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* SLoPE RENORMALIZATION OF THE ONE LOOP PLANAR STRING DIAGRAM 

Robert Roth 

lawrence Berkeley laboratory 
University of California 

Berkeley, California 94720. 

June 18, 1975 

Abstract: It has been previously shown that for the number of dimen­

sions d < 25, the one loop pl&nar string diagram is simply a 

multiplicative (coupling constant) renormalization of the Born 

term. It is shown here that for d = 25 or 26 the extra 

divergent term gives, in addition to a further multiplicative 

renormalization, a renormalization of the slope of the Regge 

trajectories. 

I. Introduction 

The N-point Veneziano amplitude is a tree diagram approximation 

to the strong interaction scattering amplitude. Thus one is led to 

examine loop diagrams in the hope of obtaining a more realistic am-

plitude. As in quantum electrodynamics, these diagrams are found to 

be divergent. A renormalization procedure must .then be found in which 

all infinities are absorbed into a redefinition of the physical 

p:~.rameters of the theory. This was done for the one loop planar . 

diagram for d < 25 by Neveu and Scherk [1], and the result was found 

to be a simple multiplicative renormalization of the Born term. In 

this p:~.per we do this for the one loop planar diagram in ·the critical 

number of dimensions. We show that the divergent p:~.rt of the amplitude 

* This work was supported by the Energy Research and Development 

Agency (ERDA). 
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can at the one loop level be written as 

where c1, c2 are constants, sij are the planar subenergies, m is 

the slope of the Regge trajectories, and ~ is the Veneziano 

amplitude. Thus at this level, multiplicative and slope renormaliza-

tions are all that are needed to render the integral finite. 

II. Method 

In the interacting string picture, the single loop planar 

amplitude for N scalars is given by the following expression, after 

a Jacobi transformation has been mde on the usual variables of 

integration [2] 

[ 
-(d+ll)/12] 

d~N-l q f(tn q) 

n---1 
x I I exp~pr •ps N(pr' Ps ~ 

l.:Sr<s~N 

where 

sin ! (d. d. ) 2 '~'r - 'P s 

. •{rMI 
00 ~- f. 2n i (¢r -¢ s )) . x \l - q e 

n=l D-2p ·p 
(. -i(¢ -¢ \ _2 r s 

X\l-q2ne r sJ(l-q2n) 

(l) 
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and where f(tn q) is a function of tn q (no powers), ¢N = 0, and 

the square bracket should read instead -3 q for the special case 

d = 26. The integral diverges near q = 0; tba:t is, the region where 

the loop shrinks to a point. We note for later use that this point 

(the loop at q = 0) is located at ioo in the ¢-plane. To examine 

the integral in the q = 0 region, we expand the curly bracket in a 

power series in 2 
q and find that for d < 25, only the constant term 

leads to a divergent integral. This term was shown by Neveu and 

Scherk[l] to be simply a multiplicative renormalization of the Veneziano 

amplitude. For d ~25, the linear term in 2 
q in the power series 

expansion also l~ds to a divergent integral. It is this integral that 

we examine here. We change to the more convenient variables of 

¢i 
integration ui = tan ~ . In the limit q ~ o, these u variables 

are related to the string diagram variables p by the usual tree 

diagram transformation 

p (2) 

with the cut no'• at u = i. He then obtain as the coefficient of the 

infinite q integration 

L 
l~a <b-:;; N 

,-~ 

1
~~-2 ( __ )2 

J 
ua - ~~ 

dul du2... d~l-1 2 2 
(u + 1)(~ + 1) 

0 0 a 

-2p. •p. 
u.) }_ J 

J 

l~i<j-:::;N 
(3) 
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where the range of int<cgrat.lon l:; restricted only by 

0 < ~-1 < (which is just a cc:1venient 

notation for 0 < ~l-l < · · • < ur < oo and -co< ur-l < · · ·< u1 < 0 

for some r). 

Even after factoring out the infinite q integral, we find 

that the remaining integral (3) diverges. This remaining divergence 

cannot still be due to the loop shrinking to a point since the integral 

(3) diverges only for particular configurations of the u' s. In fact 

the remaining divergence is due to configurations of the one loop 

diagram that correspond to external line self-energy insertions. 

Suppose we factor out the self-energy part in one of these config~ 

urations. Then we are left with a tree level diagram with exactly the 

same incoming states and momenta, or else the contribution is not 

divergent. Thus we expect our divergences to be simply an infinite 

constant multiple of BN. 

In order to evaluate the contribution of (3) to the amplitude, 

we must first choose some cutoff procedure rendering the integral 

finite. To this end, we temporarily suspend momentum conservation by 

introducing a new incoming momentum k (see Fig. 1 ). ":!e tentatively 

choose it to enter the string diagram at the position o~ the loop 

(remember that we have taken the limit q ~ 0 which corresponds to 

the loop shrinking to a point), but we shall see that ·,;e will have to 

modify this slightly. We expect this procedure to eliminate our 

infinities, since no•-r all self-energy insertions have incorr.ing and 

outgoing momenta whicn differ by k In the limit k ·• 0, ·-re should 

then recover a constant multiple of B as the divergent part. 
N -

Thus 

instead of the normal energy-momentum conservation eq~tion, we have 
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N 
\" 
) pi+ k 0 

{_ 
i=l 

where k is the new momentum introduced. ir This new momentum introduces an extra term 

i=l 
to the exponential of the functional integral for the S matrix. This 

leads to the extra term in (1) 

{

d-2 

exp \ 
L 
i=l 

N 

I 
r=l 

The second term, which is infinite, is similar to an infinite term 

obtained in the conventional p:~.th integral interacting string 

formaJ:is~[2]. As in the latter case, it can be absorbed into the volume 

element since it has no dependence on the integration variables. The 

first term in the exponent changes (3) to the expression 

" n (u. -
1 

l~i<j~N 

2 
(u - u ) 

a c 

(u 
2 

+ l) ( u 
2 

+ 1) a c · 

f. -~-Pr •k 
·''i"--...1' -1 ( )2 -2p • p. i ~ 1i - u 

) i J! r\ r c 
uj t 1,: .1. 2 

.. u + 1 
' r r ''-

( 4) 
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where we have defined kt = 0 l;o change the d ~ 2 prodyct to a 

covariant d product, uc = i is the point to which tteloop r~s been 

mapped, .and we have neglected terms in k
2 since they are second 

order in a small quantity. The fact that 

appearing in the second term is undefined is a point we shall deal with 

later. We can write the last factor of the first. term in (4) as 

! " [(u -u)2 lt exp ' - ') Pr •k tn r 2 c . 

l ~ ur +1 

r 

p •k tn r . 

This exp:~.nsion is valid in the. range of integration since the 

(5) 

u 's r 

are real and uc = i, so that the argument of the logarithm never 

blows up. Also since the logarithm is always well-behaved, the 

convergence properties of all the terms in the series are the same. 

Thus since we will see that the first term in the series behaves as 

k-l as k ~ 0 .(this behavior is expected of an eXternal line self­

energy insertion), we can neglect the terms of order k
2 

and higher 

in (5). Thus we have left the first two terms in the expmsion (5) 

in addition to the second term in (4). We refer to these throughout 

the rest of this pl. per as terms I, II, and III. We point out that 

although term I has exactly the same form as the original divergent 

expression (3), it is now well,.;behaved due to the new energy-momentum 

conservation eqUation. 
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III. Evaluation of the N-Point Function 

Consider term I for the N-point function for a particular 

choice of a, b ~ N and ua < 0 (just as an illustration). Thenwe 

have 

J
~-2 )\ r~-2 

I ... , d 
1C d~-l J d~+l J ~-1 
~ 0 0 

( 

f 
) 

-<D 

0 
dua 

-2p ·P 
u.) i j 

J 

-1 
( 

0 

u 
2 

+ 1 
a 1 ~ (1 - a )21 dal 

(a.. 2u 2 + 1) j 
· b a -1 

0 

(Equation continued) 
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-1 -1 1 
}l /' (X) -Tj -1 I 

(1 + ~)2 
j 

( / (" ! i l 
I I rrpa 'Ib + ' + + 

J + ~ J 
I 

'~' ;_1 )_1 
I 1 + I 0 T] T] -<D -T] _} 

J~-2 ~ ~~-2 '11 
x ~-11 ~+1. · • d~-1 ! I (ai 

) ' . 
. ~ 0 0 i>j 

(6b) 

In (6a}, we have made the substitution ai = ui/ua • In (6b), we have 

done. the ua integration and broken up the 01, .integral as shown. 

If all the €i were zero, then the quantity in the curly brackets 

1 
would be ~(l +ell,) BN where ~ is theN-point Veneziano (Koba-

Nielsen) formula. In the limit €i -+ 0, the second and the fifth 01, 

integrals.are still finite. Thus we are permitted to take the limit 

before doing the 01, integral, and these two 01, integrals contribute 

just a constant multiple of BN. Notice that this result is independ­

ent of the value of T] > o, and we can choose it to be as small as we 

like. In particular we ~an let TJ -+ 0, as long as this limit is 

taken after the ~i _,. 0, and we choose to do so for convenience. 

Now let us examine the first. ab integration. Since the 

range of the ~ integration is infinitesimal, the only possible 
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contribution to this term can arise when the integrand blows up for 

E. = 0. This occurs only when all but one of the u's are equal .. A. 
1 - ' 

detailed calculation for several .. N eonfirins this, but we know this 

must be the case in general since this region corresponds to the 

configuration where.the.loop is in one of.the .strings and far from the 

interaction region. Since we already have '\ = ~/ua ~ o, the only 

possibility for the u's in which all but one are equal is ui ~ O, 

.. i -f a. Thus we can restrict the other a's to be less than some 

number s , where we can clearly choose ~ << s << 1. In fact, after 

a little thought, it is clear that, in addition to the above inequali~, 

we can take s as small as we like, by simultaneously making ~ 

smaller if necessary. Doing this, we obtain 

r'\-2 ~~ ~-2 
}( J ~-l . ~+l .. J . ~-1 

'\ 0 0 
i > j 

i 1 j ~ a 

(7a) 

(Equation continue~ 

~ 

r 
J 
0 

i > j 
i, j ~ a 

<W 1 
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/f-'( 
i. > \j 

i,j -f a,N 

(7b) 

d:rb+2 •.•. 

/r-1' -(2pt ·pa +Et) 
\ I "Yt 
t ! 

t~a,b,N 

(7c) 

(Equation continued) 
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co 
( 

J 
1 

-ll-

/--) 
/! 1 

I I 
I j 
l " 

t f, a,b,N 

1 

I d:r ••. 
a+l 

0 

(7d) 

In (7a) we have excluded those factors with i or j equal to a 

since a: a = 1 and all other ai ~ 0. Equation (7b) is obtained by 
. . 

I -1 
the substitution 13 i = ai '\ and ( 7c) by :r i . = 13 i , and where we 

have used the altered energy-momentum condition extensively. Equation 

(7d) follows only if the extra pieces added (by changing the limits 

of integration) contribute nothing to the integral. 

only if 

where 

s. < -2, 
Ja 

j = 1, · · ·., a-1 and 

2 (p + p + ••• + p) 
a a+l 13 · sa!3 

s 0 < -2, 
aJ 

This will occur 

j = a + 1, · · ·, b-1 

It is quite tempting to identify (7d) immediately as a linear 

combination of derivatives of BN with respect to Pa'Pt' t f, a,b,N. 

However, this is quite misleading; since the ·Pi ·pj are not all 

independent due to the N relations 

p • 
i 

oO ~ pj 

j=l 
+ k 0 . (8) 

-12-

If we were to use these relations to eliminate N of the p. ·p. , 
l. J 

then the products Pa'Pt , '- f a,b,N would appear elsewhere, and our 

simple argument would break down. 

In order to see that (7d) does involve the derivative of ~ , 

it will be convenient to change to the variables sa!3 defined above. 

These have the advantage that they are all independent (we count 

~p-l = saN as one, etc.), unlike the pi •pj which are restricted by 

(8). We must however decide where we will put k in the definition 

of the sot3 That is, we could choose 

s = (p + p + ••. + p + k)2 = (p + p + ••• + p )2, 
ez13 a a+l 13 13+1 13+2 a-1 

or we could. put the k in the last expression. We note that using 

the wrong sot3 in the divergent term leads to extra finite terms in 

the final result. Since the divergent part of the term we are dealing 

with here 
1 is proportional to € -~ , it arises from the configuration 
a 

where the loop is in string a . Thus the arguments of the BN should 

be the. kinematic variables with Pa replaced by Pa. + k · We 

therefore use the s~ defined so that the k appears in that sum of 

momenta that contains p . a 

backwards) that 

...r·- ... .-: 
i I 
I ' 

all s~ 0 

lJ 

Then it is not hard to show (working 

- ri)(rj+l- ri+l) 

ri-l)(rj+l- ri) l ., 

E: , a 
1 

(9) 
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If one of the 1's is infinite (here /N)' then this formula still 

holds and all factors with that 1 cancel. Also we can write the 

squ,are bracket in ( 9) as 

E 
a 

"') r·(rm-. r,Hrm+l- r,_:J]l\ea 
t~a~ m< bl(/m- 1t-1)(1m+1- 1 t) 

(10) 

where the above result depends crucially on the relations 'a = o, 

/b = 1, /c CD. Then using (9) and (10), (7d) becomes 

-e a 
rrp •n. !L_ a - o e a 

rrp •n.l..!... B~,(sai.) a -0 I _E -• J 
' a 

+ 

·;e 
;a 

lt)(!m+l - 1 t-l) j 
\ 

1t-l)(!m+l - 1t) j 

(ll) 

in the limit E -+ 0. 
a Terms proportional to tn 11 have been dropped, 

-14-

since it is known that they canee1 with terms in other ~ integrals 

(this is due to .the fact that 11 is an arbitrary division point of an 

integral. ) • Notice that it is unimportant which s.·. 's we use as the 
l.J 

argument of the derivatives of ~- in the limit "'i -+ O. 

By a similar argument, the third and fourth ~ integrals 

each lead to an'.identical expression to (7d) except that ~ replaces 

e in the .coefficient, and analogous steps lead to. an expression 
a " 

similar to (ll). If ua > 0 we get, in addition to (ll), one more 

term identical to (11)., Although the calculation is slightly different, 

the result holds over if 6~e of a or b equals N However, in 

order to obtain (7d) for all a,b, we must have sotl < -2 for all 

planar channels. This _poses no problem as the sa.:3 are all inde­

pendent. Later the proof holds also in the physical region by analytic 

continuation. 

Adding up all the contributions, we obtain for term I 

r 
a, b, t,m 

with t~ a:;;; m< b 
or a< t~b:;;; m<N 

-2rr 

where ~ is a constant, m is the slope, and we have used the 

relations 



-15-

s. - s - • + s ab a, b-1 · a+l, b a+l, b-1 

(in which we must use the definitions saa = -1, s 1 = 0). This is a+ ,a 

the desired result, and thus we have a universal renormalization of the 

slope of the Regge trajectories. 

To complete the proof, we must show that terms II and III do 

not affect our result. Term II is actually a sum of terms with the 

term I integrand and the extra pieces 

-~·~-
r·(ur i)2 "\ 

•\ € -
\ r tn - .!" 2 l 2 u + 1 J r r 

Since the extra term is well-behaved throughout the range of 

integration and is first order in E. , we neglect all but the 
~ 

divergent part of the integral. If r ! a or b, then this always 

occurs for u ::::: 0 and we can write 
r 

€ r (u - i )
2 1 

-E.t! r I 2 n' 2 
1 u + 1 : .. r -

i1f € 
r 

--2--

and the result is a multiple of the divergent part for d < 25. 

For r = a or b, we write 

-1 l 
-2i tan -u 

r 

Then the ua integration is modified using 
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(1 2 

tan -1 1 , - (!!.) for a. -+0 

Jau, ui 
12 2 J 

2 2 2 
+ 1) (ui + l)(ui aj 11 ' aj (&) fo.c a. ->co 

J 

ta -1 1 
(!!.)2 for a. -+0 
2 J 

Jau, n --
.. uiaj 

2 
+ l)(ui 

2 2 
+ 1) (ui aj 

2 
2; (~) for a. -+ Q) 

j J 

Adding all the terms up, we find that term II is proportional to 

r 
r I= a, b 

- 2i 

€ 
r 

As we remarked earlier, term III contains the explicit factor 

(i2 + 1)-l which must be removed. This can be done by displacing the 

point of entry of the new momentum k to a fixed point in the string 

diagram infinitesimally close to the loop. Since we are dealing with 

the case where the loop has shrunk to. a point, we can ·..:.se the tree 

diagram transformation (2) to find the displacement of the point of 

entry of' the loop in the u plane. This gives 

.... 

~ . 
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which changes term III to read 

\ 1 \ 
L_ € 

2i(!':. p ) ·a 
c a 

0 . ul r~-2 . 2 

J [ (u - i) 

. ·. dul . d~ •• J d~-1 ---"":""""'2,.....+-l 

0 0 0 a 

\a 
Li -rur 

\ r 

where we have left out the terms with E 
r 

in the exponent, since we 

already have a factor € • 
a 

Unfortunately this expression is still divergent. This 

() divergence, already seen in the old renormalization calculation, 

occurs when the loop approaches the boundary of· the string diagram, 

or in the region of integration where all the u's are equal, To 

remedy the situation we introduce another cutoff to eliminate this 

region of integration, and later take the limit as the cutoff goes 

away. We do this in the following way. Since .the whole term has a 

coefficient linear in E , the only contributions will come from the 

region where the integral diverges, i.e., the region where all but one 

(at least) of the u's, say ~' 

we have 

~ l ---+ ---
i - "\ i - UA 

are equal to some value uA 

\r 
\ 
I 

·I 

/ . 

~T~ 

a 
r 

r· 
; l l 

~~i- ~- i- UA 
l 

Then 

So for the case where a/Nand k~N or a , we can write term III 

in the above region as 

·,..----, 

/·"k 
0 

~ \ 

J 
r 1 2 

4--
I 1 . l I (u - i) 

2i(!':. p ) € du !-----·! a 
a ali-~ i-uaJ 2 c u + 1 

a N ~ -T) a 

0 ,ul ,·ua-2 .u 
( ,. a 

r i )( 

J du1 j du ···I dua-l dua+l 2 J J 
.... 

J 
u u u ~ a a a 

r! 
I ! 

l~i<j~N 

(12) 

where r, << E. The ~. integral has been restricted so that 

/~/ > ~. Since all the other u's are near zero (= ~), this has 

the effect of eliminating the region where all the u's are equal. 

The ua integral is restricted by ua > Tl (this should read u < T) 
a 

if a < k) so that we exclude the region ~- ua. The remaining 

u's actually have been left unrestricted since. there will be no 

contribution anyway unless they are all near zero. Finally, uA has 

been set equal to ua' which is permissible since all i f. k 

are equal. It is clear then from (12) that our result is just a 

constant multiple of ~· The terms a = N and k = N or a 

although somewhat different, are similar and give the same result. 

Also we can easily convince ourselves that changing u by an . c 
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infinit·eSimal amount cannot change our result for term II (since it is 

finite). Thus we conclude that _both terms II and III simply add to 

the multiplicative renol"IIB.lization and do not affect the slope 

renormalization. 

We should point out that we have been using the fact that the 

sij are all independent. If the number of particles is greater than 

26, the number of dimensions, then this is not strictly true. However, 

we note that throughout the derivation of the interacting string 

amplitude, no use was made of the number of dimensions. Thus we would 

have written down exactly the same expression no matter how many 

dimensions we were working in. We therefore calculate always in more 

dimensions than the number of particles we are dealing with, and are 

confident that the result will be valid in fewer dimensions. 

We have now shown that the single loop amplitude for N 

scalar particles is a slope renormalization. By factorization, we 

trivially obtain the same result for N excited particles. 
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Figure Captions 

Fig. l. N-point function with new momentum k entering, 
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