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Abstract 

Social motor coordination remains a relatively overlooked 

dimension of social behavior in children with ASD. One 

reason for the lack of research is that the motion tracking 

equipment historically used for recording body movements of 

children during social interaction has been very costly, as well 

as cumbersome and impractical. Here we examined whether 

two low-cost motion-tracking options can be employed to 

investigate social motor coordination in children with ASD. 

Of particular interest was the degree to which these low-cost 

methods of motion tracking could be used to capture and 

index the coordination dynamics that occurred between a 

child and an experimenter in comparison to a much more 

expensive, laboratory grade, motion tracking system. Overall, 

the results found the expensive system to be better than the 

low-cost methods, but that the latter two are still able to index 

differences in social motor coordination between typically 

developing and ASD children. 

Keywords: Cognitive science, Psychology, action, motor 

control. 
 

Introduction 
Given the importance of social motor coordination for 

effective social interaction, several researchers have 

hypothesized that deficits in social movement coordination 

may play an important role in the interpersonal and social 

cognitive deficits that characterize autism spectrum disorder 

(ASD; Fitzpatrick et al., 2013; Marsh et al., 2009). Social 

motor coordination, however, remains a relatively 

overlooked dimension of social behavior in children with 

ASD (as well as for children with developmental delays in 

general). One reason for the lack of research is that, 

historically, the motion tracking equipment required to 

record and objectively measure the limb and body 

movements of children (or even adults) during social 

interaction has been very costly, as well as cumbersome and 

impractical within a non-clinical or non-laboratory setting.  

Thankfully, over the last 5 years an increasing number of 

low-cost motion-tracking systems (e.g., Microsoft Kinect, 

Microsoft LTD), or alternative video-based methods (e.g., 

pixel change analysis) of motion capture have become 

available to researchers and clinicians interested in 

investigating the behavioral dynamics of human motor 

control and social motor coordination. In addition to costing 

only a fraction of the price of their high-end laboratory 

standard counterparts, these systems are easy to replace, 

highly portable and can be used almost anywhere (i.e., in 

both clinical/laboratory and non-clinical/non-laboratory 

settings). Furthermore, they typically come with companion 

open-source software or software development kits that 

enable researchers to develop software applications, testing 

protocols, and data analysis systems that meet the specific 

needs of the researcher or research population in question.  

The degree to which these systems are able to replace 

more expensive laboratory grade motion tracking systems 

for research on social motor coordination in children and 

adult populations, including research on social motor 

coordination in children with ASD, is therefore an important 

question that needs to be addressed. To explicate the 

viability of these low-cost systems for investigating social 

motor coordination in children with ASD, we conducted a 

study comparing social motor control in typically 

developing children and children with ASD using three 

methods of motion capture: (1) a high-end laboratory grade 

Polhemus Latus magnetic motion tracking system, (2) the 

Microsoft Kinect motion tracking sensor, which is a low-

cost optical tracking system; and (3) a video recording 

based pixel change method of motion extraction. Below, we 

provide a brief description of these different methods and a 

detailed comparison of how these methods of motion 

capture faired with respect to determining the stability and 

patterning of the social coordination that occurred across a 

range of interpersonal motor tasks. Of particular interest was 

how well the low-cost Microsoft Kinect and video pixel 
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change methods performed in comparison to the more 

expensive, laboratory grade, Polhemus Latus system. 

Polhemus Liberty Latus Wireless System. This motion 

tracking system is a high-end, laboratory-grade wireless 

motion tracking system developed by Polhemus LTD 

(Vermont, USA) that uses an electromagnetic field to map 

the position (Euclidian x, y and z coordinates) and rotation 

(pitch, yaw, roll) of 1 to 12 small 79.4 gram 

sensors/markers. The system tracks these 6-Degrees-Of-

Freedom sensors within an electromagnetic capture volume 

that is defined by a map of 1 to 16 receptors. Each receptor 

has an optimal diametric capture volume of 6 feet and 

multiple sensors can be aligned by the user 

(experimenter/clinician) to meet the spatial demands of the 

behavior(s) performed or recording volume required. The 

reliability and resolution of this equipment is excellent, with 

a sampling rate of 188 Hz or 94 Hz (i.e., samples per 

second) and a positional and rotational resolution of 

approximately 0.25 cm and 0.5° (if a marker/sensor is no 

more than 4 feet from a receptor). The system is easy to use 

with multiple participants and unlike optical tracking 

systems, the Polhemus Latus is not susceptible to occlusion 

and can therefore be used for almost any motor task and in 

almost any environment. The system costs approximately 

$12,500.00 USD for a 1 marker/1 receptor system and 

$60,000.00 USD for a 12 marker/16 receptor system. 

Microsoft Kinect. The Kinect sensor (version 1)
1
 combines 

a specialized video camera and an infrared depth sensing 

emitter to optically track the Euclidian x, y and z location 

(in coordinates relative to sensor placement) of up to 21 

skeletal/body joints (i.e., head, left/right shoulders, elbows, 

wrists, the spine, left/right hips, knees, feet, etc.). The 

device was originally developed by Microsoft for their 

Xbox gaming console, but can also be purchased for use on 

any PC or laptop computer running a Windows 7 operating 

system or above. The research version costs approximately 

$225.00 USD and is capable of capturing skeletal/joint data 

and color BMP/video images at a maximum rate of 30 Hz 

(i.e., 30 frames per second), with a resolution of 1280x960 

pixels. A free C/C++ and C# SDK is available directly from 

Microsoft and can be used to develop non-commercial 

applications and recording software. Because it is an optical 

based motion tracking system, it is completely wireless, and 

does not require any sensors to be placed on the body of the 

individual being tracked (which makes it especially useful 

when collecting data from children with ASD). However, 

since the skeletal data is based on a combined infrared/video 

process of depth and a machine learning algorithm trained 

extensively with the use of synthetic depth images for its 

                                                           
1 Since completing this study, Microsoft released a new version of 

the Kinect Sensor (i.e., version 2). Although this new version has 

improved voice and person recognition features, the temporal and 

spatial resolution of skeletal (motion capture) tracking has 

remained the same. Thus the current results should generalize to 

the Kinect Sensor Version 2.      

inference of motion tracking (Shotton et al., 2011) it 

requires a constant line of sight of the limbs/bodies being 

tracked and is especially susceptible to occlusion. It also has 

a high noise to signal ratio (relative to the Polhemus Latus 

system for example), such that it is typically unable to 

reliably capture small or subtle changes in limb or body 

position, especially when participants are wearing loose 

clothing or the system is used in a high UV lighted 

environment. 

Video Pixel change Motion Extraction. This method of 

motion analysis involves calculating the amount of pixel 

change between adjacent video frames, which can be taken 

to index the amount of activity of a participant if they are 

the only source of movement in that part of the frame 

(Kupper et al. 2010; Paxton & Dale, 2013; Schmidt et al., 

2012). This calculation process can be automated using 

simple video analysis routines written in Matlab 

(Mathworks, Inc., Natick, MA) or similar data analysis and 

scripting software, and can even be employed to extract the 

global movement of two (or more) individuals so long as 

their movements or activity are within the same recorded 

frame. That is, video frames can be cropped to include the 

movements of only one person (i.e., the left half or right half 

of the screen) and also the absolute difference of pixel 

change between the adjacent frames of the video when 

calculated to form an image-change time series for each 

participant in the interaction. 
 

Materials and Method 
Participants 

Thirty eight children (7 female) between the ages of 6 and 

10 were recruited to participate in the study. Nineteen 

typically developing children and nineteen children who had 

previously been diagnosed with ASD took part in the study.  

Equipment Setup 
The study was conducted in a 10 x 12 foot laboratory 

room at Cincinnati Children’s Hospital Medical Center 

(University of Cincinnati, Cincinnati, OH). Children came 

into the laboratory room and were asked to sit at a 2 foot 

wide x 4 foot long x 2 foot high table next to the seated 

experimenter. Four Polhemus Latus receptors were attached 

to the underside of the table top, one in each corner, to 

create a 10 x 12 x 8 foot capture volume around the table. 

As soon as the child was seated, the four Polhemus Liberty 

Latus wireless markers/sensors were placed in wristbands 

and slipped over the child’s and experimenter’s wrists (one 

marker on each wrist of the child and experimenter). The 

motion of the Polhemus sensors was recorded at 94 Hz on a 

PC computer using a custom software application written by 

the authors using the Polhemus Latus C/C++ SDK Library.   

The Microsoft Kinect sensor was placed at a height of 1.5 

m, 3 m away from corner of the table top closest to the 

participant and experimenter at approximately a 45 degree 

angle. A custom software application (www.xkiwilabs.com) 

using the free Windows Kinect SDK version 1.5 (Microsoft 

LTD) was used to record video images and the head, spine 
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and upper body skeletal data (11 skeletal points in total; no 

hip, leg or foot data was recorded) of the seated child and 

experimenter at a sample rate of 30 Hz.  

Coordination Tasks 
The data presented here was part of a bigger project, in 

which participants performed a large range of motor, social 

and cognitive tasks. Here, we selected three social motor 

coordination tasks that were performed by all of the 

children. The first coordination task was a sequence of 

tapping movements, which involved children using a finger 

from one hand to tap/hit three drum-like cylinders from left 

to right in synchrony with the experimenter. Children 

repeated this left-to right drumming sequence six times with 

the experimenter in a continuous manner. The second task 

involved a sequence of pointing movements, in which 

children were required to point at approximately shoulder 

height to the right, center and left of their body midline in 

synchrony with the experimenter. Again, children repeated 

this pointing sequence six times with the experimenter in a 

continuous manner. The third task was an interpersonal 

hand clapping game (pat-a-cake), in which children 

completed a simple repetitive sequence of clapping their 

hands together and then with the experimenter. The hand 

clapping game was completed twice, with each sequence 

involving six consecutive intrapersonal and interpersonal 

clapping movements. The data presented here is only the 

second hand clapping trial. All participants were asked to do 

these three tasks in synchrony with the seated experimenter.  

Motion Data Reduction 
All the data extraction and analysis methods presented 

below were completed using custom MATLAB 

(Mathworks, Inc., Natick, MA) applications developed by 

the authors (download from www.xkiwilabs.com). 

Polhmeus Latus. The x-plane (left-right), y-plane (forward-

back) and z-plane (up-down) positional coordinates of the 

sensors placed on the wrists of the experimenter and child 

were recorded for each task. To best determine the stability 

and pattering of the behavioral coordination that occurred 

between the child and experimenter we first isolated the 

primary plane of motion for each task. Since the primary 

plane of motion for the tapping and pointing tasks was in 

the left-right plane, the x-plane movement time-series were 

used to assess the behavioral coordination that occurred for 

these two tasks. For the hand clapping game, the largest 

amplitude of movement was in the up-down, z-plane, with 

the intrapersonal clapping events occurring at a lower height 

than the interpersonal clap events. Accordingly, this plane 

of motion was employed to assess the behavioral 

coordination that occurred for this task
2
.  

Microsoft Kinect. The data recorded form the Kinect was 

extracted for analysis using two different methods. The first 

method was comparable to the method used for the 

Polhemus Latus system described in the preceding section. 

                                                           
2 An analysis of secondary planes of motion produced results that 

were consistent with those reported here. 

That is, the child’s and experimenter’s forearm movements 

in the x-, y-, and z-planes were extracted from the skeletal 

tracker for the tapping, pointing, and hand clapping tasks, 

and an additive time-series was created.  

The second method involved creating a unified 1-

dimensional movement time-series for both the child and 

experimenter from the x-, y-, and z-plane motion of all of the 

upper-body joints recorded by the Kinect sensor (i.e., the 

spine, head, and the left and right shoulder, elbow, hand, 

and wrist). This was achieved by simply creating a vector 

based on the sum of the values of each movement/joint 

dimension at each time-step. This method of normalization 

was chosen in order to produce a ‘collective’ whole body 

motion time-series for the child and experimenter that 

would be similar to the collective motion time-series 

obtained from the pixel change method. 

Pixel change Motion Time-series. Recall that the amount 

of pixel change within a video frame can be taken to index 

the amount of activity of a participant if they are the only 

source of movement in that part of the frame. To calculate 

the absolute difference of pixel change between adjacent 

video frames for both the child and the experimenter, we 

first split all of the video images recorded using the Kinect 

sensor down the middle into a child half and an 

experimenter half and then extracted image change time-

series from these separate video frame series. 

Data Analyses 
Prior to analyzing all of the pre- and post- non-task 

relevant movement transient periods were cropped from the 

time-series. These final motion time-series were then low-

passed filtered using 10Hz 4
th

 order Butterworth filter.  

To determine the stability of the social motor coordination 

that occurred for each task and condition, two standard 

measures of interpersonal coordination were employed: 

cross-spectral coherence and distribution of relative phase 

(see Schmidt & Richardson, 2008 for a review).  

Cross-spectral coherence. This measure, commonly 

referred to as coherence, evaluated the coordination that 

occurred between the child and experimenter by estimating 

the correlation between their movements at their peak 

frequencies. Coherence measures the degree of coordination 

between two movement time-series on a scale from 0 to 1. 

A coherence of 1 reflects perfect correlation of the 

movements (perfect coordination/synchrony) and 0 reflects 

no correlation (no coordination/synchrony).  

Distribution of relative phase angles (DRP). This measure 

evaluated the concentration of relative phase angles between 

the movements of the child and experimenter (i.e., the 

relative space-time angular location of the movements of the 

child and experimenter) across nine 20° regions of relative 

phase (0–20°, 21–40°, 41–60°, 61–80°, 81–100°, 101–120°, 

121–140°, 141–160°, 161–180°). To determine these 

distributions we computed the continuous relative phase of 

the two time-series between -180° and 180° using the 

Hilbert transform (Pikovsky, Rosenblum, & Kurths, 2001). 

We then computed the percentage of occurrence of the 
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absolute value of the relative phase angles across the nine 

20° regions of relative phase from 0° to 180°. Previous 

research has demonstrated that stable social motor 

coordination is characterized by a concentration of relative 

phase angles around 0° and 180° (Schmidt & Richardson, 

2008). 

Results 

Object tapping task 
Wrist movement. A one-way ANOVA performed on 

coherence for the Polhemus Latus data showed that the TD 

children had significantly higher measures of coherence (M 

= 0.81, SD = 0.11) than the children with ASD (M = 0.65, 

SD = 0.25; F(1, 36) = 5.97, p = .02; see Figure 1a). 

Additionally, the 9 x 2 mixed ANOVA conducted on the 

DRP revealed a significant main effect of phase region (F(8, 

288) = 237.36, p < .01) and a significant phase region x 

diagnosis interaction (F(8, 288) = 6.67, p < .01). Simple 

effects revealed that TD children had a significantly higher 

mean occurrence at 0̊ (M = 50.6, SD = 11.01) than children 

with ASD (M = 37.92, SD = 15.38; t(36) = -2.92, p < .01; 

see Figure 1b). As expected, both groups of children spent 

the majority of the trial in the 0̊ phase region, also referred 

to as in-phase. On the other hand, the analysis of the Kinect 

forearm time-series showed no significant differences in 

coherence between the TD and ASD groups (F(1, 36) = 

0.13, p = .72; see Figure 1a), nor any effects for  DRP (see 

Figure 1c).  

 
Figure 1. (a) Mean coherence as a function of motion capture 

system and group for the object tapping task. Distribution of 

relative phase for the (b) Polhemus Latus, (c) Kinect: forearm 

movement, (d) Kinect whole body vector, and (e) video methods. 

Error bars are standard errors. 

 

Whole body movement. The one way ANOVA performed 

on the Kinect whole body vector movement time-series also 

revealed no significant differences in mean coherence 

between the groups (F(1, 36) = 0.9, p = .33; see Figure 1a). 

However, the 9 x 2 mixed ANOVA performed on DRP did 

reveal a significant main effect of phase region (F(8, 288) = 

11.76, p < .01). Planned t-tests showed that participants 

spent significantly more time in the 180̊ phase region (M = 

14.23, SD = 7.49) than in 0̊ phase region (M = 6.83, SD = 

4.50; t(37) = -4.17, p < .01; see Figure 1d). The analysis of 

the Pixel change motion time-series showed no significant 

differences in coherence between the TD and ASD groups 

(F(1, 36) = 2.11, p = .16; see Figure 1a). The analysis of 

DRP, however, did reveal a significant main effect of phase 

region (F(8, 288) = 51.30, p < .01) and a significant phase 

region x diagnosis interaction (F(8, 288) = 5.96, p < .01). 

Simple effects revealed that TD children had a significantly 

higher mean occurrence at 0̊ (M = 19.17, SD = 5.65) than 

children with ASD (M = 5.22, SD = 15.38; t(36) = -2.17, p = 

.04; see Figure 1e). As expected, both groups of children 

spent the majority of the trial in the 0̊ phase region, also 

referred to as in-phase.  

Pointing task 
Wrist movement. The analysis of the Polhemus Latus data 

revealed a significant difference in coherence between the 

ASD and TD groups (F(1, 36) = 4.18, p = .05), such that 

children with ASD showed significantly less cross-

correlation coherence (M = 0.78, SD = 0.21) than the TD 

children (M = 0.89, SD = 0.13; see Figure 2a). With regard 

to the analysis of DRP, there was a significant main effect 

of phase region distribution (F(8, 288) = 235.43, p < .01) 

and a significant phase region by diagnosis interaction (F(8, 

288) = 5.14, p < .01). Simple effect analyses showed that 

the mean occurrence of a 0̊ relative phase was significantly 

higher for the children in the TD group (M = 63.82, SD = 

18.88) than the ASD group (M = 49.69, SD = 16.51; t(36) = 

-2.46, p = .02; see Figure 2b). The analysis of Kinect 

forearm data, however, revealed no significant differences 

in mean coherence between the groups (F(1, 36) = 0.09, p = 

.77; see Figure 2a). There was, however, a significant main 

effect of phase region (F(8, 288) = 6.68, p < .01). Planned t-

tests showed that participants spent significantly more time 

in the 0̊ phase region (M = 15.08, SD = 8.22) than the 180̊ 

phase region (M = 8.26, SD = 4.79; t(37) = 3.53, p < .01; see 

Figure 2c).  

Whole body movements. The analysis of the Kinect whole 

body vector movement time-series revealed a significant 

difference in coherence between the ASD and TD groups 

(F(1, 36) = 4.35, p = .04), such that children with ASD 

showed significantly less cross-correlation coherence (M = 

0.33, SD = 0.19) than the TD children (M = 0.48, SD = 0.25; 

see Figure 2a). The analysis of DRP revealed a significant 
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main effect of phase region (F(8, 288) = 18.02, p < .01). 

Planned t-tests showed that participants spent significantly 

more time in the 0̊ phase region (M = 15.66, SD = 6.85) than 

the 180 ̊phase region (M = 7.33, SD = 3.43; t(37) = 5.63, p < 

.01; see Figure 2d). On the other hand, the analysis 

performed on the Pixel change motion time-series showed 

no significant differences in coherence between the TD and 

ASD groups (F(1, 36) = 0.03, p = .86; see Figure 2a). 

However, there was a significant main effect of phase 

region (F(8, 288) = 143.94, p < .01.) Planned t-tests showed 

that participants spent significantly more time in the 0̊ phase 

region (M = 25.57, SD = 7.32) than the 180̊ phase region (M 

= 3.71, SD = 2.18; t(37) = 15.48, p < .01; see Figure 2e).  

 Figure 2. (a) Mean coherence as a function of motion capture 

system and group for the pointing task.  Distribution of relative 

phase for the (b) Polhemus Latus, (c) Kinect: forearm movement, 

(d) Kinect whole body vector, and (e) video methods. Error bars 

are standard errors of the mean. 

 

Interpersonal Hand Clapping Game 
Wrist movement. Analysis of the Polhemus Latus time-

series data showed that participants in the ASD group had 

significantly lower cross-spectral coherence (M = 0.86, SD 

= 0.13) than those in the TD group (M = 0.93, SD = 0.03; 

F(1, 35) = 6.18, p = .02; see Figure 3a). There was also a 

significant main effect of phase region (F(8, 280) = 210.92, 

p < .01) and a significant phase region x diagnosis 

interaction (F(8, 280) = 12.79, p < .01). Simple effects 

analyses showed a significantly lower occurrence of 

coordination for TD children in the 0̊ region (M = 0.06, SD 

= 0.18) than children in the ASD group (M = 0.96, SD = 

1.61; t(35) = 2.36, p =.02). Additionally, the children in the 

TD group had a higher mean occurrence in the 180̊ phase 

region (M = 59.79, SD = 13.03) than those in the ASD 

group (M = 39.08, SD = 18.12; t(35) = -3.97, p < .01; see 

Figure 3b). The analysis performed on the Kinect forearm 

time-series also revealed a significant difference in 

coherence between the ASD and TD groups (F(1, 32) = 

13.37, p < .01), such that children with ASD showed 

significantly less cross-correlation coherence (M = 0.40, SD 

= 0.28) than the TD children (M = 0.71, SD = 0.20; see 

Figure 3a). There was also a significant main effect of phase 

region (F(8, 256) = 40.96, p < .01) and a significant phase 

region by diagnosis interaction (F(8, 256) = 12.06, p < .01). 

Simple effects analyses showed a significantly lower 

occurrence for TD children in the 0̊ region (M = 3.00, SD = 

2.91) than children in the ASD group (M = 7.85, SD = 5.31; 

t(32) = 3.29, p < .01). Additionally, the children in the TD 

group had a higher mean occurrence in the 180̊ phase region 

(M = 27.76, SD = 12.16) than those in the ASD group (M = 

15.37, SD = 9.32; t(32) = -3.34, p < .01; see Figure 3c).  

 
Figure 3. (a) Mean coherence as a function of motion capture 

system and group for the hand clapping game. Distribution of 

relative phase for the (b) Polhemus Latus, (c) Kinect: forearm 

movement, and (d) Kinect whole body vector methods. Error bars 

represent standard errors of the mean. 
 

Whole body movement. The analysis performed on the 

Kinect whole body vector time-series for the hand clapping 

game revealed a significant difference in coherence between 

the ASD and TD groups (F(1, 33) = 18.22, p < .01), such 

that children with ASD showed significantly less cross-

correlation coherence (M = 0.46, SD = 0.25) than the TD 

children (M = 0.78, SD = 0.19; see Figure 3a). There was 

also a significant main effect of phase region (F(8, 264) = 

31.52, p < .01) and a significant phase region by diagnosis 

interaction (F(8, 264) = 10.07, p < .01). Simple effects 

analyses showed a significantly lower occurrence for TD 

children in the 0̊ region (M = 3.51, SD = 4.57) than children 

in the ASD group (M = 9.14, SD = 7.22; t(33) = 2.74, p = 
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.01). Additionally, the children in the TD group had a higher 

mean occurrence in the 180̊ phase region (M = 27.72, SD = 

11.39) than those in the ASD group (M = 16.61, SD = 27.72; 

t(33) = -3.16, p < .01; see Figure 3d). The video pixel 

change analysis could not be performed in this task because 

the movements of the participant and experimenter no 

longer remained in separate sections of the frame 

throughout the trial.  
 

Discussion 
 The goal of the current paper was to explicate the viability 

of employing low-cost motion tracking systems for 

investigating social motor coordination in general and in 

children with ASD specifically. Of particular interest was 

how well the low-cost Microsoft Kinect and video pixel 

change methods performed in comparison to the Polhemus 

Latus system and the degree to which these differing 

methods could be employed to differentiate the coordination 

that occurred for TD and ASD participants. 

As expected and consistent with other recent findings 

(Fitzpatrick et al, 2013; Marsh et al., 2009), ASD 

participants exhibited a less stable pattern of social motor 

coordination than TD participants. This difference was 

apparent in all three social motor tasks, but perhaps most 

pronounced for the interpersonal hand clapping game. With 

regard to the questions of whether the different motion 

capture systems were able to capture data that revealed this 

difference, the current findings demonstrated that the 

Polhemus Latus system did in fact provide a finer-grained 

measure of limb movement than the Kinect and video-based 

methods and was more robust in differentiating the groups 

in patterning and stability of the coordination. This suggests 

that the Polhemus Latus system may be superior for tasks 

that predominantly involve limb effector movements. The 

Kinect wrist movement analysis did, however, differentiate 

the groups in the hand clapping game. One limitation of the 

Polhemus is that the wireless sensors must be attached to the 

limbs, which can be problematic for certain participants. In 

addition, the system’s reliance on magnetic signals makes 

its use incompatible with some other systems (e.g., EEG).  
An analysis of the whole body movements using the 

Kinect and pixel change indicated these methods were able 

to differentiate the stability of TD and ASD coordination in 

some instances. For example, the pixel change data did 

reveal a significant difference in the distribution of relative 

phase for the tapping and pointing tasks. The whole-body 

Kinect analysis revealed significant group differences in 

coherence and the distribution of relative phase for both the 

pointing and hand clapping tasks. However, due to the 

reliance on the machine learning algorithm built into the 

Kinect system, the results presented currently are 

preliminary. A more rigorous test would be to record 

participants’ movements with the Kinect while recording 

their movement with Polhemus sensors that correspond to 

the same skeletal markers in the Kinect in order to measure 

if the differences observed here are due to errors in the 

skeletal reconstruction or simple occlusion.   
What is apparent, however, is that when employing these 

low-cost motion-tracking methods, particular care needs to 

be taken when designing the laboratory environment and the 

interaction tasks to be employed. In general the current 

results demonstrate that for both the Kinect sensor and pixel 

change methods tasks with larger scale movements provide 

the most accurate and reliable results. Of particular 

importance when using the Kinect is to choose tasks that 

have minimal occlusion issues, for example when the arms 

are not placed in front of the torso and when no props are 

used. When using the pixel change method the movements 

of the two people have to be in separate parts of the video 

frame and may be best-suited to tasks involving less 

stereotyped movement. More generally, the current study 

also validates previous research (Fitzpatrick et al., 2013) by 

demonstrating that children diagnosed with ASD show 

different social motor coordination patterns when compared 

to their TD counterparts. The low-cost and completely 

wireless motion capture systems compared here can 

therefore provide researchers with new tools to explore 

social motor coordination and the role it plays not only in 

ASD, but also in other developmental delays disorders and 

social functioning pathologies (i.e., schizophrenia).   
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