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Abstract

Background—The incidence of acute lymphoblastic leukemia (ALL) is nearly 20% higher 

among Hispanics than non-Hispanic Whites. Previous studies have shown evidence for association 

between risk of ALL and variation within IKZF1, ARID5B, CEBPE, CDKN2A, GATA3, and 

BM1-PIP4K2A genes. However, variants identified only account for <10% of the genetic risk of 

ALL.

Methods—We applied pathway-based analyses to GWAS data from the California Childhood 

Leukemia Study to determine whether different biological pathways were overrepresented in 

childhood ALL and major ALL subtypes. Furthermore, we applied causal inference and data 

reduction methods to prioritize candidate genes within each identified overrepresented pathway, 

while accounting for correlation among SNPs.

Results—Pathway analysis results indicate that different ALL subtypes may involve distinct 

biological mechanisms. Focal adhesion is a shared mechanism across the different disease 

subtypes. For ALL, the top five overrepresented Kyoto Encyclopedia of Genes and Genomes 

pathways include axon guidance, protein digestion and absorption, melanogenesis, leukocyte 

transendothelial migration, and focal adhesion (PFDR < 0.05). Notably, these pathways are 

connected to downstream MAPK or Wnt signaling pathways which have been linked to B-cell 

malignancies. Several candidate genes for ALL, such as COL6A6 and COL5A1 were identified 

through targeted maximum likelihood estimation.

Conclusions—This is the first study to show distinct biological pathways are overrepresented in 

different ALL subtypes using pathway-based approaches, and identified potential gene candidates 

using causal inference methods.
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Impact—The findings demonstrate that newly developed bioinformatics tools and causal 

inference methods can provide insights to furthering our understanding of the pathogenesis of 

leukemia.
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INTRODUCTION

Leukemia is characterized by the uncontrolled proliferation of hematopoetic cells in the 

bone marrow (1). Acute lymphoblastic leukemia (ALL) is the most common subtype of 

childhood leukemia, comprising nearly 80% of diagnoses (2). Strong evidence for increased 

risk of ALL due to sex, age, race/ethnicity, prenatal exposure to x-rays, therapeutic radiation, 

and specific genetic syndromes has been established (3). Direct evidence for inherited 

genetic susceptibility is demonstrated by the high risk of ALL associated with Bloom's 

syndrome, neurofibromatosis, ataxia telangiectasia, and constitutional trisomy 21 (3). Ethnic 

differences in the risk of ALL are well recognized as the incidence of ALL is nearly 20 % 

higher among Hispanics than non-Hispanic Whites in California (4). This higher risk is 

possibly due to an increased prevalence of ALL risk alleles in populations with Native 

American ancestry, as well as ethnic differences in exposure to environmental risk factors 

(5-7).

Current evidence suggests that leukemia results from chromosomal alterations and genetic 

variations that disrupt the normal process of lymphoid progenitor cell differentiation (1). 

Around 75% of childhood ALL cases have chromosomal aberrations that can be detected by 

karyotyping, fluorescent in situ hybridization (FISH) or other molecular techniques (8). In 

B-cell precursor ALL, these aberrations include hyperdiploid (>50 chromosomes), 

hypodiploid (<44 chromosomes), and chromosomal translocations such as 11q23 MLL-AF4, 

t (12; 21) TEL-AML1, t (1; 19) E2A-PBX1, and t (9; 22) BCR-ABL1 (8, 9). Hyperdiploid 

and TEL-AML1 rearranged childhood ALL account for approximately 25% and 22% of the 

entire childhood ALL populations, respectively (10). It is known that different cytogenetic 

subtypes have different disease prognoses, and are suspected to have distinct underlying 

biological mechanisms (11).

The first genome-wide association study (GWAS) in childhood ALL was published in 2009 

with a focus on Caucasian populations (12,13), and subsequent GWA studies in diverse 

populations have confirmed previous genetic associations and identified new susceptibility 

loci (5, 14-17). These studies confirmed genetic contributions to childhood ALL 

susceptibility, and include variation within IKZF1 (7p12.2), ARID5B (10q21.2), CEBPE 
(14q11.2), CDKN2A (9p21.3), GATA3 (10p14), and BM1-PIP4K2A (10p12.31-12.2). 

However, variants within these loci account for <10% of the overall estimated genetic risk of 

leukemia (18).

GWAS are focused on the analysis of single markers, and depending on sample size, may 

lack statistical power to uncover small effects (odds ratio (OR) <2.0) conferred by most 

common genetic variants identified, to date, for complex diseases. Some variants may be 
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associated with disease status, but may not reach a stringent genome-wide significance 

threshold (P=5 x10−8). Complementary approaches to traditional GWAS analysis have been 

developed, including pathway-based analysis. In pathway analysis, a group of related genes 

in the same biological functional pathway are jointly tested for association with a disease of 

interest (19,20). The method is used to help prioritize biological pathways most likely to be 

involved in the disease etiology, and to identify new loci not previously detected through 

GWAS. Several published studies have demonstrated that multiple related genes in the same 

functional pathway may confer disease susceptibility to breast cancer, Parkinson's disease, 

and Crohn's disease (21)

In the current study, we applied pathway-based analyses to GWAS data from the California 

Childhood Leukemia Study (CCLS) among Hispanics, and tested for evidence of biological 

functions that are significantly enriched in ALL. Furthermore, we compared whether 

different biological pathways were overrepresented in major leukemia subtypes, including 

B-cell ALL, hyperdiploid B-ALL and TEL-AML1 ALL. Lastly, we utilized the targeted 

maximum likelihood estimation (TMLE) method with the least absolute shrinkage and 

selection operator (LASSO) to identify a list of candidate genes within each significantly 

enriched pathway in ALL, while accounting in models, for the complex correlation between 

SNPs.

MATERIALS AND METHODS

Study populations

The CCLS is population-based case control study. Incident cases of newly diagnosed 

childhood leukemia (age 0–14 years) were rapidly ascertained from major clinical centers in 

the study area, usually within 72 hours of diagnosis. Cases were initially identified from four 

(1995-1999), and later expanded to nine (2000-2008), hospitals in the San Francisco Bay 

Area and Central Valley. For each case, one or two healthy controls were randomly selected 

from the state birth registry maintained by the Center for Health Statistics of the California 

Department of Public Health (CDPH), matching on child's age, sex, Hispanic ethnicity (a 

child was considered Hispanic if either parent self-reported as Hispanic) and maternal race 

(White, Black, Asian/Pacific Islander, Native American, and other/mixed). A detailed 

description of control selection in the CCLS has been previously reported (22). A total of 

86% of case subjects determined eligible consented to participate, and 86% of controls 

subjects participated among those contacted and considered eligible (23).

Cases and controls were eligible to enter the study if they were under 15 years of age, 

resided in the study area at the time of diagnosis, had at least one parent who speaks either 

English or Spanish, and had no prior history of malignancy. The current analysis included 

777 Hispanics (323 ALL cases and 454 controls) in the CCLS who enrolled and were 

interviewed subjects between 1995 and 2008, and for whom archived newborn blood (ANB) 

spot specimens were available. Detailed cytogenetic classification was described previously 

(24). Immunophenotypic and cytogenetic classification were abstracted from children's 

medical records, and reviewed by a consulting clinical oncologist. Immunophenotype was 

determined for ALL cases using flow cytometry profiles and those who were positive for 

CD19 or CD10 (≥20%) were classified as B-cell ALL (25). Cytogenetic classification was 
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determined by pretreated bone marrow specimens at the time of diagnosis using 

conventional G-banding or FISH. When extra copies of chromosomes 21 and X were 

identified by FISH assays, an assignment of high hyperdiploid status (51-67 chromosomes) 

was made (26). TEL-AML1 translocations were also identified by FISH assays.

This study was reviewed and approved by the institutional review committees at the 

University of California Berkeley, the CDPH, and the participating hospitals. Written 

informed consent was obtained from all parent respondents.

Genotyping and quality control

Samples were genotyped at the Genetic Epidemiology and Genomics Laboratory, School of 

Public Health, University of California, Berkeley, using the Illumina OmniExpress v1 

platform which contains 730,525 markers. Quality control filtering removed SNPs that were 

not on autosomal chromosomes, were missing in >2% of samples, had minor allele 

frequency (MAF) of <2% or showed significant deviation from Hardy-Weinberg equilibrium 

in controls (P < 1 × 10−5). The resulting data set of 634,037 SNPs was then subjected to 

additional quality control filtering in all samples. We excluded samples for which < 98% of 

loci were successfully genotyped, samples with discordant sex profiles (birth certificate vs. 

genetically determined sex) and samples displaying cryptic relatedness (based on identity-

by-descent calculations with pi-hat cutoff of 0.15). Ten pairs of duplicate samples were 

included to assess assay reproducibility, with average concordance >99.99%. The above 

quality control filtering yielded 777 Hispanic individuals (323 ALL cases and 454 controls) 

and 634,037 SNPs. To adjust for potential population stratification in study samples, 

principal component analysis was used as implemented in EIGENSTRAT (27). For pathway 

analyses, we selected SNPs that showed marginal associations (P<0.001) with ALL and each 

ALL disease subtypes (B-cell ALL, hyperdiploid B-ALL, and TEL-AML1 ALL), in models 

adjusted for age, gender and the first five principal components, using PLINK v1.07. At the 

significance threshold of 0.001, given our sample size, power was present to detect an OR of 

1.7 at a minor allele frequency of 15% for childhood ALL and B-cell ALL; an OR of 2.2 at a 

minor allele frequency of 15% for hyperdiploid B-ALL; and an OR of 2.7 at a minor allele 

frequency of 20% for TEL-AML1 ALL. Therefore, all post-QC SNPs for analysis were first 

filtered based on these criteria and subsequently mapped to genes if they were located within 

a genomic region based on National Center for Biotechnology Information's dbSNP browser 

(build 137).

Pathway analyses

Pathway analyses were performed by WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) 

(28) and Database for Annotation, Visualization and Integrated Discovery, DAVID V6.7 

(29). We used three pathway resources for this investigation: the BioCarta pathway database 

(30), the Kyoto Encyclopedia of Genes and Genomes (KEGG) (31), and the Gene Ontology 

(GO) database (32). Further, we explored two bioinformatics tools to investigate whether 

different classification methods generated consistent results. We compared two pathway 

tools that classified genes based on KEGG pathways: Webgestalt “KEGG” (28) and DAVID 

“KEGG” (29). Second, we investigated two additional pathway classification resources in 

DAVID: GO and BioCarta databases (30).
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To identify functional categories with significant evidence for enrichment in a gene set, we 

compared the gene set of interest to all human genes. Pathway tools tested whether the 

number of genes from each pathway in our list of predicted candidate genes is higher than 

expected given the number of genes selected from the total number of genes. WebGestalt 

uses the hypergeometric test to determine significance (28). In DAVID, evidence for gene-

enrichment in annotated pathways are evaluated using a modified Fisher's exact test to test 

for significance (29). The Benjamini and Hochberg procedure controlling for the false 

discovery rate (FDR) was performed for each pathway analysis tool to adjust for multiple 

comparisons (33).

After identifying the enriched pathways in ALL, SNPs with the most significant P-value for 

each gene were selected to construct an unweighted genetic risk score for each pathway. We 

used an additive genetic model and assigned a numerical value for each genotype based on 

the number of risk alleles for each SNP. The cumulative effect of risk alleles was determined 

by counting the total number of risk alleles for each individual. A logistic regression model 

was then used to estimate the cumulative effects of multiple risk alleles within the same 

functional pathway on the risk of ALL, using SAS 9.2.

Targeted maximum likelihood estimation (TMLE)

To further generate a list of candidate genes within each identified biological pathway, 

targeted maximum likelihood estimation (TMLE) incorporating LASSO was applied, as 

implemented in the R package (34, 35). LASSO can handle massive, highly correlated data 

and select variables of importance while making predictions. TMLE is based on the general 

maximum likelihood estimate (MLE) framework and combines it with robust estimation 

using the efficient influence curve, which measures the influence of one observation on the 

estimator (34, 35). TMLE helps reduce the bias for the targeted parameter, and provides 

formal statistical inference. Details of the TMLE method are explained elsewhere (34, 35). 

By incorporating LASSO into TMLE, the approach not only helps with data reduction and 

candidate gene selection, but also produces robust statistical inference. The method was 

applied to estimate the effects for SNPs within genes of interest (defined as P <0.001) on 

disease risk, while accounting for the effects of all other SNPs (defined as P <0.05) within 

genes in the same biological pathway. Based on the P-values estimated from TMLE method, 

we generated a list of candidate genes for each identified pathway (P <0.05). Individuals 

with no missing genetic data were included (n= 764). All SNPs were pre-screened: those 

with correlations less than 0.1 or greater than 0.9 with SNPs of interest were excluded in the 

model since SNPs that have independent effects or are highly correlated each other could not 

provide additional information to the model (34, 35).

RESULTS

Study characteristics of 777 Hispanics (323 cases and 454 controls) are described in Table 
1. The distributions of sex, age, and race/ethnicity were similar between cases and controls. 

Since Hispanics are a recently admixed group (36), a proportion (34-37%) of our Hispanic 

population reported “Mixed or Other” race and 49-51% of them reported “White and 

Caucasian” race. The frequency of hyperdiploid ALL (>50 chromosomes) was 30%, and the 
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frequency of TEL-AML1 ALL was 8%. The number of genes with SNPs reaching 

significance levels of 0.05, 0.01, 0.005 and 0.001 in the CCLS GWAS dataset are shown in 

Supplementary Table S1. A stringent significant P of 0.001 for pathway analysis was used 

for analysis. Guided by the P cutoff and power calculations for different disease subtypes, 

we mapped 625 SNPs to 187 genes for childhood ALL, 638 SNPs to 183 genes for B-cell 

ALL, 404 SNPs to 96 genes for hyperdiploid B-ALL, and 486 SNPs to 110 genes for TEL-
AML1 ALL, respectively.

Table 2 presents the comparisons between the top 10 KEGG pathways in different ALL 

disease subtypes. The focal adhesion pathway was common across all ALL disease 

subtypes. This biological pathway physically connects the extracellular matrix to the 

cytoskeleton and has long been speculated to mediate cell migration (37). The 

overrepresented biological pathways for childhood ALL and B-cell ALL are similar (i.e. 

axon guidance, leukocyte transendothelial migration, and focal adhesion). On the other 

hand, hyperdiploid B-ALL and TEL-AML1 ALL show common and distinct biological 

pathways compared to ALL. 60% of the overrepresented pathways in childhood 

hyperdiploid B-ALL demonstrating significance are different compared to ALL, including 

bacterial invasion of epithelial cells, and metabolic pathways. Overrepresented pathways in 

childhood TEL-AML1 demonstrating significance also show similarity with childhood ALL, 

including tight junction, axon guidance, and focal adhesion, and some differences, including 

cell adhesion molecules (CAMs), soluble N-ethylmaleimide-sensitive fusion protein receptor 

(SNARE) interactions in vesicular transport, and sulfur metabolism. Complete information 

on overrepresented KEGG pathways associated with different ALL disease subtypes (B-

ALL, hyperdiploid B-ALL and TEL-AML1 ALL) are shown in Supplementary Table S2-
S4.

Table 3 presents the top 10 ranked KEGG pathways enriched in childhood ALL which 

include cancer-related pathways (i.e. pathways related to cell proliferation, cell 

differentiation, and cell signaling). All ten pathways remained significant after correction for 

multiple tests (P<0.05). The top five KEGG pathways include axon guidance 

(PFDR=5.1×10−06), protein digestion and absorption (PFDR=7.2×10−04), melanogenesis 

(PFDR=0.001), leukocyte transendothelial migration (PFDR=0.002), and focal adhesion 

(PFDR=0.002). Among these pathways, leukocyte transendothelial migration pathway is 

essential for immune response and inflammatory reaction, which may be associated with 

leukemia pathogenesis. Notably, these pathways are connected to downstream PI3K, 

MAPK, or Wnt signaling pathway, and have been linked to multiple human malignancies 

(38-40).

To examine the cumulative effects of the most significant SNPs for each pathway associated 

gene, we calculated unweighted genetic scores by summing the number of risk alleles 

carried by each individual for each pathway. The risk of ALL increased as the number of 

risk alleles increased within each biological pathway (P for trend <0.05) (Table 3). For 

example, the odds of developing childhood ALL significantly increased with each additional 

risk allele for genes in the focal adhesion pathway (OR=1.96; 95% confidence interval: 

1.60-2.41).
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After identifying the enriched pathways in ALL, we further prioritized a gene list by 

applying data reduction and causal inference methods. Based on LASSO and TMLE results, 

we generated a list of candidate genes for each biological pathway, while accounting for 

confounding effects of other genes within the same pathway. Table 4 presents an example of 

TMLE results for the focal adhesion pathway. SNPs within VAV3, COL6A6, and COL5A1 
genes have much more significant P-values (P<0.05) while other SNPs are no longer 

significant, suggesting that the effect of the pathway may be driven by these three genes. By 

applying the same criteria, important genes for each identified pathways were selected as 

shown in Table 3 and Supplementary Table S5. For example, in the axon guidance 

pathway, variation within UNC5,EPHB1, and PLXNC1 may play a more central role in 

ALL disease development than other genes (Table 3). Similarly, in leukocyte 

transendothelial migration pathway, variation within VAV3, and CTNNA2 showed the 

strongest evidence of association (Table 3).

Finally, to compare the outcomes of the different pathway databases, genes were classified 

into pathways using the Gene Ontology and BioCarta databases for childhood ALL. The 

only significant BioCarta pathway associated with childhood ALL is the integrin signaling 

pathway, which is triggered when integrins in the cell membrane bind to extracellular matrix 

components (Supplementary Table S6). When the Gene Ontology term was investigated, 

there was significant evidence for enrichment associated with cell morphogenesis involved 

in neuron differentiation, cellular component morphogeneisis, and cell motion 

(Supplementary Table S7). The results derived using different pathway tools WebGestalt 

and DAVID are similar (Supplementary Table S8). Overall, we observed consistency 

between different pathway analysis tools when analyzing the same GWAS dataset.

DISCUSSION

This is the first study to show distinct biological pathways are overrepresented in different 

leukemia disease subtypes using a pathway analysis approach. We further applied TMLE, 

incorporating LASSO, to select variants of importance and to provide formal statistical 

inferences for each significantly enriched pathway in ALL. The results demonstrate that 

newly developed bioinformatics tools and causal inference methods may illuminate new and 

biologically relevant pathways and genes to improve current understanding of pathogenesis 

in childhood leukemia. Our pathway-based association analysis reveals strong connections 

between leukemia development, immune regulation and cancer-related pathways.

Pathway-based analyses provide a complementary approach to combine the effects of many 

loci; small contributions to overall disease susceptibility conferred by genes with weakly 

associated SNPs are otherwise missed by conventional GWAS analysis (19). By taking into 

account prior biological knowledge about genes and pathways, we may have a better chance 

to identify novel genes and biological mechanisms involved in disease pathogenesis (21). 

Additionally, as the most associated gene in a pathway might not be the best candidate for 

therapeutic intervention, targeting susceptibility pathways might also have clinical 

implications for finding additional drug targets. Several novel molecular targeted agents are 

under investigation for ALL treatment such as tyrosine kinase inhibitors, Fms-like tyrosine 
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kinase, NOTCH1 inhibitors, and mTOR inhibitors (40). The enriched pathways identified in 

this study may further guide sophisticated targeted treatment strategies for ALL.

Subtypes of childhood ALL exhibiting specific molecular characteristics are known to be 

important in risk stratification and treatment specification at diagnosis (41). However, little 

is known about the underlying mechanisms leading to different ALL disease subtypes with 

specific chromosome abnormalities. Our results suggest that hyperdiploidy B-ALL and 

TEL-AML ALL are associated with different biological pathways and perhaps different 

mechanisms for disease pathogenesis compared with childhood ALL. Pathways uniquely 

enriched in hyperdiploidy BALL include signal transduction and metabolism, while 

pathways involved with tissue and organ morphogenesis and the maintenance of cell and 

tissue structure and function were enriched in TEL-AML ALL. Interactions between 

transmembrane molecules lead to a direct or indirect control of cellular activities such as 

adhesion, proliferation, and apoptosis (42,43). Results from the current study underscore the 

need to consider specific biological pathways for ALL disease subtypes to further 

understand the disease etiology. The shared mechanism across different ALL disease 

subtypes, in this analysis, is focal adhesion, which consists of large protein complexes 

organized at the basal surface of cells. These proteins are indispensable during development, 

for maintenance of tissue architecture, and the induction of tissue repair, which have been 

indicated to involve with tumor formation and progression (43,44). Although a direct 

relationship between focal adhesion and leukemia has not been observed, elevated level of 

focal adhesion kinase has shown in various cancers, including thyroid, prostate, cervix, and 

colon cancer (37,45).

The use of high-resolution genomic profiling to characterize the genetic basis of 

leukemogensis has indicated that high frequency of recurrent somatic alternations in key 

signaling pathways, including B-cell development differentiation, the TP53/RB tumor 

suppressor pathway and Ras signaling (46). Many of the genes encoded proteins with key 

functions in lymphoid development, lymphoid signaling, transcriptional regulations or 

immune responses (46). The identified pathways that are overrepresented with childhood 

ALL in this study are consistent with current literature, mainly those associated with other 

malignances or cell communication and cell motility such as focal adhesion, tight junction, 

and regulation of actin cytoskeleton. All identified pathways are involved in different 

cellular processes that mediate signal transduction cascades leading to cell proliferation, cell 

migration, and cell adhesion. It has been demonstrated these pathways may contribute to the 

regulation of hematopoietic progenitor cells and are essential mediators for both immune 

and inflammatory responses (47,48). For example, regulation of actin cytoskeleton and tight 

junction pathway are related to cell migration, which are required for many biological 

processes, such as embryonic morphogenesis, immune surveillance, tissue repair and 

regeneration (44). Aberrant regulation of cell migration drives cancer progression and 

metastasis (49,49). Other identified cancer-related pathways, including downstream MAPK, 

PI3K-AKT, Jak-STAT, and Wnt signaling pathway, have been showed to be closely related 

to cancer progression (45,50). An important extension to the pathway analysis is highlighted 

the RAS/RAF/MAPK canonical signaling cascade as the common downstream pathway 

associated with childhood ALL. This cascade plays an essential role in transmitting 

extracellular signals from growth factors to promote the growth, proliferation, 
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differentiation, and survival of cells, and modification in its activity has been linked to 

multiple human malignancies (50,51).

In addition to identifying enriched pathways, the study further selected a list of candidate 

genes that can be used for future targeted sequencing and functional studies to assess the 

genetic effects on ALL susceptibility. The data reduction algorithm, LASSO, together with 

causal inference method, TMLE, produce a target list of candidate genes while accounting 

for the correlation between SNPs. Several genes have been identified through the approach, 

including COL6A6, COL5A1, DVL1, TCF7L1, MAP2K2, VAV3, CTNNA2, CDK6, 

RRAS2, and CAMK2D. The VAV3 gene shows up as the top-ranked gene in several 

pathways. The gene is recruited and activated on epidermal growth factor and insulin-like 

growth factor given its relation to regulating B-cell receptor signaling pathway and 

aberration of the gene may lead to B-cell malignancies (52,53). RRAS2, a member of the 

RAS superfamily of small GTP-binding proteins, encodes protein that associates with the 

plasma membrane and may function as a signal transducer. The results in RRAS knockouts 

indicate that this family gene may be associated with cell development and during antigen-

induced responses in T and B cells (54). TCF7L1 and DVL1 are members of the Wnt 
pathway (55). Aberrant activation of Wnt signaling pathway has been documented in various 

human cancers including myeloid leukemia (56). This signaling pathway ultimately activates 

other genes involved in B cell proliferation and differentiation and regulates the identity and 

function of epidermal and embryonic stem cells (55). Enhanced CDK6 expression has also 

been documented in lymphoma and leukemia (57, 58).

To our knowledge, this is the first report using pathway based analyses and newly developed 

causal approaches to analysis of GWAS data of childhood ALL. These identified pathways 

are presumed to play a role in disease pathogenesis through variations in specific genes that 

have not yet been identified. The results strongly suggest that development of ALL is 

modulated by several critical cellular processes, including cell growth, differentiation, 

survival, and migration. Another strength of our study is the detailed information on 

cytogenetic subtypes, which enables us to show distinct biological mechanisms are involved 

with different disease subtypes. Furthermore, we employed the TMLE method to prioritize 

genes that may serve integral functions for tumor development. All prioritized genes have 

been previously linked to human malignances but not ALL.

Our results should be interpreted in the context of several limitations. A limitation of the 

pathway analysis method is the requirement for specification of a P cutoff in defining the list 

of significantly associated SNPs. Clearly, the choice of this threshold could be arbitrary. We 

chose a relatively stringent cutoff P < 0.001to enable us to refine the gene sets and focus on 

SNPs most likely to represent a non-spurious association. Another important limitation of 

the pathway-based approach is the incomplete biological annotation of the human genome, 

and the complete functional characterization of many human genes is unknown. Moreover, 

susceptibility loci in intergenic regions were not included in this study. As a result, when 

using this approach, only a small portion of the human genome variation can be studied. In 

particular, the results may favor pathways with more complete gene information and large 

genes containing many SNPs are more likely to contain significant SNPs by chance alone. 

Additionally, there is no gold standard on pathway definition, and different databases have 
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different guidelines for their pathway construction and curation. Consequently, the gene 

content of pathways representing the same biological process may vary between different 

databases, and this may have some impact on the analyses. We aimed at minimizing this 

effect by selecting pathways from three commonly used resources.

In conclusion, pathway analysis findings are uniquely and naturally connected to the 

functional biology underlying childhood leukemia. The identification of cancer-related and 

inflammatory-related pathways supports the power of this methodological framework to 

highlight pathways with established relevance to childhood leukemia etiology. In addition, 

the results highlight several strong candidate genes for further investigations. Future studies 

are needed to confirm and sequence the identified genes in a larger Hispanic childhood 

leukemia dataset and in other ethnic patient populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Characteristics of Hispanic case-control study subjects, CCLS, 1995-2008

Cases, n (%) Controls, n (%)

Study subjects 323 (41.6) 454 (58.4)

Sex

Male 173 (53.6) 240 (52.9)

Female 150 (46.4) 214 (47.1)

Age

Mean age, y(SE) 5.3 (3.4) 5.3 (3.4)

Race

White/Caucasian 161 (49.8) 235 (51.8)

African American 14 (4.3) 15 (3.3)

Native American 0 (0) 4 (0.9)

Asian or Pacific Islander 26 (8.1) 40 (8.8)

Mixed or others 120 (37.2) 156 (34.4)

Cytogenetics (case-only)

B-cell ALL 297 (91.9) -

Hyperdiploid B-cell ALL (>50 chromosome) 97 (30.0) -

TEL-AML ALL 40 (8.1)
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Table 2

Comparisons between different ALL disease subtypes and associated biological pathways 
a

Pathway ALL B-ALL Hyperdiploid B-ALL TEL-AML ALL

Axon guidance √* √* √*

Protein digestion and absorption √* √* √*

Melanogenesis √* √*

Leukocyte transendothelial migration √* √*

Focal adhesion √* √* √* √*

Endometrial cancer √*

Glioma √*

Pathways in cancer √* √ √* √*

Tight junction √* √*

Regulation of actin cytoskeleton √* √

Gap junction √*

Histidine metabolism √*

Pancreatic secretion √*

Bacterial invasion of epithelial cells √*

Metabolic pathways √*

Small cell lung cancer √* √*

Amoebiasis √*

Valine, leucine and isoleucine degradation √*

Purine metabolism √

Sulfur metabolism √*

Cell adhesion molecules (CAMs) √*

ABC transporters √*

SNARE interactions in vesicular transport √*

Fat digestion and absorption √*

Non-small cell lung cancer √*

√top-10 ranking KEGG pathways associated with disease status

√*adjusted P value based on correction for False Discovery Rate (FDR) using Benjamini and Hochberg (BH) is smaller than 0.05.

a
SNPs which showed association with each childhood ALL disease subtypes (P < 0.001) and filtered by power calculation were included in this 

study. The analysis was limited to KEGG pathways where at least two genes were present in the submitted list and used a hypergeometric test to 
compare the submitted list to a reference of all human genes using WebGestalt v.2 (http://bioinfo.vanderbilt.edu/webgestalt/).
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Table 4

TMLE results suggest VAV3, COL6A6, and COL5A1 are important genes within the focal adhesion pathway

Genes SNPs Marginal P-value TMLE P-value

VAV3 rs17485868 4.22×10−5 1.31×10−18

VAV3 rs12126655 6.66×10−4 0.542

VAV3 rs10494081 7.75×10−5 0.121

COL6A6 rs16830219 3.66×10−4 8.63×10−17

TLN1 rs2295795 3.71×10−4 0.017

COL5A1 rs12554098 8.73×10−4 5.96×10−16

COL4A2 rs9555707 8.64×10−5 0.089
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