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Models of Human Category Learning: Do They Generalize? 
 

Nolan Conaway (nconawa1@binghamton.edu) 
Kenneth J. Kurtz (kkurtz@binghamton.edu) 
Department of Psychology, Binghamton University 

Binghamton, NY 13905 USA 
 

Abstract 

Generalization to new examples is an essential aspect of 
categorization. However, recent category learning research has 
not focused on how people generalize their category 
knowledge. Taking generalization to be a critical basis for 
evaluating formal models of category learning, we employed a 
‘minimal case’ approach to begin a systematic investigation of 
generalization. Human participants received supervised 
training on a two-way artificial classification task based on two 
dimensions that were each perfect predictors. Learners were 
then asked to classify new examples sampled from the 
stimulus space. Most participants based their judgments on one 
or the other dimension. Varying the relative levels of 
dimension salience influenced generalization outcomes, but 
varying category size (2, 4, or 8 items) did not. We fit two 
theoretically distinct similarity-based models (ALCOVE and 
DIVA) to aggregate learning data and tested on the 
generalization set. Both models could explain important 
aspects of human performance, but DIVA produced a superior 
overall account.  

Keywords: generalization; categorization; formal models of 
category learning; similarity; cognitive modeling. 

Introduction 
Categorization is an essential cognitive function –

categories serve to organize knowledge and, critically, as a 
basis for extending knowledge to make sense of new 
experience. A full understanding of human categorization 
depends on developing models and theories that account for 
systematic patterns of human learning and generalization 
performance (for an overview of generalization, see 
Levering & Kurtz, 2010). 

In classic research, Roger Shepard (1957, 1987) put 
forth the idea of a universal law in which stimulus 
generalization follows an exponential function of distance in 
psychological space. This work has had broad implications 
for theoretical models of categorization. Highly influential 
reference point models (such as the exemplar view) 
compute classification in a manner that closely follows 
Shepard’s proposal. Specifically, the class membership of a 
known item is likely to be generalized to a new item if the 
two items are highly similar. The key additional design 
feature needed to account for human classification 
performance is the inclusion of a selective attention 
mechanism such that particular dimensions can matter more 
or less in the computation of similarity. Generalization 
performance (classification of previously unseen items) has 
been one of the most important important testing grounds in 
the debate between exemplar- and prototype-based accounts 

(e.g., Homa, 1984; Nosofsky, 1992; see also Medin & 
Schaffer, 1978 and the ensuing literature on behavioral 
experimentation and model-fitting with the 5-4 
classification problem). 

In a somewhat different approach to studying the 
generalization of category knowledge, researchers have 
investigated whether exemplar models can account for rule-
like generalization after category learning (Erikson & 
Kruschke, 1998, 2002; Nosofsky & Johansen, 2000). In 
these studies, participants were asked to classify novel 
instances after learning an artificial two-way classification 
based on a unidimensional rule with exceptions. The critical 
test items were highly similar to the exceptions, but clearly 
classifiable using the rule. The outcomes of these studies 
were somewhat mixed and appear to depend on stimulus 
attributes and also on the structure of the categories that are 
learned. 

The goal of the present research is two-fold: 1) to 
explore a different approach to investigating the psychology 
of category generalization; and 2) to use generalization 
performance as a basis to compare and differentiate models 
that are highly successful in fitting human learning data. 
Toward the first goal, our experimental approach is broadly 
comparable to the psychological studies of generalization 
discussed above: after a learning phase, participants are 
asked to classify novel examples. However, our work differs 
in that we use minimal category learning conditions (small 
numbers of examples that are readily assigned to two fully 
coherent classes). Our primary aim is to identify basic, 
systematic properties of generalization performance.  

Regarding the second goal, the field presently offers a 
small group of formal models of category learning that are 
general purpose (applicable to any classification problem), 
that provide explanation at the level of process/mechanism, 
and that yield good fits to established benchmarks for 
human category learning. Within the realm of fitting human 
classification learning performance, there is some sense of 
having hit the ceiling in terms of differentiating among 
these models despite their having distinct explanatory 
elements. Our rationale is that models that do quite well in 
fitting learning data may diverge in their ability to account 
for patterns of generalization performance. In particular we 
are compelled by the prospect of fitting model parameters to 
the learning data and then holding the models to these 
values in evaluating ensuing generalization (as discussed 
below). Toward this end, we evaluate two successful 
models: a canonical representative of the reference point 
approach, ALCOVE (Kruschke, 1992) and an updated 
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version of a competing theoretical alternative, DIVA (Kurtz, 
2007). 

 
ALCOVE. ALCOVE is an exemplar based adaptive 

network model. According to the model, categories are 
represented by individual exemplars stored in memory. 
ALCOVE learns to classify by adjusting association weights 
between exemplar nodes and category nodes, as well as by 
adjusting a set of attention weights that determine the 
importance of each stimulus dimension. 

 
DIVA. DIVA offers a more generative than 

discriminative approach to classification learning and deals 
in distributed rather that localist internal represenations. 
Learning to classify examples is accomplished by 
minimizing reconstructive error along the channels of a 
divergent autoencoder that is comprised of recoding (input 
 hidden) weights shared for all categories and separate 
sets of decoding (hidden  output) weights dedicated to 
each category. Classification judgments are based on which 
category channel yields the lowest error, i.e., which channel 
has been tuned to expect (and successfully reconstruct) a set 
of features like those of the current item.  

DIVA is similarity-based in the sense that the model 
learns, for each category, how to effectively predict feature 
values for particular regions in recoding space – when an 
input item projects into a region that is well handled by a 
category, the reconstructive error in predicting the features 
will be low. DIVA does not apply Shepard-like stimulus 
generalization to categorization – an item is likely to belong 
to a category because its feature values conform to what a 
category channel has been optimized to successfully recode 
and decode, not because it is highly similar to a known 
member of the category. 
 
Our approach to model comparison. We compare models 
based on their ability to account for human generalization 
after category learning. An important advantage of focusing 
on generalization performance is that we avoid the 
traditional reliance on post-hoc fits. In all cases, we first fit 
DIVA and ALCOVE to averaged learning data from each 
condition in order to find best-fitting parameters across the 
full set of conditions. This procedure allows us to separate 
out the parameter fitting process, so that the generalization 
performance is genuinely a prediction based on a selected 
model. 

We elected to fit ALCOVE using a grid search over its 
response mapping (φ), specificity constant (c), association 
weight learning rate, and attention learning rate parameters. 
We also fit DIVA using a grid search over the parameters: 
learning rate, weight range, number of hidden nodes, and a 
new focusing parameter (β) that gives DIVA the ability to 
account for sensitivity to differences in dimension 
diagnosticity (Kurtz, 2008). 

DIVA’s focusing parameter (β) allows it to selectively 
attend to stimulus dimensions based on the disparity in the 
output activations for that dimension across category 
channels. DIVA’s focusing mechanism differs significantly 
from selective attention in ALCOVE in that it does not 
change the encoding of the stimulus or manipulate the 
representation learned by the model. DIVA’s form of 
focusing is decisional, rather than perceptual or 
representational in nature, as it operates at the level of the 
classification response. 

Experiment 1 
This experiment was designed to explore generalization 

under two conditions: when all stimulus dimensions are 
diagnostic and equally salient; and when all dimensions are 
diagnostic, but unequally salient. Figure 1 depicts the two 
category structures.  

Stimulus scaling is an important aspect of our salience 
manipulation. In order to determine the relation between the 
stimulus dimensions, we scale the examples in a pairwise 
similarity study. The similarity study generates a full set of 
scaled examples, which allows us to manipulate the distance 
between examples on any dimension. The salience of a 
dimension can be specified by the distance between the 
categories on that dimension. 

In a pilot study, we explored an extreme case of 
classification learning in which both stimulus dimensions 
were diagnostic, but one dimension was much less salient. 
Participants were generally insensitive to variation in the 
less salient dimension. In light of these findings, we 
expected that generalization gradients would show 
sensitivity given a relatively moderate difference in 
dimension salience. 

 
Participants and Materials. 108 undergraduates from 
Binghamton University participated in partial fulfillment of 
a course requirement. Stimuli were rectangles varying in 
shading and the distance between two lines within the 
rectangle. Examples were generated at 8 positions on each 
dimension (8 shading * 8 line spacing = 64 examples). The 
category structures are depicted in Figure 1 along with 
sample stimuli.  
 
Procedure. Participants were randomly assigned to either 
the equal salience group or the unequal salience group. In 
the equal salience condition, the category prototypes were 
separated by distances of 0.64 and 0.54 on the first and 
second dimensions (shading and line spacing), respectively. 
In the unequal salience condition, the category prototypes 
were separated by a distance of 0.65 and 0.34 on the first 
and second dimensions. In each condition, there were 4 
training examples in each of the two categories. 
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Figure 1: Top: Four examples of stimuli (taken from 
the corners of the stimulus space). Bottom left & 
center: Category structures with equally and 
unequally salient dimensions. Bottom right:  Test set 
used for Experiments 1 and 2. Note that all training 
items are included in the test set. Positions of 
examples reflect prior scaling. 

 
Each participant completed 32 learning trials. On each 

trial, a training item was presented on the computer screen 
and participants were prompted to make a classification 
decision by clicking one of two buttons (labeled ‘Alpha’ and 
‘Beta’). After responding, participants were given corrective 
feedback on their response. In the test phase, participants 
classified the 64 examples sampled across the stimulus 
space (test set depicted in Figure 1). The 8 training items 
were also presented during the test phase.  
 

Gradient Analysis. In the test phase, participants 
provide data that yield a generalization gradient of their 
classification responses. For each participant, we calculated 
the standard deviation of classification responses at 8 
positions on each dimension of the gradient. We then 
estimated sensitivity to each dimension by calculating the 
mean of these 8 values. Insensitivity to a dimension is 
indicated by uniformity of classification responses across 
that dimension.  
 
Results and Discussion. 24 participants were excluded 

from the subsequent analyses for failing to correctly classify 
7 out of 8 training items presented during the test phase. The 
remaining participants were more than 96% accurate during 
the last training block in both conditions.  

There were significant individual differences in the 
generalization data. A k-means analysis revealed three 
profiles based on the sensitivity estimates described above: 
these were unidimensional generalization based on either 
one or the other stimulus dimension (shading or spacing) 
and multidimensional generalization based on both 
dimensions. We compared the k-means findings across 
salience conditions (results are shown in Figure 2).  

While a very few participants were sensitive to both 
dimensions at test, the majority of participants generalized 
undimensionally. A Fisher’s Exact test revealed that the rate 
of each unidimensional profile differed between salience 
conditions (p < .001). Participants in the unequal salience 
condition were more likely to be sensitive to the salient 
dimension (shading) than participants in the equal salience 
condition. 

We observed a bias towards the line spacing dimension 
in the equal salience group that is not consistent with the 
scaling. Interestingly, this may reflect a task difference 
between pairwise similarity and classification learning that 
renders participants differentially sensitive to our stimulus 
dimensions. 

The main conclusions we can draw from this study of a 
‘minimal case’ category structure are that: 1) participants 
tended to generalize according to a single dimension despite 
an optimal diagonal bound; and 2) dimension salience 
increased the likelihood of the dimension serving as the 
basis for generalization. 

 
Modeling Analyses. We tested DIVA and ALCOVE for 
their ability to account for these generalization findings. 
Specifically, we sought to determine whether the models 
could account for: (1) the tendency of learners to generalize 
based on a single dimension; (2) the substantial degree of 
selection of each of the two dimension as the focal one by 
different sets of learners; and (3) the effect of salience on 
dimensional sensitivity. 

Before generating predictions for generalization, we 
obtained optimal parameter sets by fitting the models to the 
aggregate learning data (minimizing the sum of squared 
deviations, SSD, across learning blocks). We then generated 
predictions for generalization across a range of optimal 

 
Table 1: Parameter values for ALCOVE and DIVA that best fit all conditions of learning performance in Experiments 
1 and 2. 

 

ALCOVE   DIVA 
 Experiment 1 

SSD < .003 
Experiment 2 

SSD < .06 
  Experiment 1 

SSD < .004 
Experiment 2 

SSD < .03 
 c (specificity) 3.4 10.5  number of  hidden nodes 1 1 
 φ (response mapping) 2.8 1.45  β (focusing) 20 80 
attention learning 0.0 0.0  learning rate 0.14 0.18 
association learning 0.1  0.3  initial weight range +/-0.5 +/-1.5 
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parameter sets to gain a full understanding of how the two 
models performed.  
 
 
 
 
 
 

Figure 2: Results of k-means clustering results for 
Experiment 1. Number of participants shown below 
each chart.  

 
Both ALCOVE and DIVA provided good fits to the 

learning data under a range of parameters. The best fitting 
parameter sets are shown in Table 1. When we tested the 
models on generalization using these parameters, we found 
that both models were sensitive to the salience of each 
dimension, but neither predicted the unexpected bias toward 
the line spacing dimension that was observed behaviorally.  

ALCOVE’s attention learning parameter largely 
governed the model’s ability to generalize to a single 
dimension. ALCOVE produced unidimensional gradients 
with high levels of attention learning and multidimensional 
gradients with low levels of attention learning. Given a high 
attention learning parameter, ALCOVE generalized based 
on whichever dimension was most salient. We note that 
ALCOVE lacks any random element such as initial weight 
values, so the output is deterministic; for this reason, the 
model does not account for the heavy use of both possible 
unidimensional rules in the generalization data. Future 
research will explore generalization using a stochastic 
version of ALCOVE.  

Similar to ALCOVE’s use of attention, DIVA’s focusing 
parameter allowed the model to generate either 
unidimensional or multidimensional gradients. But unlike 
ALCOVE, DIVA is initialized with random weights on 
every run. An analysis of results on individual runs revealed 
that when DIVA’s focusing parameter was large and the 
dimensions were equally salient, the random initial weights 
sometimes lead to unidimensional generalization based on 

either dimension. With larger weight ranges, DIVA 
produced varied distributions of generalization profiles.  

Our analysis of DIVA’s generalization also revealed 
that, with a high focusing parameter, the model is more 
likely to generalize based on a salient dimension than a less 
salient dimension. This trend resembles the effect of 
salience that was observed previously. When the dimensions 
are equally salient, DIVA tends to produce 
multidimensional profiles at a greater rate than would be 
predicted given our behavioral findings. 
 

Figure 3: Category structures for Experiment 2. 
  

These modeling results confirm that generalization 
provides a promising basis for model evaluation. We found 
that DIVA and ALCOVE produce generalization gradients 
that are consistent with the salience of each dimension, and 
that attentional mechanisms allow similarity-based models 
to generate unidimensional gradients. Furthermore, a 
random component can partially explain variability in 
dimensional selection. 

Experiment 2 
This study was designed to replicate and extend 

Experiment 1. As in the first study, we manipulated the 
salience of dimensions by modifying the distance between 
the two categories. We extend the design by incorporating 
category size as a between-participants facto (Figure 3 
depicts the category structures that were employed). 
Category size is a potentially interesting factor in our studies 
because increasing the number of examples in each category 
also increases variation in representational demands for 
exemplar models like ALCOVE without altering the 
solution that the model is required to find. Furthermore, 
increases in category size should decrease the 
memorizability of each example (see Homa, 1984 for 
background on category size effects).  

Our primary predictions were that: (1) generalization 
after learning would reflect sensitivity to a salient 

N=41 

Unequal 

N=39 

Equal Salience 
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dimension; and (2) shifts in category size would impact the 
prevalence of integrated, multidimensional generalization. 

 
Table 2: Distance between opposite-category 
prototypes on each dimension. 

 
 Equal Salience Unequal Salience 

Shading Spacing Shading Spacing 
2 eg 0.70 0.55 0.72 0.34 
4 eg 0.67 0.55 0.69 0.34 
8 eg 0.64 0.54 0.65 0.34 

 
Participants and Materials. 228 undergraduates from 
Binghamton University participated in this experiment 
toward partially fulfillment of a course requirement. The 
materials were like those used in Experiment 1. 
 
Procedure. Participants were randomly assigned to one of 
six conditions (2 levels of salience x 3 levels of category 
size). The category structures are depicted in Figure 3. 
Participants learned a classification based on two, four, or 
eight unique examples per category. 
 
 
 
 
 
 
 
 

 

 
 

Figure 4: Experiment 2 k-means clustering results. 
Number of participants shown below each chart. 

 
The salience manipulation was similar to that used in 

Experiment 1 with one departure – we partially re-arranged 
the members of the second category so that the category 
prototypes would more evenly spaced apart in the equal 
salient condition. The distances between prototypes for each 
condition are shown in Table 2. All other aspects of the 
procedure are identical to Experiment 1. 
 

Results and Discussion. 56 participants were excluded 
from subsequent analyses because they made more than one 
error on training items presented during the test phase. The 
remaining participants were more than 94% accurate during 
the last training block.  

The analysis of the generalization data was conducted as 
in the first study. Results are displayed in Figure 4. The data 
do not reveal an effect of category size on generalization. 
Consequently, our discussion focuses on the salience 
manipulation across category size conditions.  

As in Experiment 1, the majority of participants 
generalized to a single dimension. A Fishers Exact test 
(conducted across size groups) reveals a significant effect of 
salience (p < .01). Participants in the unequal salience group 
tended to generalize using the salient dimension over the 
less salient dimension.  

We observed the same bias towards the line spacing 
dimension in the equal salience conditions: our participants 
were highly sensitive to the line spacing dimension, even 
when the scaling revealed that the dimensions were equally 
salient. 
 
Modeling Analyses. We again tested DIVA and ALCOVE 
on their ability to match human generalization performance. 
In general, the modeling results for Experiment 2 parallel 
the results of Experiment 1. Both models found good fits to 
the aggregate learning data, but neither model predicted the 
unexpected bias towards the line spacing dimension during 
generalization. Neither model was affected by our category 
size manipulation. Parameter information can be found in 
Table 1. 

As in Experiment 1, ALCOVE’s attention learning 
parameter allowed it to account for unidimensional 
generalization. Given a high attention learning parameter, 
ALCOVE generalized based on whichever dimension is 
most salient. But due to the lack of a random component, 
ALCOVE could not account for the use of either single 
dimension.  

As was the case for attention learning in ALCOVE, 
DIVA’s focusing parameter allowed it to account for 
unidimensional generalization. Replicating our findings 
from Experiment 1, we found that when DIVA’s focusing 
parameter was large and the dimensions were equally 
salient, the random initial weights lead to a distribution of 
generalization profiles based on either or both dimensions. 
With larger initial weight ranges, DIVA produced more 
varied patterns of generalization.  

The distributions produced by DIVA reflected the 
salience of the stimulus dimensions. Specifically, DIVA 
was more likely to generalize using a salient dimension than 
a less salient dimension. This trend is similar to the effect of 
salience that we observed behaviorally. Lastly, as in 
Experiment 1, DIVA tended to produce more 
multidimensional profiles when the dimensions were 
equally salient. 

4egs 8egs 

Equal 
Salience 

N=35 N=33 N=30 

Unequal 
Salience 

N=26 N=30 N=22 

2egs 
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General Discussion 
Our behavioral results revealed that: (1) category knowledge 
tends to be generalized based on a single dimension; and (2) 
the salience of a dimension affects the probability that it is 
selected. We compared DIVA and ALCOVE on their ability 
to account for these findings. We learned that these 
similarity-based models are sensitive to salience differences 
between dimensions and can use attention to generate 
unidimensional gradients. We also found that a random 
component can help predict arbitrary dimension selection: 
DIVA’s initial weights randomly offset the models salience 
appraisal and allowed it to generalize to a single dimension. 

These results help to establish generalization as an 
important basis for formal model evaluation. By requiring 
that models account for generalization and learning based 
on the same parameter fits, we systematically widen the 
scope of what models are held accountable for explaining. 
In our work, generalization proved not only to be area where 
DIVA and ALCOVE made different predictions, but it also 
provided an opportunity to reduce our reliance on post-hoc 
fits by searching for parameters using aggregate learning 
data. In future work, we plan to conduct simulations using a 
stochastic modification of ALCOVE in order to determine 
how well the model matches our distributions of human 
generalization performance. We also plan to conduct new 
simulations based on fitting the models to individual 
learning curves rather than aggregate data. 
 

Acknowledgments 
We would like to thank the members of the Learning and 
Representation in Cognition (LaRC) Laboratory at 
Binghamton University. 
 

References 
Erickson, M. A. & Kruschke, J. K. (1998). Rules and 

exemplars in category learning. Journal of Experimental 
Psychology: General, 127, 107-140. 

Erickson, M. A. & Kruschke, J. K. (2002). Rule-based 
extrapolation in perceptual categorization. Psychonomic 
Bulletin & Review, 9(1), 160-168. 

Homa, D. (1984). On the nature of categories. In G. H. 
Bower (Ed.), Psychology of learning and motivation 
(Vol. 18, pp. 49-94). New York: Academic Press. 

Kruschke, J. K. (1992). ALCOVE: An exemplar-based 
connectionist model of category learning. Psychological 
Review, 99, 22-44. 

Kurtz, K. J. (2007). The divergent autoencoder (DIVA) 
model of category learning. Psychonomic Bulletin & 
Review, 14, 560 –576. 

Kurtz, K. J. (2008). Advances in modeling human category 
learning with DIVA. Presented at the 2008 Annual 
Meeting of the Psychonomic Society, Chicago, IL. 

Levering, K., & Kurtz, K. J. (2010). Generalization in 
higher-order cognition: Categorization and analogy as 
bridges to stored knowledge. In M. T. Banich & D. 
Caccamise (Eds.), Generalization of knowledge: 
Multidisciplinary perspectives(pp. 175–196). New York, 
NY: Psychology Press 

Medin, D. L., & Schaffer, M. M. (1978). Context theory of 
classification learning. Psychological Review, 85, 207-
238. 

Nosofsky, R. M. (1992). Exemplars, prototypes, and 
similarity rules. In A. F. Healy, & S. M. Kosslyn 
(Eds.), Essays in honor of William K. Estes (pp. 149-
167). Hillsdale, NJ, England: Lawrence Erlbaum 
Associates, Inc. 

 Nosofsky, R. M. & Johansen, M. K. (2000). Exemplar-
based accounts of “multiple-system” phenomena in 
perceptual categorization. Psychonomic Bulletin & 
Review, 7, 375-402. 

Shepard, R. N. (1957). Stimulus & response generalization: 
A stochastic model relating generalization to distance in 
psychological space. Psychometrika, 22, 325-345. 

Shepard, R. N. (1987). Toward a universal law of 
generalization for psychological science. Science, 237, 
1317-1323.

 

2093




