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Abstract: It has been previously shown that for the number of dimen-
sions d.<v25, the one loop planar Stfing diagram is simply é
multiplicative (coupling constant ) renormalization of the Born
term. Tt is shown here that for d = 25 or 26 the extra
divergent term gives, in addition to a further mult,.iplicative

renormalization, a renormalization of the slope of thé_Regge

trajectories.

I. Introduction
The N-point Veneziano amplitude is a tree diagram approxim&tion

to the strong interaction scattering amplitude. Thus qnezis'led to ~
examine loop diagrgms ip the hope of obtaining & more realistic am-
blitude. As in quantum.electrodynamics, these diagrams are found to
:be divérgent. A reﬁorbalization'ﬁroéedufe must then be found‘in vhich
all infiqities are absorbed into & gedefinition of the physical o
;arameteré of the theory. This ﬁas done for the one 1loop Planar’
diagram for dq < 2’5 by Neveu and Scherk [1], apa _£hé fesultvwas found
to be a simple'mulfiﬁlicative renormalization of the Born term. 1In
thiéipaper wevdo this for the one loop'planaf diagram in the critiéal

number of dimensions. We: show that the divéfgent pért of the amplitude

* . LT . T .
This work was supported by the Energy Research and Development

Agency (ERDA).
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can at the one loop lével be written as

OB(m, si.)k
—-._._J__): ClB(m'\"C

N s 8
om ' 2

€1 (BN(“" 845) * o 137

where ¢ys C, 8are constants, sij ére the planar- subenergies, m is
the élope of the Regge trajectories, and BN is the Veneziano
amplitude. Thus at this level, multiplicative and slope renormaliza-

tions are all that are needed to render the integral. finite,

II. Method
In the interacting string picture, the singlé loop planar

amplitude for N scalars is given by the following expression, after

a Jacobi transformation has been made on the usual variasbles of

integration [2]

| b N-2 ¢ -(an11)/12
_ quf apy | ap, -o- d¢N_l_[q 1, ]
Jo Yo 0 ) : ‘

exp(-pr'ps N(e_, os)>

£(in q)
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and vhere f(in q) is a function of ’n q (no powers), ﬁﬁ

the square bracket should read instead q_j for thé special'case

=0, and

d = 26. The integral.diverges near q = 0; that is, the regioh where
the loop shrinks to a point. We note for iater use that this point
(the loop at q = 0) is located at ico in the P-plane. To examine
the integral in the q = O region, we expend the curly bracket in a .
pover series in q2 anq find that for 4 <25, bonly the constant term
leads to a divergent integral. This term was shown by Neveu and
Scherk[l]to‘besimply a multiplicative renormalization of the Veneziano

amplitude. For d 225, the linear term in q? in the power series

expansion also leads to a divergent integral. It is this integral that

we examine Here. _We change to the more convenient variables of
integration u, = tan 51 Tn the limit g~ 0, these u variables
are related to the string diagram variables o by the usual tree
diagram transformation |

N

p = E{: a, in (u - ur) ()

r=1

with the cut now at u = 1. Ve then obtain as the coefficient of the

infinite q integration

. . i'ul LN-2 (U. - ub) ‘
Py Py Uy duyeee et 5
; (u D)y +1)
152 <bs N~ 0 o ()

,T'\~//

i ; -2p,*p.
x | - 17

: (u1 uj)

1S 4i< jS N

e
where the range of integratlon i restricted only by

uy =0 Sy <

notation for O < ey < eee < u, < oo and -~®m< w. < e uy <0

Ty T0 S (which is just & coavenient

for some T).

Even after factoring out the infinite q integral, we find
that the remaining integral {3) diverges. This remaining divergence
cannot stili be due to the loop shrinking to a point since the integral
(3) diverges only for particular configuratioﬁs of the u's. 1In fact
the remaining divergence is due to configurations of the one loop
diagram that correspond to external line self-energy insertions. |
Suppose we factor out the self-energy part in one of these config-~
urations. Then we are.left with a tree level diagram with exactly the
same incoming states and momenta, or else the contributioﬁ is not
divergent.' Thus we expeét our diyergences to be simply an infinite
constant multiple of BN'

In order to evaluate the contribution of (3) to the amplitude,
we must first choose some cutoff procedure rendering the integral
finite. To this end, we temporarily suspend mpmentum conservation by
introducing a new incoming momentum k (see Fig. 1). e tentatively
choose it to enter the étring diagram at the position of the loop
(remember that Qe have taken the limit gq = O which corresponds to
the loop shrinking to a point), but we shall see that'we will have to ¥ -.
modify this slightly. We expect this procedure to eliminate our
infinities, since now all self-energy insertions have incoming and
outgoing momenta which differ by k»._ In the limit ¥ -» O, we should
then recover a gonstant multiple of BN as the di%ergeht ert. Thus

jinstead of the normal energy-momentum conservation =quation, we have
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S—- pi+k = 0
-
i=1
where k is the new momentum introducgd. o den

) N L i
This new momentum introduces an extra term i ki X (pc)

s ' =
to the exponential of the functional integral for the S matrix. This
% . leads to the extra term in (1)
4-2 N . .
: 2
exp>— Z N(o,o) + —N(o,o)v k& 9 -
=g i1 r=1 . 1 1 :
b .The second terﬁ, which is infinite, is similar to an iqfinite term
fea’ obtained in the conventional path integral interacting string
gy forﬁausmﬁﬂ. As in the letter case, it can be abso;bedrinto the.volume
=y elemént since it has no depéndence on the integration variables. The
Yy first term in the'exponenf changes (3) to the expression
- u _ . . o
- , , 1 U2 (u, - w)
27 - du, - “'du2"‘ duN 5 2 5
= 2| M1 T @? 4 1)(y? + 1)
: 1Sa<t&N o 7o 0 - ) : ,
— _ -k
- v
o2 _ .
=37 . 1€1<y
- hd i (ul
+ Z»Epa--kj ”dulJ
“a 0 0
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where we have defined kt =0 to change the d -2 proqgct to a

covariant d product, u, = 1 is the point to which the 1oop has been.
mapped,,and we have neglected terms in k? since they are second
1)t

+

order in a small quantity. The fact that (u.c2 +1)7 = (1

appearing in the sécohd term is undefined is a point ﬁe shall deal with

N

later. We can write the last factor of the first term in (k) as

— AT 0 - )
ﬁ (u - u )2 r } — (u 'u')2
I B _ N R r c
—s exph - Prk n |5
LT u

i
ot u.r2 +1 i 5 .+ 1
= r
r 2
' (u, - u))
= 1 - N Pk in 5 ¢ + 0(x%)
: ZZJ ur + 1
- r

This expansion is valid in the range of integration since the ur's

are real and #c =1, so thét the argument of the logarithm never

blows up. Also since the logarithm is always well-behaved, the
convergence properties of all the terms in thé series are the same.
Thus siﬁce we will see that.the-first term in the series behaves as
.k-li as .k -0 (this behaviof is expeéﬁed of an external lipe self-
»energy insertion), vwe can neglect the terms of order k- and higher
in (5). Thus we have left the first two terms in the expan51on )
‘in addition to the second term in (k) We refer to these throughout
the rest of this paper as terms I, II, and III. We point out that,
althéugh term ibhas éxéctly thé same'form»aé tﬁe original divé?geﬁt

expression (3), it is now well-behaved due to the new energy-momenfum

conservation equation.
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ITI. Evelustion of the N-Point Function

Consider term I for the N-point fL_mcfion for a particular

choice of &, b # N and Y, <0 (jus’t.z'as an illu'stra.tion).‘ Then we

have
0 ;h 0 uy LI . ua
épa‘Pb duaj dﬁ‘b du, [ du,e e ) du&',l du o
-0 0 ila ﬁ& - u& . u&+2
-2 ‘}’*b [UN-E
x du, o J i j' duyy
i 0 ©
-Qpi.pj (ua - Ub)
(u, - u 5
S N B (w +1)(w° +1)
>3
0 -1 0 M
- 2p B, I( Zu j ;ab (1 --ozj)2 dory f da,
a _éo u® o+ A (a% u o+ 1) A 4
Fa-2 ;l Fp-2 (N-2
x[ %1 j W™ / dog o | %yttt %na
. . , !
1 a O Y
v
§ _2p “p.
x % (ai -»aj) 17
1>

- (6e)

(Equation continued)
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* dab-l)l dop ) 4%y ! Py -ay) .
Y 0 0 1>
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In (6a), we have made the substitution oy = ui/ua . In (6b), we have
done. the u, integration and broken up the 65 ‘integral as shown.
If all the €, Were zero, then the quantity in the curly brackets

: 1 C .
would be 5;137775;7 By where BN 1s the N-point Veneziano {Koba-
Nielsen) formula. In the limit ei -+ 0, the second and the fifth o%

integrals are still finite. Thus we are permitted to take the limit
before doing the ab integral, and these two ab integrals contribute

just a constant multiple of B Notice that this result is indepehd-

N
ent of the value of 71 > 0, and we can choose it to be as small as we
like. 1In particular Qe can let 3 — O,. as long as this limit is
taken after the € 0, and we choose to do so for convenience..
Now let us examine the fifst‘ o
range of the o integration is infinitesimal, the oniy possible

integration. Since the
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contribution to this term can arise when the integrand blows up _for )
' € = 0. This occuI.rS only when all but one 61: the u's are eq_ual.l: A
_detailed calculation for ;severa.'_L N vgonfirm's this, _but we knéw this
must bve> the case in éeneral since this region corresponds fo the
configuration where.the. loop is in one of.the ,strings and far. from the

interaction region. ©Since we already have ab = u.b/ua &% 0, the only
possibility for the u's ‘in w_hich_all but one are equal is u1 x 0, .
i # a. Thus we can restrict the other a's to be less than some

-number § , where we can clearly ‘choose n << ¢ << 1, In fact, after

a little thought, it is clear that, in addition to the above inequalily,

we can take £ as small as we like, by simultaneously meking 7

~ smaller if necessary. Doing this, we obtain

| i . . | Ctl ‘ ota.-2 ¢
‘ﬂpa..Pb dab d‘al [ 'da2'“ daa-l dc‘tar.+1 e
. 0 -£ -t . g Q,

i>3
i,j #a

rab-g | ab -2 /‘,\./ | _?I_pi.. Pj
B [ e R
% 0 CEE |

(Ta)

(Equation continued)
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oy 0 [61
TPy "By 1+e dB1 i dﬁa o
J
0 % -l -tfo
Pa-p /e, b-2 [l Poa
X ®a1 Boi1 4By 1 J By | %o
-t/o . 1 1 0 0
Pie r«’/ 2p,+p
1Py v
x [ a8y, | (g - 8y) (7o)
1> ‘
0 1, ié a
rn o ;ab/e | -/t
“pa'gb }l -l—+€a,- J d)'l f d72.'"
0 ab -m 71
o /8 1 1 E o
x 4751 A .1 j i1 [ D0
Ya-2 o,/ b2 1 T
[ ST - -2p, *p. ’T/ -(2p,-p_+¢,)
x [ dyg, ‘ A N tiat
1>% bt
w2 i,j # a,N tf a,b,N

(7c)

(Equation continued )
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: e . . I
Lﬁ
= ﬂp d- d o oese
Pb [ 71 [ 72 . dya -1 d7a+1
. : (o) :

o Za-z

fp
X 4751 J Dpr | Py d7y.1
Tp2 1 Tp+1 TN-2
S
_ Y ( )-21>i‘1>j . -(2p,-p, +€,)
x| j 73" o (ry - 7,) .
1> : L £ a,0,N
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(78)

In (7a) we have excluded those factors with i or j equal to a
since .a; =1 and all other o % 0. Bguation (b) is obtained by
the substitution B, = ai/ab and (7c) vy 74" Bi-l, and whefe‘we.
have used the altered energy-momentum condition extensively. Equation
(7d) follows only_if the extra pieces added (by changing the linits

of integration) contribute noth;ng to the integral. This will occnr
.-only if Sia <‘—2, j=1" a-1 and sej'< 2, j=a+ 1,';', b-1
~ where S = (pa + Bttt pﬁ)a.

It is quite tempting to identify (7d) immediately as a linear
combination of derivatives of By with respect to D -D,, ¢ # a,b,N
However, this is quite gisleading; since the “pi-p.j are not all
independent due to the N relations ) o
e N ‘ ’

Ef;“pj + ké = 0. (8)

J=1

By

.-12-

1f we were to use these relations to eliminate N of the pi'pj ’
then the'products' p"py , % a,b,N would appear elsewhere, and our
s1mp1e argument would break down.

In order to see that (7d) does 1nvolve the derlvatlve of BN 9
it will be convenient to change to the variables Saa defined above.
These have the adventage that they are all independent (we count

= s . as one, etc.), unlike the Py Py which are restricted by

S0-17 ToN _
(8)., We must however decide where we will put Xk in the definition

of the s

o8 That is, we could choose

s = Py * Py * "'-+pB+k)2=(pB+l+pﬁ+2+---+p a)

‘or we could put the k in the last expression. We note that using
the wrong saﬁ in the dinergent term leads to extra finite terms .in
the final result. Sinee the divergent rart of the tern we are dea;ing
with here is proportional to L BN , it arises from the confignration
where the loop is in string a . Thus the arguments of the BN shou;d
be the. kinematic variables with D, replaced by P, + X We
therefore use the saB defined so that the k appears in that sum of
momenta that contains B, . Then it is not hard to show (working

vackwards) that

’ o : A ) '!ea
2pi'p.‘ € (7a+l - 7a)(7a - 7&-1) ! .
(7 - =t G, -7.) ;
i S 2 a 7. -y
1>J . o \ atl = fa-l
- . N a »
. j-si.-2
A O, =20 - 7501) '\ ’
X % } J iV 3+1 i+l \
e (r. =7, . -7 |
all s7 A
- (9)
' 9
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If one of the 7's is infinite (here 7N), then this formula still
holds and all factors with that 7 caﬁcel. Also we can write the

square bracket in (9) as . : P '

- e . /r-\_/; - : 7 ‘Ee
. a ; 1 e
(7 0y = 7007, = 7,7) ; (rg= 7000, -7

t€as'm

Ya+l T 7a-1 o Tn= 7e.1) g~ 70)
(10)
where the above result depends crucially on the relations ‘%a = b,

=1, 7,=o. Then using (9) and (20), (Td) becomes

-ea )
L L— N LX) . ..0
"Pa Py & dry | 9% g1 | Yan
‘-oo 6% Ta-2. °

7y - 71>(73+1‘-,7i'1)

(
(75 - 7i-1)(7j+1" 7i)J
) f/{ 190 7000 - 70y

v <

N

)
(v =7y Mo = 7,)
Sp< b" m L1 "_Hl 2

BN“?QI+ (1)

o |-

‘ R
Zi asLm

a éfﬁ <b
#m

in the limit € 0. Terms proportional ﬁor In 1 have been dropped,

N

[N

Bt T

S , -1

since it is known that they canéci with terms in other: ab - integrals
(this is due to.thé fact that 7 is an arbitrary division point of an
integral.). Notice that it is unimportant which sij's ‘we use as the
argument.ofrthg derivatives of BNv'in the 1imit <, - O. ‘
By a si@ilar érgument, the third and fourth @~ integrals
each lead to.aﬁlidentical'expression to (7d) except that ‘eb replaces
€ inbﬁhe‘coeffiQ}ent, and analogous steps lead @o.an e?pressioh
similar to (ll).‘ if_ u >0 we get, in addition to (11), one more
term idegtical to (ll).\ Although the célculatibn is slightly different,
the result holds over ifxbgé-df a or b equals N . However, in

order to obtain (7d) for all a,b, ‘we must have Sop < -2 for all

Pplanar channels. This poses no problem as the SGS are all inde-

pendent.“ Iater the proof holds also in the physical region by analytic

continuation.

Adding up all the contributions, Wé obtain for term I

1

-
- o ' 9
= 21 !K‘BN(Sij) + EE BN(sij)i

‘where « is a constant, m 1is the slope, and we have used the

relations
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SRRy T Sy T Sa,b-l T Pasl,b * Sasl,bel

(in which we must use the defipitions San f -1, Sa+l,a = 0). This is

the desired result, and thus we have a universal remormalization of the

slope of the Regge trajectories.
To complete the proof, we must show that terms II and III do
not affect our result. Term II is actually -a sum of térms with the

term I integrand and the extra pieces

P, - PR
§ € | - :
N r : (ur 1) i
- % — {in | ———— !,
: 2 2 i
; u + 1 I
L T
T

Since the extra terh is well-behaved throughout the range of
integration and is first order in ei , we neglect all but the
divergent part of the integral. If r £'a or b, then this always

occurs for u, % 0 and we can write

2 ‘
2 ‘ ur2+l H 2

and the result is a multiple of the divergent part for d < 25.

For r=a or b, we write

(u, - 1) 211

in —5—— = -21 tan "~ = .
u
u, + 1 r

Then the u, integration is modified using

-16-
{l 7 2
tan_l u_l_ i é- (é-) for .Clj -0
du - i . = .
i, 2 2 2 -
(ui + l)(ui a 1) o
: 1 o L
a () for oz‘j >
2 .
(Zy for a, » 0
tan-l 1 2 3
SulR o
dui > 21 32 = <
(0, + 1)(u,” o, +1) _
i i J o
1 £ R -
203 (2) for a; @ .

\

Adding all the terms up, we find that term II is proportional to

©

5 .
N 1
= T— BN -

As we remarked earlier, term III contains the explicit factor

: (12 + l)-l which must be removed. This can be done by displacing the

point of entry of the new momentum % to a fixed point in the string

diagram infinitesimally close to the loop. Since we are dealing with

" the case where the loop has shrunk to a point, we can use the tree:

diagram transformtion (2) to find the displacement of the point of

entry of the loop in the u plane. This gives
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fe o YL
! " r
Au, = & Ce i } i-u }
VL r_/
\\ r
which changes term III to read
\ 1 -2 2
1 \\ uN (u - i)
du du,**° .4
1 B “N-
2i(ap) [ % j +1
¢ g o - _ {O "
: 1 =P P
E ! SRR S
x o ., (ui‘ 1)
/1 i<d\

where we have left out the terms with €. in the exponent, since we

already have a factor €yt

Unfortunstely this expression is still divergent. This

divergence, already seen in the old rencrmalization calculation,

occurs when the loop approaches the boundary of the string diagram,

or in the regioniof integration where all the u's are equal,. To

remedy the situation we introduce another cutoff to eliminate this

region of integration, and later take the limif as the cutoff goes

"away. We do this in the following way. . Since the whole term has.a

coefficient linear in ¢ , the only contributions will come from the

region where the integral diverges, i.e., the region where all but one

(at least) of the u's, say s are equal to some value uA . Then

we have

i . R = S :
N T S T g - il 2
. ; O‘k{i-uk" ;

= +

i-wv i-u T
x A/ 4
rEk
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So for the case where a /N and k #N or a , we can write term ITT

in the above region as

% ' O i)2
31 o duy [ T
c uk i- ua j a 2 +1
_ a N £ n o : .8 :
(O {ul U o {ua
g du; | duycri o au Cau .-
1 | 2 -
J - j a l-} a+l
ua ua ua V llk
k-2 " FN-2 : ’ P 2p
A * -2p, +P
x .o H i
Quy g | duy b (g -wy)
ER 0 0 1£i<3€N
(12)

where 1 <<'e. The u, integral has been restricted so that

b | > e

’che effect of eliminating the region where all the u's  are eoual.

Since all the other u's are near zero (= nN), this has

The u integral is restricted by uy > n (this should read u, <7

a
if 8 <k) so that we exclude the region uk ~ u . The remaining
u's actually heve been left unrestricted since there will be no. -

contribution anyway unless they are all near zero. Finally, uA has

been set equal to ua, -Which»iS’permissible since all ui, i % k
are equal, It is clear then from (12) that our result is just a

N or a,.

The terms a2 = N and k =

constant multiple of BN'
- although somewhat different, are similar and give the same result.

Also we can easily convince ourselves that changing uc_ by an
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infinifeéimal amount canﬁot change>our result for term IT (since it is
finite). Thus we conclude that both terms II and III simply agid to
the multiplicative renOrIaliiation and do nof affect the slope
renormalization.

We should point out that ﬁe ﬁave been usiné the fact that the
Sij are all independent. If the number of particleg'is greater than
26, the number of dimensions, then this is not_étrictly true. Howeﬁer,
we note that throughout the derivation of the interaéting string
amplitude, no use was made of the number of dimensions. Thus we would
have written down exactly the same expression no matter how many
dimensions vwe were working in. We therefore calculate always in more
dimensibns thah the number of parficles we are dealing with, and are
confidenf that the resﬁit will be valid in fewer dimensions.

We have now shown fhat the single loop amplitude for - N
scalar parficles is a slope renorﬁalizﬁfion. By factorization, we

trivially obtain the same result for N excited particles.
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Figure Captions

Fig. 1. N-point function with new momentpm_ k entering.
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