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Abstract

Our decisions are accompanied by a sense of confidence, a
metacognitive assessment of how likely those decisions are
to be correct, but the mechanisms that underlie this capac-
ity remain poorly understood. A number of recent behav-
ioral and neural data have suggested that decisions are made
in accord with an optimal ‘balance-of-evidence’ rule, whereas
confidence is estimated using a heuristic ‘response-congruent-
evidence’ rule. We developed a deep neural network model
optimized to classify images and predict its own likelihood of
being correct, and found that this model naturally accounts
for some of the key behavioral dissociations between deci-
sions and confidence ratings. Further investigation revealed
that neither the ‘balance-of-evidence’ rule nor the ‘response-
congruent-evidence’ rule fully characterized the strategy that
the model learned. We argue instead that the model learns
to flexibly approximate the distribution of its training data,
and, analogously, that apparently suboptimal features of hu-
man confidence ratings may arise from optimization for the
statistics of naturalistic settings.

Keywords: confidence; metacognition; deep neural networks

Introduction
When faced with a decision between multiple options, we are
capable of estimating the likelihood that our decision will be
correct. This capacity for metacognition has been studied
in domains ranging from perceptual decisions (Zylberberg,
Barttfeld, & Sigman, 2012) to economic choice (De Martino,
Fleming, Garrett, & Dolan, 2013), and has been shown to
have important consequences, such as deciding whether to
gather more information before making a decision (Balsdon,
Wyart, & Mamassian, 2020), or deciding how much to wager
on the outcome of a decision (Persaud, McLeod, & Cowey,
2007). What computations support this sense of confidence?

One proposal is that confidence ratings are generated by
optimally predicting the probability that a decision will be
correct (Kiani & Shadlen, 2009; Sanders, Hangya, & Kepecs,
2016). An alternative view is that, whereas decisions are
made using a ‘balance-of-evidence’ (BE) rule that incorpo-
rates both evidence for and against the decision (as is op-
timal under certain detection-theoretic assumptions), confi-
dence ratings are generated using a simpler heuristic strat-
egy that only considers the ‘response-congruent-evidence’
(RCE). That is, after weighing the evidence and making a
decision, only the evidence in favor of the decision that was

made is taken into account when generating confidence rat-
ings. This alternative view is supported by a range of both
behavioral and neural findings (Koizumi, Maniscalco, & Lau,
2015; Maniscalco, Peters, & Lau, 2016; Peters et al., 2017;
Zylberberg et al., 2012), and also has parallels to the phe-
nomenon of ‘confirmation bias’, in which reasoners tend
to overweight evidence in favor of the views they already
hold (Nickerson, 1998).

These findings raise the question of why confidence would
be computed according to an apparently suboptimal heuris-
tic. This is especially puzzling given findings suggesting
that decisions themselves are made in accord with the BE
rule (Peters et al., 2017), because it suggests that the evidence
against one’s choice is available in the decision-making pro-
cess, but simply not incorporated into one’s sense of confi-
dence. One proposed answer to this question focuses on the
detection-theoretic assumptions underlying the apparent sub-
optimality of the RCE approach. According to these assump-
tions, decisions are made on the basis of evidence sampled
from distributions with equal variance in both the target di-
mension (evidence for the correct answer) and non-target di-
mensions (evidence for incorrect answers). However, when
there is greater variance in the target dimension than the non-
target dimensions, as is thought to be the case in more natural-
istic settings (Green & Swets, 1966), it has been shown that
the RCE rule can actually outperform the BE rule in terms
of metacognitive sensitivity (the ability to discriminate cor-
rect from incorrect decisions). In other words, confidence
ratings might be made in accord with an RCE rule because
doing so is actually useful in naturalistic settings, even if it
is suboptimal in the context of certain controlled laboratory
experiments (Miyoshi & Lau, 2020).

In this work, we extend this perspective, by asking whether
deep neural networks, optimized to perform the tasks of ob-
ject recognition and generating confidence ratings directly
from high-dimensional naturalistic data, will display simi-
lar behavioral phenomena as those taken to support the RCE
view. Our key contributions are: 1) we show that previously
observed dissociations between decisions and confidence are
naturally accounted for when networks are trained over a
wide range of conditions, but not when networks are trained
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directly on the narrow conditions that characterize controlled
laboratory experiments, and 2) we show that these dissoci-
ations, while consistent with an RCE rule for rating confi-
dence, can also be explained as arising from a more flexible
and complex strategy. We argue that this latter account is best
understood in terms of optimization for the statistics of natu-
ralistic settings, rather than in terms of simple decision rules.

Methods
To train neural networks to perform both object recogni-
tion and generate confidence ratings over a range of condi-
tions, we modified common machine learning image datasets
(MNIST and CIFAR10) by manipulating image contrast and
incorporating noise. Specifically, during training, we scaled
each image by a contrast factor µ (sampled from a uniform
distribution) and added gaussian noise with variance σ (also
sampled from a uniform distribution) to each pixel. The range
of conditions generated by this procedure is illustrated for the
MNIST dataset in Figure 1. Our standard training regime in-
volved variability in both µ and σ. These parameters were
also modified to create alternative training and test regimes
(as described in subsequent sections). For simulations with
MNIST and CIFAR10, all training and testing was performed
using images from the training and test sets respectively.

Figure 1: Training regime incorporating a range of contrast
(µ) and noise (σ) levels.

We evaluated two separate architectures, but they both con-
formed to the same general schematic, illustrated in Figure 2.
First, each image x was passed through a multilayer encoder1

fθ (with parameters θ) to generate a low-dimensional repre-
sentation z2. Then, this low-dimensional representation was
passed through two separate output layers. One output layer,
gφclass (with parameters φclass), was trained to classify the im-
age (i.e. to generate a prediction ŷ of the true class y). The
other output layer, gφcon f (with separate parameters φcon f ),

1In our default architecture, fθ consisted of 3 convolutional lay-
ers followed by 3 fully-connected layers. In experiments on CI-
FAR10 we used an architecture in which fθ consisted of a 56-layer
deep residual network (resnet) based on He et al. (2016).

2All experiments used a dimensionality of dz = 100.

was trained to predict p(ŷ = y), the probability that the clas-
sification response was correct (we first evaluated whether the
classification response was correct, and then treated this as a
binary target for supervised learning). The entire network, in-
cluding the multilayer encoder function, was trained through
backpropagation using the sum of these two loss functions.

DNN encoder

Output layers

Decision 

Confidence

Figure 2: Model diagram. Images (x) were passed through
a deep neural network (DNN) encoder ( fθ) to generate low-
dimensional representations (z), which were then passed
through two separate output layers (gφclass and gφcon f ) to
generate classification responses (ŷ) and confidence ratings
(p(ŷ = y)).

To evaluate whether our findings would generalize to a
more realistic training signal, we also trained a version of
the model with reinforcement learning (RL). Specifically, we
used an actor-critic method (Sutton, Barto, et al., 1998) to
train networks to discriminate the orientation (left vs. right)
of a noisy Gabor patch (with varying contrast and noise lev-
els). The networks had 3 actions available to them: ‘left’,
‘right’, and an ‘opt-out’ action that resulted in a guaranteed,
but smaller, reward. The opt-out rate can be used as a proxy
for (inverse) confidence, since the model should only select
the opt-out action when it is not confident about its response.

We trained 100 separate networks (with different random
initializations) for each experiment. We plot the average per-
formance of these networks± the standard error of the mean,
and use the following conventions to indicate statistically sig-
nificant differences: ‘ns’, p > 0.05; ‘****’, p < 0.0001.

Results
The Positive Evidence Bias
Many studies have shown that human confidence ratings are
characterized by a positive evidence (PE) bias (Koizumi et al.,
2015; Zylberberg et al., 2012). To elicit this bias, participants
are typically presented with two conditions (the ‘low PE’ and
‘high PE’ conditions, illustrated in Figure 3a) in which one
condition has a greater amount of ‘positive evidence’, the ev-
idence in favor of making a correct decision (corresponding to
the contrast µ in our implementation). Importantly, the signal-
to-noise ratio is balanced between these conditions, such that
the high PE condition also contains more noise. The PE bias
refers to the tendency to be more confident in the high vs. low
PE conditions, despite balanced decision accuracy. This bias
has been taken as a key piece of evidence in favor of the RCE
model.
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Low PE High PE

(a) Low vs. high PE conditions
(b) MNIST (c) CIFAR10 (d) RL

Figure 3: Human confidence ratings display a positive evidence (PE) bias: greater confidence for the high vs. low PE conditions
(a) despite balanced signal-to-noise ratio and balanced decision accuracy. This bias naturally emerges in task-optimized neural
networks across multiple datasets, architectures, and learning paradigms (b-d).

We first asked whether task-optimized deep neural net-
works, when trained over a range of contrast and noise lev-
els, also display the PE bias. We did so by identifying two
conditions (via grid search) with balanced threshold-level de-
cision accuracy (55% for the 10-class MNIST and CIFAR10
datasets and 75% for the 2-choice tilted gabor RL task3), but
with differing levels of both contrast (µ) and noise (σ). We
found, across multiple architectures, datasets, and learning
paradigms (supervised vs. RL), that the PE bias naturally
emerged from this framework. Figure 3b shows the presence
of the PE bias for models trained on the MNIST handwrit-
ten digits dataset. Figure 3c shows the presence of the PE
bias for a significantly deeper architecture4 trained on the CI-
FAR10 object recognition dataset (involving color images of
common objects such as cars, dogs, etc.). Figure 3d shows
the presence of the PE bias for networks trained with RL to
perform a tilted Gabor discrimination task. The opt-out rate,
which is commonly used as a proxy for confidence in exper-
iments with nonhuman animals (Odegaard et al., 2018), is
expected to be inversely proportional to confidence, so the
observed effect (a lower opt-out rate in the high vs. low PE
conditions) is consistent with the PE bias observed for the
other tasks.

These results confirmed that the PE bias emerged regard-
less of the dataset, architecture, or learning paradigm used to
train networks. This is a noteworthy result, since these net-
works were optimized only for task performance, rather than
being optimized to produce this specific bias. To better under-
stand this phenomenon, we next asked whether the training
regime might impact the presence of the PE bias, by training
networks on one of two alternative training regimes. First, we
trained networks on a regime with a fixed signal-to-noise ra-
tio (similar to training networks directly on the low and high
PE conditions). Under these conditions, the optimal approach
to rating confidence should not be biased toward positive ev-
idence. Consistent with this, we found that networks trained

3Threshold performance was defined as the midpoint between
chance performance (e.g. 1/10 in the case of 10-class discrimina-
tion) and ceiling (100%).

4The PE bias was also present on this task for the default archi-
tecture, but we evaluated the more sophisticated resnet architecture
to test whether the PE bias resulted from an architectural limitation.

(a) Trained on fixed µ/σ (b) Trained on fixed µ

Figure 4: (a) When trained on images with a fixed signal-
to-noise ratio, networks do not display a PE bias. (b) When
trained on images that vary in noise but not contrast, the PE
bias is reversed.

in this manner did not display a PE bias (Figure 4a). Second,
we trained networks on a regime in which the noise level (σ)
varied, but contrast (µ) was set to a fixed intermediate value
(corresponding to the conditions in the middle column of Fig-
ure 1). We found that under these conditions, the opposite
effect, higher confidence in the low PE condition, emerged
(Figure 4b). Under this training regime, accuracy is primarily
a function of stimulus noise (since contrast doesn’t vary), so
it makes sense to adopt a strategy for rating confidence based
primarily on the level of sensory noise. Such a strategy re-
sults in a reversal of the PE bias, since the high PE condition
contains both higher positive evidence and higher noise.

Figure 5: When trained on images that vary in contrast but
not noise, the PE bias is significantly expanded.

This suggests that the PE bias emerges in the standard
training regime (in which both contrast and noise are varied)
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s1

s2

fixed contrast

variable contrast

(a) Task (b) Original behavioral results (c) Model results

Figure 6: The model successfully captures behavioral results from Maniscalco et al. (2016) demonstrating a dissociation be-
tween performance and metacognitive sensitivity.

despite the tendency for variable noise to induce a reversed
PE bias, suggesting that variable contrast is the key factor
driving the emergence of the PE bias. Based on this reason-
ing, we hypothesized that networks trained on a regime with
a fixed noise level, but variable contrast (i.e. the middle row
in Figure 1), ought to display an even larger PE bias than
in the standard regime. Consistent with this prediction, we
observed that networks trained on such a regime displayed
a 5-fold increase in the size of the PE bias relative to the
standard training regime (Figure 5, note the scale of the Y
axis). These results confirmed that the emergence of the PE
bias in task-optimized networks is primarily a consequence of
whether it is useful within the context of a particular training
regime, and in particular whether the training regime contains
images with varying contrast. This in turn strongly suggests
that the PE bias in human confidence ratings arises as a con-
sequence of optimization for naturalistic settings, in which
signal strength will naturally vary.

Dissociation Between Performance and
Metacognitive Sensitivity

Maniscalco et al. (2016) tested and confirmed a seemingly
paradoxical prediction of the RCE model: human confi-
dence ratings, under certain conditions, are characterized by
a pattern of increasing type 1 performance and decreasing
metacognitive sensitivity (Figure 6b). That is, confidence rat-
ings become less diagnostic of decision accuracy as decision
accuracy increases. This finding sharply contradicts the BE
decision rule, under which metacognitive sensitivity (as mea-
sured by meta-d’ (Maniscalco & Lau, 2012)) should always
be directly proportional to type 1 performance (as measured
by d’). This pattern has therefore been taken as strong evi-
dence in favor of the RCE model.

We tested whether our neural network model would also
display this specific signature of human confidence ratings.
To do so, we first trained networks on a two-choice variant
of the standard training regime, in which each network was
trained to discriminate between two digit classes randomly
sampled from the ten classes present in the MNIST dataset
(e.g. 3 vs. 9). We then tested these networks on stim-

uli modeled after the task used by Maniscalco et al. (2016)
(Figure 6a). In that task, one stimulus class (s1) always ap-
pears at an intermediate contrast, whereas the other stimu-
lus class (s2) appears at a range of contrast values, including
values below, equal to, and above the contrast of s1. Un-
der these conditions, the RCE model predicts that trials on
which participants choose s1 should be characterized by de-
creasing metacognitive sensitivity as a function of increasing
performance, whereas trials on which participants choose s2
should be characterized by the opposite pattern, resulting in
the ‘crossover’ shown in Figure 6b. To test whether our model
displayed this same pattern, we performed a grid search to
fit five stimulus contrast values (µ) to the observed d’ values
from Maniscalco et al. (2016), presenting s2 at all five values,
and s1 at the intermediate value only. To model the fact that
additional noise may accumulate between the time at which
participants make a type 1 decision and the time at which
they make a confidence rating, we also fit an additional noise
parameter and added this to the network’s confidence output
layer (before applying the final nonlinearity).

Figure 6c shows that the network naturally captured both
the crossover effect between meta-d’ for trials on which the
network chose s1 (response = s1) vs. s2 (response = s2), and
the pattern of decreasing meta-d’ as a function of increasing
d’ for response = s1. Thus, the network displayed a charac-
teristic signature of human confidence ratings, thought to be
indicative of the use of an RCE heuristic, despite not being
optimized to do so5.

Analysis of Learned Decision Rules

Next we sought to determine whether the confidence rating
strategy learned by our model was best characterized by the
BE rule, the RCE rule, or by a more complex pattern not com-
pletely characterized by either of these rules. To do so, we
adapted an approach introduced by Koizumi et al (2015). Af-
ter training networks on the two-choice variant of the standard

5The same qualitative effects (crossover between response = s1
and response = s2, and negative slope for response = s1) were also
present when no noise parameter was added to the network’s confi-
dence ratings, though the y-intercept for all data was shifted upward.
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Figure 7: Stimuli used to estimate confidence as a function
of stimulus evidence. Each image consists of two superim-
posed digits (belonging to classes s1 and s2) with indepen-
dently varying contrast levels (µs1 and µs2).

training regime (introduced in the previous section), we pre-
sented these networks with images consisting of two super-
imposed digits, each belonging to one of the two digit classes
that the networks were trained on (Figure 7; note that noise
was added to the images actually used to evaluate networks,
but is not pictured for the sake of illustration). We treated the
output of the classification layer as an indication of the class
of the digit with a higher contrast. We then measured both
accuracy and confidence as a function of the contrast for each
digit class (µs1 and µs2), treating these contrast values as a
proxy for the internal evidence for s1 and s26.

This revealed that accuracy conformed very closely to an
optimal BE rule (Figure 8a), whereas confidence followed a
more complex pattern (Figure 8b). Qualitatively, this pattern
bears some resemblance to the RCE rule, in that confidence
increases as one moves along either the X or Y axes, but there
is also some resemblance to the BE rule, in that confidence
increases as one moves away from the diagonal.

To better understand this pattern, we fit linear regression
models to determine whether (a logit transformation of) con-
fidence ratings were best predicted by the balance of ev-
idence (|µs1 − µs2|), the response-congruent evidence (µs1
when µs1 > µs2, and µs2 when µs2 > µs1), or a multiple regres-
sion model incorporating both variables. This revealed that
confidence was better predicted by the RCE rule than the BE
rule (Figure 8c), explaining the RCE-like behaviors (the PE
bias and dissociation between performance and meta-d’) dis-
played by the network. Interestingly though, a regression that
combined both the BE and RCE rules predicted confidence
better than either of them alone, and, as can be seen from
the predictions of this regression (Figure 8d), even the com-
bination of these variables did not fully capture the complex
pattern of confidence ratings generated by the neural network.

6Our reasoning was that, although there will be variation across
trials in the internal evidence associated with each contrast level, the
contrast level for each digit class should be a reliable predictor for
the internal evidence when averaged across trials.

(a) Accuracy as a function of
contrast for s1 vs. s2

(b) Confidence as a function of
contrast for s1 vs. s2

(c) Variance captured by regres-
sion models (d) Predictions of multiple re-

gression model

Figure 8: Analysis of decision rules learned by the network.

Discussion
We have presented a deep neural network model of decision
confidence, trained directly on naturalistic high-dimensional
data, and shown that it can account for some of the key be-
havioral dissociations observed between decisions and confi-
dence ratings. Moreover, we have shown that it can account
for these findings while relying on a strategy that does not
conform to either of the simple decision rules previously pos-
tulated to underlie decision confidence.

Our work has an important link to the work of Miyoshi
and Lau (2020). In that work, it was shown that an RCE
rule for rating confidence is advantageous when stimulus dis-
tributions are characterized by greater target variance than
non-target variance. In our work, we employed a training
regime that consisted of images with varying contrast. This
likely introduced an additional degree of variance in the tar-
get dimension (additional variance in the evidence for the cor-
rect stimulus class) not present in the non-target dimension,
and therefore may explain why RCE-like behavior emerges
in these networks when trained on such a regime. Consistent
with this, when we trained networks on images with a fixed
contrast level, the PE bias was reversed, whereas, when we
trained networks on images that varied only in their contrast,
the PE bias was dramatically increased. These results un-
derscore the importance of closely examining the detection-
theoretic assumptions on which previous theories have been
built, which may be violated under naturalistic settings.

Along these lines, our work has implications for debates
over whether human confidence ratings are in some sense
optimal (Adler & Ma, 2018; Koizumi et al., 2015; Kiani &
Shadlen, 2009; Maniscalco et al., 2016; Peters et al., 2017;
Sanders et al., 2016). Previous debates over optimality have
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focused on the question of whether confidence ratings are op-
timal with respect to the specific conditions that characterize
laboratory experiments. We suggest that it may be useful to
reframe the debate in terms of optimization for more ecolog-
ically relevant objectives and task settings, such as the broad
range of conditions that characterized our training regime.
Our work suggests that confidence ratings may indeed be op-
timal, or at least optimized, for these settings.

One potential avenue for testing this idea comes from the
alternative training regimes that we employed, under which
the PE bias was eliminated or even reversed. It may be pos-
sible to induce similar effects by training participants exten-
sively on tasks with similar properties (e.g. stimuli that vary
only in their noise level, but not contrast). Previous work
has found that extensive training and feedback can influence,
though not entirely eliminate, such biases (Maniscalco et al.,
2016). An important caveat is that it may not be possible to
entirely reshape confidence mechanisms within the realistic
time frame of a laboratory experiment. The training under-
gone by our neural network model might reflect optimization
over much larger, perhaps even evolutionary, timescales.

(a)
(b)

(c) (d)

Figure 9: (a) Idealized graphical model. x is sampled from a
2-dimensional Gaussian distribution, with mean in the target
dimension (determined by the class y) of µ, mean in the non-
target dimension of 0, and variance in both dimensions of σ.
µ and σ are themselves sampled from uniform distributions.
ŷ = argmax(x). (b) Distribution of data, collapsing across
classes and range of values for µ, σ. (c) Probability of being
correct given the data (x). (d) Low and high positive evidence
conditions were identified by grid search. Probability of be-
ing correct given the data is biased toward positive evidence.
Probability of being correct given the generative parameters
(µ,σ) is unbiased.

We found that our networks adopted a complex strategy for
rating confidence. Given that this strategy was not easily ex-
plainable by simple decision rules, what is the best way to un-
derstand this pattern? In line with recent proposals (Richards
et al., 2019), we suggest that this pattern is best understood
as an interaction between the objective the network was opti-
mized to perform, the training data used to perform this opti-
mization, and the inductive biases of the network’s architec-
ture.

To illustrate this point, consider a simple case in which x
is not an image, but is instead a sample from a 2-dimensional
Gaussian distribution (Figure 9a). In this example, the mean
of the target dimension µ is itself sampled from a uniform dis-
tribution, analogous to variable contrast in the image datasets
that we used. This results in elongated distributions with
greater target variance than non-target variance (Figure 9b).
Under these conditions, as shown in Figure 9d (and as shown
by Miyoshi and Lau (2020)), the probability of being cor-
rect given the data (p(ŷ = y|x)) is biased toward positive evi-
dence, while the probability of being correct given the gener-
ative parameters that underlie the data (p(ŷ = y|µ,σ)) is not.
This simple relationship may partially explain the PE bias in
both our neural network model and human confidence rat-
ings, since an observer will generally only have access to the
sensory data, not the parameters that generated it.

However, this idealized, low-dimensional model, does not
entirely capture the pattern of confidence ratings displayed by
our neural network model, or by human participants. In par-
ticular, a scenario in which there is strong evidence for both
stimulus classes elicits high confidence ratings from the neu-
ral network model (upper right quadrant of Figure 8b), even
when the relative evidence in favor of the correct answer is
weak (close to the diagonal), resulting in low accuracy. This
mirrors the pattern observed in human participants (Koizumi
et al., 2015), but does not follow from treating confidence as
the groundtruth probability of being correct given the data,
according to which such a scenario should elicit low confi-
dence (upper right quadrant of Figure 9c).

This dissociation can be explained by the fact that this sce-
nario, in which there is strong evidence for both stimulus
classes, is probably never or only rarely encountered during
the training regime that we employed. In such a scenario,
the behavior of a network is effectively an extrapolation, and
will therefore primarily be governed by the network’s induc-
tive biases (since there is no training data to constrain the
network’s behavior in this region of the task space). Thus,
the pattern of confidence ratings displayed by the network is
most likely an emergent property of interactions between the
training objective (to predict p(ŷ = y|x)), the distribution of
the training data (including variability in signal strength), and
the network’s inductive biases, which are particularly relevant
outside the range of the training data. More work is needed
to develop a principled understanding of what drives extrap-
olative behavior in neural networks (Webb et al., 2020; Xu et
al., 2020). Future work should also investigate whether hu-
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man confidence ratings are best explained by simple decision
rules or by a more flexible pattern akin to the behavior of our
model.

One remaining question concerns how our model might be
implemented in the brain. Though ours is ostensibly a neu-
ral network model, it is missing many of the key properties
of biological neural networks, including different cell types,
temporal dynamics, and biologically realistic learning rules,
and therefore may be better understood as occupying a space
somewhere between the algorithmic and implementation lev-
els of analysis. Maniscalco et al. (2019) have recently shown
how a biologically realistic competing accumulator model
that incorporates ‘tuned normalization’ can capture many of
the same dissociations that we’ve accounted for in the present
work. In future work, we hope to explore how our current
model might be grounded in biology by incorporating similar
mechanisms. At the same time, one strength of our approach
is that it allows computations to emerge in a data-driven man-
ner, rather than specifying them by hand, resulting in learned
representations and strategies that are best suited to a particu-
lar task setting. In future work, we plan to exploit this feature
of our model by studying whether the internal representations
learned by the network can account for known neural signa-
tures of human confidence ratings (e.g. Peters et al. (2017)).
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