directions. Squares, diamonds, and pentagons are used for effective mass

values along x, y, and z directions respectively. Calculated Pearson and Spearman coefficents are equal to 0.93

and 0.91, respectively.
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given Fermi level. It is more clear now that the doping concentration is positive for p-type doping, where
there are many more holes than free electrons, and negative for n-type doping, where the opposite is true.
We note that mobile carriers that are intrinsically generated, resulting in equal numbers of holes and free
electrons, are not considered as part of the doping concentration. For example, metals and small gap
materials may include a significant carrier concentration that is intrinsic and separate from the doping
levels reported in this work. For such materials, the total carrier concentration can be directly obtained
using for instance the Hall carrier concentration. We also remind the user to keep in mind that the Hall
carrier concentration does not have to be the same than doping in general. This equality is only exact for
parabolic bands when the semiconductor is highly degenerate78. When comparing experimental and
theoretical results, one should remember that the vast majority of the cases carrier concentration
provided experimentally are Hall carrier concentration. Moreover, this definition of carrier concentration
affects the assessment of the conductivity effective mass given by equation (11). Therefore we report the
effective mass only for materials with an energy gap higher then zero in GGA or GGA+U and we advice
the user to be careful using the effective mass for materials with an energy gap lower than 0.1 eV.

As mentioned, we provide in the first dataset all the transport properties at fixed doping levels. If the
value of a certain property at a different doping level is needed, it is possible for the user to use the second
dataset providing properties in function of Fermi level. When a target doping is set, the user can find
what Fermi level would provide this doping level at the required temperature and use the properties
corresponding to this Fermi level and given temperature.

In both datasets, we stored both the full tensor and its sorted (in ascending order) eigenvalues for the
Seebeck coefficient, the electronic conductivity (divided by τ), and the electronic thermal conductivity
(divided by τ). The eigenvalues (also sorted in ascending order) of the effective mass are also provided. In
case the value of a property along a specific direction of the crystal is needed, the use of the full tensor and
the structure are mandatory. It is also important to note that when a derived property is needed (e.g., the
power factor S2σ), it would be wrong to operate on eigenvalues (since they might not refer to
corresponding directions). Therefore, we strongly suggest to instead perform the operations on the full
tensors. Eigenvalues can be obtained by running an adequate algorithm on the resulting full tensor.
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