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Abstract

Probabilistic Graphical Inference of Pedigrees

by

Thomas C. Ng

Inference of pedigrees from genetic data is a fundamental problem in the field of

population genetics with many applications, such as studying the inheritance of traits

in natural populations, or characterizing the transmission of genetic disorders. Cur-

rent methods for reconstructing pedigrees can be divided into two categories. The first

category includes approaches that infer pedigrees composed of, at most, two genera-

tions. The best performing of these approaches—termed parentage or sibship inference

procedures—make direct use of the pedigree likelihood given observed genetic data.

Methods in the the second category endeavor to infer multi-generational pedigrees;

however, to date, these have only been implemented with restrictive assumptions (such

as complete sampling) or by employing approximations to the pedigree likelihood (such

as composite likelihoods, or ad hoc approaches).

In this dissertation, I develop a novel representation of pedigrees as a type of factor

graph that allows for the inference of multigenerational pedigrees within a proper, prob-

abilistic framework. The factor-graph representation allows the rapid calculation of the

pedigree likelihood under a variety of rearrangements, which provides an efficient mecha-

nism for Metropolis-Hastings simulation of a Markov chain through the space of possible

viii



pedigrees. My software implementing this, pedFac, produces a sample of pedigrees from

their posterior distribution, which allows for fully Bayesian, multigenerational pedigree

inference.

I show that pedFac performs as well as other state-of-the-art software for inferring

two-generation pedigrees, but it also provides a far superior estimate of uncertainty.

PedFac is also successful in inferring multigenerational pedigrees when sampling is in-

complete. This means that pedFac can reconstruct multiple, true links in pedigrees

through unobserved/unsampled individuals, a task not performed well by any other

software available today.

PedFac relies on the sum-product algorithm to calculate the full, joint likelihood

of a pedigree factor graph. The sum-product algorithm only delivers the exact joint

likelihood when the pedigree has no loops. For pedigrees that do have loops, I develop a

“conditioning” approach, that permits the likelihood calculation of cyclic pedigrees by

conditioning on sampled genotype values over a set of loop breakers. I show that this

conditioning approach allows pedFac to successfully sample the pedigree space, whether

it be cyclic or acyclic.

Finally, I present work relevant to identifying and scoring genetic markers that could

be used as input to pedFac. A decade ago, most SNPs used in molecular ecology were

typed singly on specialized chips using a variant of quantitative PCR; however, today

short-read technologies are commonly employed to generate genetic data. To genotype

ix



a small number of SNPs or short focal regions in many individuals, molecular ecologists,

now, routinely sequence amplicons (short, PCR-amplified regions) on next-generation

sequencing machines. These data can be analyzed not just in terms of the SNPs present,

but as very short haplotypic variants termed microhaplotypes. I present the R package

‘microhaplot’ to assist in the extraction and curation of these microhaplotypes from

short-read amplicon sequence data, and I briefly consider strategies for reducing micro-

haplotypes to a biallelic representation that can be used as input to pedFac.
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Chapter 1

Background

1.1 The Importance Of Pedigrees

Pedigrees are familiar to most people as a record of familial lineage connecting offspring

in one generation to their parents in the previous generation, and those parents to their

parents in a further previous generation, and so forth. While the true pedigree of an

individual extends back in time indefinitely, in practice, many pedigrees will be recorded

only for a finite number of generations. Ancestors found at the top of the pedigree are

termed founders and are typically assumed to be “unrelated.” With that assumption,

the pedigree provides everything needed to compute the expected degree of relatedness,

(e.g., genome sharing), between any individuals (or subsets of individuals) from the

pedigree. For this reason, pedigrees have played a central role in the development of

the fields of population genetics (Wright 1922; Thompson 2000; Aykanat et al. 2014;

1



Nielsen et al. 2001; Meagher and Thompson 1986), and quantitative genetics (Lynch

et al. 1998; Almasy and Blangero 1998), and have found multiple applications in a

number of different fields.

In human-genetic or animal-management studies, the pedigree of a sample of individ-

uals is usually known from birth records, breeding experiment designs, or observations of

mating. For example, pedigrees are carefully recorded and used for selecting candidates

in domestic breeding programs of cattle (Goddard and Hayes 2009), sheep (Goyache

et al. 2003), and crocodiles (Isberg et al. 2004). In medical genetics, there is a long

history of combining known pedigrees with genotype and phenotype data to analyze

segregation patterns of genetic diseases and to conduct linkage mapping of genetic vari-

ants that contribute to disease susceptibility (Goddard and Hayes 2009; Abecasis et al.

2000; Almasy and Blangero 1998). In animal and plant studies, known pedigrees with

phenotype data are used to calculate genetic variance components and to estimate trait

heritabilities. The addition of genetic marker data in this context permits quantitative

trait locus (QTL) mapping and genomic selection (Goddard and Hayes 2009).

In natural populations it is usually not possible to directly observe mating events,

so the pedigrees connecting members from such populations are typically unknown.

However, since the 1980s, genetic markers have provided a useful tool to infer pedigrees

within wild populations. These inferred pedigrees from wild populations can be used

for the study of quantitative genetics (Lynch et al. 1998), demography (Kruuk and Hill

2



2008; Pemberton 2008; S. 2003; Creel and Rosenblatt 2013), mating behavior (Ford et al.

2011), migration rate (S. 2003; Vøllestad et al. 2012), and dispersal distance (Meagher

and Thompson 1987; Jones 2003), to name a few applications.

The use of genetic markers to study the ecology of natural populations is termed

“molecular ecology.” As late as 2003, some molecular ecologists were predicting that

microsatellite markers would remain the “marker of choice” for studying relationships in

populations (Glaubitz et al. 2003). However, shortly thereafter, the utility of SNPs for

pedigree reconstruction was recognized (Anderson and Garza 2006), and today the use of

small panels of 100 to 500 SNPs is becoming more commonplace for inferring pedigrees in

wild populations (Abad́ıa-Cardoso et al. 2013; Bérénos et al. 2014). While human studies

today typically use over one million SNPs to estimate genomic relatedness (Weir et al.

2006), and whole genome sequencing is becoming commonplace in molecular ecology,

there remain numerous applications in molecular ecology, and fisheries and wildlife

management, where pedigrees are inferred from hundreds to thousands of SNPs. The

application of next generation sequencing to these types of problems is greatly expanding

the scope of such genetic data sets obtained via targeted sequencing (Meek and Larson

2019). Such data sets, composed of hundreds to a few thousand SNPs, is the scale of

data targeted by my work.
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1.2 Relationship Inference: From Parentage Inference To

Multi-generational Pedigree Inference

Pedigree inference involves identifying the familial relationships between the members of

a population. While inferring a pedigree gives information of the joint relationship be-

tween everyone in the pedigree, most previous work on relationship inference has focused

on identifying specific relationship categories such as half- and full-sibling groups (Wang

2004; Thomas and Hill 2002; Wang and Santure 2009), parents and offspring (Meagher

and Thompson 1987; Jones and Wang 2010; Anderson and Garza 2006; Wang and

Santure 2009), grandparents and grandchildren (Christie et al. 2011), or cousins (Kirk-

patrick et al. 2011; Pemberton et al. 2010). Pedigree inference can be approached in two

different ways: one can start with a candidate pedigree and make incremental changes

over time—the top-down approach—or, initially find parent-offspring pairs and eventu-

ally combine those solutions coherently—the bottom-up approach. Regardless of which

direction one takes in pedigree inference, all of the observed genotype information and

the inferred relationships should be considered jointly since each member in a pedigree

is biologically—and hence probabilistically—connected.

Most pedigree inference studies today proceed by first identifying all parent-offspring

pairs as a series of separate problems, and then these are built into an inferred pedigree.

Parentage assignment is done by comparing the genotype of an offspring to a set of

4



candidate parent genotypes and then assigning the offspring to a parent on the basis

of likelihood or compliance to Mendel’s laws of inheritance (Jones and Ardren 2003;

Marshall et al. 1998; Meagher and Thompson 1987; Jones and Wang 2010; Anderson

and Garza 2006; Wang and Santure 2009). Several parentage inference software pack-

ages handle parentage assignment of a single individual adequately; however, only one

program, COLONY (Wang and Santure 2009), over the last decade, has been available

to pursue parentage inference jointly and in the presence of genotyping error, thus using

all the genetic data on everyone to weigh the support for each parentage assignment.

Joint use of the data in this context is desirable because it allows better handling of

genotyping errors and would permit the inference of relationship between, for example

grandparents and grandchildren, even if the intervening parents are missing from the

sample. Though COLONY provides a good start to joint use of data for pedigree infer-

ence, it is limited to only two generations of data and is based on a maximum likelihood

approach that does not provide an accurate measure of uncertainty (Anderson and Ng

2016).

A recent package named sequoia (Huisman 2017) is reported to rapidly reconstruct

multigenerational pedigrees with high assignment rate and low error rate given at least

200 independent biallelic markers. Unlike COLONY, sequoia does not consider the

joint likelihood over all individuals. Instead, it reconstructs the pedigree sequentially

through a pairwise likelihood approach by comparing likelihoods of focal pairs over all

5



first, second or third order relationships.

Today’s methods for inferring multi-generational pedigrees work by searching for

the pedigree with the highest likelihood, either via simulated annealing (Riester et al.

2009; Almudevar 2003), or mixed integer programming (Sheehan et al. 2014). All of

these methods make restrictive assumptions. First they assume no genotyping error.

Second, they assume a complete sample—essentially assuming that none of the sampled

individuals are related through any unsampled individuals. These assumptions are often

violated in molecular ecology. In my work, these assumptions are relaxed by explicitly

modeling unobserved genotypes and sampling over the space of pedigrees in proportion

to their posterior probability via Markov chain Monte Carlo (MCMC) to provide a

Bayesian inference of the pedigree. Moreover, all present multi-generation pedigree

inference methods work poorly on complex pedigrees, as found in many animal and

plant populations that experience inbreeding and high levels of polygamy. A major

aspect of this dissertation is the development of a rigorous system for MCMC sampling

over the space of such complex or loopy pedigrees in the inference process.

1.3 Likelihood Calculations on Pedigrees

When sampling different pedigree structures from the space of multi-generational pedi-

grees, it is important to have an efficient method to calculate the probability of the

observed genetic data given the pedigree, i.e., the likelihood of the pedigree. Without

6



an efficient algorithmic approach, the computational cost for calculating the likelihood

goes up exponentially as the size of the pedigree grows. There are two basic methods

for calculating pedigree likelihoods: the Elston-Stewart algorithm (Elston and Stewart

1971) and the Lander-Green algorithm (Lander and Green 1987). Both of these meth-

ods are a specialized form of Baum’s algorithm (Baum et al. 1972) or the sum-product

algorithm (Kschischang et al. 2001) in which calculations are done on a local unit,

marginalizing over all possible states, and then the resulting information gets passed on

to neighboring units.

The Elston-Stewart algorithm was the first general algorithm for rapid likelihood

pedigree calculation. Each individual’s genotype is considered a latent variable that

depends on the observed individual’s phenotype. The algorithm proceeds sequentially by

“peeling” the outer layer of the pedigree, computing the joint marginalized value of the

peeled outer branches, and reassigning those values at the peeled site or the pivot points.

This algorithm is designed for large pedigrees with only one or a few genetic markers. By

contrast, the Lander-Green algorithm relies on a first-order Hidden Markov model across

genetic markers that are physically linked upon the same chromosome, taking as latent

data an inheritance vector indicating the source of every meiotic transmission in the

pedigree. The Lander-Green algorithm works well for a large number of physically linked

genetic markers but is only feasible on pedigrees with a small number of individuals.

Following the creation of these two methods, many improvements and extensions have
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been made; for example, handling of pedigrees with loops (Cannings and Thompson

1977) and a rapid updating scheme (Lange et al. 1983) for the Elston-Stewart algorithm,

and memory reduction on storing the transition matrix in the Lander-Green algorithm

(Kruglyak et al. 1996).

Both the Elston-Stewart and the Lander-Green algorithms have been applied exclu-

sively in cases where a pedigree is already known. They have not been employed for

inferring pedigrees, outside of their use in identifying pedigree errors in medical genetic

studies (Sobel et al. 2002). My work extends the Elston-Stewart algorithm, generalized

as a sum-product algorithm on factor graphs, allowing it to be used efficiently in the

context of pedigree inference with unlinked markers.

1.4 The Pedigree Factor Graph

Pedigrees are often depicted as acyclic, directed graphs (Lauritzen and Sheehan 2003b;

Lange and Elston 1974). However, since the complete-data likelihood function of a

pedigree is a product of functions, a pedigree can also be depicted as a special type of

factor graph called a “pedigree factor graph” (Anderson and Ng 2016). A factor graph

is a bipartite graph consisting of variable nodes, factor nodes, and connected edges;

each factor node is connected to at least one of the variable nodes and the factor node

represents a function that depends on the connected variable nodes (Kschischang et al.

2001; Koller and Friedman 2009). In the context of a pedigree, a variable node denotes
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the true genotypic state of an individual, and each of the variable nodes is connected to

at least two different types of factor nodes. Following the notations and nomenclature

as defined in Anderson and Ng (2016), the factor nodes can be divided into three

categories: 1) m-nodes, the marriage nodes, 2) p-nodes, priors (i.e., relative genotype

frequencies derived from population allele frequencies) on the genotypes carried by the

founders, and 3) g-nodes, observed genotype data. A founder variable node is always

connected to a single p-node and a single g-node and for each offspring it contributes to

the pedigree, it connects to an m-node shared by its mating partner, the offspring, and

all the offspring’s full siblings. For a non-founder in the pedigree, the variable node is

always connected to its corresponding g-node, one m-node connecting to its parents, and

possibly more m-nodes connecting to its offspring and mating partners. The connection

between g-nodes and individual variable nodes conveniently allows users to define the

genotyping error model for their datasets. In this framework, individual variables, by

their nature, are not directly observed; therefore, they can easily be used to represent

unsampled individuals, which makes them useful in cases where parents of observed

individuals are missing but their relatives are observed.

Although the pedigree factor graph is less compact than a directed graph, the advan-

tages of framing a pedigree as a factor graph include 1) visual transparency in outlining

the dependencies between the observed genotype data and prior assumptions, 2) support

for efficient algorithms to compute marginal and joint probabilities, and 3) the flexibil-
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ity, if desired, to include additional factor nodes that express individual quantitative or

categorical data such as phenotype and penetrance.

When a pedigree is represented as a factor graph, the calculation of joint and

marginal genotype probabilities can be expressed in terms of the Sum-product algo-

rithm on factor graphs (Kschischang et al. 2001). The sum-product algorithm calcu-

lates exact marginal probabilities for all variable nodes when the factor graph is acyclic.

It proceeds by passing messages from nodes, along edges, to neighboring nodes. These

outgoing messages from a node depend on the incoming messages to that node upon the

other edges adjacent to the node. Full details in the context of the pedigree factor graph

appear in the next chapter. After one message has been sent in each direction along ev-

ery edge, the algorithm is complete, and the marginal probabilities of the variable nodes

may be calculated as a function of the messages incoming to a given variable node or of

the two messages being sent in opposite directions along a single edge connected to the

variable node. Additionally, the joint probability of all the genetic data associated with

a pedigree factor graph can be calculated as a function of the two messages being sent

along any edge of the graph. This latter property makes it possible to rapidly evaluate

the likelihood for proposed changes to a pedigree, allowing efficient MCMC sampling

over the space of pedigrees in accordance with their posterior probability given genetic

data.
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1.5 Overview of Dissertation Chapters

In the next two chapters, I present a novel Bayesian inference approach for learning

acyclic (Chapter 2) and cyclic (Chapter 3) pedigree factor graphs by sampling pedigrees,

via MCMC, from their posterior distribution. This is implemented in a software called

pedFac. In the fourth chapter, I present an R package ‘microhaplot’ to assist in the

extraction and curation of short haplotypic markers that could be used as input to

pedFac.

In “Learning Acyclic Multigenerational Pedigrees” (Chapter 2), I first introduce the

notation and formulation for representing a pedigree as a factor graph and then show

how this facilitates calculation of the joint likelihood of acyclic pedigrees through the

sum-product algorithm. Subsequently, I present a Metropolis-Hastings (Hastings 1970)

sampling approach that exploits the modular property of factor graphs to rapidly com-

pute the requisite proposal distributions and acceptance probabilities. I also describe a

selection of prior models and mixing strategies to overcome some technical challenges.

Lastly, to demonstrate its validity, we compare pedFac’s acyclic sampler to COLONY,

FRANz and sequoia in scenarios with two-generation and multi-generation acyclic pedi-

grees.

By the biological nature of propagation and reproduction, most pedigrees involving

large numbers of individuals and multiple generations contain loops. I discuss and
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offer a solution, the “conditioning” approach, in “Learning Multigenerational Pedigrees

that Contain Cycles” (Chapter 3). I first summarize the different types of loops that

can occur in pedigrees. Then I introduce the idea of a “reduced cycle basis” of a

factor graph, and show how it is useful for identifying individuals that are potential

loop breakers in a cyclic pedigree. Then, I describe an MCMC sampling scheme that

involves temporarily assigning values to the latent genotypes of these loop breakers to

break the loops, consequently enabling sampling over loopy pedigree structures. This

sampling scheme, implemented in pedFac, is tested in the problem of grandparentage

inference in a three-generation pedigree case study with varying fractions of missing

individuals in the middle generation.

Finally, improper filtering and quality control in the production of genotypic data

can unnecessarily lengthen the runtime of pedigree inference software and potentially

invite spurious false assignments during the pedigree reconstruction process. To ad-

dress this need, I present the R package ‘microhaplot’ that extracts and curates genetic

markers from short-read amplicon sequence data in “Visually guided curation of mi-

crohaplotypes from short read sequence data” (chapter 4). I wrote this R package to

ensure quality inputs to inference programs like pedFac. Since its inception it has been

used to manage the genotyping of tens of thousands of genetic samples across multiple

laboratories.
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Chapter 2

Learning Acyclic Multigenerational

Pedigrees

Recently, Anderson and Ng (2016) introduced a representation for pedigrees that

provides an efficient way to calculate the joint probability of all observed genotypes at

biallelic markers upon a pedigree. This framework explicitly includes latent genotypes

and captures the statistical dependencies among observed genotypes in a factor graph.

It also allows implementation of the sum-product algorithm (Kschischang et al. 2001)

to break the full likelihood calculation into smaller, manageable parts. Additionally,

the message-passing operations of the sum-product algorithm provide a framework for

storing intermediate quantities that make it fast and easy to compute the marginal

genotype probabilities of both observed and unobserved genotypes, and to efficiently
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recalculate the likelihood of new pedigree configurations proposed by making small

changes to the current configuration. All of these operations can be computed in linear

time when the putative pedigree contains no loops (i.e., when the factor graph is acyclic).

While Anderson and Ng (2016) introduced the pedigree factor graph framework and

described how it could be used to make Bayesian inference of pedigrees from genetic

data, the implementation of the method for pedigree inference was rather limited. In

particular, the authors implemented only a simple case involving two generations, with

parents monogamous but unobserved, i.e., a problem in the inference of full-sibling

groups. Anderson and Ng (2016)’s implementation was shown to outperform existing

software, COLONY (Wang 2004; Jones and Wang 2010), particularly with reference

to assessing uncertainty in the sibling-group assignments. However, Anderson and Ng

(2016) left the implementation of a factor-graph-based approach for multigenerational

pedigree inference to the future.

In this chapter we provide a complete development of the ideas sketched in Anderson

and Ng (2016) for a Markov chain Monte Carlo (MCMC) method to sample acyclic,

multigenerational pedigrees from their posterior probability given genotype data from

a sample of related individuals. These novel developments are implemented in C and

called from an R software program called pedFac.

On simulated data, pedFac provides accurate estimates of acyclic pedigrees in a two-

generation context (i.e., parents and offspring), comparing favorably against existing
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software packages. Additionally, pedFac can infer multigenerational pedigrees, even

when some individuals are missing from the intermediate generations.

2.1 Motivation

The need for a new pedigree inference approach is driven by the failure of currently-

available pedigree reconstruction software to accurately infer the relationship of unob-

served individuals to other members in a multigenerational pedigree. Currently, the two

most advanced pedigree inference programs that are widely used in molecular ecology

are COLONY (Wang 2004; Wang and Santure 2009) and FRANz (Riester et al. 2009).

With sufficient genetic data, these programs make accurate parentage assignments when

most of the parental candidates are observed. Furthermore, when a high number of par-

ents is missing from the dataset, COLONY and FRANz may correctly avoid assigning

an individual to any parents if its true parents are absent from the data set. However, if

individuals share unobserved parents in the data set, both programs are limited in their

capacity to detect these relationships. The model underlying FRANz simply does not

allow unobserved individuals to be related to more than one individual in the pedigree.

COLONY’s model allows for multiple full and half-siblings to be inferred as children of

the same unobserved mother and/or father, but COLONY can only be applied to two

generations at a time, making it incapable of inferring multigenerational pedigrees.

A more recent software package called sequoia (Huisman 2017), has been developed
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that might fill the gap between COLONY and FRANz. Its pedigree inference procedure

is based on first finding parent-offspring relationships, then finding sibling relationships,

and finally finding grandparents of sibling groups and also avuncular (aunt-uncle) rela-

tionships. Each of these steps are performed as somewhat separate, isolated exercises,

but the results from all of them are woven back together into a single inferred pedigree.

Such an approach should, in theory, allow the inference of links in a multigenerational

pedigree through unobserved individuals. Additionally, the paper describing sequoia re-

ports that it is competitive with COLONY on many two-generation inference problems

(like parentage and sibship inference).

2.2 Methods

2.2.1 Overview of Computational Method

During every sweep of its MCMC algorithm, pedFac cycles over each individual in the

pedigree, starting from the most recent individual to the oldest, and proposes new

parental assignments for that focal individual. Each newly proposed parent of that

individual can be an individual that already exists in the pedigree (with or without

observed genotype data), or can be a newly instantiated individual without observed

genotype data. Rather than considering all individuals in the previous generation as

potential parental candidates of the focal individual, pedFac allows the option of con-
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sidering only a small set of probable parental candidates. In this chapter, the sampling

space is restricted to acyclic pedigrees so that the exact probability of the genotype data

on the pedigree can be calculated efficiently. The joint probability of all observed geno-

type data on each newly proposed pedigree is computed using a sum-product algorithm.

These probabilities are used in a Metropolis-Hastings framework (in conjunction with

the joint genotype probability given the current pedigree configuration) to sample an

updated configuration from amongst the proposals. In the following sections we provide

more explicit details of this process.

2.2.2 General Pedigree Notation

The notation adopted here follows closely that used in Anderson and Ng (2016). We

define the pedigree P as a network with a number No of observed/sampled individuals

and Nu unobserved/unsampled individuals. When we say unobserved, we mean that

genotype data are not available from the individual, typically because the individual

was neither sampled from nor observed in the population.

In theory, if enough unobserved individuals are included, reaching back a sufficient

number of generations to include the most recent common ancestors of all observed

individuals, then the true pedigree will consist of a single connected component. In

practice, however, even with a large amount of genetic data it is difficult to accurately

infer relationships through more than a few generations of unobserved pedigree mem-
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bers. Thus, in our inference procedure we consider only pedigrees of a finite number T

of generations made up of Nf founders and Nnf non-founder individuals in which all

terminal descendants are observed. The latter condition is enforced by requiring that

all individuals at the “bottom” nodes of any proposed P are observed. A consequence

of this condition is that, in any pedigree that is proposed or visited during the course of

MCMC, all unobserved individuals in the pedigree must have offspring in the pedigree

as well.

Since the pedigree includes, at most, T generations, P will typically consist of some

number C ≥ 1 of separate, connected components, where P = {P(1), ...,P(C)}.

A key ingredient of the MCMC sampling procedure is the joint probability of the ob-

served genotypes given the pedigree, p(Y |P). Let genotype data be available from Nm

biallelic markers assumed to be physically unlinked and not in linkage disequilibrium.

Under these assumptions, the probability of genotypes at all Nm markers is the product

over markers of the probability at each. Accordingly, we describe the calculations for a

single marker, providing an illustration with the simple pedigree containing six individ-

uals below (Figure 2.1) depicted as a marriage node graph (Thompson et al. 1978). In

this two-generation pedigree, there are five individuals with observed genotypes (nodes

filled gray) and one individual with no observed genotype (the unfilled node). Let xi,`

denote the true (though never observed without error) latent genotype at marker ` of

individual i ∈ {1, . . . , 6}. We assume, throughout, that all markers are biallelic, with
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4 65

1 32

Figure 2.1: This two-generation pedigree is a singly connected component made up of

six individuals, with four males and two females. All of them except individual 2 are

observed, as denoted by the shading of their nodes. In this scenario, individual 5 and

individual 6 are full siblings while individuals 5 and 6 are half siblings of individual 4.

one allele labeled ‘1’ and the other labeled ‘0’. Accordingly, in a diploid organism, the

possible values of xi,` (i.e., the genotype values) are 0, 1, and 2, each being the number

of ‘1’ alleles carried by the individual. Let yi,` denote the observed (with error) genotype

at marker ` in individual i ∈ {1, 3, 4, 5, 6}. In each case, the observed genotype yi,` is

a random variable that depends on the true genotype, xi,`, and a model for genotyp-

ing error parameterized by ε. The founders (1, 2, and 3) of the pedigree are assumed

to be unrelated to one another, such that the prior probability of each founder’s true

genotype at marker ` can be obtained from the population allele frequencies θ` and the

assumption of Hardy-Weinberg equilibrium.

The likelihood of P given θ and ε (omitted in following expressions) and the observed
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genetic data, is the joint probability of the genetic data given P, θ, and ε. This

probability is obtained by summing the joint probability of the observed and latent

genotype data (collectively, y and x, respectively) over all possible states of the latent

genotypes of all the individuals in P:

l(P) = p(y|P) =
∑
x

p(x, y|P).

The probability p(x, y|P) consists of a product of probability functions that belong to

three general classes:

1. P (xi,`|θ`) is the probability of the latent genotype at marker ` within individual

i (a founder in the pedigree) given the population allele frequencies θ`.

2. P (yi,`|xi,`, ε) is the probability of observing genotype yi,` in individual i at marker

` given that the true, latent genotype is xi,`. This depends on the genotyping error

model and its parameters, ε.

3. P (xi,`|xma,`, xpa,`) is the probability, given the laws of Mendelian inheritance, that

an individual i inherits the (latent) genotype xi,` from its mother and father who

carry the (latent) genotypes xma,`, and xpa,`, respectively.
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Thus, the joint probability of x and y, given the pedigree, is:

p(x, y|P) =

Nm∏
`=1

p(x1,`|θ`) p(x2,`|θ`) p(x3,`|θ`)

× p(x4,`|x1,`, x2,`) p(x5,`|x2,`, x3,`) p(x6,`|x2,`, x3,`)

×
∏

i=1,2,3,5,6

p(yi,`|xi,`, ε)

We will encounter these three general classes of probability functions below, as they

constitute the three types of functional classes in a factor graph model.

2.2.3 Pedigree Factor Graph

 

4 5 6

1 32

Figure 2.2: A two-generation pedigree factor graph of six individuals. The small, black,

filled nodes represent factor nodes, while the numerically labelled nodes are variable

nodes. The diamond, square and circle factor nodes represent p-nodes, g-nodes, and

m-nodes respectively.

Kschischang et al. (2001) have shown that one can depict a joint probability function
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by decomposing it into a network of factors called a factor graph. A factor graph

(P, V,E) is a bipartite, undirected graph P made up of edges E and two classes of

vertices V : variable nodes and factor nodes. A factor node is a symbolic representation

of a function that depends on the variables that the factor node is connected to. In the

context of a pedigree, the unobserved true genotypes of the individuals are designated

as the variable nodes, which may be connected to three types of factor nodes, which

correspond to the three classes of probability functions described in the previous section.

The following description of the elements of a pedigree factor graph follows the notation

and nomenclature of Anderson and Ng (2016).

In a pedigree factor graph, there are three different types of factor nodes that may

be adjacent to the individual-genotype variable nodes: p-nodes, g-nodes and m-nodes.

A p-node adjacent to individual i refers to a factor, h(p)(xi), which is the probability

of a founder i’s unobserved genotype given the population allele frequency θ. Thus, for

marker `, h(p)(xi,`) ≡ p(xi,`|θ`). A g-node adjacent to individual i refers to a factor,

h(g)(xi, yi), which gives the probability of the observed genotype, yi, given the underlying

true genotype, xi, and a genotyping error model. Thus, at site `, h(g)(xi,`, yi,`) ≡

p(yi,`|xi,`, ε). By default, pedFac uses a simple univariate error model such that the rate
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of a genotype mismatch event follows ε; that is,

p(yi,`|xi,`, ε) =


1− ε if yi,` = xi,`

ε/2 otherwise

(2.1)

The third type of factor node—an m-node—is always shared between three or more

variable nodes: a mother, a father, and one or more children. It refers to a factor of the

form h(m)(xma, xpa;xkid,1, . . . , xkid,k), which represents the probability of the genotypes

of the k (k ≥ 1) children produced by mating between the mother and the father. These

probabilities follow directly from the laws of Mendelian inheritance. Figure 2.2 shows

the factor graph representation of the pedigree in Figure 2.1 and the joint probability

function is expressed as a product of factorized functions as follows:

p(x, y|P) =

Nm∏
`=1

∏
i=1,2,3

h(p)(xi,`)
∏

i=1,...,6

h(g)(xi,`)

× h(m)(x1,`, x2,`;x4,`) h
(m)(x2,`, x3,`;x5,`, x6,`)

Technically the m-node function can be further factorized into products of trios as

the genotypes of the offspring are conditionally independent given the genotypes of the

parents under the law of segregation, e.g., in the pedigree of Figure 2.2),

h(m)(x2,`, x3,`;x5,`, x6,`) = h(m∗)(x2,`, x3,`;x5,`)h
(m∗)(x2,`, x3,`;x6,`).
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However, we choose to maintain a fully aggregated expression for two main reasons: to

prevent the creation of needless cycles in the graph and to preserve a structure similar

to the marriage node graph. As described below, however, this additional factorization

is still used in the calculation of the sum-product algorithm on a pedigree factor graph.

2.2.4 The Sum-Product Algorithm on General Factor Graphs

The sum-product algorithm is an efficient system that divides the latent variables that

must be summed over (to compute a joint probability) small, local groups of variables

at which parts of the sum can be taken as manageable local calculation. This process

is envisioned as a message-passing scheme operating on a factor graph. The results of

local calculations, encoded as messages, are valuable for their use in computing the joint

distribution of all observed variables (or the marginal distribution of any single observed

variable). However, more importantly, in our case, the messages computed in the sum-

product algorithm allow us to rapidly calculate the joint likelihood of new pedigree

factor graphs under certain proposed configuration changes. This, in turn, allows us to

efficiently sample new pedigree configuration from their posterior distribution, which

will provide us a sample from that posterior distribution to use for making inference of

the pedigree. In order to describe how the sum-product algorithm is an integral part

of this approach to learning pedigree factor graphs, we provide, here, some background

on the sum-product algorithm along with the general rules and operations of message
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passing on a factor graph.

The sum-product algorithm, also known as belief propagation, is a message-passing

algorithm to perform Bayesian inference on a factor graph, as first proposed by Pearl

(1982). It applies the principles of dynamic programming to efficiently compute the

marginal distribution of each unobserved variable node (i.e., the latent, true genotype of

each individual) conditioning on all observed nodes. The algorithm involves an iterative

process of passing real-valued functions called messages between adjacent nodes. Upon

completion of the algorithm, these message values can also be used to quickly compute

the joint likelihood of the factor graph.

In a factor graph, messages are passed from variable node vi to its adjacent factor

node fj and from factor node fj to its adjacent variable node vi. The messages passed

from variable nodes to factor nodes µvi→fj (xi) are computed differently than the mes-

sages passed from factor nodes to variable nodes µfj→vi(xi); however these messages,

whether µvi→fj (xi) or µfj→vi(xi), share the same form: they all must be non-negative

functions of the possible states of the variable xi. We use D(vi) to denote this domain.

Recall, since xi is the latent genotype of a diploid individual, the possible states of xi

at a biallelic genetic marker are 0, 1 or 2, so that D(vi) = {0, 1, 2}. Essentially, in a

pedigree factor graph at a single biallelic locus, the messages can be be thought of as

vectors of length three.

A message from a variable node vi to a factor node fj is the product of the messages
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sent from the neighboring factor nodes to vi, excluding fj :

µvi→fj (xi) =
∏

fk∈η(vi)\fj

µfk→vi(xi), ∀ xi ∈ D(vi),

where η(vi)\fj denotes the set of all factor nodes adjacent to vi, excluding fj .

The calculation in the sum-product algorithm of the message from a factor node fj

to a variable node vi is more complicated, involving a sum of factor node (function)

values, over all possible combinations of the states of the variable nodes adjacent to fj ,

excluding vi, with each term weighted by the product of the various incoming message

values. In order to describe this, we introduce some additional notation. First, let

η(fj)\vi denote the set of all neighboring variable nodes adjacent to fj , excluding vi.

Then let x∗ denote a set of values of all the variable nodes in η(fj)\vi. As such, we

could expect the function value associated with fj to be written as hj(x
∗, xi). Further,

let D∗ denote the set of all possible values of x∗ (that is, all possible combinations of

values at the variable nodes in η(fj)\vi). The message from fj to vi is then, in general,

calculated for each value, xi, as follows:

µfj→vi(xi) =
∑
x∗∈D∗

hj(x
∗, xi)

∏
vk∈η(fj)\vi

µvk→fj (xk), ∀ xi ∈ D(vi). (2.2)

If the factor node fj only depends on one variable node (i.e., if vk ∈ η(fj)\vi = ∅), then

µfj→vi(xi) = hj(xi).
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As we noted above, the genotypes of the different children of a pair of parents are

conditionally independent given the parents’ genotypes. While (2.2) shows the general

equation for an outgoing message from a factor node, for the marriage factor nodes in a

pedigree factor graph, we exploit this additional factorization, as described in the next

section.

In both of the message scenarios, the message calculation requires the values of the

incoming messages, if any, from the neighboring nodes; therefore, an outgoing message

from a node along a specific edge can only be sent so long as incoming messages have

been received to the node along all the remaining edges. In an acyclic factor graph, this

requirement does not pose a problem, as it is straightforward to verify that each node in

an acyclic factor graph will eventually receive the messages needed to send an outgoing

message along every edge. This occurs in computational time proportional to twice the

length of the longest path of the graph. However, for a factor graph with loops, the

standard sum-product algorithm will become stuck waiting for incoming messages that

never arrive—a challenge that we address in Chapter 3.

When the sum-product algorithm is applied to a singly-connected pedigree factor

graph, it 1) begins with messages being passed from the external factor nodes—the

p-nodes adjacent to the founders, and the g-nodes adjacent to all the variable nodes;

2) runs through a finite number of message relaying steps between variable nodes and

internal factor nodes (i.e., the m-nodes); and 3) has concluded when messages have been
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passed back from all the variable nodes to the adjacent g-node factor nodes, and from

the founder variable nodes back to the p-nodes. For the special case of a pedigree factor

graph, the next section provides a more in-depth description of the process.

2.2.5 Message Propagation and Joint Likelihood Calculation for Pedi-

gree Factor Graphs

 

4 5 6

1 32

Figure 2.3: First message propagation step through this example two-generation pedi-

gree factor graph. Every external factor node, whether it be a g-node or p-node, is

passing an outgoing message (shown as a blue arrow) to its adjacent variable node.

The external nodes of a pedigree factor graph are made up of two types of factor

nodes: p-nodes and g-nodes. Each of these external nodes is attached to a single variable

node; therefore, the outgoing message from the factor node to its unique variable node
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is the factor function itself:

µ
f

(p)
j →vi

(xi) = h
(p)
j (xi), ∀ xi ∈ D(vi)

µ
f

(g)
j →vi

(xi) = h
(g)
j (xi), ∀ xi ∈ D(vi)

Passing these messages from the external factor nodes is the first step of the sum-product

algorithm on a factor graph. A visual example of this appears in Figure 2.3.

Each m-node, by contrast, is associated with a joint function of the genotype of the

two parents connected to it, and all of their offspring. As noted above, however, this

joint probability can be further factorized into a product over trios of functions of each

trio, where each trio is defined as the two parents and a particular offspring. This extra

factorization can be applied during the sum-product algorithm on a pedigree factor

graph to reduce the complexity of the message calculation for the m-nodes. Rather

than having to consider all possible genotypic states of the parents and all their offspring

simultaneously, the possible states of each trio can be considered separately.

For example, if an m-node with multiple progeny is relaying a message to the variable

node associated with a particular offspring, the trio-function that involves that offspring

and the incoming messages to the parents can be computed separately from the trio-

functions of the offspring’s siblings. As a consequence, the computation required for

passing messages from m-nodes becomes linear, rather than exponential, in the number

of offspring, as would be suggested by the factor graph.
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In detail, the outgoing message from an m-node, fj , connected to parental nodes

vp and vm—father and mother, respectively—to a single one of the progeny, vi, whilst

also considering the information coming in from the remaining offspring connected to

fj , who are denoted by η(k)(fj)\vi, can be computed as follows:

µ
f

(m)
j →vi

(xi) =
∑

x∗p∈D(vp)

∑
x∗m∈D(vm)

h(m)(x∗p, x
∗
m, xi) (2.3)

× µ
vp→f (m)

j

(x∗p)× µvm→f (m)
j

(x∗m)

×
∏

vk∈η(k)(fj)\vi

∑
x∗k∈D(vk)

h(m)(x∗p, x
∗
m, x

∗
k)µvk→f

(m)
j

(x∗k),

for all xi ∈ D(vi). The domain for any of the variable nodes, i.e., D(vp), D(vm),

D(vk), and D(vi), contains a total of three discrete states, 0, 1, or 2, representing the

possible genotypes of a biallelic marker. The function h(m)(x∗p, x
∗
m, xi) follows directly

from Mendelian segregation, with values listed in Table 2.1.

The factorization applies, as well, to the case of passing a message from the m-node

to one of the parental nodes. Here, we describe this specifically for the case of passing

a message from an m-node to the paternal node, vp, connected to it, as in Figure 2.4.

The message in such a case is calculated as follows:

µ
f

(m)
j →vp

(xp) =
∑

x∗m∈D(vm)

µ
vm→f (m)

j

(x∗m) (2.4)

×
∏

vk∈η(k)(fj)

∑
x∗k∈D(vk)

h(m)(xp, x
∗
m, x

∗
k) µvk→f

(m)
j

(x∗k),
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Table 2.1: Probabilities derived from Mendel’s laws for all possible values of

h(m)(xp, xm, xi), which is listed as hm in the table header.

xp xm xi h(m) xp xm xi h(m) xp xm xi h(m)

0 0 0 1 0 0 1 0 0 0 2 0

0 1 0 1
2 0 1 1 1

2 0 1 2 0

0 2 0 0 0 2 1 1 0 2 2 0

1 0 0 1
2 1 0 1 1

2 1 0 2 0

1 1 0 1
4 1 1 1 1

2 1 1 2 1
4

1 2 0 0 1 2 1 1
2 1 2 2 1

2

2 0 0 0 2 0 1 1 2 0 2 0

2 1 0 0 2 1 1 1
2 2 1 2 1

2

2 2 0 0 2 2 1 0 2 2 2 1

for all xp ∈ D(vp).

The calculation for a message that is passed to the mother connected to an m-node

is defined similarly, but with obvious modifications:

µ
f

(m)
j →vp

(xm) =
∑

x∗p∈D(vp)

µ
vp→f (m)

j

(x∗p) (2.5)

×
∏

vk∈η(k)(fj)

∑
x∗k∈D(vk)

h(m)(x∗p, xm, x
∗
k) µvk→f

(m)
j

(x∗k),

for all xm ∈ D(vm).

Once a message has been passed in both directions along all edges in the pedigree

factor graph, the joint probability of all the observed data upon the members of the

pedigree (i.e., the pedigree likelihood) and the marginal probability of every variable

node are available through simple operations involving the dot-product of messages.

The joint probability of all observed data on a singly connected pedigree factor graph
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Figure 2.4: A snapshot of the intermediate steps during the sum-product algorithm

on a pedigree factor graph. In order for the m-node of parents 2 and 3 to pass a

message, µ
f

(m)
2 →v2

(x2) (in blue), to individual 2’s variable node we need to receive mes-

sages, µ
v3→f (m)

2

(x3), µ
v5→f (m)

2

(x5), and µ
v6→f (m)

2

(x6) (in red), from the variable nodes

of individuals 3, 5 and 6.

P is available as the dot product of the two messages that have been sent in different

directions along any edge of P:

p(y|P) =
∑

xi∈D(vi)

µfj→vi(xi) µvi→fj (xi),

for all adjacent nodes fj and vi.

The marginal probability of any variable node vi is the normalized product of all
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incoming messages to that variable node:

p(xi|P) = N −1
∏

fj∈η(vi)

µfj→vi(xi), (2.6)

where N =
∑

xi∈D(vi)

∏
fj∈η(vi)

µfj→vi(xi).

Since the outgoing message along an edge e from any variable node, vi, in an acyclic

factor graph is obtained as the product of incoming messages to vi along all edges except

e, it follows that the marginal probability of vi can also be computed as the normalized

product of the two opposing messages along any edge attached to vi:

p(xi|P) = p(y|P)−1µfj→vi(xi)µvi→fj (xi), (2.7)

for all xi ∈ D(vi), and any fj adjacent to vi.

These general operations on the previously computed messages of a pedigree factor

graph serve as essential components for efficiently calculating the joint likelihood of a

newly proposed pedigree, as described in Section 2.2.7.

2.2.6 The Pedigree Prior Model, P (P)

Previous work has proposed the use of local and global properties of the cliques or nodes

in pedigrees to define a prior distribution over pedigrees that is a function of structural,

graphical features (Almudevar and LaCombe 2012). By contrast, for molecular ecol-
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ogy data it has been customary to define the prior over two-generation pedigrees as

a function of the estimated sampling density which clearly influences the probability

that a true parent of an individual in the pedigree is included in the sample (Wang and

Santure 2009). We work with two possible prior options: an uniform prior where all

parental candidates, whether observed or not, have an a priori equal chance of being an

individual’s parent; and a different prior where the user supplies an expected fraction of

the possible parents in the population that were sampled each generation. This value is

used as a prior in a beta distribution for the fraction of parents that are unobserved, and

it can be updated according to the observed fraction, with weights chosen by the user.

In addition to these two priors over the parents of a single generation, we also include

a “hard-prior model” (Sheehan and Egeland 2007) to incorporate observed information

on age and sex of individuals.

2.2.6.1 Hard Prior Model

Genetic data are often not the only information we can rely on to help infer a pedigree.

We can also depend on other observable or secondary information such as sex and age

to confine our sampling choices to probable, reasonable, and/or allowable pedigrees.

In general, knowing the sex of an individual patently limits the pool of potential

mating partners to those of the opposite sex. Even when an individual’s sex is unknown,

we can still enforce the same limitation based on inferred sex, if the sex of the individual’s

mating partner is known or can be inferred. Otherwise, an individual of an unknown
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Figure 2.5: All individuals, except x2 and x3, in this two-generation pedigree are

observed. Despite x2 and x3 being unobserved, we can still easily infer their sexes

(x2:female and x3:male) based on the fact that the sex of their mating partner is known

or inferable.

sex will have an equal chance to be male or female.

The availability of individual age information is also useful in reducing the pedi-

gree search space by assigning individuals into generation groups T thereby segregating

members of the parental generation when making parent-offspring reassignments. Let

bi ∈ (L,E) be the birth time of the ith individual. We allow for this to be continuous

between the two relative time points E (the earliest time point) and L (the latest time

point). Also, let trmin and trmax be the minimal and maximal ages (in the same units as

E and L) at which members of a species are capable of reproduction. We divide time

into discrete bins, each of length trmin that are roughly analogous to generations, and we
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refer to them as “generation groups.” The generation group ti of the ith individual is

defined as ti =
⌊
bmax−bi
trmin

⌋
, where bmax is the most recent birth date of the collection. In

order for individual xj to be considered in the parent generation of individual xi, the

generation group tj of individual xj must be in
(
ti+1, . . . , ti+

⌈
trmax/t

r
min

⌉)
and the birth

time difference between the two must be such that, trmin ≤ bj − bi ≤ trmax. Breaking the

possible ages of candidate parents into these bins simplifies, somewhat, the treatment of

unobserved parents whose ages are not observed, but become constrained once they are

assigned offspring in the pedigree. Figure 2.6 shows an example of this discretization

into generation groups.

Other a-priori information about the reproductive system, such as asexual vs. sex-

ual mating, or a monogamous versus polygamous mating strategy, or semelparity versus

iteroparity—as well as quantitative traits of individuals—could be incorporated into the

prior model to restrict the space of possible pedigrees. This additional information can

help to reduce the pedigree sampling space and allow the sampled pedigree to be con-

sistent with previous observations. However the sampling strategies may need to be

modified based on preferential selection for certain sub-network connections or else the

sampling may be susceptible to stalling in certain local configurations. At present, ped-

Fac accepts age and sex information, if available, and assumes a polygamous, iteroparous

population, unless the user chooses to enforce semelparity and/or monogamy.

As stated in the first chapter, if you go back far enough in a population, everyone
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Figure 2.6: An example of transforming birth years into generation groups. Shown

are four individuals, born at continuous times 2013.0, 2012.1, 2011.1 and 2010.5, in a

population with trmin = 2. Individuals from a sample of candidate parents with birth

times ranging from 2005 to 2013 are placed into four generation-group bins, each of

length trmin = 2. The bins are denoted by the alternating white and gray rectangles,

and are numbered from 0 to 3. Height, along the y-axis, of the open circles denotes the

birth time of each of the four individuals, and the rectangles above each point show the

possible birth years of the parents of each individual. The teal rectangle shows possible

birth years of the parents when the exact birth time of each individual is known, while

the rectangle with the dashed perimeter shows the range of possible birth years of the

parents when the exact birth year of the individual is not known, but its generation

group is.

can be connected through a giant pedigree. In most cases, however, data are limited

to the most recent generations of that pedigree. If we allowed an unlimited number of

unobserved individuals, when sampling over the space of pedigrees, there is a possibility

that many generations of unobserved individuals would be inferred, creating very large

connected components. However, once an individual is more than a few generations
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removed from any observed genetic data, there is very little information available to

infer the pedigree. pedFac addresses this problem by imposing a user-specified upper

bound on the length of a path traversing exclusively unobserved variable nodes. This is

implemented through monitoring of di, the minimum number of marriage factor nodes

that must be traversed from a variable node vi to reach any observed variable node. For

some examples: if vi is observed, di = 0; if vi is unobserved, but adjacent to a marriage

node connected to an observed variable node, then di = 1, etc. In practice, di for every

node can be efficiently obtained through a belief-propagation algorithm.

2.2.7 Sampling from the Space of Pedigree Factor Graphs

Our goal, once again, is to evaluate the posterior distribution of the pedigree given

the observed genotype, p(P|y), so as to ascertain the genealogical relationship between

individuals. The posterior distribution, p(P|y), by Bayes’ theorem, is the product

of the likelihood, p(y|P), and the prior distribution, p(P), divided by a normaliza-

tion constant that involves a sum over the space of all pedigrees with nonzero like-

lihood and prior. The task of enumerating all pedigrees in this space is difficult, if

not impossible, because the number of possible pedigree configurations grows super-

exponentially with the number of observed and unobserved variable nodes (Lauritzen

and Sheehan 2003a). As this makes the normalization constant intractable, an alter-

native is to approximate the posterior distribution by drawing a Monte Carlo sample
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from an ergodic—irreducible, aperiodic and recurrent—Markov chain that has, as its

stationary distribution, the desired posterior distribution. Drawing such a sample from

the posterior is an example of Markov chain Monte Carlo (MCMC).

A general algorithm for devising a Markov chain with the appropriate stationary

distribution was provided by Hastings (1970), and is known as the Metropolis-Hastings

algorithm. The algorithm proceeds by proposing (typically small) changes to the current

state of the Markov chain from a proposal distribution, and then accepting or rejecting

such proposed changes on the basis of the Hastings ratio (see below). To sample from

the posterior distribution, p(P|y), by the Metropolis-Hastings algorithm, we propose

a new pedigree configuration, P ′, from a proposal distribution, q(P ′|P), which is

conditional upon the current configuration state, P. This new, proposed configuration,

P ′, would then be accepted with probability given by the Hastings ratio:

min
{q(P|P ′)

q(P ′|P)

p(y|P ′)p(P ′)

p(y|P)p(P)
, 1
}
. (2.8)

A special case of the Metropolis-Hastings algorithm which uses the full-conditional

distribution as the proposal distribution is called the Gibbs sampler (Geman and Geman

1984). In the Gibbs sampler, the proposals are all accepted with probability 1. In a

typical Gibbs sampling scenario, the target distribution is the posterior distribution

P (θ|y), where θ consists of several, say K, components: θ = (θ1, . . . , θK). The full

conditional, in this case, is often defined as the conditional distribution of any one
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component, i, given the data and the remaining components, which can be written as:

p(θi| · · · ) = p(θi|y, θ−i),

where θ−i denotes all the components of θ except for the ith component. Within this

setup, it is a straightforward exercise to verify that the full-conditional distribution is

proportional to the posterior distribution and that, hence, use of the full conditional as

the proposal distribution will lead to a Hastings ratio equal to one.

The above perspective does not apply to sampling over the space of pedigrees,

because there is not a simple, consistent factorization over different components—since

the graphical structure of the model changes when the pedigree is updated, so does the

factorization. However, similar reasoning leads to a sampler over pedigree configurations

that, like the Gibbs sampler, has an acceptance probability of one. In general, the

approach involves proposing a new pedigree state P ′ from amongst a restricted set, S,

of possibilities, which must include the current state, P. Each of the possibilities in S

is proposed with a probability that is proportional to the posterior probability of that

new configuration:

q(P ′|P) =
p(P ′|y)

M
∀P ′ ∈ S with M =

∑
P′∈S

p(P ′|y). (2.9)

If the cardinality of S is not large, then the proposal distribution can be easily computed.
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With such a proposal distribution, it is clear that the acceptance probability from the

Hastings Ratio is always one, as follows:

min
{q(P|P ′)

q(P ′|P)

p(y|P ′)p(P ′)

p(y|P)p(P)
, 1
}

= min
{ p(P|y)/M

p(P ′|y)/M

p(y|P ′)p(P ′)

p(y|P)p(P)
, 1
}

= min
{ p(P|y)

p(P ′|y)

p(P ′|y)p(y)

p(P|y)p(y)
, 1
}

= min
{

1, 1
}

= 1.

It is worth nothing that, since the current state is included in S, accepting the proposal

may still not lead to any changes in the current state. This formulation, however, allows

for a proposal distribution that can sample from a large number of candidate parents,

and thus may offer better mixing properties than a more näıve, classic, Metropolis-

Hastings algorithm.

2.2.7.1 A Proposal Distribution for Updating Pedigrees

When we propose a new pedigree configuration P ′, the suggested change could consist

of a simple move, such as adding or removing an edge between a single variable node and

an m-node. Or it could involve making multiple moves that, for example, might shuffle

the parent-pair assignments for all individuals in the sample. The former approach, de-

veloped early on and termed the Metropolis-Hasting sampler for Markov Chain Monte

Carlo Model Composition, or MC3, (Madigan and York 1993), was the original and

standard approach for learning graphical structure. It emphasizes making small moves
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according to the local support of the conditional probability. Unfortunately, this locally-

sensitive sampler generally mixes poorly, especially for multivariate distributions with

correlated components. The latter approach would be similar to strategies, such as

blocking (Goudie and Mukherjee 2016), which involve combining components as a unit

and sampling from their conditional probability, thus using a proposal distribution that

can be sensitive to both local and global features of the model and data (Eaton and

Murphy 2007). Such approaches have been shown to improve mixing and the conver-

gence rate of Markov chains to the posterior; however, care must be taken to not create

such large blocks that the full-conditional calculations become intractable.

These published methods that focus on learning general directed acyclic graphs are

not directly compatible with pedigree factor graphs. Thus, the proposals we construct

combine principal elements from both of the above approaches, but are distinct from

either of them. Like MC3, our proposals involve relatively small, incremental changes,

like the addition/deletion of just a few edges. But, unlike MC3, the proposal distribution

for adding/deleting edges considers a large number of possible locations within the

graph for edges to be inserted, taking a more global view of the graphical structure and

providing better mixing.

Specifically, we propose incremental changes to the pedigree P by reassigning parent

pairs of an individual, one at a time. In doing so, the focus on the state of the pedigree

is directed toward the parental identities of the edges upstream of each non-founder
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member of the pedigree. Such a perspective follows naturally from the the fact that 1)

every individual, apart from the founders, in a pedigree must have an edge connected

to its parents’ m-node and 2) every pedigree P can be summarised as a tuple of Nnf

sets of parents—one set of parents for each of the Nnf non-founders in the pedigree.

For example, we may specify the pedigree P as the Nnf -tuple [ppP
1 , . . . ,ppP

Nnf
], where

ppP
i denotes the pair of parents of the ith non-founder individual in P. To highlight

the partition between the parents of the ith individual and other individual nodes, we

can simplify P = [ppP
i , ppP

−i], where ppP
−i denotes a set of parent pairs assigned to all

individuals, except the ith.

One proposal distribution implemented in pedFac, proposes a change to the parent

pair for a single individual, i. This proposal distribution can be written simply as:

q(ppP′
i = ppi|ppP

−i, y) =
p([ppi,ppP

−i]|y)

M
, with M =

∑
pp∗i∈S

p([pp∗i , ppP
−i]|y), (2.10)

where S is the set of allowable parent pairs for individual i, or some suitable restriction

of that set (see below).

Here, we expand upon how the set S is envisioned. First, note that ppi can be

regarded as the father and mother of i: {xiu, xiv}, where xiu and xiv are the variable

indices of the father and mother of the ith individual. We write X∗dad for the set of

possible distinct candidates that could be xiu. This includes all males in the sample

(i.e., all observed individuals), as well as all individuals of unknown sex, in the sample
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that are of the right age to have been a father of i. It also includes males and individuals

of unknown sex that are not in the sample (i.e., unobserved individuals). Thus we write:

xiu ∈ Xi
dad = {Xi

male,obs ∪Xi
male,unobs ∪Xi

unk,obs ∪Xi
unk,unobs}.

The same arguments lead to the set of candidate mothers:

xiv ∈ Xi
ma = {Xi

female,obs ∪Xi
female,unobs ∪Xi

unk,obs ∪Xi
unk,unobs}.

To be included in S, every xiu ∈ Xi
dad and xiv ∈ Xi

ma, proposed as a parent pair ppi

must also satisfy the conditions that:

1. xiu 6= xiv

2. the age gap between i and xiu and i and xiv must be within the permissible range,

3. for xiu and xiv that are of unknown sex, a sex can be assigned to the individuals in

a way that is compatible within the pedigree with all other individuals of known

or implied sex.

4. the resulting pedigree remains acyclic.

Ideally, the domain S of the proposal distribution would include, as candidate parent

pairs for the focal individual, the allowable pairings of all observed and unobserved

individuals in the parental generation; however, to reduce the number of possible parent
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pairs, and hence the size of S, the proposal distribution draws only from those pairs

that are formed from the n most likely parent candidates of each sex, if known, based

on the pairwise parental-versus-unrelated likelihood ratio. It is important that the

value of n is not set so low that doing so would exclude the true parent from the pool

of candidate pairs. Fortunately the likelihood of that occurring decreases when more

genetic markers are used. By default, n = 10 is used. Furthermore, the top n candidates

amongst observed single-parent candidates for all observed individuals can be identified

prior to the start of MCMC sampling, which reduces time spent in reassigning parents

for observed individuals.

An additional restriction of S in this parent-pair sampler is available as an option

to pedFac. It draws pairs from amongst those formed by combining the single highest-

likelihood-ratio parent (call this individual xfixed and all other possible candidates of

sex opposite to that of xfixed.

2.2.7.2 Sampling Procedure

The starting point for MCMC sampling over the space of acyclic pedigrees is a state in

which each sampled individual is disconnected from every other one. In other words,

each sampled individual forms its own connected component, containing a single mem-

ber, such that the pedigree at this point can be represented as a collection of variable

nodes, each with a p-node and a g-node attached to it, but with no m-nodes connecting

any members of the sample. Each step of the sampling procedure involves three steps:
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1. First, the sum-product algorithm is run on the factor graph corresponding to

each connected component so as to compute and store values for all incoming and

outgoing messages through every edge, prong and stub (the “imaginary” vertices,

as discussed in the next section).

2. Second, we iterate through all individuals (excluding the founders) in the pedigree,

starting from the most recent generation to the oldest, and for each, we propose

changing the parent pair to which that focal individual is attached. These po-

tential parent pairs can consist of existing observed and unobserved individuals

as well as newly created unobserved individuals that are not connected to any

other pedigree members. We then use the stored values in the stubs and prongs

(depending on whether an m-node already exists between the potential parents

pairs), to calculate the likelihood (and, ultimately, by multiplying by the pedigree

prior, the unnormalized posterior probability) for each proposed configuration.

This set of unnormalized posteriors is then normalized to sum to one, and those

probabilities are used to sample the specific change to the pedigree configuration.

3. Finally, if a proposed change connecting the focal individual to a new set of parents

is accepted, then, before proceeding to the next focal individual, the sum-product

algorithm must be run on the connected component created by the update. This

provides updated messages along all the edges in the connected component.

We take this bottom-up approach—starting with the most recent generation and pro-
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ceeding up the pedigree—because it makes it straightforward to enforce two fundamental

constraints upon the inferred pedigrees: 1) all individuals at the bottom level of each

pedigree must be observed, and 2) every non-founder individual must have two parents

in the pedigree.

It should be noted that after the first sampling iteration, all individuals, except

the founder individuals, will be attached to a parent pair (which may be composed of

observed or unobserved individuals). Thus, for subsequent sampling rounds, the edge

between the focal variable node and the m-node attaching it to its parents will be

severed again prior to rearrangement.

2.2.7.3 Rapid likelihood Calculation For Proposed Pedigree Reconfigura-

tions

The likelihood p(y|P ′) for each proposed pedigree is obtained with a straightforward

calculation after the sum-product algorithm has been run. Facilitating this calculation

requires a very small amount of extra effort during the sum-product algorithm: each

variable node and m-node in the factor graph is adorned with an additional edge leading

to an “imaginary” node carrying no data. These additional edges are called “prongs”

when attached to an m-node and “stubs” when attached to a variable node. During the

sum-product algorithm, outgoing messages from the variable nodes and m-nodes are

computed and stored along these stubs and prongs, respectively. These messages then

get used directly in computing p(y|P ′).

47



For example, if we propose the focal individual to be attached to an existing m-

node, the likelihood of this proposed connected component, for each locus, will be the

dot-product of the stub of the focal variable node and the prong from the m-node. In

the case of attaching a focal individual to a parent pair that is not already attached

as parents to an m-node, computing the likelihood of the proposal requires one more

sum-product operation to compute the outgoing message along a prong from a newly

created m-node attached to the stubs from the two candidate parents, so as to be able

to take the dot-product of this prong message with the stub message from the focal

individual.

2.2.7.4 Acyclic Pedigree Sampling Space

Under belief propagation, the likelihood calculation of a pedigree factor graph is exact

when the pedigree factor graph has no cycles. The likelihood of a cyclic pedigree factor

graph will not be exact under traditional loopy belief propagation. For now, we assume

that the true pedigree contains no loops and limit ourselves to problems involving no

more than a few generations. To maintain an acyclic pedigree, we only accept proposals

in which the m node that connects the parent pair is in a different component than the

focal individual being assigned to the parents.
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2.2.8 Convergence and Mixing in MCMC

2.2.8.1 Irreducibility Proof

It is critical that, under the current proposal method, all pedigrees in the acyclic sam-

pling space are accessible from any starting pedigree so that any pedigrees, even im-

probable ones, could be sampled. By definition, state j is accessible from state i if it

takes a finite number of steps to transition from state i to state j with non-zero prob-

ability. In a formal context, pedigree Pj is said to be accessible from Pi under the

transition probability matrix P, implied by the proposal distribution, with rows and

columns indexed by different pedigree configurations, if there exists some integer n > 0,

such that Pn
Pi,Pj

> 0 is the probability of reaching Pj from Pi in n steps.

Under the current proposal system, it is always possible to transition from Pi to

Pj in 2nd number of steps, where nd is the number of individuals, x′, with assigned

parents differing in Pi and Pj . The first nd steps assign all x′ to parent pairs with both

unobserved members, and the remaining nd steps assign x′ to the parent pairs found in

Pj .

2.2.8.2 Poor Mixing for Interchangeable Pedigrees

Even though the current sampling method is irreducible as previously shown, the sam-

pling chain may mix poorly through acyclic pedigrees that involve reshuffling the orders

of unobserved individuals within a connected component. This poses a challenge to
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smoothly accessing these “interchangeable” pedigrees which are often equally probable

and involve rearrangements centering on a pair of unobserved parents.

Figures 2.7a and 2.7b illustrate a common scenario of interchangeable or equiprob-

able pedigrees when a parent pair is monogamous and unobserved. The difference be-

tween these two interchangeable pedigrees is the attachment of the grandparent pairs.

One condition that would resolve the uncertainty of the parental placement would be

the inclusion of an observed mating partner of either of the unobserved parent pairs (i.e.,

individual 4 or 5). Regardless of whether the unobserved parent pair is truly monoga-

mous, the sampling method should allow for movement between these two equiprobable

configurations.

2.2.8.3 Additional Proposal Move: Swapping

To improve mixing of the MCMC sampler for interchangeable pedigrees, we include a

“swapping” move to expand the current working domain S of the proposal distribution.

The “swapping” moves entail exchanging one or both members of parent pair ppi (along

with the upstream ancestors) of the focal individual i with one or both members, re-

spectively, of parent pair ppj (along with the upstream ancestors) of its mating partner

j, where j ∈ J and J is the set of all mating partners of individual i.

Among multiple ways of choosing which parent pairs of the mating partners to be

swapped, the “swapping” exchanges can be subdivided into three categories:
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Figure 2.7: An example of interchangeable pedigrees given a monogamous and unob-

served parent pair within a multigeneration pedigree. The pedigree, on the left, is

interchangeable and equiprobable with the one on the right; it is impossible to identify

whether each set of grandparental pairs should be assigned to the paternal or maternal

side.

• exchanging a single parent of individual i with a single parent of j, where j ∈ J

(Fig 2.8a),

• exchanging both parents of individual i with both parents of j, where j ∈ J (Fig

2.8b), or

• exchanging one parent of individual i with one parent member of i’s mating

partner j and exchanging the other parent of i with one parent of a different

mating partner k, where j, k ∈ J and j 6= k (Fig 2.8c).
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In pedFac, the likelihood of the proposed, swapped pedigree P ′ is calculated by passing

messages from the parental m-node of the mating partner (i.e., j or k) and to the

parental m-node of the focal individual (i.e., i). (Note that it would also possible to

calculate the likelihood by passing messages in the reverse of the fashion it has been

implemented in pedFac). For all three cases, it takes at most eight message passing

steps to calculate the likelihood of the new, proposed pedigree under the “swapping”

regime because of the modularity of the factor graph framework and the reusability of

previously computed messages.

Using Fig. 2.8a as an example, we first take pre-computed outgoing messages from

the swapped variable node x8 and unswapped variable node x12, i.e., µ
v8→f (m)

i

(x8)

and µ
v12→f (m)

j

(x12), to recompute the outgoing message from the parental m-node of

mating partner x10, i.e., µ
f

(m)
j →v10

(x10). This computed message is used to update

and propagate messages along the edges between x10 and x5 and finally as an outgoing

message from x5 to its parental m-node f
(m)
i . The dot-product of this outgoing message

with the message (recomputed using the outgoing message from x11) coming down from

f
(m)
i to x5 gives the likelihood of the proposed pedigree.

It should be noted that the proposals in Figures 2.8a–2.8c are not equiprobable with

the current configuration (unlike the scenario shown in Fig. 2.7). Thus, swapping moves

are not solely useful for such equiprobable situations, but, rather, represent an efficient

method for rearranging ancestors in a pedigree with using very few intermediate steps.
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(a) The first type of “swapping” proposal involves exchanging one of the parents of

the focal individual, (x5, annotated with a star) with one of the parents of its mating

partner (x10, in the figure). In the example, the newly proposed pedigree P ′ is made

by rearranging the placement of individual 8 with individual 11. To calculate the

likelihood of P ′, we first perform message propagation along the path starting from

the parental m-node of x10 (i.e., f
(m)
j ) to the parental m-node of the focal individual

x5 (i.e., f
(m)
i ) and take the product of this outgoing message with the newly updated

incoming message from f
(m)
i .

Figure 2.8: Various “swapping” proposal moves performed on a multigenerational pedi-

gree. The red star marks individual 5 as our focal individual. The bidirectional colored

arrows denote the proposed swapping actions between the parent pair of individual 5

and those of its mating partner, 10. The small arrows along the factor graph’s edges

represent the messages that needed to be updated in order to calculate the likelihood

of the proposed pedigree.
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(b) The second type of swapping move involves exchanging both parental components

of the focal individual with those of its mating partner. In this pedigree scenario,

parents of focal individual x5 are swapped in place with parents of individual x10. The

message update path follows a similar routine to that of (a).

Figure 2.8: Various “swapping” proposal moves performed on a multigenerational pedi-

gree. (cont.)

2.2.8.4 Addtional proposal moves: general swapping and substitution

The “swap” move proposed in Section 2.2.8.3 focuses narrowly on swapping a specific

set of individuals from the same connected component for the purpose of improving the

rate of mixing of the MCMC chain between interchangeable pedigrees. Here we apply

similar principles, more generally, to improve mixing among a wider variety of pedigree

structures, introducing two fundamental proposal types in pedFac: “swapping” and

“substitution.” In the context of pedigree factor graphs, “swapping” involves simply
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(c) The third class of swapping move works by swapping both parents of the focal

individual with individual parents from two different mating partners. The father of

focal individual x5 is swapped in place with the father of its mating partners, x13,

while the mother of x5 is swapped in place with the mother of x4. Outgoing messages

from those two mating partners, x4 and x13, must be updated and passed to x5 in

order to calculate the likelihood of this proposed change to the pedigree.

Figure 2.8: Various “swapping” proposal moves performed on a multigenerational pedi-

gree. (cont.)

exchanging the labels or identities between two variable nodes while leaving the edges

and neighbors of each of the two focal individuals intact and unchanged (see example

in Figure 2.9a). In contrast, the process of “substitution” (Figure 2.9b), occurs when

an individual and other individuals in its neighborhood are replaced by the individuals

in the neighborhood of another individual. The latter can result in much larger changes

within the connected component, than can the former.
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We include general swapping and substitution in pedFac’s set of proposal-move types

to ensure good mixing of the Markov chain—specifically to overcome bottlenecks result-

ing from user-specified restrictions on the types of pedigree allowed. For example, if the

population of interest is known to follow a monogamous mating pattern, it is desirable

and logical to restrict the pedigree sample space to only those with monogamous mat-

ing. However, this restricted sampling domain makes it difficult to transition between

pedigrees with different parental assignments to the focal individual when all of the

candidate parents have already been attached to a mating partner.

Using Figure 2.9a as an example, if individual x1 and x3 are the true parents of

the focal individual xfocal, in order for those parent pairs to join together, given the

current configuration, we must for the disassociation of the marriage node of x3 and x4.

The latter reconfiguration relies on additional prerequisite: that it is possible and also

probable for individuals x6 and x7 to be assigned to a different pair of parents. As a

result, in the absence of the general swapping and/or substitution moves, this nested

state of conditions impedes the mixing of the MCMC chain.

With general swapping and substitution moves in the proposal repertoire, the tran-

sition between pedigrees of differing parental assignments is accessible under a single

move, and the calculation for the posterior of the proposed reconfiguration remains

tractable and efficient through the factor graph representation.

As of now, we are limiting these proposal moves to be performed between individuals
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of different connected components for simplicity.

2.2.9 Data and Software Implementation

2.2.9.1 Implementation of pedFac

pedFac is available as an R package and also as a python script on Github. For input,

pedFac accepts 1) a file of genotypes, 2) the user’s specifications about the population

under study and the desired length and type of sampling runs, and 3) an optional file

of secondary meta data. pedFac generates intermediate files and passes them to a C

program that generates the pedigree factor graph and runs all major algorithms such as

the sum-product algorithm and MCMC sampler. pedFac, in turn, outputs all sampled

pedigrees in a text file with four columns: sweep number, kid, father, mother, and also

summarizes this output (MAP estimate, parentage assignments, sibling groups, etc.)

2.2.9.2 Pedigree simulator

I have also written a pedigree simulator in R and Python, used to generate known

multigenerational pedigrees to serve as test datasets. The user can specify the following

parameters: the number of generations T , the number of founders Nf , the fraction of

males expected in the founder generation Nf,m, the λm parameter of a Poisson distri-

bution that sets the expected number of mating partners and a separate λo that sets

the expected number of offspring per parent pair. The user can specify the number of
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SNPs Ns, the expected genotyping error rate ε, the expected genotype missingness rate,

the alpha ρα and beta ρβ parameters of a beta distribution to simulate the population

allele frequencies, and the fraction f of individuals in the pedigree that are sampled.

The user can also restrict the simulated pedigrees to be acyclic.

2.2.10 Evaluating the performance of pedFac

2.2.10.1 Simulation scenarios

We test pedFac and compare its performance to three other software programs using

simulated data from three different scenarios:

1. two-generation monogamous pedigrees

2. two-generation polygamous pedigrees

3. multigenerational monogamous pedigrees.

All of the pedigrees simulated in these scenarios are constrained to be strictly acyclic.

Each of these scenarios will be more fully described when they are discussed in the

“Simulations and Results” section below.

2.2.10.2 Competing software

We compare the results of pedFac with those obtained by using three other software

programs: COLONY v.2.06.5 (Jones and Wang 2010), sequoia v.2.0.7 (Huisman 2017)
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and FRANZ v 2.0 (Riester et al. 2009). COLONY is recognized amongst molecular

ecologists as the most accurate method available today for sibship reconstruction and

parentage inference, and Sequoia has been recently proposed as a faster method with

accuracy approaching that of COLONY. FRANZ is known to be less accurate than

COLONY; however unlike COLONY, FRANZ allows for the inference of multigenera-

tional pedigrees. Therefore we only use it for comparison in scenario 3.

For all scenarios we set the “maximum sibling iterations” in Sequoia to 20. For

COLONY, in all scenarios, we chose the Full-Likelihood (FL) method without sibship

scaling and without a sibship prior. COLONY does not allow the user to specify a

fixed number of iterations of its algorithm. Rather, the user chooses a combination of

run-length (short, medium, long or very long) and precision (low, medium, high, and

very high) to set the number of iterations. Even when COLONY was set to a short

run length with low precision, it required roughly 5× the runtime required for pedFac

to perform 100 sweeps for an average case, so we uniformly chose the short runtime

settings for COLONY (short run-length and low precision).

Settings for these programs, and for pedFac, that were chosen specifically for differ-

ent scenarios are reported with the results.

2.2.10.3 Evaluating performance

Comparing networks, especially those involving many vertices and edges, can be a daunt-

ing task. In our case, we need to measure how close the inferred pedigree is to the truth
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in units that can be easily interpreted by potential users of pedFac. Instead of reporting

the topological differences of pedigrees in an abstract graphical fashion, for scenarios 1

and 2 we take a more pragmatic approach by focusing on how well each program per-

forms in inferring familiar relationships. To assess this, for different focal relationships

we report the false discovery rate (FDR) and the false negative rate (FNR). The FDR

is defined as the fraction of assigned/inferred relationships (of a particular type) that

are incorrect. The FNR is the fraction of true relationships (of a particular type) that

are not correctly identified by the software.

In scenarios 1 and 2, we also calculate the receiver-operator-characteristic area un-

der the curve (ROC-AUC) score to evaluate how accurately the “confidence” scores

produced by pedFac, COLONY and sequoia can be used to separate out true from false

assignments. All of the four programs—pedFac, COLONY, sequoia, and FRANZ—

provide a value associated with each inferred relationship that can be used to assess

confidence. In the case of pedFac, this is transparently a posterior probability—the

frequency with which the relationship is observed over the total number of sweeps, after

a burn-in period. We use the maximum a posteriori (MAP) estimate for all of our

analysis. FRANz also reports a posterior probability obtained from MCMC simulation.

The interpretation of the values provided by COLONY and sequoia is more difficult.

COLONY’s objective is to find a pedigree that maximizes the likelihood. Once it

has achieved that, the program reports a “probability” for each trio (pair of parents and
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a single offspring) in this optimal pedigree. This is not a proper posterior probability,

but it is intended to provide a measure of support for the parentage assignments in the

trio. COLONY assesses the accuracy of its inferred full-sibling groups, by reporting two

numbers: “Prob(Inc)”—how likely it is that the inferred sibship includes one or more

non-siblings—and “Prob(Exc)”—how likely it is that the inferred sibship is missing one

or more true siblings. For sibship-inference ROC-AUC calculation with COLONY we

ranked sibling assignments by “Prob(Inc),” and ties were resolved by “Prob(Exc).” For

any sibship pair, we ranked sibling pair based on the output “Probability”.

Sequoia does not estimate the uncertainty of trio assignments, nor of inferred full

siblings. Rather, for each inferred parent-pair and offspring trio, it provides an “LLR”

score which is the log of the likelihood that the trio of individuals consists of two

parents and an offspring minus the log of the likelihood that the members of the trio are

unrelated. With no other options given by the program for assessing confidence, we use

these LLR scores to rank inferred relationships for ROC-AUC calculation. Additionally,

for some plots (such as Figure 2.11, below) we plot the results against the posterior

probability. For these cases, with sequoia, we simply use exp(LLRi)/maxi{exp(LLRi)}

as a proxy.
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2.3 Simulations and Results

2.3.1 Scenario 1: Inference of Parentage and Full-sibling groups in a

Chinook Salmon Pedigree

We simulate data from the same Chinook salmon pedigree of 1157 genotyped individuals,

all of a single cohort, described in Anderson and Ng (2016), as our first test data set.

The pedigree is composed of 432 monogamous families, with a mean sibling size 2.7,

and a distribution of full-sibship sizes like: . In the first scenario we include all

of the parents of the full sibling groups, but in later scenarios we include a smaller

fraction of the parents, doing five scenarios total, with fractions of included parents

f ∈ {1, 0.75, 0.5, 0.25, 0}. In the last scenario, none of the parents are included in the

data set, corresponding to the well-known problem of full sibship inference. We simulate

5 replicate panels of 95 SNPs, each with a 2% chance that they have been genotyped

with error and a 0.5% chance that the genotype is missing. For this study, pedFac is run

with 100 sweeps under the assumption that mating in the population is monogamous (so

that proposals creating half-siblings are not permitted), and a uniform prior is applied

to the space of pedigrees—that is, every pedigree configuration is assumed to have equal

probability a priori.

For the monogamous case study, we assess parentage assignment (for the first four
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scenarios when parents are included in the dataset), and the inference of full-siblings in

all scenarios. To comply with the nature of the pedigree, we applied the “monogamous

mating” option available in pedFac, COLONY and sequoia.

Figure 2.10 includes results for three different settings within pedFac, to empha-

size the importance of including the “swap” and “substitute” proposals described in

Section 2.2.8.4. The “swap” and “sub” proposal types are particularly beneficial when

pedFac is constrained to find monogamous pedigrees, because the monogamy constraint

makes it difficult for the correct parent pair to be reached, if one of the parents is al-

ready attached to an incorrect mating partner. For inferring parentage, pedFac (with

the swapping and subbing steps included) performs as well as COLONY and its per-

formance is far superior to that of sequoia in the first four sampling-fraction scenarios

(Table 2.2). For all following results, pedFac is run always with the swapping and

subbing proposals included.

We also assess the results of simulation scenario 1 in terms of the accuracy with

which full-siblings are identified. COLONY provides the maximum likelihood pedigree,

and all full-sibling pairs within that pedigree were considered to be pairs inferred by

COLONY. By contrast, since pedFac samples over the space of pedigrees, we retained,

for this analysis, MAP-estimated sibling pairs—that is full sibling pairs identified in

> 50% of the sweeps (after burn-in).

Over all five fractions of parental sampling, the performance of pedFac is comparable
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1 - FDR ROC-AUC

fraction software mean w/ sd range mean w/ sd range

pedFac 1.00 ± 0.00 (1.00,1.00) 1.00 ± 0.00 (1.00,1.00)

... (+swap) 1.00 ± 0.00 (1.00,1.00) 1.00 ± 0.00 (1.00,1.00)

... (+swap,+sub) 1.00 ± 0.00 (1.00,1.00) 1.00 ± 0.00 (1.00,1.00)

COLONY 1.00 ± 0.00 (1.00,1.00) 1.00 ± 0.00 (1.00,1.00)

1

sequoia 0.98 ± 0.01 (0.97,0.98) 1.00 ± 0.00 (1.00,1.00)

pedFac 0.96 ± 0.01 (0.95,0.97) 0.59 ± 0.03 (0.56,0.65)

... (+swap) 1.00 ± 0.00 (0.99,1.00) 0.71 ± 0.27 (0.46,1.00)

... (+swap,+sub) 1.00 ± 0.00 (1.00,1.00) 1.00 ± 0.01 (0.99,1.00)

COLONY 1.00 ± 0.00 (1.00,1.00) 1.00 ± 0.00 (1.00,1.00)

0.75

sequoia 0.95 ± 0.01 (0.94,0.96) 0.80 ± 0.01 (0.79,0.81)

pedFac 0.93 ± 0.01 (0.91,0.95) 0.55 ± 0.03 (0.50,0.59)

... (+swap) 1.00 ± 0.00 (0.99,1.00) 0.71 ± 0.24 (0.42,1.00)

... (+swap,+sub) 1.00 ± 0.00 (1.00,1.00) 1.00 ± 0.00 (1.00,1.00)

COLONY 1.00 ± 0.00 (1.00,1.00) 1.00 ± 0.00 (1.00,1.00)

0.5

sequoia 0.95 ± 0.00 (0.95,0.96) 0.64 ± 0.02 (0.62,0.66)

pedFac 0.95 ± 0.01 (0.94,0.96) 0.54 ± 0.02 (0.52,0.57)

... (+swap) 1.00 ± 0.00 (1.00,1.00) 0.74 ± 0.26 (0.42,1.00)

... (+swap,+sub) 1.00 ± 0.00 (1.00,1.00) 1.00 ± 0.00 (1.00,1.00)

COLONY 1.00 ± 0.00 (1.00,1.00) 0.90 ± 0.22 (0.50,1.00)

0.25

sequoia 0.96 ± 0.00 (0.96,0.96) 0.54 ± 0.01 (0.52,0.55)

Table 2.2: Comparison of parentage precision (1 - FDR) rates and associated ROC

AUC scores from 1157 individuals in four varying sample-fraction scenarios of a two-

generation monogamous pedigree. The mean and standard deviation is calculated from

five replicates.
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to that of COLONY with respect to false discovery rate and false negative rate, but

pedFac outperforms COLONY in ROC-AUC score (Table 2.3). This is a consequence of

the fact that the posterior value produced by pedFac, for each pair of siblings, provides

a much more accurate estimate of the probability that the pair truly are full-siblings. In

contrast, the “probability” scores that COLONY reports do not relate as strongly to the

actual rate of mis-characterization of sibling pairs. This is visually apparent in Figure

2.11a, which shows a representative result from one of the five replicate simulations.

When compared to sequoia, pedFac and COLONY have higher false discovery rates

but this occurs because sequoia is very conservative in calling full siblings, and conse-

quently has a vastly higher false negative rate than either pedFac or COLONY.

We also examine the accuracy of the entire full sibling groups inferred by pedFac,

COLONY and sequoia (rather than summarizing the siblings in pairs). To compose

the inferred full sibling groups from pedFac, we sorted the MCMC-sampled full sibling

groups in order of decreasing posterior (and decreasing sibling size, when two groups had

the same posterior) and then cycled through that sorted list assigning each individual

exclusively to the first full-sibling group it belonged to. In the context of full-sibling

groups, we define a “false discovery” to be an any inferred sibling group that is not a

true full sibling group. Likewise, a false negative is defined as a true full sibling group

that does not have an exact match amongst the inferred full sibling groups. Over all five

sampling-fraction cases, pedFac performs as well as COLONY at inferring full sibling

68



pedFac COLONY sequoia

sf:
1.0

sf:
0.75

sf:
0.5

sf:
0.25

sf:
0

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

Full Sibling (FS) Pairs Index

P
rob

(a) Full sibling pairs on the x-axis in descending order of the “confidence metric”

(black curve). Red tickmarks above the black curve show inferred pairs that are not

full siblings. Orange tick marks below the curve indicate true full sibling pairs that

were not identified by the software.

mean AUC: 1.000

mean AUC: 0.998

mean AUC: 0.969

mean AUC: 0.981

mean AUC: 0.971

mean AUC: 1.000

mean AUC: 1.000

mean AUC: 0.989

mean AUC: 0.942

mean AUC: 0.856

mean AUC: 1.000

mean AUC: 0.962

mean AUC: 0.959

mean AUC: 0.953

mean AUC: 0.967

pedFac COLONY sequoia

sf:
1.0

sf:
0.75

sf:
0.5

sf:
0.25

sf:
0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

FPR (1−Specif.)

T
P

R
 (S

ensit.)

(b) ROC plots of pairs inferred to be full siblings. The average ROC curve (in black)

is plotted over the ROC curves for each of the five replicate trials (in grey).

Figure 2.11: Accuracy of inference of full-sibling pairs in the monogamous case study.
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groups, based on the FDR and FNR, and pedFac achieves a higher mean ROC-AUC

score than COLONY in all cases (Table 2.4).

As can be seen in Figure 2.12b, pedFac returns more informative posterior probabil-

ities than does COLONY: pedFac’s posterior curve tapers downward with the accumu-

lation of false sibling-group calls. Overall, pedFac and COLONY outperform sequoia

by a wide margin.

2.3.2 Scenario 2: Parentage And Sibship Inference of Two Generation

Acyclic Pedigrees with Polygamous Mating

When males and females have multiple mates, the space of possible pedigrees increases

considerably and the pedigree inference problem becomes much harder. Polygamous

mating amongst the adults can produce offspring groups of full sibships nested within

a potentially wide variety of half-sibling groups.

To simulate polygamous mating, and to assess pedFac’s performance at recovering

polygamous pedigrees, we use a single true two generation pedigree, simulated from

our pedigree simulator. Over different simulation replicates, genotypes are assigned to

individuals according to Mendelian inheritance down the pedigree. The pedigree, itself,

is composed of 29 connected components, each of which belong to two separate groups

(Figure 2.13). In Group A each mating produces only a single offspring, creating 12

of the connected components; while the adults in Group B all produce more than one
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Figure 2.12: Performance in inference of full sibling groups. Red tick marks above the

curve indicate the inclusion of one or more members (0.1 unit per member on the y-

scale) incorrectly inferred full sibling(s) in the true full sibling group. Orange tickmarks

below the black curve show one or more members (0.1 unit per member on the y-scale)

from the true full sibling group that are missing from the inferred full sibling group.
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offspring and belong to 17 distinct connected components. There are approximately 200

founders in this pedigree, with roughly half males and half females. For each connected

component, at least one of the male and female founders display polygamous mating.

Similar to the simulation setup for the monogamous case study, we simulate five

replicate panels of 100 SNPs, each with a 2% chance of being genotyped with error and

a 0.5% chance of being a missing genotype, for five different parental sampling-fraction

scenarios with f ∈ {1, 0.75, 0.5, 0.25, 0}. The number of sweeps and all software settings

remained the same as the previous run, with the exception of altering the mating system

specification (i.e., no software was run in its “monogamous” mode). Confidence scores

for sorting COLONY’s inferred half-sibling pairs for ROC-AUC calculation were taken

from the “Probability” column of COLONY’s “half-sib dyad” output.

In the category of parental assignment, pedFac performs as well as COLONY in

precision and provides the most informative confidence metric among the three software

packages (Table 2.5). With respect to inferring whether pairs are full siblings or half

siblings, pedFac has the lowest FDR among the three but yields a higher FNR than

COLONY, and a lower FNR than sequoia (Table 2.6). Sequoia does not perform well

in terms of error rates and the ROC-AUC. Additionally, when all candidate parents are

absent from the data set (f = 0), sequoia is unable to identify any half-sibling pairs.

Upon close examination of the pedFac results like those shown in Figure 2.14a, we

see that, as the sampling fraction of the parent generation decreases, the number of half-
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Figure 2.13: Simulated pedigree with 29 connected components used to explore infer-

ence for polygamous scenarios. Components from group A and group B are named

accordingly.
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(black curve). Red tickmarks above the black curve show inferred pairs that are not

half siblings. Orange tick marks below the curve indicate true half sibling pairs that

were not identified by the software.
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(b) ROC plots of pairs inferred to be half siblings. The average ROC curve (in black)

is plotted over the ROC curves for each of the five replicate trials (in grey).

Figure 2.14: Accuracy of inference of half-sibling pairs in the polygamous case study.
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1 - FDR ROC-AUC

fraction software mean w/ sd range mean w/ sd range

pedFac 1.00 ± 0.00 (1.00,1.00) 1.00 ± 0.00 (1.00,1.00)

COLONY 0.99 ± 0.01 (0.98,1.00) 0.61 ± 0.22 (0.50,1.00)1

sequoia 0.98 ± 0.01 (0.97,0.99) 1.00 ± 0.00 (1.00,1.00)

pedFac 1.00 ± 0.00 (1.00,1.00) 1.00 ± 0.00 (1.00,1.00)

COLONY 1.00 ± 0.00 (1.00,1.00) 0.95 ± 0.11 (0.75,1.00)0.75

sequoia 0.96 ± 0.01 (0.95,0.97) 0.79 ± 0.01 (0.77,0.81)

pedFac 1.00 ± 0.00 (1.00,1.00) 1.00 ± 0.00 (1.00,1.00)

COLONY 1.00 ± 0.00 (1.00,1.00) 0.80 ± 0.27 (0.50,1.00)0.5

sequoia 0.95 ± 0.01 (0.94,0.96) 0.66 ± 0.03 (0.62,0.70)

pedFac 1.00 ± 0.00 (0.99,1.00) 0.97 ± 0.08 (0.83,1.00)

COLONY 1.00 ± 0.00 (1.00,1.00) 0.95 ± 0.11 (0.75,1.00)0.25

sequoia 0.97 ± 0.01 (0.96,0.97) 0.54 ± 0.01 (0.52,0.56)

Table 2.5: Comparison of parentage precision (1 - FDR) rates and associated ROC

AUC scores from 428 individuals in four varying sample-fraction scenarios of a two-

generation polygamous pedigree. The mean and standard deviation is calculated from

five replicates.

sibling false negatives—true half-sibling pairs that have gone completely undetected by

pedFac—increases at a rate slightly higher than that of COLONY. This pattern is likely

a consequence of poor mixing in pedFac, and can likely be resolved by introducing ad-

ditional proposal move types that are conducive to sampling alternative polygamous

pedigrees. This topic is addressed in greater detail in the discussion section that fol-

lows. It is worth noting that the poor mixing in this chain has also led to a negative

impact on pedFac’s inference of full-sibling groups: throughout all five sampling fraction

cases, pedFac returns a higher FDR, a mixed FNR result and higher ROC-AUC score

compared to that of COLONY; though pedFac outperforms sequoia in all categories

(Table 2.7).
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2.3.3 Scenario 3: Inference of Multi-Generation Acyclic Pedigrees

So far, we have only presented inference problems involving two-generation pedigrees.

In a population where every individual is sampled, inferring a multi-generation pedigree

can be reduced to a simple problem of inferring a series of two-generation pedigrees.

However, when sampling of the population is not complete, the approach of reconstruct-

ing a multi-generational pedigree as a series of two-generation inference problems is not

feasible for the simple reason that it requires more than two generations to link an off-

spring through an unobserved parent to an observed grandparent or another ancestor

further back in time.

To show pedFac’s performance in inferring relationships through unsampled individ-

uals, we devise two testing scenarios based on multi-generational acyclic pedigrees. In

the first scenario, we started with a simulated, five-generation pedigree with 83 mem-

bers, and manually selected 21 individuals to be considered as unsampled, leaving a

sample of 62 individuals from the pedigree (Figure 2.15). We then generate a panel of

200 SNPs markers based on the pedigree. In the second scenario, we simulated a larger

three-generation, acyclic pedigree of multiple disconnected components, and 522 indi-

viduals in total (Figure 2.17). We mimicked a sampling scenario in which only females

can be sampled (such as when returning to land to lay eggs, e.g., sea turtles), and males

are never sampled. Additionally, we used the software program MENDEL (Lange et al.

2013) to generate genetic markers from a model that incorporates physical linkage upon
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(a) pedFac result from 100 sweeps with no burn-in. Listed edge weights are posterior

probabilities. The pedigree pedFac inferred is resolved as a single connected

component.
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(b) FRANz result. Edge weights are posterior probabilities from FRANz’s MCMC

simulation routine. The inferred pedigree is composed of 20 separate, connected

components.
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(c) Sequoia result. Edge weights are reported log likelihood pair ratios from sequoia’s

parentage result. The reported pedigree is composed of 16 separate, connected

components.

Figure 2.16: Result of multigeneration pedigree inference with incomplete sampling

of individuals, and 200 markers. Any paths involving unsampled individuals that are

correctly inferred by the respective software are highlighted in blue. Metrics provided

by the software for these inferred edges appear as weights adjacent to edges.
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chromosomes. We simulated two types of genome: one consisting of 34 autosomal chro-

mosomes, with sizes comparable to those of Chinook salmon; and another consisting

of a much smaller number, three, of autosomes, such as might be found in fruit flies.

We simulate 5 replicate trials for a panel of 100, 200, 400, and 800 biallelic markers

to assess whether performance can be improved through the increasing the number of

markers, even if they are physically linked in the genome. In both cases, pedigrees were

simulated under an assumption of monogamous mating, since polygamous mating leads

to a far higher incidence of cycles within the pedigree (and we are restricting ourselves

in this chapter to acyclic pedigrees).

The pedigree of the first multi-generational scenario was analyzed using pedFac

(with monogamy enforced), FRANz, and sequoia. Because sequoia performed better

than FRANz (though not nearly as well as pedFac) in this first scenario, we did not

apply FRANz to the second scenario.

For both of the scenarios, pedFac outperforms sequoia and FRANz in reconstructing

multi-generational pedigrees when individuals in the pedigrees are not fully sampled.

In the first scenario with 200 independent SNPs, 100 sweeps with no burn-in, the pedi-

gree reconstructed as the MAP estimate of first and second degree relationships from

pedFac’s sample from the posterior distribution is identical to the true pedigree(Figure

2.16a). PedFac not only accurately inferred all parent-offspring trios but also inferred all

edges to or through 21 unsampled individuals. In the result from FRANz, by contrast,
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1 - FDR (mean ± sd)

N=3 N=34

software № SNPs maternal paternal maternal paternal

100 0.94 ± 0.01 0.81 ± 0.02 0.99 ± 0.01 0.88 ± 0.03

200 0.99 ± 0.01 0.94 ± 0.03 1.00 ± 0.01 0.96 ± 0.01

400 1.00 ± 0.00 0.97 ± 0.01 1.00 ± 0.00 0.99 ± 0.01
pedFac

800 0.99 ± 0.01 0.97 ± 0.01 1.00 ± 0.00 1.00 ± 0.00

100 0.91 ± 0.03 0.56 ± 0.01 0.93 ± 0.02 0.57 ± 0.02

200 0.96 ± 0.01 0.57 ± 0.02 0.99 ± 0.01 0.58 ± 0.01

400 0.98 ± 0.01 0.57 ± 0.01 1.00 ± 0.00 0.59 ± 0.01
sequoia

800 0.98 ± 0.01 0.58 ± 0.01 0.99 ± 0.01 0.60 ± 0.01

Table 2.8: Comparison of grand-parentage precision (1 - FDR) rates with varying num-

ber of SNPs with positions that are uniformly distributed amongst either three chromo-

somes or 34 chromosomes. Data were simulated from the three-generation monogamous

pedigree. The females were observed and all males were unobserved, so identifying pa-

ternal grandparents requires inference of edges through unsampled individuals, and is

much harder than identifying maternal grandparents. The precision is separated into

two categories of identifying grandparents through the maternal or the paternal link.

The mean and standard deviation is calculated from five replicates.

no parental relationship was inferred beyond a single unobserved individual, resulting

in 20 separate, connected components as opposed to the true pedigree, which is a single

connected component. Sequoia was able to infer 6 more edges than FRANz, some of

which are connected through unobserved individuals. Of those 6 additional edges, 3 of

them are noted to have an ‘NA’ log likelihood ratio.

As for the second scenario, we evaluate the performance of pedFac and sequoia

by how accurate they can infer the four grandparents of each individual in the final

generation of a three generation acyclic pedigree in which no males are sampled. Across

all replicates and chromosomal linkage scenarios, pedFac performs exceptionally well
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in inferring the grandparents (Table 2.8). It outperforms sequoia by a large margin in

correctly assigning both maternal and paternal grandparents. This success highlights

pedFac’s strength in inferring relationships through unobserved individuals—in this

particular case, all the males in the pedigree.

We normally expect that for a sensitive robust model, the precision rate improves

logarithmically when additional information is given. However, this is not the case for

sequoia in inferring correct paternal grandparent pairs. Adding more markers in the

sample benefits pedFac much more than it does sequoia for this second-degree rela-

tionship inference problem. Additional markers allow pedFac to achieve nearly perfect

paternal grandparent assignment when ≥ 400 physically linked SNPs are used. By con-

trast, sequoia’s precision appears to reach a plateau at about 0.60 correct assignment.

PedFac’s posterior output serves as a better estimate of uncertainty than sequoia’s

LLR, supported by the observation that most of the false assignments gravitate toward

lower posterior value as seen in one of the five replicates (Figure 2.18). This holds

true more for the case of markers spread across 34 chromosomes than for the case with

only three chromosomes. Both pedFac and sequoia are built on an assumption that the

genetic markers are independent, and are not physically linked. Having such correlated

markers reduces the amount of inferential power in PedFac, and, as expected, appears

to inappropriately inflate its measure of certainty of some inferences; however, the effect

of physical linkage is not dramatic.
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2.4 Discussion

Across all cases of various sampling fractions in two-generation, acyclic pedigrees, ped-

Fac performs on an equal footing with COLONY and outperforms sequoia in parentage

assignment, sibling-group inference, and full- and half- sibling pair assignment. Addi-

tionally, pedFac provides a far better estimate of uncertainty than either COLONY,

sequoia or FRANz, and pedFac requires significantly shorter run times than COLONY.

pedFac can accurately infer multigenerational acyclic pedigrees under incomplete sam-

pling, a feat that FRANz and sequoia are not capable of accurately doing.

2.4.1 Multigenerational pedigrees

Prior to pedFac and sequoia, it might have been possible to reconstruct multigen-

erational pedigrees using COLONY by separating the individuals into a set of two-

generation bins as input and knitting all of the output into a single output pedigree.

However, this approach is limited by its ability to only assign parents to individuals

who are observed, similar to the sort of performance observed from FRANz in Figure

2.16b. Hence, an elaboration of a COLONY-based multigenerational strategy could

involve assigning putative genotype value for these unobserved individuals (based on

COLONY’s marginal genotype inferences for unobserved parents) and returning them

back to the software for more runs. This overall strategy would require a substantial
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amount of overhead work and would rely heavily on imputed genotypes through which

it would be very difficult to propagate uncertainty. If the genotype values were not

correctly imputed, or even worse, the unobserved individual is a product of a past run’s

false assignment, this approach would further amplify the error and the rate of false dis-

covery. Hence, to attain a proper estimate of the genotypes of unobserved individuals

for relationship inference, it is necessary to have an efficient framework, i.e., pedFac that

incorporates the genotype uncertainty of these unobserved individuals in the pedigree,

as well as of the observed nodes in the joint likelihood calculation of pedigrees under

proposed structural changes.

Sequoia, on the other hand, does not attempt to estimate the genotypes of the un-

observed individuals to conduct relationship inference. Instead it bypasses the need for

such consideration by focusing on finding pairwise relationships of first to third degree—

a total of seven alternative hypotheses—between two observed individuals. We observe

that sequoia mostly accepts higher-order relationships between focal pairs only when

the relationship link is also partially supported by accepted/identified lower-degree rela-

tionships. This is observed in two instances: the inability to infer any half-sibling pairs

when all parents are missing from the sample (Figure 2.14a), and the poor grandparent-

age inference on the paternal side when all males are missing from the sample (Table

2.8). Across all scenarios, sequoia accepts assignment conservatively due to its heuristic,

pairwise, log-likelihood approach, and for such inferences, the relatively small number of
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markers provided in our simulations creates a difficult challenge for sequoia to identify

and infer higher-order relationships. According to its manual, the log pair-wise model is

also sensitive to rate of genotyping error. The genotype error rate of 2% we imposed in

the simulated data set is much higher than the rate of 0.1% found in (Huisman 2017),

but also more in line with observed genotyping error rates in many laboratories.

2.4.2 The assumption that markers are independent

As the joint likelihood of a pedigree is computed in pedFac as the product over SNPs,

it is apparent that an underlying assumption is that the markers are independently

segregating and that they are not in linkage disequilibrium. By using the software

MENDEL, we were able to simulate genetic marker data from two different model

genomes: one that is similar to the Chinook salmon genome in 34 chromosomes, and

another in only 3 chromosomes. We show that even when the markers are physically

linked, pedFac’s accuracy can be increased by adding additional linked markers to the

data set. However estimates of uncertainty obtained from the high linkage scenario (3

chromosomes) are worse than in the low linkage (34 chromosomes) scenario, which itself

produces less accurate estimates of uncertainty than the assumed case of no independent

assortment.

Physically linked markers could be handled comprehensively by constructing a first

order Hidden Markov model of inheritance vectors along each chromosome as outlined
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Figure 2.19: pedFac’s log posterior chain under 100 sweeps for scenario 2. The log

posterior curve (drawn along the log-based x-axis) begins with the log posterior value

at the end of the first sweep and ends with the log posterior value at the end of the 100-

th sweep. Each log posterior curve is colored according to the sampling fraction study

it belongs to and each line type corresponds to one of the five replicate trials. Each

black vertical line on the log posterior curve demarcates the start and end of a sweep

cycle, with some labeled with a n-th sweep number. An iteration on the x-axis refers

to a proposal to update a particular focal individual. In each sweep, every individual

in the pedigree is taken, in turn, as the focal individual.
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in the Lander-Green algorithm to learn the derived parental origin. (Lander and Green

1987). In the context of pedigree inference, this would be extraordinarly costly in terms

of computation, given that the true pedigree is unknown, and, thus, all individuals’

connections are subject to change, and unobserved individuals may be introduced. A

more ad-hoc approach would involve altering the transmission probability only for highly

selected pairs of markers with substantially low recombination rate.

Fortunately, however, it appears that the true occurrence of physical linkage does

not badly degrade pedFac’s performance. In the context of physical linkage, pedFac’s

existing algorithm can be interpreted as a sort of composite likelihood approximation.

2.4.3 Mixing of the MCMC Chain

All the studies presented so far were run with 100 sweeps. We show here, by monitoring

the log of the pedigree posterior, that by the 20-th sweep for all of the runs for scenario 2,

the MCMC appears to have reached a state of convergence (Figure 2.19). We also

observe that as the fraction of observed parental individuals increases, a smaller number

of sweeps is required for the chain to reach a state from the stationary distribution.

This accords with our reasoning that a decrease in the fraction of sampled individuals

increases uncertainty and hence the time required for pedFac to estimate the genotype

distributions of the unobserved individuals.

Overall, there’s no fixed formula for defining the necessay number of sweeps as
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long as we meet two conditions: the convergence of the MCMC chain and the desired

precision of the posterior estimate. As discussed earlier, for some scenarios, we could

have chosen to shorten the number of sweeps to obtain comparably short run times as

sequoia. However, doing so would likely decrease our precision in the posterior estimate.

Regardless of the length of run chosen, as with any MCMC exercise, in practical use

of pedFac, we recommend performing multiple runs from different random seeds and

comparing the output to ensure the chain is reliably converging.

2.4.4 Limitations

All of the case studies we have presented require the true pedigree to be acyclic because

the acyclic sampler, by its very design (and name), does not allow the creation of loops

when proposing novel pedigree rearrangements. The main reason for this restriction is

that sum-product algorithm, even in its loopy, iterative version, is not guaranteed to

converge to the likelihood if the pedigree is cyclic.

Through the process of creating simulated, acyclic multigenerational pedigrees for

testing pedFac, it was quite apparent that it is difficult to avoid creating any loops while

keeping the number of individuals and connected components in a pedigree small. In

general, the higher the fraction of population that is sampled, the more likely one is to

encounter loops in the true pedigree of the sample. The same is true when sampling is

conducted over many generations: as additional generations are added to a multigener-
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ational pedigree, it becomes increasingly likely that cycles will be formed. Accordingly,

in order for pedFac to be practically useful for multigenerational pedigree inference,it is

imperative to address loops in pedigree. The next chapter describes the challenge and

a solution to it.
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Chapter 3

Learning Multigenerational Pedigrees

that Contain Cycles

The previous chapter presented an MCMC scheme for sampling over the space of

acyclic pedigrees proportional to their posterior probability, given genetic data. This

approach is appropriate for pedigree reconstruction in cases where cycles (or “loops”)

are absent in the true pedigree that is being inferred. Such acyclic pedigrees will be

encountered when the scope of analysis is limited to genetic data from a small number

of generations (like two or three) from organisms displaying low levels of polygyny and

polyandry. However, when analyzing data from three or more generations—especially

in populations of promiscuous organisms—loops are almost certain to occur in the true

pedigree, and will be particularly frequent in well-sampled, small populations, such as
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those of conservation concern (Table 3.1).

When the true pedigree is cyclic, the acyclic pedigree sampler will fail to pair true

parents that lie along a cyclic path, because the acyclic sampler, by definition, disallows

proposals that form cyclic pedigrees. Furthermore, the error will not be restricted

to a single misassigned parent pair, as that single error can induce a chain of incorrect

pedigree edges throughout other members within the same connected component. Thus,

in order to perform inference of multigenerational pedigrees in all but the simplest

scenarios, it is imperative to be able to sample over the space of acyclic and cyclic

pedigrees. This chapter addresses that need.

Before delving into the details of our method for sampling cyclic pedigrees, we briefly

discuss why loops pose a problem for pedigree inference, and we explain why existing

approaches to calculating approximate probabilities on factor graphs with loops (such

as loopy belief propagation) are not applicable to learning graphical pedigree structure.

We then introduce and categorize the two main types of simple loops that occur in

pedigrees, and note that in most large pedigrees these simple loops can combine into

much more complex cycles. In order to efficiently represent and manipulate such com-

plex loops, we introduce the notion of a reduced cycle basis, a minimal set of linearly

independent paths that forms the cycle basis (i.e., they span all the cycles in the pedi-

gree), and use this system to identify individuals that are potential loop breakers in a

cyclic pedigree. Finally, we describe an MCMC sampling scheme (within a Metropolis-
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Hastings framework) that involves temporarily assigning values to the latent genotypes

of these loop breakers, which effectively breaks the loops in the pedigree, allowing the

exact sum-product algorithm to be applied, ultimately enabling sampling over loopy

pedigree structures.

To evaluate the improvement this new algorithm offers, we compare results achieved

with the cyclic pedigree sampler to those obtained using the acyclic pedigree sampler

on simulated pedigrees with varying loop complexity.

3.1 The Problem with Loops in Pedigree Inference, and

Evaluation of Possible Solutions

In the previous chapter, we showed that the sum-product algorithm efficiently calculates

the joint probability of the observed genotypes of all the individuals connected in an

acyclic pedigree. This joint probability is the likelihood of the acyclic pedigree, and

hence can be used to sample over the space of pedigrees, proportional to their posterior

probability. When, the pedigree factor graph is acyclic, the sum-product algorithm is

guaranteed to run to completion, and it will, in the process, compute two messages

along every edge; each message is computed only once, and the two messages on an

edge travel in opposite directions from one another. However, when the pedigree factor

graph has a cycle in it, the sum-product algorithm is unable to complete its message-
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passing protocol because an outgoing message can be passed along an edge from a node

only upon the condition that all the incoming messages along the remaining edges to

the node have been received. Thus, a cycle in the graph always creates a “gridlock”

situation where incoming messages to a node cannot be received until outgoing messages

have been sent. This causes the algorithm to “get stuck” before all the messages can

be sent (Figure 3.1).

In many applications involving cyclic factor graphs, the approach known as the

Pearl Polytree algorithm, or loopy belief propagation, LBP, (Pearl 1988) is a popular

method to approximate the marginal probabilities of the variable nodes. Rather than

initiating message passing from the external factor nodes (as in Figure 3.1), in LBP the

two messages along each edge in the factor graph are assumed to always be present and

are assigned arbitrary initial values at the outset of the algorithm. This eliminates the

“gridlock,” because every factor and variable node is now receiving incoming messages

from every adjacent edge, so they are all in a position to send outgoing messages.

After initialization, the LBP algorithm runs simply by iteratively updating the messages

passed in and out of each node using the standard sum-product operations, with an

additional step of normalizing the messages at each iteration. It is hoped (but not

guaranteed) that, over the course of these iterations, the messages converge to values

that allow the calculation of approximate marginal probabilities for the variable nodes

in the factor graph.
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3 4

5

1 2

Figure 3.1: A simple example of “message gridlock” in a pedigree with a cycle. During

the first step of the sum-product algorithm on this cyclic pedigree, messages (black

arrows in the figure) from the p-nodes and g-nodes are passed to the attached variable

nodes. In the second step, these outermost variable nodes (individuals 1, 2, and 5) are

able to pass messages (depicted as red arrows) out from themselves; however, neither of

the m-nodes that receive those messages can send any further messages, because each

awaits incoming messages (which never arrive) on two edges.
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LBP has enjoyed tremendous success in some instances, such as error correcting

codes (Berrou et al. 1993) and computer vision problems (Freeman et al. 2000); how-

ever, the performance of LBP in novel problems is unpredictable, and can be quite poor

(Murphy et al. 1999; Mooij 2007). Accordingly, the improvement of LBP remains an

active area of research (Tatikonda and Jordan 2013; Mooij and Kappen 2012), spawn-

ing methods such as “unwrapped” loopy networks (Weiss 1997) and the imposition of

consistency constraints to improve accuracy (Mooij 2007).

Ultimately, however, even if LBP upon a pedigree factor graph could be tuned to

give reliable approximations, this would not be enough to make it useful for sampling

over the space of pedigree configurations. LBP provides estimates of the marginal

probabilities of the variable nodes, but sampling over pedigree structures requires the

calculation of the joint probability of all the variable nodes upon the network. This is

readily available from the sum-product algorithm on an acyclic pedigree, but, because

the messages in LBP are locally normalized, LBP cannot deliver the required joint

probability. Accordingly, we cannot use it for inferring pedigrees.

Other methods, besides LBP, to approximate or compute the joint probability of

a cyclic pedigree, fall into three general categories: clustering, stochastic simulation,

and conditioning (Pearl 1988). Clustering involves judiciously combining a group of

variables (which are involved in a cycle) together, into a single compound variable, such

that a graph expressed in terms of the compound variable is a singly connected network
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or “junction tree” (Koller and Friedman 2009; Meiri et al. 1991). Although combining

variables in this fashion provides a way to calculate, exactly, the joint likelihood of a

cyclic pedigree, the computation to do so increases exponentially with the number of

individuals grouped into the compound variable, making this practically infeasible for all

but the smallest, simplest pedigree loops. Furthermore, choosing which variable nodes

to merge so as to minimize the resulting computation needed is an NP-Hard problem

(Cooper 1990). Finally, the graphical object created by combining variables in a pedigree

factor graph is no longer a pedigree factor graph, and, in fact, can be difficult to recognize

as a pedigree. Consequently, using a clustering approach would require that we abandon

the pedigree factor graph representation and all the advantages (for example efficient

reuse of messages to calculate the likelihood of pedigree modifications) it confers. Thus,

although clustering and the junction-tree algorithm have been used for computations

on known pedigrees, with fixed structure (Slooten 2011), we find limited prospects for

applying such approaches to reconstructing unknown pedigrees.

Another approach to evaluating probabilities in complex (i.e., loopy) belief networks

is stochastic simulation, in which realized values for the nodes at the top of the network

are simulated from the priors, and then values for their daughters (and their daughters)

are successively simulated and probabilities are estimated by the frequency of occur-

rence of different events. Such a Monte Carlo approach has been used to estimate

probabilities of inbreeding and coefficients of relationship within a given pedigree since
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the early 1900’s (Wright and McPhee 1925). More recently such a simulation approach

has come to be known as the “gene dropping” method (MacCluer et al. 1986), as it

involves segregating simulated genes down through the pedigree. This works well for

evaluating genotype probabilities for only a few pedigree members at a time. Unfor-

tunately, trying to evaluate the joint probability of all the genotyped members of a

pedigree using this simulation method is not practical, because the probability of any

(joint) configuration is so small as to never occur during simulation. Furthermore, to

sample over the space of pedigrees requires calculating the likelihood of a large number

of possible (re)configurations of the pedigree, and this cannot be done rapidly enough

via simulation. Accordingly, stochastic simulation is not an option for the inference of

different pedigree structures.

A third possible approach to evaluate probabilities within a cyclic pedigree net-

work is through “conditioning” which involves iteratively conditioning upon the possi-

ble genotypes carried by sets of individuals participating in loops, and evaluating the

joint genotype probability as a weighted sum over all those different conditioning val-

ues. An early application of such an approach to pedigrees was the peeling algorithm

of Cannings et al. (1978). This method works well on pedigrees with one, or a few,

simple loops but is not practical for pedigrees with multiple or complex loops, since

the computational cost of summing over all possible genotype values increases exponen-

tially with each loop-breaking individual required. Peeling was not proposed within a
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pedigree-factor-graph framework, nor has it been used outside of applications to known

and fixed pedigrees; however, it is straightforward to see that the act of conditioning

upon one or more loop-breakers can transform a cyclic pedigree factor graph into an

acyclic one. Ultimately, out of the three methods of clustering, stochastic simulation,

and conditioning, we choose conditioning to break cycles and compute the likelihood of

cyclic pedigrees (conditioned on the loop breakers) as it allows us to preserve the factor

graph representation, thereby enabling efficient re-use of precomputed messages from

the sum-product algorithm for evaluating a wide range of proposed pedigree reconfigu-

rations.

In order to simulate from the posterior distribution of pedigree structures, it is

not sufficient to merely condition upon one set of genotypes within a single, fixed set

of loop breakers. Rather, the individuals chosen to be conditioned upon—and their

latent genotypes—must be, themselves, continuously resampled in accordance with their

posterior probability. In other words, the loop-breaking individuals and their latent

genotypes are sampled as part of the MCMC chain that samples over the space of

pedigrees. Doing so requires keeping careful account of cycles within the current and

proposed pedigree structures in the MCMC chain over pedigree factor graphs. We

discuss our approach for doing so in Section 3.2, before describing the “conditioning”

method in the remainder of the chapter.
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3.2 Loops in Pedigree Factor Graphs

3.2.1 Types of Loops

In the field of graph theory, a cycle is defined as a path that departs a vertex, and

eventually returns to that initial vertex, possibly after passing through other vertices.

By contrast, a loop, in graph-theory parlance, is typically defined as a cycle that has

a path length of one. In other words, a loop leaves a vertex and returns to it before

intersecting any other vertices. Within a valid pedigree it is not possible to have a loop

as defined in the graph-theory sense, and, in fact, in the genetics literature, the term

“loop” has been used to refer to any type of cycle in a pedigree (for example, Cannings

et al. 1978). Therefore, in the context of pedigrees and pedigree factor graphs, we adopt

the term “loop” in the population-genetic sense, using it interchangeably with “cycle.”

In a pedigree factor graph, in the absence of self-fertilization, it is evident that the

length (number of edges) of any cycle must be an even number ≥4, with the cyclic

paths running through marriage factor nodes and individual variable nodes (alternating

between those two types of nodes). All cycles in a pedigree factor graph can be cate-

gorized into three types: 1) inbreeding loops, 2) marriage loops, and 3) complex loops,

which contain features from both inbreeding loops and marriage loops.

An inbreeding loop, as the name suggests, is created from reproduction between

individuals that are closely related, such that their offspring are inbred. To be inbred,
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Figure 3.2: Three pedigrees, each containing a single inbreeding loop. In (a), full-

sibling individuals 3 and 4 produce an offspring, 5, creating the smallest inbreeding

loop possible, a loop of size 4. The offspring has a 1/4 chance that both of the gene

copies it carries are descended from a single gene copy amongst its grandparents (1 and

2). An inbreeding loop can also be formed by the marriage of half-siblings, as in (b),

where the variable nodes in the loop include not just the parents (3 and 4) of the inbred

individual, but also their shared parent (individual 1). (c) Larger inbreeding loops

can also be found in pedigrees that span multiple generations when related individuals

produce offspring.
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here, means to have a chance of receiving gene copies from one’s mother and father

that are identical by descent, meaning that both gene copies have descended from the

same gene copy possessed by an ancestor in the pedigree. A simple example of an

inbreeding loop is the marriage of two full siblings (Figure 3.2a). This inbreeding loop

contains two full sibling individuals and the two marriage nodes above and below them.

The marriage of half-siblings also forms an inbreeding loop, which additionally includes

the shared parent of the half-sibling pairs (Figure 3.2b). In fact, the production of

offspring by any two related individuals produces an inbreeding loop in the pedigree

(e.g., Figure 3.2c).

Another loop category is the marriage loop—a closed marriage chain which runs

through marriage factor nodes and the polygamous parents they are connected to, typi-

cally running through the edges of alternating male and female parents. An example of

an open (non-loop-forming) chain could occur as follows: male A and female B have an

offspring W, but also male A and female C have an offspring X, and then female C and

male D have an offspring Y (Figure 3.3a). Given such an open chain, if male D also has

an offspring Z with female C, then a loop is formed (Figure 3.3b). Notice that although

the marriage loop creates a cycle in the graph, none of the individuals in Figure 3.3b is

inbred.

While marriage loops and inbreeding loops are the two essential types of loops in a

pedigree, it should be noted that a variety of complex loops, combining features of both
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W X Y

A DB C

(a)

  

W X Y Z

A DB C

(b)

Figure 3.3: Marriage chains and loops. (a) A pedigree with an open marriage chain.

(b) Addition of the mating event between female C and male D, producing offspring Z,

creates a marriage loop by closing the marriage chain in a.

marriage chains and inbreeding loops, can occur in large pedigrees. They are found to

be the predominant type among the three in pedigrees of natural populations (Table

3.1).

3.2.2 The Reduced Cycle Basis of a Loopy Pedigree

Across the spectrum from simple to complex loops in a pedigree, all the cycles can

be decomposed into a minimal set of simple cycles known as the undirected cycle ba-

sis, B (Chartrand et al. 2010). Each member of B is a single, simple cycle, and every

cycle in the pedigree factor graph can be obtained as the union of some members of B.

The undirected cycle basis is a cornerstone from graph theory for the analysis of cyclic

graphs; however it does not always, without further refinement, provide a straightfor-

ward and efficient means of identifying loop-breaking individuals (variable nodes) in a

pedigree factor graph. We can use the pedigrees in Figure 3.4 to demonstrate this point.
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Figure 3.4: Disjointed and intersecting cycle bases in pedigrees. (a) A pedigree with

three simple cycles consisting of a marriage loop (outlined in green) involving {3, 4, 5, 6}
and two full-sibling inbreeding loops (outlined in orange and yellow) involving the sib-

ling pairs {13, 14} and {15, 16}, respectively. Since all three cycles are fully disjunct,

choosing, as a loop breaker, any single variable node from each cycle of the undirected

cycle basis B would transform this pedigree into an acyclic one. (b) When the pedigree

has intersecting cycles (marked in yellow and orange), selecting loop breakers requires

additional attention because simply choosing one loop breaker from each cycle may not

suffice. For example choosing individual 9 from the orange loop and individual 10 from

the yellow loop does not break all the loops in the pedigree, because 9 and 10 are part

of a non-terminal intersecting path between the two cycles.
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In the relatively simple pedigree in Figure 3.4a, there are three cycles (green, yellow,

and orange), that are disjoint from one another and are all chordless. As such, B for

this pedigree is merely the set of these three simple cycles. In this case, selecting a

single individual to be a loop breaker from each of the three cycles would break all the

cycles in the pedigree. Thus, in this trivial case, the undirected cycle basis provides a

useful guide for identifying loop breakers.

In a more complex pedigree (Figure 3.4b) the cycles can still be decomposed into the

undirected cycle basis B (consisting, for example, of the orange and yellow simple cycles

in the figure); but since all the cycles in the graph are neither disjoint nor chordless, the

cycles in B do not provide a particularly useful guide for identifying loop breakers. In

this case, choosing a single variable node from each element of B to be a loop breaker

does not necessarily eliminate all the cycles in the pedigree. Specifically, selecting as

loop breakers the two nodes (9 and 10) on the nonterminal intersecting path between

the elements of B will not release all the cycles; however selecting just the single variable

node 8 (which occurs at the terminus of an intersecting path) would release all the cycles

in the pedigree.

From the foregoing, it should be clear that the undirected cycle basis, B, by dint of

the fact that its elements can share paths (i.e., the parts that are both yellow and orange

in Figure 3.4b), is not a representation that is well-suited to rapidly identifying the loop

breakers required to render a pedigree acyclic. For such a purpose, we develop a novel
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basis representation for the cycles in the pedigree. We call this the reduced cycle basis

or rcb.

The rcb is a minimal set of contiguous or non-contiguous, non-overlapping paths

that satisfy the conditions that a) selecting any single variable node as a loop-breaker

from each rcb member guarantees that all the loops will be “broken”, and b) the number

of members in the rcb is the same as the number of elements in the cycle basis, B. The

members of an rcb are paths which may or may not be, themselves, cycles; however, each

cycle in the pedigree can still be obtained by the union of a subset of paths within the

rcb. Furthermore, any two members (paths) within an rcb will intersect one another

at, at most, two nodes, and no edges are included in the intersection of any (or all)

members of the rcb (this is what is meant by “non-overlapping”).

To illustrate the relationship between the undirected cycle basis B and the reduced

cycle basis (rcb) of a pedigree, it can be helpful to focus only on the structure of loops

within the pedigree, as depicted using a simple “circle and arc” diagram (Fig 3.5).

In such a diagram, the nodes and edges are implicit, but not explicitly drawn, in the

paths of the loops. In the undirected cycle basis B, all simple cycles can be represented

as intersecting or separate circles (Fig 3.5a), while the paths which are members of

an rcb will either be circles or arcs, which may be composed either of contiguous or

discontiguous paths (as will be described later). Revisiting the example pedigree with

the complex loop in Fig 3.4b, the two simple cycles within B could be drawn as two
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Figure 3.5: Circle and arc representation of loops in pedigrees. (a) Depiction of the

simple cycles from the undirected cycle basis B in the pedigree of Figure 3.4b. The

circle-and-arc diagram boxed by the dashed line corresponds to the cycles highlighted

in Figure 3.4b, while the other two diagrams show the other two ways of describing the

cycle basis, B. Note that the partial overlay of the two circles represents the shared

path between those two cycles (in yellow and orange). (b) The simple cycles of the

cycle basis shown in (a) can be expressed in three possible ways as an rcb. In each

case, one of the rcb members is a simple cycle and the other is a non-overlapping path

that includes part of the remaining simple cycle in B. (c) In a more complex case with

nested loops, there exist many ways of decomposing the loops into an rcb, only two of

which are depicted in the figure. In all cases, however, the number of members in an

rcb is always the same and is equal to the number of simple cycles in the pedigree. In

both diagrams, rcb-member 1 is colored green, member 2 is turquoise, member 3 is red,

and member 4 is gold. (Note: the sizes of the circles or the lengths of the arcs may not

directly reflect the relative scale between the actual pedigree loops.)
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circles conjoined through a common path (Fig 3.5a). The cycle basis we defined in the

pedigree of Fig 3.4b is one of the three possible forms for the undirected cycle basis.

There are also multiple—three in this case—ways to partition these cycles into an rcb

(Fig 3.5b). Yet in all three ways, one of the simple cycles retains its form as a circle in

the rcb while the other is truncated to an arc, and both members of the rcb share two

intersection nodes across all forms.

In less trivial cases (i.e., a pedigree with multiple complex, nested loops), such as

that depicted in Fig 3.5c, the number of possible rcbs increases as the number of loops

in the pedigree factor graph increases. However, regardless of which rcb representation

is chosen, if a single variable node from each member of the rcb is selected as a loop

breaker, the pedigree is rendered acyclic.

A common way to find simple cycles for the undirected cycle basis B of a graph is

through the depth-first search (DFS) algorithm (Tarjan 1972). The same is true for

a pedigree factor graph, which we will denote P(N ,E ), where N refers to the sets

of vertices, or “nodes,” which include both the variable nodes and the factor nodes,

and E refers to the edges. DFS is a recursive process that travels between adjacent

nodes with the goal of moving outwardly from the starting node as far as possible

before backtracking. On a factor graph the algorithm begins with an arbitrary selected

variable node vi and proceeds in the next step to a neighboring factor node fk ∈ η(vi).

If that node has any neighbors other than vi, the subsequent step proceeds to one of
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those variable nodes, (i.e., vk ∈ η(fk)\vi), and so on. If there are no “new” nodes to visit

from the current node, the algorithm backtracks to the previous node and proceeds from

there to an unvisited node (if available). The algorithm also backtracks when the search

path encounters a previously visited node, as will only occur within a cyclic graph.

By storing information about the nodes visited and edges traversed while exploring

the graph using DFS, we can identify the cycles within a cycle basis B, and choose

how to break those into segments so as to identify and store a reduced cycle basis for

the pedigree factor graph. An explicit definition of this modified-DFS algorithm for

identifying a reduced cycle basis appears in Algorithm 1 on page 116. See Table 3.2 for

definitions of variables and notation in Algorithm 1. Before delving into the algorithm

details, we recommend visiting Figure 3.6, which provides a step-by-step description of

how the DFS algorithm would traverse the graph at the top part of Figure 3.5c.

Verbally, the algorithm works as follows: after the algorithm has reached the `th

distinct node it has visited, whose identity is denoted by n`, it proposes searching

forward to a new node, nnext. If nnext happens to be one of the previously visited nodes

ni ∈ {n0, . . . , n`}, a simple cycle consisting of nodes {ni, . . . , n`, ni} has been detected

(lines 7–11 in Algorithm 1). Deriving the rcb member from this newly detected simple

cycle is done by retaining the edges of the simple cycle that are not associated with any

other previously identified rcb members (refer to lines 23–30 in Algorithm 1) and merging

adjacent edges (i.e., any edges that are connected to a common node) into contiguous
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(a) (b)

(c) (d)

Figure 3.6: An instance of how an rcb is identified through the modified DFS algorithm.

(a) The DFS algorithm starts at p on the right side of the green circle. It proceeds clock-

wise until it encounters its starting point, thus finding its first cycle and first rcb member

(the green circle, 1). (b) After backtracking to q along circle 1, the DFS algorithm pro-

ceeds forward along the gray path, reaching r then proceeding anticlockwise around the

circle, 2, eventually re-encountering the node at r, triggering the identification of the

second rcb member, the turquoise circle, 2. (c) The algorithm backtracks to s and then

proceeds forward along the branch to t, where it re-encounters a previously visited node.

The third rcb member identified at this juncture is found by starting with the cycle vis-

ited forward from t (excluding backtracked portions), t → q → r → u → s → t, and

retaining only those portions that are not already included in an rcb; i.e., the green and

turquoise portions are removed and the rcb member is given by the two red segments, 3.

(d) The algorithm backtracks from t, through s to u, and then moves forward along the

branch from u to v where it again encounters a previously visited node. The fourth rcb

member here is the gold arc, 4, which includes the only edges along the active visitation

cycle v → t → q → r → u → v that are not already included in rcb members. Finally,

at this point, the algorithm backtracks from v along the thin black line all the way to

p, finding no other unvisited paths, thus concluding the algorithm. Note that the rcb

found here is only one of many instances. Different rcbs could be found by choosing

different starting locations or different turning “directions” at branches.
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Notations Description

N` = [n1, n2, . . . , n`] an ordered list of length l of the nodes that have been

visited in DFS.

Em = [e1, e2, . . . , em] an ordered list of length m of edges that have been

visited in DFS.

H a set of binary flags, one for each edge and node in the

pedigree, each indicating whether the edge or node has

been visited.

Ie a set of binary flags for each edge in pedigree indicating

whether the edge is associated with an rcb

Table 3.2: Data structures used in detecting cycles and the rcb of a pedigree factor

graph. These variables appear in the listing of Algorithm 1. N` and Em can be seen in

Figure 3.6, depicted as the thin, solid, black line.

paths, while non-adjacent edges lead to non-contiguous segments that are parts of the

rcb member. We want to highlight that the terminal nodes of these contiguous paths

may play an important role in reducing the total number of loop-breakers required to

render a graph acyclic. We will discuss the utility of these nodes to the selection of

“high-value” loop breakers in the next section.

3.3 Conditioning upon the Genotypes of Loop-Breakers to

Render a Cyclic Pedigree Factor Graph Acyclic

The reduced cycle basis provides an extremely useful framework to determine a set of

loop breakers to transform a cyclic pedigree into an acyclic one. Specifically, as long as a

variable node from each rcb member is assigned as a loop breaker, the pedigree, in turn,
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Algorithm 1: Identifying simple cycles and an rcb in pedigree factor graph.

input : P(N ,E ) and starting variable node vi
output: An undirected cycle basis B and a reduced cycle basis R

// Initialization:

1 set all edges and nodes marked as not visited in H ;

2 set all edges marked as not associated with rcb in Ie ;

3 n1 ← vi, ` ← 1 , m ← 0;

4 vi is marked as visited in H ;

5 DFS(P, N`, Em, H );

6 Function DFS(P, N`, Em, H ):

// visiting each neighboring node n of n` via adjacent edge e

for each {n, e} ∈ η(n`) do

7 if edge e is not marked as visited in H then

8 ` ← `+ 1, m ← m+ 1;

9 n` ← n, em ← e;

10 edge e is marked as visited ;

11 if node n is marked as visited in H then // a loop is found

12 ReportLoops(P, N`, Em, Ie);

13 else

14 node n is marked as visited in H ;

15 DFS(P, N`, Em, H );

16 end

17 ` ← `− 1, m ← m− 1 // backtracking;

18 end

19 end

20 Function ReportLoops(P, N`, Em, Ie):

21 Nr = {}, Er = {}; // A place-holder for nodes and edges for r ∈ R
22 find index i where ni = n, where ni ∈ N`\n`;
23 for each e ∈ {ei, ..., em} do

24 if edge e is not marked as associated with any rcb in Ie then

25 let N be the pair of nodes associated with edge e;

26 Nr ← Nr ∪N ;

27 Er ← Er ∪ e;
28 edge e is marked as associated with an rcb in Ie;

29 end

30 end

31 report {ni, . . . , n`−1},{ei, . . . , em} as b ∈ B
32 report Nr, Er as r ∈ R
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will be rendered loop-free. Some of these variable nodes may be shared across multiple

rcb members, and when such a variable node is selected as a loop breaker, it counts as

a loop breaker drawn from each of the rcb members in which it occurs. Consequently,

choosing loop breakers that are shared between multiple rcb members reduces the total

number of variable nodes that must be selected as loop breakers to render the pedigree

acyclic. (Fig 3.7b and Fig 3.7c).

Choosing a set of vertices as loop breakers to make a graph loop-free is, in fact, a

well-studied problem in graph theory that dates back to the 1960s with applications in

combinatorial circuit design (Younger 1963; Lempel and Cederbaum 1966). This proven

NP-complete problem (Yannakakis 1978) is known as the Feedback Set Problem (FSP)

(Festa et al. 1999) or the Loop Cutset Problem (Becker et al. 2000) depending on the

discipline and the type of graph being studied. Recently, the FSP has gained attention

for its appearance in constraint satisfaction and Bayesian inference problems. Notably,

novel recursive algorithms, which are variants of the Davis-Putnam-style exponential-

time backtracking algorithm, have been used to reduce the search time of the FSP in

undirected graphs of n vertices from 2n to tn, where 1.86 < t < 2 (Festa et al. 1999;

Fomin et al. 2008).

Although our interest in identifying loop-breakers in a cyclic pedigree factor graph is

aligned with the objective of finding a minimal feedback vertex set, our goal is not nec-

essarily to find the absolutely minimal number of nodes to be chosen as loop-breakers.
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Figure 3.7: Consequences of the choice of loop-breakers. In (a), segments of the four

different colors correspond to the four rcb members, while the outlined black circles

represent nodes shared between pairs of those rcb members. Selecting any node as a

loop breaker from every colored segment is guaranteed to disrupt all cycles (see hash

marks in b, c, and d indicating such nodes). However, selecting the highlighted nodes

(outlined black circles) as loop breakers reduces the total number of loop-breakers needed

to render the graph acyclic. Panel (c) illustrates one such solution that achieves the

smallest possible number of loop-breakers. Depending on which nodes are chosen and

conditioned upon as loop-breakers, the resulting loop-broken pedigree factor graph may

consist of a variable number of conditionally separated components (cscs) e.g., the loop

breakers chosen for (c) lead to different cscs, than the choice of loop breakers in (d);

different cscs shown in different colors. Note that some nodes can be associated with

multiple cscs, and some cscs do not appear in the circle-and-arc diagrams that, by

design, emphasize the internal elements of the pedigree factor graph.
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Rather our goals are focused on proposing changes that reassign the current loop-

breaking node(s) in a pedigree factor graph to other nodes, in a manner that allows

the overall number of loop-breakers to remain small. Doing so is achieved in the con-

text of the Metropolis-Hastings algorithm using the rcb to guide the proposals (see

Section 3.3.3). In the process, the number of loop breakers can be reduced whenever

loop breakers are chosen from the variable nodes found at the intersections between

members of the rcb of the pedigree factor graph.

3.3.1 Likelihood Calculation Conditioning on Loop Breakers

Given a set of loop breakers that is adequate to break all the cycles in the graph, we can

easily obtain the joint pedigree likelihood, conditional on a choice of genotype values

for the loop breakers, by using the Sum-Product algorithm. By summing these joint

conditional likelihoods over all possible choices of the genotypes for the loop breakers we

can compute the marginal joint pedigree likelihood. As detailed below, these quantities

figure into the calculations for accepting or rejecting proposed changes to the set of loop

breakers and their genotypes that we shall condition upon (or stop conditioning upon)

via the Metropolis-Hastings algorithm.

The act of fixing the genotype of the loop-breakers (i.e., conditioning upon those

values of the genotypes) disrupts the cyclic paths in the pedigree, thereby avoiding the

problem of “message gridlock” during message propagation (Fig 3.7). In the context
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of a factor graph, when we condition upon the genotype of a variable node, we, in

essence, create multiple clones of that variable node—one clone for each factor node the

individual is adjacent to. The outgoing messages from each of these clones are solely

determined by the fixed genotype value of the loop breaker. For example, if the loop-

breaker’s genotype is fixed at a value of 0 the outgoing message is (1, 0, 0), signifying a

probability of 1 that its genotype is 0 and a probability of 0 that the genotype is either

1, or 2. Furthermore, each clone of the conditioned node is connected to only one of the

factor nodes adjacent to the loop breaker in the original pedigree (Figure 3.8).

We should note that when we condition upon any variable node that is connected

to other pedigree members, we will be breaking up the node’s connected component

into multiple conditionally separated components, or cscs (Fig 3.7c and Fig 3.7d). All

of these cscs must be accounted for, as the overall joint pedigree likelihood conditional

on the loop breakers involves a product over these cscs, and, further, when we stop

conditioning upon a loop breaker, all the clones must be “consolidated” back into their

original variable node.

3.3.2 Pedigree Reconfiguration Samplers that Introduce Loops into

Pedigrees

In the previous two sections we have described generally how to identify potential loop

breakers and condition upon them; however in the course of sampling over pedigree
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(a) (b)

Figure 3.8: Conditioning upon a fixed genotype value of a variable node: the creation

of clones. (a) Initial setup: for this example, assume an acyclic pedigree containing

an individual xi involved in two mating events. The individual variable node xi, here,

is attached to four factor nodes: a p-node, a g-node and two m-nodes. (b) When we

set the value of the genotype of xi—in this case to the value of 0—and condition upon

that fixed value, the result can be interpreted as a factor graph in which xi has been

expanded into four clonal copies, each one connected only to a single one of the four

factor nodes originally adjacent to xi in (a). The expansion into clones, here, creates

four conditionally separated components (cscs). Outgoing messages from the clones of

xi are determined entirely by the fixed value of the genotype. Since the latent genotype

is assumed to have the value of 0 with full certainty, the messages reflect that: (1, 0,

0). Note that the joint likelihood of the pedigree conditional on individual node xi = 0

is the product over clones of the dot product of the incoming message to the clone (not

shown) with the outgoing message from the clone. The incoming messages to each clone

are computed in a straightforward manner using the Sum-Product algorithm applied to

each clone’s csc.
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structures, loops will occur as a consequence of proposed changes in which it is proposed

that an individual becomes attached to a node that is already part of its connected

component via an existing path. Thus, the identification and treatment of loop breakers

must be an integral part of these proposed configurations. In the following section,

we will describe a variety of proposal types that allow loops to be formed and then

simultaneously broken by conditioning upon a loop breaker (or a set of loop breakers)

that is itself selected as part of the proposal. These samplers, taken together and in

conjunction with proposals to rearrange loop breakers and their fixed genotype values,

allow for MCMC sampling over the space of all possible pedigrees—even those with

loops. From this point forward, the illustrations depicting the different types of samplers

follow the shorthand notations established in Figure 3.9.

Similar to the acyclic pedigree sampler, the new configurations are designed around

proposing new parents, x′pa, and x′ma of a focal individual that we label xfocal, with

current parents xpa, and xma. In this section we treat such proposals that may introduce

a new loop into the pedigree. To estimate the pedigree likelihood under such loop-

forming proposals, we apply the previously mentioned conditioning method on a set of

one or more candidate loop-breakers. The choice of which individuals should be chosen

as candidate loop breakers varies widely depending on the conditioning status and the

csc membership of xfocal, and of its proposed family members (e.g., parents and/or full-

sibling(s) that xfocal is proposed to be associated with). In this section, we break down
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Figure 3.9: Legend for the graphical shorthands used in describing the joint likelihood

calculation scheme for pedigree proposals that create loops, and thus require condition-

ing upon variable nodes. In the figures that follow, the parentheses denoting replication

of the inner contents will be colored black, and other elements (such as nodes, edges,

stubs, and prongs) will be be colored according to the conditionally separated compo-

nents (cscs) to which they belong, with black denoting that the element could belong

to any csc (i.e, the likelihood calculation is invariant to the csc affiliation of such, black

elements).
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different categories of loop-creating proposals, and identify the individuals we choose as

loop breakers in the myriad possible cases.

3.3.2.1 The Initial “Pruning” Stage

Every proposal, regardless of which category it belongs to, begins with an initial step

of pruning xfocal from its current parents. The specific task of pruning xfocal from its

original parents xpa and xma is straightforward in an acyclic pedigree, but within a loopy

pedigree the process can be more complicated as we may wish to consider reverting the

conditioning status of one or more loop-breakers (Fig 3.10) found upon cyclic paths

affected by the pruning. Pruning xfocal from its parents is equivalent to removing an

edge efocal between the variable node xfocal and the factor node, f
(m)
i , between xfocal and

its parents. Removal of efocal will break a cycle that runs through it. Therefore, any

loop breakers that are currently conditioned upon, in order to break that specific cycle,

may no longer be required for breaking the loop after pruning. In such cases, better

mixing of our sampler should be achieved by reverting any such loop-breakers from

their conditioned state to an unconditioned state after pruning, but before proposing

reconfigurations to the pedigree.

If a node xa serves as a loop breaker, is part of the reduced cycle basis member

that includes the edge efocal, and is not included in any other rcb members, then xa is

clearly no longer required to maintain a role as a loop-breaker after removing the edge

efocal (Figs 3.10a and 3.10b). If, on the other hand, xa is included in the rcb member
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that includes efocal and also belongs to another rcb member, then xa will likely still be

required as a loop breaker, even after removing efocal. The only exception to this occurs

when only a single offspring—in this case xfocal—descends from marriage node f
(m)
i ,

and xa, in addition to being included in the rcb member that includes efocal, belongs

only to rcb members that also include f
(m)
i (Fig 3.10c). In such a case, removing efocal

from f
(m)
i leaves f

(m)
i without any remaining children, demanding that f

(m)
i , itself, gets

removed along with efocal. When this occurs, any cycles that run through the edges

leading through f
(m)
i will be broken by its removal.

Here, we describe the conditions in the previous paragraph more formally. Let

Mrcb(n) denote the set of rcb members that include node n (n can be either a variable

node or a factor node). We denote by S(xa, f
(m)
i ) the set of all rcb members that

share both variable node xa and factor node f
(m)
i . That is, S(xa, f

(m)
i ) = Mrcb(xa) ∩

Mrcb(f
(m)
i ). As in Algorithm 1 we use r ∈ R to denote an rcb member in an rcb R,

while Er and Vr denote the edges and variable nodes included in that rcb member.

Assume for simplicity of discussion that each rcb member has, within it, only a single

loop breaker currently conditioned upon (the extension to extra, currently “unrequired”

loop breakers is trivial). For any rcb member r ∈ S(xfocal, f
(m)
i ), either 0 or 1 current

loop breakers xa ∈ Vr will be unconditioned as a result of pruning, and across all

r ∈ S(xfocal, f
(m)
i ) and xa ∈ Vr, the maximum total number of variable nodes serving as

loop breakers along an r ∈ S(xfocal, f
(m)
i ) that will be unconditioned upon is T (f

(m)
i ),

125



if and only if:

1. Mrcb(xa) ⊆Mrcb(f
(m)
i ), and

2. 0 < ||S(xa, f
(m)
i )|| ≤ T (f

(m)
i ).

||S(xa, f
(m)
i )|| denotes the cardinality of S(xa, f

(m)
i ), and T (f

(m)
i ) is a function that

depends on the number of children immediately descending from the marriage node

f
(m)
i and is defined as follows:

T (f
(m)
i ) =


1 if f

(m)
i has > 1 offspring

2 otherwise.

If xfocal is the only offspring of f
(m)
i , we also perform the same unconditioning on

any loop breaker that shares the same rcb membership as any edges adjacent to f
(m)
i ,

because, pruning in this case, also removes f
(m)
i and all the edges adjacent to it. At

this point, we have described unconditioning loop breakers that share the same rcb

membership of f
(m)
i or xfocal. In some cases, it might also be possible to uncondition

a loop breaker that is not found in the same rcb member as f
(m)
i or xfocal but is found

in the same cycle basis member of f
(m)
i or xfocal; however we do not pursue such an

aggressive unconditioning approach here, choosing instead to focus only on those loop

breakers sharing rcb membership with f
(m)
i or xfocal.
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Figure 3.10: Removing the conditioning status of variable nodes under edge removal

occurring in the initial “pruning” stage to propose a new configuration. Prior to as-

signing xfocal to proposed parent pairs, xfocal is required to be pruned from its parents

through removal of edge efocal. When edge efocal is removed, a loop breaker which is

included upon the same rcb member as efocal may no longer be required to break a loop

and therefore may no longer need to be conditioned upon. Panel (a) presents a formal

description of the requirements needed to “uncondition” a loop breaker xa (see text for

description and definition of notation). The remaining panels highlight two examples

of the principles in (a). (b) xfocal has at least one full sibling and is a loop breaker

upon the cyclic path running through xfocal, f
(m)
i , xma, and eventually back to xfocal.

Since xfocal in not included in any rcb members other than the one involving f
(m)
i and

xma, the removal of efocal leads to xfocal being no longer needed as a loop breaker. (c)

xfocal is the sole child in a family that is included in two rcb members (one through xma

and the other through xpa). Here, xfocal is in more than one rcb member but can still

be unconditioned upon because f
(m)
i is included in both of the rcb members xfocal is

included in, and the removal of edge efocal in a family with only a single offspring also

leads to the removal of f
(m)
i .
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3.3.2.2 The Pedigree Reconfiguration Step

Once the focal individual is peeled off from its initial parent, we propose a number

of choices in which the focal individual is either attached to a new set of parents or

is reattached to the parents from which it was recently pruned off. The choices we

propose could conceivably include an exhaustive combination of all possible parent pairs;

however, the computational overhead in doing so would be prohibitive, because the

loop breakers required for different pairs of proposed parents might be different, such

that multiple runs of the Sum-Product algorithm would be required to compute the

Hastings ratio for many different proposed pairs of new parents. Instead, we simplify

the proposed moves by proposing changes only to a single parent at a time while keeping

the assignment of the other parent fixed in place. Limiting the set of proposed choices in

this manner eases the computational workload involved in calculating the joint pedigree

likelihood, especially when a new loop is created by any of the proposed moves.

In the following, we present three classes of parentage samplers: the “fresh-start”

parentage sampler (Fig 3.11), the “spouse-shuffler” parentage samplers (Figs 3.12, 3.13,

and 3.14), and the “family-expansion pack” sampler (Fig 3.15). Each of the samplers is

described in detail in the figure captions. The “fresh-start” sampler and the “spouse-

shuffler” samplers propose attaching the focal individual, xfocal, to a parent pair con-

sisting of xfixed—a parent whose identity is fixed across all proposed changes—and xi,

a candidate parent whose identity varies over a set of candidates. The parent, xfixed,
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whose identity is fixed in place is often, but not always, one member of the parent pair

that xfocal was recently pruned from. In the case of the “fresh-start” sampler, xfixed is

taken to be an individual, xunobs, that is not in the genetic sample and is not currently

attached to any other individuals. The “spouse-shuffler” type of parentage samplers

are limited to the cases when xfixed and xi do not share any children (apart from xfocal,

before pruning). By contrast, in the “family-expansion pack” sampler, it is proposed

that xfocal be added to one of a set of candidate marriage nodes that already occur in

the pedigree.

Although we present each sampler as if it is a distinct proposal type, there are

cases wherein the same rearrangement may occur from different samplers. In other

words, these classes do not lead to mutually exclusive sets of parental rearrangements.

For example, if xfocal does currently have any assigned parents, there is no distinction

between applying the “fresh-start” sampler and “spouse-shuffler” sampler-I on xfocal.

Nonetheless, we find that categorizing the samplers in the manner that we have is

helpful for understanding their operation.

If a proposed configuration creates a new cycle in the proposed pedigree factor

graph, it is necessary to designate a loop-breaker (or two) to break that newly formed

cycle. Instead of randomly choosing any of the members along the newly formed loop

as loop-breakers, we selectively choose either xfocal, or xfixed, or both, to condition upon

as loop breakers to streamline the likelihood calculation for all possible xi. For every
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proposed individual xi (and for every proposed marriage node in the family-expansion

pack sampler) there are multiple possible proposed values of the new loop breakers’

conditioned-upon genotypes that are additionally proposed. That is, for every proposed

reconfiguration which forms a new loop, there are also either three proposed genotype

values (or nine, if both xfocal and xfixed are to serve as the new, additional loop breakers)

for the new loop breaking genotype(s). Thus, when a new one of the proposed loop-

forming reconfigurations is accepted, not only does it involve accepting the proposed

topology of the pedigree, but also the conditioned-upon genotype values of the new loop

breakers (either xfocal, xfixed, or both).

3.3.3 Relocating Loop-breakers and Updating Their Fixed Genotype

Values

When we accept a change in pedigree configuration that adds more new loops to the

pedigree, we will have conditioned upon the genotype value of one or more new loop

breakers in the process. We don’t actually know the true, latent genotypes of these

loop breakers, and if we were to leave them in their conditioned-upon state and pro-

ceed with MCMC, the sample of pedigree configurations obtained would not be from

the posterior distribution, but rather from the posterior distribution conditional on the

simulated value of the loop breakers’ latent genotypes. Accordingly, the conditioned-

upon genotype values of the loop breakers must also be sampled, in a fashion that
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Figure 3.11: The “fresh-start” parentage sampler. Assume xfocal is detached from any

parents. Parent pairs to which xfocal may be proposed to be attached will always

include at least one unobserved member, xunobs, that is unconnected to any others

and has no observed genotype. The second member, xi, of the pair may be observed

and comes from an appropriate parental candidate group for xfocal. Since all proposed

configurations will include individuals xunobs and xfocal, we first calculate the outgoing

messages along the stubs of xunobs and xfocal and combine them as in (Eqn 2.4) to send a

message toward xi (arrow 1). This message is computed only once, as it is the same for

all xi. The joint pedigree likelihood is the dot product of the message of arrow 1 with

the outgoing message along the stub from xi (arrow 2). Normally when xi and xfocal

are from different cscs, or xi or xfocal are already conditioned upon (i.e., are already

assigned as loop-breakers), as shown in cases (a) and (c), then the only message that

requires updating is that of arrow 1. However, if xi and xfocal are not conditioned upon,

and they belong to the same csc, as shown in case (b), the proposed connection between

xi and xfocal will add a new loop to the pedigree thus requiring that a new loop-breaker

be designated. In such cases, we make the simple choice of designating xfocal as the loop-

breaker and then, for each of the three possible genotype values of xfocal that we might

condition upon, we compute updated messages along arrow 1 and along the outgoing

prong of all xis in the same csc as xfocal. These messages are used in the calculation to

jointly accept or reject the proposed pedigree configuration and the genotype value of

the proposed loop breaker.
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Figure 3.12: The “spouse-shuffler” parentage sampler-I: the three proposed trio mem-

bers belong to two or more distinct cscs, with cscxfocal
6= cscxfixed

. Assume xfocal, has

been temporarily pruned from its two parents in the current pedigree, one of whom is

xfixed. This “spouse-shuffler” move proposes xi (from an appropriate parental candidate

group) as a new mating partner (which may be the same as in the previous iteration)

for xfixed. In this sampler, xi and xfixed must not currently have any other children,

otherwise the possible updates are covered by the “family-expansion pack” sampler of

Figure 3.15. Similar to the “fresh-start” sampler, we first compute and combine the

outgoing messages along the stubs of xfixed and xfocal to send a message toward xi. The

dot product of this incoming message and the outgoing message along the stub of xi
gives the joint pedigree likelihood of each proposed configuration. When no loops are

created by the formation of the proposed family, as in case (c), the amount of work in

message updates is minimal. However, if two of the trio members share the same csc

and are not yet conditioned upon, we must condition upon the genotype of xfocal in (a)

or xfixed in (b) in order to compute the joint pedigree likelihood.
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Figure 3.13: The “spouse-shuffler” parentage sampler-II: the three proposed trio mem-

bers belong to two distinct cscs, with cscxfocal
= cscxfixed

6= cscxi . The proposal in this

sampler is initiated in the same fashion as that in Fig. 3.12; however, here, xfixed and

xfocal share the same csc while xi is on a different csc. When xfixed and xfocal are not yet

conditioned upon and share the same csc, as shown in (a), we must choose one of the

two individuals to be a loop-breaker to prevent the formation of a loop. In this case,

we designate xfocal as the loop-breaker. As a result, three versions of the outgoing mes-

sage along arrow 1 must be computed at each locus—one for each of the three possible

genotype values at the locus. The genotype value of xfocal to condition upon also consti-

tutes part of the proposal which is accepted or rejected according to the Hastings Ratio.

(b) When at least one of the variables nodes, xfocal and/or xfixed, is already conditioned

upon, the computation for arrow 1 is straightforward as the existing conditioning upon

those nodes prevents the formation of any new loops that must be broken.
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Figure 3.14: The “spouse-shuffler” parentage sampler-III: the three proposed trio mem-

bers belong to the same csc. The proposal in this sampler is initiated in the same fashion

as that in Fig. 3.12; however, in this case, all three of xfocal, xfixed, and xi belong to the

same csc. The choice of which node or nodes to be chosen as loop-breakers is sensitive

to the relative arrangement of xi, xfocal, and xfixed within the current csc to which they

all belong as shown in (a) through (c). We are only illustrating the case when all three

nodes are not yet conditioned upon. In the cases where one or more individuals have

already been conditioned upon, the message update is still similar to that shown, albeit

without messages passing through the additional conditioned-upon individuals.
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Figure 3.15: The “family-expansion pack” sampler: addition of xfocal to an existing

m-node. Assume xfocal is detached from any parents. This sampler proposes xfocal

as a full-sibling to any offspring attached to an existing m-node f
(m)
i . Thus, under

this “family-expansion pack” sampler, it is possible for xfocal to be reattached to its

previously assigned parent pair when that pair has other offspring. The csc affiliations

of f
(m)
i and xfocal determine several different cases. (a) When the factor node f

(m)
i and

variable node xfocal are from different cscs, or if xfocal is conditioned upon, the joint

pedigree likelihood is simply the dot product of the outgoing messages along the prong

from f
(m)
i and the stub from xfocal. (b) When f

(m)
i and xfocal are from the same csc

and xfocal is not conditioned upon, attaching xfocal to f
(m)
i will form a cyclic path that

runs from xa, a variable node adjacent to f
(m)
i , to xfocal, and back to xa, necessitating

that xfocal be conditioned upon to break the loop. xa could be a parent or an offspring

attached to f
(m)
i . An example where xa is a parent xma appears in (c).
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preserves detailed balance, in the course of the MCMC. Furthermore, the loop-forming

pedigree-configuration proposals detailed above may introduce more loop breakers than

necessary, because the choice of which variable node in a loop is assigned as a loop

breaker is made purely for efficiency and convenience in calculating the joint likelihood

of each proposal. As a consequence, we develop several MCMC move types that allow

for the conditioning status of individual variable nodes to be changed. Such moves,

taken together, permit the positions of, the number of, and the genotype values of loop

breakers to be updated over the course of the MCMC, independently of the pedigree re-

configuration steps, ultimately allowing a sample of loopy pedigrees from their posterior

distribution.

The MCMC move type for updating the status of loop breakers and their genotypes

is a simple, single-site sampler that proposes a change to only a single variable node

at a time. It is a simple Gibbs sampler that samples the state for a single variable

node from the full conditional distribution of its possible values. There are only four

such values: either the variable node is not conditioned upon (if permissible, see below),

or it is conditioned upon with one of three possible genotype values. Specifically, the

single-site Gibbs sampler for loop-breaker status proceeds as follows, for any variable

node v (which may currently be either conditioned upon or not) in the cycle basis:

1. Compute the joint pedigree likelihood of the four following cases:

• v is conditioned upon with a genotype value of 0
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• v is conditioned upon with a genotype value of 1

• v is conditioned upon with a genotype value of 2

• v is not conditioned upon—a case that is allowable if and only if there is

already at least one other loop breaker currently conditioned upon in every

rcb member in which v is included.

2. Normalize those probabilities and sample one of the outcomes according to those

normalized probabilities.

The joint pedigree likelihood for each of the cases can be easily computed through

the use of the pre-computed messages along the edges of factor graph. If the variable

node v is initially not conditioned upon, the joint pedigree likelihood with v being

conditioned upon with a genotype value of g is proportional to the product over the dot

products of incoming messages to variable node v with the outgoing messages from v,

specified in accordance with fixed genotype g (i.e., if g = 1 the outgoing messages are all

(0, 1, 0)). If, on the other hand, the variable node v is already conditioned upon as a loop

breaker, the joint pedigree likelihood for different values of g is found as the product

over clones of v of the dot products of incoming messages and outgoing messages given

g. Fig. 3.8 provides a good starting point to visualize the latter calculation. Finally,

if v is decommissioned from its status as loop breaker, the joint pedigree likelihood

is proportional to a simple sum. Let L(P|v = g) be the joint pedigree likelihood

conditioned on the genotype of v being g. If v is decommissioned as a loop breaker the
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joint pedigree likelihood in that case is
∑

g∈{0,1,2} L(P|v = g).

3.4 Results

3.4.1 Grandparentage Inference of cyclic Pedigrees

To evaluate the ability of pedFac’s cyclic sampler to infer cyclic, multigenerational

pedigrees, we simulate a three generation pedigree with the pedigree simulator described

in Section 2.2.9.2. Setting the number of founders, Nf , to 200 and using all other

default parameters, the simulator returns a three generation pedigree composed of 335

individuals, approximately one third of which lie along a cyclic path (Fig 3.16). This

pedigree has 33 simple cycles, all of them being of the complex loop type.

To create a series of grandparentage inference problems, we create 5 different scenar-

ios each with a different sampling fraction, f ∈ {1, 0.75, 0.5, 0.25, 0}, for the second/mid-

dle generation. This partially sampled (or completely missing) intermediate generation

scenario is inspired by a situation commonly encountered in the assessment of salmon

hatchery supplementation programmes. In this situation, offspring produced at the

hatchery are released, but do not return back to the hatchery to spawn (Christie et al.

2011). Rather, they spawn in the wild (where they are neither sampled nor genotyped)

and produce offspring who themselves return back to the hatchery to be sampled and

genotyped. Through grandparentage analysis, it is possible to confirm whether any fish
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fraction of correctly assigned grandparents

pedFac (cyclic sampler) pedFac (acyclic sampler) sequoia

fraction mean ± sd range mean ± sd range mean ± sd range

1 1.00 ± 0.00 (1.00,1.00) 0.72 ± 0.00 (0.71,0.72) 0.99 ± 0.01 (0.97,1.00)

0.75 1.00 ± 0.00 (1.00,1.00) 0.69 ± 0.03 (0.65,0.72) 0.94 ± 0.03 (0.89,0.97)

0.5 0.98 ± 0.01 (0.98,1.00) 0.71 ± 0.05 (0.66,0.76) 0.73 ± 0.08 (0.61,0.84)

0.25 0.97 ± 0.00 (0.97,0.98) 0.72 ± 0.03 (0.68,0.74) 0.54 ± 0.06 (0.47,0.60)

0 0.96 ± 0.01 (0.96,0.98) 0.77 ± 0.01 (0.76,0.78) 0.03 ± 0.04 (0.00,0.10)

Table 3.3: Comparison of the fraction of correctly assigned grandparents for 101 indi-

viduals in five sample-fraction scenarios of a three-generation cyclic pedigree. The mean

and standard deviation is calculated from five replicates.

returning to the hatchery are descendants of the original release cohort, thereby making

it possible to evaluate the long term impact of hatcheries on the resident, wild-spawning

population.

We used the program MENDEL to generate 200 SNPs from 34 Chinook Salmon

autosomes and we simulated the same genotyping error rate and the rate of missingness

as described in the previous chapter. pedFac’s cyclic and acyclic samplers were run for

25 sweeps with no burn-in, allowing, at most, 10 candidates to be chosen as xfixed or

as any pairwise parental candidates. For sequoia, we selected the default, “full” mating

system to match the structure of the true pedigree and no ‘maxSibIter’ specification

was applied.

Across all five middle-generation sampling fractions, pedFac’s cyclic sampler was

able to correctly assign a majority of the grandparent pairs and it outperforms its acyclic

sampler and sequoia, particularly when the entire parental generation is missing (Table

140



pe
dF

ac
 (

cy
cl

ic
 s

am
pl

er
)

pe
dF

ac
  (

ac
yc

lic
 s

am
pl

er
)

se
qu

oi
a

sf
: 1 sf
:

0.
75 sf
:

0.
5

sf
:

0.
25 sf
: 0

0
25

50
75

10
0

0
25

50
75

10
0

0
25

50
75

10
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

In
di

vi
du

al
 in

de
x

Prob

N
o.

 in
co

rr
ec

t a
ss

ig
ne

d 
gr

an
dp

ar
en

ts
1

2
3

4

F
ig

u
re

3
.1

7:
G

ra
n

d
p

a
re

n
ta

ge
a
ss

ig
n

m
en

t
fo

r
10

1
in

d
iv

id
u

al
s

in
a

si
m

u
la

te
d

cy
cl

ic
p

ed
ig

re
e.

O
b

se
rv

ed
in

d
iv

id
u

al
s

in
th

e

p
ed

ig
re

e
w

er
e

ge
n

ot
y
p

ed
a
t

2
00

si
m

u
la

te
d

S
N

P
s

d
is

tr
ib

u
te

d
u

n
if

or
m

ly
ac

ro
ss

34
ch

ro
m

os
om

es
.

R
ow

s
co

rr
es

p
on

d
to

th
e

sa
m

p
li

n
g

fr
ac

ti
o
n

o
f

in
te

rm
ed

ia
te

ad
u

lt
s

(i
.e

.,
p

ar
en

ts
in

th
e

se
co

n
d

ge
n

er
at

io
n

)
an

d
co

lu
m

n
s

sh
ow

d
iff

er
en

t
so

ft
w

ar
e

an
d

op
ti

on
s

(s
ee

te
x
t)

.
In

ea
ch

p
an

el
,

in
d

iv
id

u
al

s
ar

e
or

d
er

ed
ac

co
rd

in
g

to
a

“c
on

fi
d

en
ce

m
ea

su
re

”
fo

r
th

e
in

fe
rr

ed
gr

an
d

p
ar

en
t

p
ai

rs
(s

ee
te

x
t)

.
T

h
e

b
la

ck
cu

rv
e

sh
ow

s
th

is
m

ea
su

re
(y

-a
x
is

)
fo

r
ea

ch
in

d
iv

id
u

al
.

T
h

e
fo

u
r

v
er

ti
ca

l
ti

ck
m

ar
k
s

em
an

at
in

g

fr
om

th
e

b
la

ck
cu

rv
e

in
d

ic
at

e
th

e
n
u

m
b

er
of

m
is

-a
ss

ig
n

ed
gr

an
d

p
ar

en
ts

.

141



3.3). pedFac’s cyclic sampler mostly misses only one out of the four grandparents of an

individual while the acyclic sampler, due to its inability to form loops, misses mostly

half of the assigned grandparents (Fig 3.17). The fraction of correct assignment by the

acyclic sampler does not change much with the different sampling rates and is likely

responding to the fact that roughly 30% of the individuals in the pedigree participate

in loops.

For sequoia, the fraction of correctly assigned grandparents plummets when more

than half of the parental generation is unsampled. For this particular case study, sequoia

has the tendency to either identify all, half or none of the four grandparents correctly.

3.5 Discussion

PedFac’s cyclic sampler can reconstruct multigenerational pedigrees with complex loops

and mating structure and incomplete sampling. It outperforms its alternative acyclic

sampler and sequoia in grandparent assignment, a challenging task with important ap-

plications in marine and freshwater ecology that includes applications such as identifying

stock origin (Letcher and King 2001) and estimating cohort replacement rate (Sard et al.

2016).

The success of the pedFac’s cyclic sampler in grandparentage inference validates

the use of the conditioning method to compute the joint likelihood of cyclic pedigrees,

allowing us to propose and accept cyclic or acyclic pedigree structures, unlike the acyclic
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sampler.

Even with the substantial advances the cyclic sampler has made for pedFac’s capa-

bilities in grandparentage inference and learning cyclic pedigrees, there remains room for

improvement. Key areas for improvement include providing a more robust uncertainty

estimate from the posterior and reducing overall run times.

3.5.1 Mixing strategies

Since the proposal distribution for the cyclic sampler allows the formation of complex

cyclic structure, the problem of “spatial bottlenecking” is much less pressing for the

cyclic sampler than for the acyclic sampler. Due to this reason, the current cyclic sam-

pler does not include any special type of mixing moves as developed for the acyclic

sampler in section 2.2.8.3. Nonetheless, the cyclic sampler may still benefit from the

inclusion of “swap” and “sub” types of moves. This is particularly apparent in the grand-

parentage inference problem where there are several instances where a single grandpar-

ent is misassigned with a posterior value of 1 (Fig 3.17). Such cases of incorrect inference

with high estimated certainty are characteristic of poor mixing that could be improved

with additional, specialized move types (Fig 2.10)

Thus, in order to further improve the mixing rate of the Metropolis-Hasting sampling

chain, we can apply similar mixing strategies such as substitution and swapping moves,

but with extra attention on keeping the proposed pedigree to be conditionally acyclic.

143



Such advancements and improvements are left for future work on pedFac.

3.5.2 A Pairwise Sampler for Loop-Breaker Shuffling

Section 3.3.3 describes a single-site update system for sampling the genotype values and

loop-breaker status of variable nodes (individuals) within a loopy pedigree. Such single

site updates may not mix as efficiently as desired. For that reason, we describe a pairwise

loop-breaker shuffling proposal that makes larger moves. This is not implemented, but

the ideas are sketched out here for completeness.

1. Select an rcb member r, r ∈ R to focus on.

2. Select a loop breaker vi ∈ vr, where Ibreaker(vi) = 1 to focus on.

3. Sample a site (even if the node is already a loop breaker) to where this loop breaker

can be relocated with probability proportional to the number of rcb members each

site is included in. (i.e. probability ∝ Mrcb(v)). Thus, the proposal distribution

for relocating a focal loop breaker of variable node xi to node xj in this new

pedigree configuration state P ′ is specified as:

q(P ′|P) =
||Mrcb(xj)||∑||Vl||
k=1 ||Mrcb(xk)||

(3.1)
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The acceptance probability can be expressed as:

min
{q(P|P ′)

q(P ′|P)

p(y|P ′)p(P ′)

p(y|P)p(P)
, 1
}
. (3.2)

4. Simulate the fixed value for that proposed new site to be conditioned upon from

its marginal (given the current loop breaker’s genotype value, for convenience).

If it is already a loop breaker, then choose its current value with probability 1.

5. Compute the likelihood lnew of the new configuration with the “old” loop breaker

(i.e., the one that we “focused on” in (2) in the list) being conditioned upon (if

the “old” loop breaker belongs to a separate rcb member) or unconditioned upon,

otherwise, with, in both cases the new loop breaker being conditioned upon.

6. Compute the Hastings Ratio. To do so, we must compute the probability of

proposing the reverse move, and also we must know the current joint likelihood

(i.e., the likelihood before step 1).
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Figure 3.18: An illustrated instance of the pairwise loop-breaker shuffler.
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Chapter 4

Visually guided curation of

microhaplotypes from short read

sequence data

4.1 Summary

Although next-generation sequencing (NGS) technologies are heralded for their ability

to deliver sequence data across large parts of the genome, they are also increasingly used

for routine genotyping of many individuals at a reduced subset of the genome. By tar-

geting only a small number of loci (100 to a few thousand), using amplicon sequencing

or capture arrays, hundreds to thousands of individuals can be genotyped in a single
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NGS run at a low, per-individual cost. Initially, such efforts focused on genotyping

only one single nucleotide polymorphism (SNP) from each sequenced region; however

recent studies have documented the benefits of using microhaplotypes—the haplotypes

formed by multiple SNPs on each sequencing read (Baetscher et al. 2017; McKinney

et al. 2017). We present the R package microhaplot, that implements a workflow for

extracting, vetting, and scoring microhaplotypes from sequenced amplicons. Starting

from aligned sequence reads and a list of SNP positions, microhaplot automates the

task of extracting microhaplotypes from each read. Following that, a rich, visual inter-

face gives the user a rapid means of assessing data quality across individuals and loci

and selecting suitable filtering criteria. A variety of filtering options are available to aid

in the calling of genotypes, and specific data summaries and visualizations provide a

means to rapidly understand the consequences of different filtering options, as well as

to identify errors such as sample contamination or “index hopping” (Sinha et al. 2017).

The R package microhaplot has already served as an indispensable tool for developing

microhaplotype panels on multiple species.

4.2 Introduction

In just a few years, next-generation sequencing (NGS) technologies have revolutionized

the study of evolution and ecology in both model and non-model organisms, and have

become established as standard tools in molecular ecology. These technologies are now
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capable of generating a huge volume of DNA sequence at relatively low cost, and can

be used to perform a variety of functions, such as sequencing for de novo assembly of

the genome of non-model species (for example, in Ruegg et al. 2018), evaluation of gene

expression levels (Barshis et al. 2013), and genotyping via low-coverage, whole-genome,

resequencing of individuals at hundreds of thousands to millions of SNPs (Foote et al.

2016; Thompson et al. 2020).

Using NGS to accurately determine the sequence of an individual at a region of the

genome requires that sufficient sequencing reads of that region be obtained, so that the

actual sequence can be distinguished from sequencing errors, and so that the genotypes

of individuals with ploidy greater than one can be accurately inferred. This sets up

a fundamental tradeoff, encountered in the design of NGS experiments, between the

depth of sequence coverage at each site in the genome and the number of sites in the

genome that are sequenced. If only a small number of genomic regions are targeted,

then a sequencing run can obtain high read depth from many individuals. However, if

a large number of genomic regions (up to the entire genome) is targeted, then it might

be possible to obtain useful sequence from only a moderate number of individuals, and

only at low depth.

How this tradeoff is negotiated depends heavily on the goals of any particular se-

quencing study. For example, obtaining wide coverage of the genome by resequencing

the whole genome of a relatively few individuals is appropriate when seeking regions
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of the genome associated with trait differences (Toews et al. 2016), or when assessing

inbreeding within small populations by the distribution of runs of homozygosity (Kar-

dos et al. 2018). On the other hand, a number of questions in molecular ecology can

be answered without full, genomic-scale data, but require samples of many individuals.

RAD-Seq and related methods (Andrews et al. 2016) which target genomic regions

flanking enzyme recognition sites are commonly employed for reducing the representa-

tion of the genome down to 10s or 100s of thousands of regions; however some questions

can be addressed with an even smaller number of carefully chosen markers. For example,

researchers interested in identifying close relatives (like parent-offspring) in a sample of

10s of thousands of individuals (Bravington et al. 2016; Baetscher et al. 2019), or the

population of origin of a large collection of individuals (Bradbury et al. 2018), may

choose to use NGS to economically obtain sequences at a tiny portion of the genome

from a very large number of individuals.

This type of Highly Targeted Sequencing (HTS), in which hundreds to thousands

of individuals can be sequenced at hundreds to a few thousand genomic regions, has

been approached primarily in two different ways (reviewed in Meek and Larson 2019).

Hybridization-capture methods such as RAPTURE (Ali et al. 2016) or DArTcap (Feutry

et al. 2020) reduce genome complexity by targeting regions that hybridize to a set of

probes. Amplicon sequencing, on the other hand, uses PCR primers that target a

number of small segments of the genome. The amplified products from a PCR reaction
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are then sequenced on a high throughput instrument. This approach first appeared with

the name GT-Seq (Campbell et al. 2015).

In the original application of GT-Seq, and many uses after that (e.g., Schmidt et al.

2020, Sjodin et al. 2020), only a single SNP per PCR-amplicon was used. Even if

multiple variants occurred within an amplicon, the original bioinformatic workflow for

GT-Seq discarded all of them except the focal SNP for the amplicon—in the process,

potentially discarding a substantial amount of informative genetic variation. While the

original GT-Seq bioinformatic workflow could have been amended to target additional

SNPs within each amplicon, the workflow was configured such that this would also

necessitate treating each SNP as a separate genetic marker. Such a treatment is un-

desirable, especially in the context of analysis programs that assume markers are not

physically linked—an assumption that is dramatically violated for two SNPs within a

single, short amplicon.

An alternative approach to analyzing amplicon sequencing data is to specify the

entire short genomic region of the amplicon as a genetic marker whose alleles are desig-

nated by the actual DNA sequence within that region. Using first-generation sequencing

technologies such as Sanger cycle sequencing (Sanger et al. 1977) in diploid (and higher

ploidy) genomes, it was difficult or impossible to treat nuclear sequences as alleles, be-

cause the haplotypic phase of heterozygous sites was not known. Essentially, sequencing

output from such technologies yielded a composite signal that was a mixture of the se-
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quences in the region found on both the maternal and paternal chromosomes of an

individual. In contrast, in most next generation sequencing technologies (like Illumina

sequencing by synthesis), a sequencing read is not a mixture of the sequences from two

homologous chromosomes in an individual, but rather directly derives from the DNA

sequence upon only one of the two homologous chromosomes. Therefore, the sequence

upon each read from next generation sequencing can be treated as a very short haplo-

type whose sequence specifies an allele at the marker. Such short haplotypes of variants

found upon a single sequencing read were termed “microhaplotypes” by Baetscher et al.

(2017), who noted that they provide dramatically greater power for relationship infer-

ence than merely using a single SNP from each amplicon. Use of multi-SNP haplotypes

from next generation sequencing has also been shown to provide improved resolution

for genetic stock identification (McKinney et al. 2017).

Surprisingly, although there has been a considerable amount of work in the area of

“read-backed phasing” to improve variant detection in whole genome sequencing data

(for example GATK’s HaplotypeCaller: McKenna et al. 2010; Poplin et al. 2018), and

an enormous effort in statistical methods for phasing long-range haplotypes (Browning

and Browning 2011), most mainstream bioinformatic packages do not offer “out-of-

the-box” options for identifying microhaplotypes in amplicon sequencing data. Only

relatively recently have molecular ecologists started developing methods for haplo-

typing RAD loci that take account of the reads upon which each variant allele is
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found. Portnoy et al. (2015) introduce a package called rad haplotyper (https:

//github.com/chollenbeck/rad_haplotyper) and describe its utility for filtering out

paralogous loci. More recently, the software STACKS 2 offers an option of calling haplo-

types on single or paired-end RAD read data using a graph-based algorithm to report a

set of reliable haplotypes (Rochette et al. 2019). Neither of these approaches, however,

are well-suited to amplicon sequencing data.

Several features distinguish amplicon sequencing data from the sequence data typ-

ically found in RAD-generated libraries. First, variation in PCR efficiency can lead to

dramatically different read depths at different amplicons. In RAD data, substantial

variation in read depths between loci is often an indicator of paralogous or otherwise

duplicated regions. This is not necessarily the case with amplicon sequencing data;

even in the absence of duplication, some amplicons may merely produce many times

more reads than others. Such high read depths can prove troublesome for software

tailored to consistent-depth, whole genome sequencing data. Second, the dynamics of

the multiplex PCR process used for amplicon sequencing are poorly understood and

amplicons can interact in surprising ways. This can be especially true in the presence

of contamination between samples. Finally, panels developed for amplicon sequencing

often comprise far fewer targeted regions than RADseq or whole genome sequencing

experiments—few enough, in many cases, that the individual amplicons/markers can

be individually inspected for quality control.
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Over the last five years in our lab we have done amplicon sequencing to score hap-

lotypes on tens of thousands of individuals across many species; mostly fish (Baetscher

et al. 2017; Reid et al. 2020; Thompson et al. 2020), but also mammals (in preparation)

and insects (Batz et al. 2020). In the process of this effort, we developed an R package

called ‘microhaplot’ (https://github.com/ngthomas/microhaplot) that implements

a bioinformatic pipeline for extracting the bases found at variant positions within am-

plicon sequences and summarizing that variation into recorded reads of microhaplotype

alleles. Information about these reads/alleles is then processed within R and summa-

rized in a rich variety of plots and tables using an interactive Shiny interface (Chang

et al. 2017). This interface allows the user to rapidly scan multiple features of different

amplicons as well as visualize patterns at individual loci, permitting rapid and efficient

curation of microhaplotype panels, identification of aberrant individuals and genotypes,

and the microhaplotype genotyping of many individuals.

In the following, we start with a more formal definition of what we mean by a “micro-

haplotype,” we describe the microhaplot workflow for extracting microhaplotypes from

amplicons sequenced on an NGS machine, and then give a brief description of micro-

haplot’s interactive interface. Microhaplot has proven indispensable in our laboratory

workflows and we foresee it being widely useful as other labs adopt microhaplotype

genotyping from amplicon sequences.
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4.3 Microhaplotypes

For the purposes here, we define a microhaplotype as a condensed string of DNA bases

found at a set of aligned positions, known to harbor variants, on a single sequencing

read. The value at each variant is named using a single, uppercase letter. The possible

values that microhaplot uses are the four nucleotide bases (A, C, G, T), a deletion

relative to the reference sequence (denoted by an X), and a non-scored base on a read,

(denoted by an N). For example, if a read spans 5 sites with known single nucleotide

variant positions, a microhaplotype might be scored as, “TTCGA”. In this simplest case,

a microhaplotype allele is a string resulting from concatenating all of the nucleotides on

a read that map to the known-variant positions on a reference sequence.

More formally, we describe a microhaplotype as follows: let read sequence r be a

string of nucleotides Nr with aligned positions Pr. Given Pv - a set of positions of

variants, relative to the reference sequence, a microhaplotype of sequence r is a string

of nucleotides nm ∈ Nr with aligned positions Pv, and in the same order that those

positions occur in Pv. Therefore, in order for microhaplotypes to be constructed, we

assume the presence of two components: a reference sequence to which the amplicon

read have been aligned, and a list of variant positions.
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4.4 Extracting microhaplotypes from sequence reads

The R package microhaplot is not a method for variant detection. Therefore the desired

variants (those at positions Pv for each amplicon) must be identified prior to running

microhaplot.

A typical workflow is as follows:

• The initial inputs are: 1) reads from amplicon sequences, 2) a reference that

includes sequences to which the amplicons are expected to align.

• The first step is mapping the sequence reads to the reference. This is accomplished

with standard software such as bwa (Li 2013) or bowtie (Langmead and Salzberg

2012).

• Subsequently, variants at particular positions should be identified. Either those

positions may be known from previous sequencing, or they must be identified

amongst the recently aligned reads, using, for example bcftools (CITE), Free-

Bayes (Garrison and Marth 2012), or GATK Haplotypecaller (McKenna et al.

2010). Regardless of how these variants, and the positions they occupy, are iden-

tified, they should be stored in a VCF file (though it should be noted that the

individual information is not used; only the CHROM and POS columns are used).

• Taking as input the SAM files (one for each sequenced individual), and the VCF
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file, the function prepHaplotFiles() calls a PERL script to extract aligned posi-

tion information from each read in each SAM file, and identify the microhaplotype

of each read. These microhaplotypes are saved into a data frame and written to

disk for later use, including visualization with the Shiny app.

4.5 Visualization of Microhaplotypes

Given data frames of previously-processed microhaplotype tables, the microhaplot Shiny

app generates plot summaries of filtered microhaplotypes using simple read-depth based

filtering criteria. These plots include genotype-biplots (Figure 4.1a), read depth and

fraction of callable haplotypes (Figure 4.1b), Hardy-Weinberg equilibrium plots (Fig-

ure 4.1c), and more. The examples shown of the different plots were made using the

microhaplot Shiny app on a subset of amplicon data from kelp rockfish (Baetscher et al.

2017).

Full details on how to use and interpret such plots and summaries are provided in

the microhaplot package vignettes, which are most easily read under the “Articles”

tab at https://ngthomas.github.io/microhaplot/. The R package microhaplot is

available for download or remote installation from its github repo: https://github.

com/ngthomas/microhaplot.
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(a)

(b)

(c)

Figure 4.1: Screenshots of microhaplotype summary plots from microhaplot’s shiny

app. (a) The “genotype-biplot” output in refining genotype call. (b) microhaplot’s

summary of haplotype read depth and callable fraction of haplotypes. (c) Frequency

of observed genotypes and values expected under Hardy-Weinberg equilibrium, sum-

marized by microhaplot. The text in the upper right refers to the currently selected

genotype, represented by the large blue-green circle.
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