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ORIGINAL ARTICLE
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Abstract
Objective Patients with obstructive sleep apnea (OSA) have
been described to have increased levels of inflammatory
cytokines (particularly TNF-α) and have severely disturbed
sleep architecture. Serum inflammatory markers, even in
normal individuals, have been associated with abnormal
sleep architecture. Not much is known about the role the
TNF receptor plays in the inflammation of OSA nor if it is
associated with changes in sleep architecture or arousals
during the night. We hypothesized that the TNF receptor
might play an important role in the inflammation as well as
sleep architecture changes in patients with OSA.
Design Thirty-six patients with diagnosed (AHI>15) but
untreated OSA were enrolled in this study. Baseline
polysomnograms as well as TNF-α and soluble TNF
receptor I (sTNF-RI) serum levels were obtained on all
patients. We evaluated the association between serum levels
of TNF-α and sTNF-RI with various polysomongraphic
characteristics, including sleep stages and EEG arousals.
Results sTNF-RI levels were significantly correlated with
snore arousals (r value 0.449, p value 0.009), spontaneous
movement arousals (r value 0.378, p value 0.025), and
periodic limb movement arousals (r value 0.460, p value
0.008). No statistically significant correlations were ob-
served with TNF-α to any polysomnographic variables. To
control for statistical significance with multiple compar-

isons, a MANOVA was performed with TNF-α and sTNF-
RI as dependent variables and sleep architecture measures
and arousals as independent variables. The model for
sTNF-RI was statistically significant (F value 2.604, p
value 0.03), whereas the model for TNF-α was not,
suggesting sleep quality significantly affects sTNF-RI.
Hierarchal linear regression analysis demonstrated that
sTNF-RI was independently associated with spontaneous
movement arousal index scores after controlling for age,
body mass index, and sleep apnea severity.
Conclusions These findings suggest that sTNF-RI is asso-
ciated with arousals during sleep, but not with other
measures in patients with OSA.

Keywords Obstructive sleep apnea . Inflammation .

Sleep architecture . Arousals . Tumor necrosis factor .
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Introduction

Obstructive sleep apnea (OSA) is a common condition
characterized by repeated episodes of upper airway ob-
struction which result in interruptions of breathing during
sleep, recurring episodes of hypoxemia, sleep fragmenta-
tion, and daytime sleepiness. OSA is found in approxi-
mately 5% of the general population and is a significant
source of morbidity and mortality [1]. The full pathogenesis
of obstructive sleep apnea is not clear; recent literature
suggest that in addition to mechanical factors in the airway,
there may be an inflammatory etiology.

Surgical biopsies of the uvula in patients with OSA have
demonstrated histological abnormalities, including subepi-
thelial edema and excessive inflammatory cell infiltration
[2–3]. Mediators of the systemic inflammatory response,
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including cell adhesion molecules (ICAM), coagulation
factors (Factor VIII, Tissue factor), C-reactive protein
(CRP), and pro-inflammatory cytokines are also up-regu-
lated in patients with OSA [4–6]. In particular, significant
elevations in serum levels of TNF-α, IL-1β, and IL-6 have
been seen in patients with obstructive sleep apnea [7–11].

TNF-α has been one of the more closely studied
cytokines in the pathogenesis of OSA. Physiologically,
TNF-α is a pro-inflammatory cytokine with a significant
role in host defense and mediates the pathogenesis of a
number of disease processes, including septic shock,
atherosclerosis, and auto-immune disease [12]. TNF-α has
two transmembrane-bound receptors (p55 TNF-RI and p75
TNF-RII) as well as soluble forms (sTNF-RI and sTNF-RII)
that are released by proteolysis of the cell-bound receptor
under the control of inflammatory cytokines (e.g., IL-6, IL-2,
IFN-γ), T cell activation, and by TNF-α itself [12–13].

In patients with untreated OSA, elevations in TNF-α are
observed [7–10]. When given continuous positive airway
pressure treatment (CPAP), subjects are noted to have
significant decreases in circulating TNF-α [8]. Despite the
large body of investigation regarding the role of TNF-α in
the pathogenesis of OSA, not much is known about any
role the TNF-R receptor plays. In models of cardiopulmo-
nary bypass and trauma, increased levels of soluble TNF-R
are noted [14–15]. Elevated levels of TNF-R are considered
markers of an inflammatory response, although they may
themselves act in an anti-inflammatory manner by binding
excess ligand [12]. sTNF-RI is the predominant form shed
from pulmonary epithelial cells in pulmonary disease and
has been studied as a potential inflammatory mediator in
models of acute lung injury [15–18]. Serum levels of p55
TNF-R have been noted to be associated with morbidity,
mortality, and patient outcomes in patients with acute lung
injury [17–20]. Elevated levels of sTNF-RI have not been
consistently described in patients with OSA and it is not
known if these levels contribute additional information
about the inflammation seen in OSA.

The role of cytokines in disrupting the architecture of
sleep is also in need of further study. Serum inflammatory
markers, even in normal individuals, have been associated
with abnormal sleep architecture [21]. In subjects with
increased levels of TNF-α associated with HIV, increases in
EEG delta amplitude have been seen on polysomnograms
[22]. There has been interest in EEG arousals, as these may
be a potential stimulus for the sympathetic nervous system
activation seen in OSA [23–25]. EEG arousals are globally
defined as abrupt changes in EEG frequency to alpha
without spindle activity. They can be measured in a variety
of different ways and can be divided into cortical,
movement, and respiratory arousals. There has been limited
investigation into the role and utility of sub-classifying
arousals, although we have previously shown that move-

ment arousals can influence daytime sympathetic tone [25].
There is limited data regarding any association between
EEG arousals and inflammation in patients with OSA and it
is not clear if the two are related.

Given the limited data on the role of TNF-R in OSA, this
study investigated the association between TNF-α and
sTNF-RI with sleep architecture measures, including
arousals. In addition, the association between these inflam-
matory cytokines and the severity of obstructive sleep apnea
was also examined.

Materials and methods

Patients Subjects suspected of having obstructive sleep
apnea were recruited. Thirty-six (28 men and eight women)
were found to have obstructive sleep apnea (AHI>15) by
polysomnogram and were invited to participate in the
protocol. None of the subjects had previously been treated
for sleep apnea. Participants completed a physical exami-
nation and answered questions about their medical history
to determine eligibility for the study. Participants were
excluded if they had a history of a major illness such as
heart disease, liver or kidney disease, asthma, stroke, or
other neurologic disorders. Women were also excluded if
pregnant. Basic intake data were obtained on all partic-
ipants, including age, ethnicity, vital signs, weight and
BMI, education, and occupation. The study was approved
by the Institutional Review Board at the University of
California, San Diego (UCSD) and participants were
studied after obtaining written informed consent.

TNF assays Blood was drawn via saline lock previously
inserted at approximately 6 AM the following morning after
the polysomnogram was obtained. Following centrifugation,
serum was stored at −80°C until assayed. Levels of TNF-α
and sTNF-RI were measured on non-freeze–thawed samples
with an enzyme-linked immunosorbent assay (R&D Sys-
tems, Minneapolis, MN, USA). The precision and sensitivity
performance values for TNF-α were an intra-assay coeffi-
cient of variation of 5.3%, inter-assay coefficient of variation
of 8.4%, and sensitivity of 0.106 pg/mL. For the sTNF-RI
measurements, the precision and sensitivity performance
values for sTNF-RI were an intra-assay coefficient of
variation of 4.4% with an, inter-assay coefficient of variation
of 6.1%, and mean sensitivity of 0.77 pg/mL.

Polysomnography Standard overnight polysomnography
on one night was performed on all participants on the
Gillin Laboratory of Sleep and Chronobiology of the
UCSD General Clinical Research Center. Polysomnography
procedures have been previously described [25]. Briefly,
electroencephalography, electroculography, chin electromy-
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ography, and thoracic and abdominal respiratory effort were
recorded on a Grass Heritage digital polysomnograph
(Model PSG36-2, Astro-Med, Inc, West Warwick, RI).
Oxygen saturation was measured with a pulse oximeter
(Biox 3740; Ohmeda: Louisville, Colorado). Sleep record-
ings were scored in 30-s epochs and staged according to the
criteria of Rechtshaffen and Kales [26]. The following sleep
variables were computed: % of each stage of sleep (1, 2,
slow wave sleep), oxygen desaturation index (ODI), and
apnea hypopnea index (AHI). Oxygen desaturations were
defined as a ≥3% decrease in oxyhemoglobin saturation
from baseline; the number of events was divided by the
total sleep time in hours to obtain the ODI. Apneas and
hypopneas were defined as decrements in airflow of <90%
and >50% from baseline lasting at least 10 s respectively.
Air flow was measured with a nasal pressure transducer via
nasal cannula as well as with a thermistor. Apneas and
hypopneas were scored using the nasal pressure transducer
primarily. The thermistor was used as a secondary
measurement to determine oral breathing and as a back up
measure. Apneas and hypopneas were defined on the basis
of decrement in airflow alone. The number of apneas and
hypopneas per hour of sleep were calculated to obtain the
AHI. Arousals were scored according to the general criteria
of the ASDA [27] and globally defined as sudden increases
in EEG frequency to alpha or theta without spindle activity,
lasting at least 3 s but less than 15 s, with at least 10 s of
sleep recorded prior to the arousal. Arousals were then
further sub-classified as previously described [28]:

1. Snore arousal: any type of arousal occurring immediately
following a period of crescendo snoring in the absence of
an apneic event. Snore arousals include respiratory
effort-related arousals.

2. Periodic limb movement arousal: sudden increase in
EEG frequency following a periodic limb movement in
the absence of an apneic event or crescendo snoring.

3. Respiratory cortical arousal: sudden increase in EEG
frequency without obvious rise in EMG activity
occurring within three breaths after the termination of
a respiratory apneic event.

4. Respiratory movement arousal: sudden increase in
EEG frequency associated with increased in EMG
activity of the chin or of the tibialis anterior muscle
occurring within three breaths after the termination of
a respiratory apneic event.

5. Spontaneous cortical arousal: sudden increase in EEG
frequency without an increase in EMG activity occur-
ring in the absence of an obvious precipitating event.

3. Spontaneous movement arousal: sudden increase in EEG
frequency associated with an increase in EMG activity of
the chin or of the tibialis anterior muscle, occurring in the
absence of an obvious precipitating event.

Indices for each arousal type were calculated by summing
the number of each particular arousal and dividing by the
total sleep time.

Statistical analyses Descriptive statistics were used to
determine mean values for demographic and anthropomet-
ric characteristics, sleep architecture, and cytokine levels in
the study sample population. Pearson correlations were
performed between TNF-α and sTNF-RI levels and the
various polysomnographic measures. We also performed a
multivariate ANOVA using TNF-α and sTNF-RI as
dependent variables with sleep parameters and arousals as
covariates to evaluate for statistical significance in the
context of multiple comparisons. Hierarchal linear regres-
sion analysis was then performed to evaluate if various
demographic parameters or sleep apnea severity had any
effects on the cytokine-sleep architecture relationships.
Statistics were considered significant at p<0.05. Statistical
analyses were performed using SPSS statistical software
(SPSS for Windows 12.0: SPSS Inc.; Chicago).

Results

A total of 36 patients with obstructive sleep apnea
completed the study. Table 1 describes the subjects’
demographic and anthropometric characteristics. Patients
were on average 46 years old (±10 years), predominantly
male, and mildly obese (BMI=31.2±5.3 kg/m2). Table 2
depicts the sleep parameters. On average, the sample
population had severe OSA (AHI=64.9±33.1). The mean
total arousal index was severely elevated at 46.7±32.8, and
the majority were respiratory movement arousals. The
oxygen desaturation index (ODI) was also elevated at
42.7±36.7 desaturation events per hour. The percent of
stage 1 and 2 sleep were elevated at 17.8% and 61.0%,
respectively. The percent of slow wave sleep and REM
sleep were both low at 5.7% and 15.5%. Average TNF-α
levels were 1.96±2.11 pg/mL; average sTNF-RI levels
were 956.3±184.8 pg/mL.

Table 3 summarizes the Pearson correlation analysis.
Correlation analyses between TNF-α and measures of
apnea severity, desaturation indices, and sleep architecture
did not show any statistically significant associations. There

Table 1 Clinical characteristics

Characteristic Mean±SD

Age, years 46.5±10.3
Gender 28 male,

8 female
BMI, kg/m2 31.2±5.3
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were, however, a number of statistically significant associ-
ations observed between sTNF-RI and arousal indices,
including snore arousals (r value 0.449, p value 0.009),
periodic limb movement arousals (r value 0.460, p value
0.008), and spontaneous movement arousals (r value 0.378,
p value 0.025). To control for multiple comparisons, we
used a MANOVA model with TNF-α and sTNF-RI as
dependent variables and using arousals and sleep architec-
ture variables as covariates. The model for TNF-α was not
significant (F value 0.563, p value 0.788), but the model for
sTNF-RI was statistically significant (F value 3.12, p value
0.02; Figs. 1, 2, and 3).

Based on the observed significant univariate associations
with sTNF-RI, we then analyzed the data with hierarchal
linear regression to determine if arousal indices contributed
additional independent information to levels of sTNF-RI,

after controlling for demographic variables and sleep apnea
severity. sTNF-RI levels were the dependent variable. At
step 1, we forced entry of age and BMI. For step 2, we
entered AHI and the oxygen desaturation index. For step 3,
we entered the appropriate arousal index, based on indices
with significant Pearson correlations. Detailed regression
results for spontaneous movement arousals are shown in
Table 4. A summary of the regression analyses for the other
arousals indices is shown in Table 5.

For the periodic limb movement index and snore arousal
index, neither final model was statistically significant, and
the arousals did not contribute significantly to the variance
of sTNF-RI levels. For the spontaneous movement index,
the overall model was significant (p=0.045) and spontane-
ous movement arousals accounted for a significant propor-
tion of the variance of sTNF-RI levels (R2 change 0.147,

Table 2 Sleep characteristics

Sleep recording measures Mean±SD (range)

% Stage 1 sleep 17.8±9.6 (3.5–46)
% Stage 2 sleep 61.0±9.9 (39.5–77.7)
% Slow wave sleep (stage 3 and 4) 5.7±7.5 (0–26.7)
% REM Sleep 15.5±6.2 (4.2–30.2)
AHI 64.9±33.1 (16.2–135.9)
AI 36.0±35.2 (0.2–117.4)
ODI 42.7±36.7 (0–125.9)
Total arousal index 46.7±32.7 (8.2–122.7)
Snore arousal index 2.0±2.2 (0–8.8)
Spontaneous cortical arousal index 1.0±1.2 (0–5.4)
Respiratory cortical arousal index 2.8±5.1 (0–30.3)
Spontaneous movement arousal index 1.5±1.3 (0–4.9)
Respiratory movement arousal index 38.9±35.3 (1.4–120.5)
Periodic limb movement index 0.4±0.8 (0–3.5)

Table 3 Univariate correlations

TNF-α sTNF-RI

% light sleep (stage S1) 0.174 0.053
% light sleep (stage S2) 0.182 0.093
% deep sleep (stage S3 + S4) 0.275 0.124
% REM Sleep 0.226 0.083
AHI 0.126 0.169
AI 0.180 0.301
ODI 0.051 0.265
Total arousal index 0.052 0.170
Snore arousal index 0.033 0.449**
Spont cortical arousal index 0.080 0.220*
Resp cortical arousal index 0.076 0.072
Spont movement arousal index 0.329 0.378**
Resp movement arousal index 0.062 0.224
Periodic limb movement arousal index 0.138 0.460**

R values are listed below (n=36)
*p<0.05, **p<0.01

Fig. 1 Scattergrams of sTNFR-I with the spontaneous movement
arousal index

Fig. 2 Scattergrams of sTNFR-I with the snore arousal index
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p=0.021). None of the demographic or sleep apnea severity
characteristics contributed significantly towards sTNF-RI
levels.

Discussion

This study sought to investigate the role of the soluble TNF
receptor I and TNF-α in obstructive sleep apnea and their
relationship to measures of sleep architecture and arousals.
A central finding of this study was that levels of sTNF-RI
in patients with OSA were positively associated with
arousals, whereas TNF-α levels were not associated with
any sleep apnea severity or sleep architecture measures.

This association of sTNF-RI with arousals is intriguing.
Soluble forms of the TNF receptor are up-regulated in
states of increased TNF-α levels [12]. In particular, the RI
form of the TNF receptor has been shown to regulate sleep
in animals [29]. A study of total sleep deprivation in normal
volunteers noted increased levels of sTNF-RI (but not TNF-
α) that correlated with levels of sleep deprivation [30]. The
RI form of the soluble TNF receptor is the predominant
form shed from pulmonary epithelial cells and suggests a
role as a modulator of the inflammation in OSA, potentially
via the frequent hypoxemic episodes seen in these patients.
Our hierarchical linear regressions noted incremental
information provided by sTNF-RI that were not seen with
the TNF-α data alone, particularly with spontaneous
movement arousals.

Potential limitations of our study include the overall
sample size and our method of subdividing arousals in
different types. Although we did not necessarily expect a
differential effect on sTNF-RI levels by different types of
arousals, we have found some benefit in examining specific
types of arousals. For instance, prior work done by our
group has shown that sympathetic nervous system activa-
tion was predominantly affected by movement arousals and
not cortical arousals [25]. We believe our results are
interesting initial observations in the role of arousals in
the contribution to the inflammation seen in OSA. These
results also suggest that not all types of arousals equally
contribute to elevations in cytokine levels.

As previously mentioned, we did not see any significant
correlations of TNF-α with any measures of apnea severity
or changes in sleep architecture. Other studies have
previously noted significant correlations of TNF-α with
measures of apnea severity and oxygen desaturation [8],
although the literature is inconsistent [33]. There are a
number of potential reasons for this; assay sensitivity
potentially plays a role. The majority of the literature uses
an ultra-sensitive Bioscience TNF-α assay, whereas a R&D
TNF-α assay was used in this study; however, mean
sensitivity and minimum detectable doses are comparable
across the two assays. Other potential reasons include the

Table 4 Multiple regression predictors of sTNFR-I and spontaneous
movement arousal index

R R2 Adjusted
R2

Variables β P value

Step 1a 0.256 0.065 0.001 Age 0.266 0.172
BMI 0.039 0.837

Step 2b 0.430 0.184 0.064 Age 0.136 0.491
BMI 0.304 0.236
AHI −0.055 0.833
ODI 0.440 0.090

Step 3c 0.582 0.339 0.211 Age −0.009 0.962
BMI 0.343 0.150
AHI −0.073 0.761
ODI 0.423 0.077
Spontaneous
movement
arousal

0.425 0.021

aF(2,32)=1.013, p=0.375, R2 change 0.001
bF(4,30)=1.527, p=0.222, R2 change 0.053
cF(5,29)=2.661, p=0.045, R2 change 0.147

Fig. 3 Scattergrams of sTNFR-I with the periodic limb movement
index

Table 5 Multiple regression predictors of sTNFR-I and snore and
periodic limb movement arousal indices

Dependent
variable

Significant individual predictor
variables with ß coefficients;
p values

Model unadjusted R2;
adjusted R2a; p value

sTNFR-I Snore arousal index
(0.340; 0.082)

0.273; 0.136; p=0.116

sTNFR-I Periodic limb movement
arousal index (−0.083; 0.674)

0.156; 0.010; p=0.396

a Adjusted R2 is the R2 adjusted for number of predictors in the model
and sample size
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method in which we measured TNF-α. TNF-α can be
found free or bound to its receptor (soluble and/or cell-
bound). Although our TNF-α assay measured both free- and
receptor-bound ligand, we only analyzed cell free samples
and did not measure the amount of receptor-bound ligand
still attached to the cell membrane when preparing the serum
and may have potentially decreased the total amount of
TNF-α measured. Sampling time is also a potential
confounder, as TNF-α exhibits a diurnal variation in normal
patients and different sampling times could explain some of
the variation in TNF-α levels. Most studies including this
present one, however, drew serum samples in the early
morning. There is also no widely accepted standard range of
TNF-α levels in apneics. Our review of the literature yields
ranges from 0.98 pg/mL up to 7 pg/mL and higher [7–11,
31–35]. Our average TNF-α level was 1.96 pg/mL, which
was not significantly different from previously reported
values. Our failure to observe significant associations
between TNF-α and sleep may also relate to sample size,
but none of the correlations of TNF-α with any sleep
variables approached any statistical significance.

The lack of any significant correlations of TNF-α to any
measures of apnea severity or sleep fragmentation may also
be related to the interplay of TNF-α and its soluble
receptor, as the receptor may have downregulated the
activity of TNF-α, limiting its utility in evaluating
associations with sleep architecture changes and arousals.
Similar results have been noted in the acute lung injury
literature where the soluble receptor has been shown to
have associations with disease severity as well as prognos-
tic information, whereas no significant findings were
observed with TNF-α. Despite the lack of associations of
TNF-α with sleep variables however, it is important to note
there is literature demonstrating that at least TNF-α levels
in the brain are important to sleep regulation [36].

This study was limited to patients with OSA. Given the
nature of our study design, it is unknown if these results
apply to healthy control subjects or to sleep disorder patient
populations who do not suffer from OSA. We felt, however,
that the design of our study was a legitimate first step in the
evaluation of the role of sTNF-RI in OSA. The natural next
step would be to replicate these findings as well as evaluate
if they are also found in other sleep disorders. In particular,
patients with upper airway resistance syndrome (character-
ized by frequent arousals but without apneic episodes)
would be an interesting population to study further.

In summary, our data suggest an association between
soluble TNF receptor I and EEG arousals in obstructive
sleep apnea. The data also suggest that movement arousals
may be an independent predictor of levels of sTNF-RI. In
conclusion, our data suggest that disrupted sleep quality in
obstructive sleep apneics may be playing contributing to the
systemic inflammation seen in these patients.

Acknowledgments This work was supported by grants HL44915
and M01 RR00827, AG08415, and CA112035 from the National
Institutes of Health. Address correspondence to Dr. Yue at UC San
Diego Medical Center, Dept Pulm/Crit Care Medicine, 200 West
Arbor Drive, San Diego, CA 92103-8383.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

1. Young T, Skatrud J, Peppard PE (2004) Risk factors for
obstructive sleep apnea in adults. JAMA 291:2013–2016.
doi:10.1001/jama.291.16.2013

2. Sekosan M, Zakkar M, Wenig BL, Olopade CO, Rubenstein I
(1996) Inflammation in the uvula mucosa of patients with
obstructive sleep apnea. Laryngoscope 106:1018–1020.
doi:10.1097/00005537-199608000-00021

3. Bergeron C, Kimoff J, Hamid Q (2005) Images in allergy and
immunology: obstructive sleep apnea syndrome and inflamma-
tion. J Allergy Clin Immunol 116:1393–1396. doi:10.1016/j.
jaci.2005.10.008

4. Ursavaş A, KaradağM, Rodoplu E, Yilmaztepe A, Oral HB, Gözü
RO (2007) Circulating ICAM-1 and VCAM-1 levels in patients
with obstructive sleep apnea syndrome. Respiration 74:525–532.
doi:10.1159/000097770

5. von Känel R, Loredo JS, Ancoli-Israel S, Mills PJ, Natarajan L,
Dimsdale JE (2007) Association between polysomnographic
measures of disrupted sleep and prothrombotic factors. Chest
131:733–739. doi:10.1378/chest.06-2006

6. Punjabi NM, Beamer BA (2007) C-reactive protein is associated
with sleep disordered breathing independent of adiposity. Sleep
30:29–34

7. de la Pena Bravo M, Serpero LD, Barcelo A et al (2007)
Inflammatory proteins in patients with obstructive sleep apnea
with and without daytime sleepiness. Sleep Breath 11:177–185.
doi:10.1007/s11325-007-0100-7

8. Minoguchi K, Tazaki T, Yokoe T et al (2004) Elevated production of
tumor necrosis factor-α by monocytes in patients with obstructive
sleep apnea syndrome. Chest 126:1473–1479. doi:10.1378/
chest.126.5.1473

9. Ciftci TU, Korturk O, Bukan N et al (2004) The relationship between
serum cytokine levels with obesity and obstructive sleep apnea
syndrome. Cytokine 28:87–91. doi:10.1016/j.cyto.2004.07.003

10. Vgontzas AN, Papanicolaou DA, Bixler EO, Kales A, Tyson K,
Chrousos GP (1997) Elevation of plasma cytokines in disorders of
excessive daytime sleepiness: role of sleep disturbance and obesity.
J Clin Endocrinol Metab 82:1313–1316. doi:10.1210/jc.82.5.1313

11. Vgontzas AN, Papanicolaou DA, Bixler EO, Hopper K, Lotsikas A,
Lin HM, Kales A, Chrousos GP (2000) Sleep apnea and daytime
sleepiness and fatigue: relation to visceral obesity, insulin resistance,
and hypercytokinemia. J Endocrinol Metab 85:1151–1158.
doi:10.1210/jc.85.3.1151

12. Aderka D (1996) The potential biological and clinical significance
of the soluble tumor necrosis factor receptors. Cytokine Growth
Factor Rev 7:231–240. doi:10.1016/S1359-6101(96)00026-3

13. BrockhausM, Schoenfeld H, Schlaeger E, HunzikerW, Lesslauer W,
Loetscher H (1990) Identification of two types of tumor necrosis
factor receptors on human cell lines by monoclonal antibodies. Proc
Natl Acad Sci USA 87:3127–3131. doi:10.1073/pnas.87.8.3127

268 Sleep Breath (2009) 13:263–269

dx.doi.org/10.1001/jama.291.16.2013
dx.doi.org/10.1097/00005537-199608000-00021
dx.doi.org/10.1016/j.jaci.2005.10.008
dx.doi.org/10.1016/j.jaci.2005.10.008
dx.doi.org/10.1159/000097770
dx.doi.org/10.1378/chest.06-2006
dx.doi.org/10.1007/s11325-007-0100-7
dx.doi.org/10.1378/chest.126.5.1473
dx.doi.org/10.1378/chest.126.5.1473
dx.doi.org/10.1016/j.cyto.2004.07.003
dx.doi.org/10.1210/jc.82.5.1313
dx.doi.org/10.1210/jc.85.3.1151
dx.doi.org/10.1016/S1359-6101(96)00026-3
dx.doi.org/10.1073/pnas.87.8.3127


14. ElBarbary MKKS, ElBarbary M, Khabar K (2002) Soluble tumor
necrosis factor receptor p55 predicts cytokinemia and systemic
inflammatory response after cardiopulmonary bypass. Crit Care
Med 30:1712–1716. doi:10.1097/00003246-200208000-00006

15. Hensler T, Sauerland S, Bouillion B, Raum M, Rixen D, Helling H,
Andermahr J, Neugebauer E (2002) Association between injury
pattern of patients with multiple injuries and circulating levels of
soluble tumor necrosis factor receptors, interleukin-6 and interleu-
kin-10, and polymorphonuclear neutrophil elastase. J Trauma
52:962–970. doi:10.1097/00005373-200205000-00023

16. Pittet J, Mackersie R, Martin T, Matthay M (1997) Biological
markers of acute lung injury: prognostic and pathogenetic
significance. Am J Respir Crit Care Med 155:1187–1205

17. Parsons PE, Matthay MA, Ware LB, Eisner MD, National Heart,
Lung, Blood Institute Acute Respiratory Distress Syndrome
Clinical Trials Network (2005) Elevated plasma levels of soluble
TNF receptors are associated with morbidity and mortality in
patients with acute lung injury. Am J Physiol Lung Cell Mol
Physiol 288:L426–L431. doi:10.1152/ajplung.00302.2004

18. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM,
Brienza A, Bruno F, Slutsky AS (1999) Effect of mechanical
ventilation on inflammatory mediators in patients with acute
respiratory distress syndrome: a randomized controlled trial.
JAMA 282:54–61. doi:10.1001/jama.282.1.54

19. Hyers T, Tricomi SM, Dettenmeier P, Fowler A (1991) Tumor
necrosis factor levels in serum and bronchoalveolar lavage fluid of
patients with the adult respiratory distress syndrome. Am Rev
Respir Dis 144:268–271

20. Parsons P, Moore F, Moore E, Ikle D, Henson P, Worthen G
(1992) Studies on the role of tumor necrosis factor in adult
respiratory distress syndrome. Am Rev Respir Dis 146:694–700

21. Mills PJ, von Känel R, Norman D, Natarajan L, Ziegler MG,
Dimsdale JE (2007) Inflammation and sleep in healthy individu-
als. Sleep 30:729–735

22. DarkoDF,Miller JC, Gallen C,White J, Koziol J, Brown SJ, Hayduk
R, Atkinson JH, Assmus J, Munnell DT, Naitoh P, McCutchan JA,
Mitler MM (1995) Sleep electroencephalogram delta-frequency
amplitude, night plasma levels of tumor necrosis factor alpha, and
human immunodeficiency virus infection. Proc Natl Acad Sci USA
92:12080–12084. doi:10.1073/pnas.92.26.12080

23. Somers VK, Dyken ME, Clary MP, Abboud FM (1995)
Sympathetic neural mechanisms in obstructive sleep apnea. J
Clin Invest 96:1897–1904. doi:10.1172/JCI118235

24. Narkiewica K, van de Borne PJ, Cooley RL, Dyken ME, Somers
VK (1998) Sympathetic activity in obese subjects with and
without obstructive sleep apnea. Circulation 98:772–776

25. Loredo JS, Ziegler MG, Ancoli-Israel S, Clausen JL, Dimsdale JE
(1999) Relationship of arousals from sleep to sympathetic nervous
system activity and BP in obstructive sleep apnea. Chest 116:655–
659. doi:10.1378/chest.116.3.655

26. Rechtshaffen A, Kales A (1968) A manual of standardized
terminology, techniques, and scoring system for sleep stages of
human subjects. National Institute of Health Publication 204: US
Government Printing Office Washington, DC

27. Report ASDA (1992) EEG arousals: scoring rules and examples.
Sleep 15:174–184

28. Loredo JS, Clausen JL, Ancoli-Israel S, Dimsdale JE (1999)
Night-to-night arousal variability and interscorer reliability of
arousal measurements. Sleep 22:916–920

29. Fang J, Wang Y, Krueger JM (1997) Mice lacking the TNF
55 kDa receptor fail to sleep more after TNF-alpha treatment. J
Neurosci 17:5949–5955

30. Shearer WT, Reuben JM, Mullington JM, Price NJ, Lee BN,
Smith EO, Szuba MP, Van Dongen HP, Dinges DF (2001) Soluble
TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected
to the sleep deprivation model of spaceflight. J Allergy Clin
Immunol 107:165–170. doi:10.1067/mai.2001.112270

31. Kataoka T, Enomoto F, Kim R, Yokoi H, Fujimori M, Sakai Y,
Ando I, Ichikawa G, Ikeda K (2004) The effect of surgical treatment
of obstructive sleep apnea syndrome on the plasma TNF-alpha
levels. Tohoku J ExpMed 204:267–272. doi:10.1620/tjem.204.267

32. Phillips CL, Yang Q, Williams A, Roth M, Yee BJ, Hedner JA,
Berend N, Grunstein RR (2007) The effect of short-term
withdrawal from continuous positive airway pressure therapy on
sympathetic activity and markers of vascular inflammation in
subjects with obstructive sleep apnoea. J Sleep Res 16:217–225.
doi:10.1111/j.1365-2869.2007.00589.x

33. Alberti A, Sarchielli P, Gallinella E et al (2003) Plasma cytokine
levels in patients with obstructive sleep apnea syndrome: a
preliminary study. J Sleep Res 12:305–311

34. Kobayashi K, Nishimura Y, Shimada T, Yoshimura S, Funada Y,
Satouchi M, Yokoyama M (2006) Effect of continuous positive
airway pressure on soluble CD40 ligand in patients with
obstructive sleep apnea syndrome. Chest 129:632–637.
doi:10.1378/chest.129.3.632

35. Ryan S, Taylor CT, McNicholas WT (2005) Selective activation
of inflammatory pathways by intermittent hypoxia in obstructive
sleep apnea syndrome. Circulation 112:2660–2667. doi:10.1161/
CIRCULATIONAHA.105.556746

36. Dickstein JB, Moldofsky H, Lue FA, Hay JB (1999) Intra-
cerebroventricular injection of TNF-alpha promotes sleep and is
recovered in cervical lymph. Am J Physiol 276:R1018–R1022

Sleep Breath (2009) 13:263–269 269

dx.doi.org/10.1097/00003246-200208000-00006
dx.doi.org/10.1097/00005373-200205000-00023
dx.doi.org/10.1152/ajplung.00302.2004
dx.doi.org/10.1001/jama.282.1.54
dx.doi.org/10.1073/pnas.92.26.12080
dx.doi.org/10.1172/JCI118235
dx.doi.org/10.1378/chest.116.3.655
dx.doi.org/10.1067/mai.2001.112270
dx.doi.org/10.1620/tjem.204.267
dx.doi.org/10.1111/j.1365-2869.2007.00589.x
dx.doi.org/10.1378/chest.129.3.632
dx.doi.org/10.1161/CIRCULATIONAHA.105.556746
dx.doi.org/10.1161/CIRCULATIONAHA.105.556746

	The roles of TNF-α and the soluble TNF receptor I on sleep architecture in OSA
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	Results
	Discussion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice




